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Abstract. JavaScript (JS) has become the dominant programming lan-
guage of the Internet and powers virtually every web page. If an adver-
sary manages to inject malicious JS into a web page, confidential user
data such as credit card information and keystrokes may be exfiltrated
without the users knowledge.
We present a comprehensive approach to information flow security that
allows precise labeling of scripting-exposed browser subsystems: the JS en-
gine, the Document Object Model, and user generated events. Our ex-
periments show that our framework is precise and efficient, and detects
information exfiltration attempts by monitoring network requests.

1 Motivation

The JS programming language forms a key component in today’s web architec-
ture, especially in Web 2.0 applications which regularly use JS to handle sensitive
information, such as corporate customer accounts. The current web page archi-
tecture allows source and library code from different origins to share the same
execution context in a user’s browser. Attackers take advantage of this execution
model to gain access to a user’s private data using Cross Site Scripting (XSS).

XSS is a code injection attack that allows adversaries to execute code without
the user’s knowledge and consent. Without any observable difference in runtime
behavior, a malevolent script can exfiltrate keystrokes, or traverse the Document
Object Model (DOM) to exfiltrate all visible data on a web page. Vulnerability
studies consistently rank XSS highest in the list of the most mounted attacks on
web applications [1,2]. A recent study [3] confirms the ubiquity of sensitive user
data exfiltration currently practiced on the Internet.
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As a first line of defense, browsers implement the same origin policy (SOP)
that limits a script’s access to information. This policy allows scripts from the
same origin to access each other’s data and prevents access for scripts of different
origins. Regrettably, attackers can bypass the SOP, e.g., by exploiting a XSS
vulnerability of a web page, or by providing code, such as a library that is
integrated in the same JS execution context as the original page.

Tracking the flow of information in the user’s browser seeks to address the
limitations of the SOP. Unfortunately, previous work [4,5,6,7] either limits track-
ing to a single bit of information, focuses solely on the JS engine or the DOM, or
introduces significant runtime overhead. These limitations make wide browser
adoption unlikely. Tracking only one bit of information leads to a high false
positive rate in Web 2.0 applications, where pages commonly use Content Dis-
tribution Networks (CDNs).

We take inspiration from all of these approaches and present a comprehensive
tracking framework (Section 3) that supports precise labeling for the dynamic
tracking of information flows within a browser, including: (1) the JS engine, (2)
the DOM, and (3) user generated events. We evaluate our system (Section 4)
showing that it satisfies the following properties: a) Secure: Our system can
stop information exfiltration attempts; in particular we show this by injecting
malicious code that performs a keylogging attack, and attempts to exfiltrate
HTML-form data. b) Precise: Our framework makes information flow tracking
feasible for Web 2.0 applications by supporting multi-domain label encoding.
We confirm this feasibility by visiting the Alexa Top 500 pages using our imple-
mented web crawler. c) Efficient: Our approach incurs an average overhead of
82.82% in the JS engine (on SunSpider benchmarks) and 5.43% in the DOM (on
Dromaeo benchmarks). Note, that the fastest dynamic information flow tracking
frameworks [5,7] introduce overhead on the order of 200-300%.

2 Threat Model

Throughout this paper, we assume that attackers have two important abilities:
(1) attackers can operate their own hosts, and (2) can inject code in other web
pages. Code injection into other pages relies either on exploiting a XSS vul-
nerability of a page, or the ability of attackers to provide content for mashups,
advertisements, libraries, etc., which other sites include. The attacker’s abilities,
however, are limited to JS injection and attackers can neither intercept nor con-
trol network traffic. Our framework protects against several threats, including,
but not limited to:

Information Exfiltration Attacks: By sending a GET request to a server
under the attacker’s control, the attacker can exfiltrate information in the URL
of an image request: elem.src = "evil.com/pic.png?"+creditcard number;.
The attacker uses the request for the image as a channel to exfiltrate a user’s
credit card number as a payload in the GET request, when loading the image
from the server.



Keylogging Attacks: An attacker might also craft code that logs keystrokes
by registering an event handler: document.onkeypress = listenerFunction;.
Our framework can track the flow of information for generated events, and can
therefore also detect and prevent keylogging attacks.

3 Design and Implementation

We implement a framework, WIF (WebKit Information Flow), which extends
the WebKit browser (version 1.4.2) with support for dynamic tracking of infor-
mation flows. Several industrial strength desktop and mobile browsers use the
WebKit code, e.g., Google’s Chrome, or Apple’s Safari. To protect the informa-
tion accessible by an executing script, we use a labeling model that enforces the
memory semantics of a non-interference security policy [8].
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Fig. 1. Architecture of WIF.

Our approach extends the browser’s JS engine with the ability to tag val-
ues with a security label indicating their originating domain. WIF introduces a
DomainRegistry (Figure 1) to manage these labels.

A single web page can incorporate data from several different domains, there-
fore we associate a unique label with each domain. In the JS engine, data and
objects originating from different domains may interact, creating values which
derive from more than one domain. To model this behavior, we take inspira-
tion from Myers’ decentralized label model [9] and represent security labels as a
lattice join over domains.

DomainRegistry: When the browser loads HTML or JS, it registers the code’s
domain of origin in the DomainRegistry before processing. The DomainRegistry
maps every domain to a unique bit in a 64 bit label. During execution, our
framework attaches these labels to new JS values and HTML-tokens based on
the origin. This design allows us to use efficient bit arithmetic for label join
(0001|0010=0011) operations that propagate labels.

Information Flow in the JS engine: As a foundation for WIF, we implement
information flow tracking within the JS engine using an approach similar to other
researchers [4,3,5].



We implement security labeling by extending every JS value from 64 to 128
bits, where the upper 64 bits represent the actual JS value and the lower 64
bits indicate the domain of ownership. For example, a simplified example of a
binary operation like c = a + b, where a comes a.com (mapped to 0001) and
b originates from b.com (mapped to 0010) would cause c to hold the value of
a + b in the upper 64 bits, and the labels of both, a and b (0001|0010=0011)
in the lower 64 bits.

This design lets us directly encode 63 different domains in one label. We
reserve the highest bit in the label to indicate that the direct encoding of 63
domains overflows. The overflow-bit indicates that the page incorporates code
from more than 63 different domains. In such a case, our system switches to a
slower label propagation mechanism, where the lower 63 bits become an integer
index into an array of labels. When visiting the Alexa Top 500 pages with our web
crawler, we discovered that pages, on average, include content from 12 different
domains.

Conventional static analysis techniques for information flow, such as those
developed for the Java-based Jif [10], are not directly applicable to dynamically
typed languages, such as JS. However, we adapt these techniques by introducing
a control-flow stack that manages labels for different security regions of a running
program. At runtime, the JS engine updates the label of the program counter at
every control flow branch and join within a program. The top of the control-flow
stack always contains the current security label of the program counter. Using
the control-flow stack, our system is able to track:

• Explicit Information Flows, which occur when some value explicitly depends
on another variable, e.g., var pub = secret;.
• Implicit Direct Information Flows, which occur when some value can be in-

ferred from the predicate of a branch in control flow, e.g., if (secret) {
pub = true;}. An attacker can gain information about the secret variable
by inspecting the value of the variable pub after execution of the if state-
ment. The handling of implicit direct information flows therefore requires
joining the label of the variable pub with the label of secret. The latter
assignment to pub occurs in a labeled (secure) region, which causes pub to
be tainted with the label of the current program counter.

We refer the reader to an accompanying technical report [11] for further
details about maintaining the control-flow stack.

Information Flow in the DOM: The DOM provides an interface that allows
JS in a web page to reference and modify HTML elements as if they were JS ob-
jects. For example, JS can dynamically change the src-attribute of an image so
that the image changes whenever the user’s cursor hovers over it. Malicious JS
can use the DOM as a communication channel to exfiltrate information present
within a web page. WIF prevents such exfiltration attempts by labeling DOM
objects based on the origin of their elements and attributes. During HTML pars-
ing, browsers build an internal tree representation of the DOM. Our framework



uses this phase to attach an initial label, indicating the domain of origin, on all
element and attribute nodes in the newly constructed DOM-tree.

JS code that calls document.write can force the tokenizer to pause and pro-
cess new markup content from the script, before continuing parsing the regular
page markup. WIF applies labels to HTML tokens so that tokens generated by
the call inherit the label of the script, while regular markup inherits the label of
the page.

JS can make use of different syntactical variants to assign a value to an
HTML attribute in the DOM, e.g., element.name = value ;. Internally, all the
different variants dispatch to a function, setAttribute. We extend the argu-
ment list to include a label, which supports precise labeling, even for custom
attributes available in HTML5. Performing labeling solely on attributes in the
DOM, however, does not provide a complete solution. For example, a call to
the innerHTML property of a div-element that returns only plain text of the
displayed data without a label. To contain dynamically calculated properties,
such as innerHTML and value, WIF modifies these functions to apply the label
of the DOM element to the data before returning it to the JS engine.

User Events: In a web browser, the execution context for every script corre-
sponds to the domain of that document. Whenever JS code triggers an event,
WIF handles this event similar to a control-flow branch. It creates a new security
region for handling the event, and joins the PC-label (top of the control-flow
stack) with the label of the execution context. Once the event handler has fin-
ished execution, our framework restores the browser’s previous state. Using this
technique, our framework attaches a label to user generated JS events.

Network Monitor: At every network request, WIF checks whether the label of
the URL-string matches the server domain in the network request. To do so, WIF
extracts the domain of the GET request and looks up the corresponding 64-bit
label in the DomainRegistry. Then WIF checks whether the 64 bit label of the
URL-string matches the 64 bit label of the domain of that URL. Based on the
result of an XOR operation on the two labels, our system decides whether the
request is allowed.

Policy: We consider inequality of labels (0011 6= 0001) to be a privacy
violating information flow. When WIF detects such a violating flow, it records
the event and notifies the user.

4 Evaluation

Security Evaluation: To verify that WIF is able to detect information exfiltra-
tion attempts, we inject custom exploit code into ten mirrored web pages with
known XSS vulnerabilities. To find such web pages, we use XSSed (xssed.com),
which provides the largest online archive of XSS vulnerable web sites, listing
more than 45,000 web pages, including government pages, and pages in the
Alexa Top 100 world wide. We inject malicious code that exfiltrates all keys

xssed.com


pressed by a user into a mirrored vulnerable web page of amazon.com. This
mirrored page pulls and integrates code from eight different origins on the In-
ternet. Our framework successfully detects the attempt to exfiltrate logged keys,
HTML-form data, and other exfiltration attempts.

Web Crawler Statistics: To perform a quantitative evaluation of our system,
we implement a web crawler that automatically visits the Alexa Top 500 (alexa.
com) web pages and stays on each web page for 60 seconds. To simulate user
interaction, we equip this web crawler with the ability to fill out HTML-forms
and submit the first available form. We found information flows across domain
boundaries on 433 of the 500 visited web pages. This frequency emphasizes the
importance of providing an opportunity to retrace the flow of information in a
user’s browser. The following statistics show a snapshot of consistently changing
web pages, taken on December 24th, 2012.

Distinct Content Providers 3,061
Violating Information Flows 8,764
Flows labeled with one domain 5,947
Flows labeled with more than one domain 2,817

Table 1. Overall findings when browsing the Alexa Top 500 pages.

Distinct Content Providers: As shown in Table 1, the Alexa Top 500 pages
include content from a total of 3,061 distinct domains on the Internet. Verifi-
cation and proof that all these content suppliers are benign and trustworthy
is not available. A recent study [12] shows that web sites expand their “circle
of trust” by introducing about 45% new JS inclusions each year. This trend
encourages our efforts, because hacking just one of those inclusions gives
immediate access to sensitive user data.

Statistics about information flow violations: When visiting the Alexa Top
500 pages we detect a total of 8,764 information flow violations (Table 1)
which target a total of 1,384 distinct domains on the Internet. Our precise
labeling reveals interacting domains that cause an information flow violation.
We found that 2,817 out of the detected 8,764 violating information flows
have more than one domain encoded in their label. One such information flow
violation was found on t-online.de, where information was labeled with
domains of t-online.de, stats.t-online.de, im.banner.t-online.de,
imagesrv.adition.com, ad2.adfarm1.adition.com. Using such a multi-
domain labeling strategy allows our system to clearly identify CDNs, like
e.g., stats.t-online.de.
When crawling the Alexa Top 500 pages, our network monitor also reported
a flow, where information was labeled with more than one domain, to the
hardcoded IP-address 124.17.1.253. We used the service of whois.net and
discovered that China Science & Technology Network owns the IP-address.
Put differently, this IP-address might belong to almost anyone in China, be-
nign or malicious. Manual inspection of payloads in such network requests

amazon.com
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t-online.de
stats.t-online.de
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is almost impossible, because information is often encoded in a highly ob-
fuscated manner.

This result lets us conclude that only web site authors are able to provide
information about permitted flows. Defining a policy of permitted flows and
tracking the flow of information in a user’s browser therefore seems the most
promising approach to prevent information exfiltration attacks.

Performance Evaluation: We execute all benchmarks on a dual Quad Core
Intel Xeon E5462 2.80 GHz with 9.8 GB RAM running Ubuntu 11.10 (kernel
3.2.0) using gcc-4.6.3, where we use nice -n -20 to minimize operating system
scheduler effects.
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Fig. 2. left: Detailed JS engine performance impact per SunSpider benchmark,
right: Detailed DOM performance impact per Dromaeo benchmark (both nor-
malized by WebKit’s JS interpreter, JavaScriptCore).

Figure 2 (left) shows the results for executing the SunSpider benchmarks
using WIF. Our system has an average slowdown factor of 1.8×, or 82.82% when
normalized to WebKit’s original JS interpreter, JavaScriptCore. WIF intro-
duces this overhead in the JS engine because it propagates labels for all created
and modified JS values during execution of an application. To the best of our
knowledge, the fastest information flow tracking systems run two to three times
slower with tracking enabled [5,7], which indicates that our implementation is
substantially faster.

The results of the DOM benchmarks in Figure 2 (right) show that WIF in-
troduces an average overhead of 5.43%, on Dromaeo benchmarks. This overhead
is due to WIF managing not only the attribute value in the DOM, but also the
corresponding label.



Current Limitations, Discussion and Future Work: Our system does
not yet handle implicit indirect information flows, where information can be
inferred by inspecting values in the non-executed path. The efficient handling of
such flows still remains an open research question.

Currently, consumer browsers do not support any kind of information flow
control to provide security against information exfiltration attacks. We believe
that the introduced overhead for tracking the flow of information is the major
obstacle for widespread adoption. We have shown that labeling the DOM intro-
duces only around 5% overhead. To the best of our knowledge there is no just-
in-time (JIT) compiler that performs information flow tracking for interpreted
languages, such as JS. Other information flow tracking systems also integrate
their tracking mechanisms in the JS interpreter (cf. [4,7,5]). Comparing the per-
formance of our tracking framework against WebKit’s JIT compiler reveals that
our system introduces a slowdown of 6.3×, or 536.48% (the JavaScriptCore

interpreter itself introduces an overhead of 3.5×, or 248.14%, compared to it’s
JIT compiler). We are planning on exploring the performance impact of dynamic
information flow tracking using a JIT.

Showing the tradeoff between security and performance, the reader might
remember the introduction of Address Space Layout Randomization, which after
years of research finally found deployment in real world systems because the
introduced overhead became negligible compared to the security gain.

5 Related Work

Vogt et al. [4] presents work closely related to ours. This pioneering work shows
the practicality of using information flow control to enforce JS security. In con-
trast, they only use one bit as label information whereas our approach allows
multi-domain labeling. Unfortunately they do not provide performance numbers
which would make comparison to other work more comprehensive. Just et al. [5]
presents an information flow framework improving on the results of Vogt et al [4].
They also use a stack for labeling secure regions of a program, but solely focus
on the JS engine. Russo et al. [6] provides a mechanism for tracking informa-
tion flow within dynamic tree structures. This work, in contrast, solely discusses
information flow tracking in the DOM.

De Groef et al. [7] presents a system that uses secure multi-execution to en-
force information control security in web browsers. Even though their approach
presents a general mechanism for enforcing information flow control, their ap-
proach introduces substantial overhead. This is due to the nature of secure-multi-
execution, which requires them to execute JS up to 2n times, for n domains.

Hedin and Sabelfeld [13] present a dynamic type system that ensures infor-
mation flow control for a core of JS. They do not provide an implementation but
address the challenge of tracking the flow of information for objects, higher-order
functions, exceptions, arrays as well as JS’s API to the DOM.



6 Conclusion

We have presented a framework for the dynamic tracking of information flows
across scripting exposed subsystems of a browser that allows precise labeling
of values. To achieve this objective we added a DomainRegistry to the browser,
modified the underlying JS engine and APIs to handle DOM and user events. We
demonstrated that our framework is (1) able to detect information exfiltration
attempts, (2) allows precise statistics about domains involved in an information
flow violation, and (3) lowers performance overhead down to 83%. Thus, our sys-
tem provides a major step towards precise and efficient information flow control
in web browsers.
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