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The web browser is the “new desktop.” Not only do many users spend most of their time using the browser,
the browser has also become host to rich and dynamic applications that were previously tailored to each
individual operating system. The lingua franca of web scripting, JavaScript, was pivotal in this development.

Imagine that all desktop applications allocated memory from a single heap managed by the operating
system. To reclaim memory upon application shutdown, all processes would then be garbage collected—
not just the one being quit. While operating systems improved upon this approach long ago, this was how
browsers managed memory until recently.

This article explores compartmentalized memory management, an approach tailored specifically to web
browsers. The idea is to partition the JavaScript heap into compartments and allocate objects to compart-
ments based on their origin. All objects in the same compartment reference each other direct, whereas
cross-origin references go through wrapper objects.

We carefully evaluate our techniques using Mozilla’s Firefox browser—which now ships with our
enhancements—and demonstrate the benefits of collecting each compartment independently. This simul-
taneously improves runtime performance (up to 36%) and reduces garbage collection pause times (up to
75%) as well as the memory footprint of the browser. In addition, enforcing the same-origin security policy
becomes simple and efficient with compartments.
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1. MOTIVATION

Since its inception, the Internet has seen rapid growth in terms of users and the number
of things these users do on the web. Two decades ago, the web consisted primarily
of pages serving static content. Thanks to the ubiquity of JavaScript, webpages now
contain highly dynamic content. Consequently, a good user experience not only depends
on fast rendering and low network latencies, JavaScript performance matters as well.

Browsers have evolved in response to the changes in usage patterns. For instance, all
modern browsers have a tabbed user interface so that users can surf many webpages at
once. Also, JavaScript performance has increased substantially thanks to sophisticated
just-in-time compilers and optimizations for dynamic languages [Kotzmann et al. 2008;
Gal et al. 2009; Hackett and Guo 2012; Hölzle et al. 1991].

Some changes, such as “tabbed browsing,” were previously not factored into key
browser subsystems, such as the memory manager inside the JavaScript VM. Users
with many open tabs or windows inadvertently increase the workload on the garbage
collector, which, in turn, leads to noticeable pause times and high memory consumption.
Reports collected from the users of the Firefox browser show that some have as many
as 200 tabs open; a smaller-scale study found that Firefox power users use up to 25 tabs
[Dubroy and Balakrishnan 2010].

Consequently, we motivate our work by observing how scores of the V8 JavaScript
benchmark drop when going from 1 to 50 open tabs in Firefox 3.61. Figure 1(a) shows
the pause times when running the V8 benchmark suite without having other tabs
open. Figure 1(b) shows another run of the V8 suite after opening 50 tabs and loading
them with popular websites2. Figure 1 shows the garbage collection (GC) pause times
when opening 50 tabs and then running the V8 benchmark suite. The x-axis marks
GC events; the y-axis shows how the individual mark and sweep phases contribute to
the overall pause time. We observe that the score of the V8 benchmark degrades to
two-thirds of its single-tab score (from 4511 to 3017 points) as garbage collection times
rise. Figure 1(b) also shows that pause times grow linearly with the number of open
tabs (events 1–16) and remain high in the benchmarking phase (events 17–66).

To address this inefficiency, we use domain knowledge to tailor the memory manage-
ment system to the usage patterns of browsers. Not only does this reduce GC pause
times when many tabs are open, it also decreases the overall memory footprint of the
browser.

Summing up, we make the following contributions:

—We introduce the concept of compartments into the memory management subsystem
(Section 3.1). This design specializes the garbage collector to the usage patterns of
browsers. To the best of our knowledge, we are first to present a comprehensive study.

—We identify a good granularity of compartmentalization by comparing alternatives
(Section 3.2).

—We optimize our basic approach by adding background finalization and parallel mark-
ing (Section 4).

—We perform a careful and detailed evaluation of our compartmentalized memory
management approach (Section 5). In particular, our experiments show that:
—Performance improves by 6% with one open tab and by 36% with 50 open tabs.
—GC pause times reduce by 69% for a single tab and 75% with 50 tabs.

1Our research was implemented in the Firefox browser developed by Mozilla Corporation. The set of en-
hancements that we developed were first included in releases 4.0, 6.0, and 7.0 (from March to September
2011).
2Online Appendix A contains the list of websites used throughout the article.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 3, Article 9, Publication date: April 2016.



Thinking Inside the Box: Compartmentalized Garbage Collection 9:3

Fig. 1. Opening 50 tabs increases GC pause times.

2. BACKGROUND

An increasing number of activities are taking place on the web, including the exchange
of information, goods, and services. The resulting “Internet economy” depends critically
on dynamic content and, in turn, on efficient and secure web browsers being developed.
In their absence, progress in the area of web application development is artificially
stymied.

The addition of JavaScript to the Netscape Navigator 2.0 browser made it easy
for developers to change images in response to input events and to validate HTML
forms programmatically on the client side. Today, JavaScript is supported by all major
browsers and standardized as ECMAScript to allow interoperability. More recently,
the emergence of asynchronous JavaScript and XML enables interactive and complex
sites that resemble interactive applications rather than static documents. Finally, the
move to implement functionality handled by browser plug-ins directly in HTML5 and
JavaScript increases the need for efficient JavaScript processing even further.

Historical trends tell a similar story. In the two-year period from November 2010
to November 2012, for example, the average amount of JavaScript code per website
grew from 113KB to 215KB [Souders 2013]. This change is likely to continue; Google,
Mozilla, and others are developing browser-centric operating systems that run web
applications exclusively [Google 2009; Mozilla 2012; Linux Foundation 2012].

The JavaScript language assumes a managed runtime that automatically allocates
and frees memory on behalf of the developer. The throughput and pause times of
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the garbage collector are therefore major influences on script execution times—and
ultimately the user’s choice of web browser.

In the mid-1990s, when the use of JavaScript was in its infancy, browsers could
deliver acceptable performance using a simple mark-and-sweep collector to manage
the JavaScript heap. While such garbage collectors are easy to implement, they may
result in subpar performance. If the heap is not partitioned, the collector must scan the
entire heap during each collection. This results in comparatively low throughput3 and
high GC pause times. This is particularly detrimental to latency-sensitive applications.

As a result, major browser vendors now use garbage collectors that partition the
JavaScript heap to increase performance; for instance, collectors using generational
scavenging [Ungar 1984] are common.

Generational collectors partition the heap based on a general observation known as
the weak generational hypothesis: most objects die young [Hanson 1977; Ungar 1984].
The observation has been confirmed for many languages [Jones et al. 2011]. As objects
are allocated, they go into the nursery area. Allocation is typically fast, as it can be
done by a pointer increment. When the collector runs, reachable objects are copied to an
older generation, leaving only garbage, which will be zeroed before it can be reused by
the application. By collecting the nursery more frequently than other generations, the
average pause times are reduced. Further, since young objects have higher mutation
rates than older ones [Huang et al. 2004], co-locating these improves the mutator’s
locality of reference.

However, since generational collectors copy objects around, they must track the
locations of all object references precisely to update the ones pointing to moved objects.
Further, they must track intergenerational pointers, since these pointers function as
root objects when collecting a single generation. Write barriers are often used to track
references into the nursery generation.

A conservative GC, such as the one in Firefox, must be retrofitted with write barriers
and switched from conservative stack scanning to a precise GC in preparation for gen-
erational collection; this is sometimes infeasible and even unnecessary. We will show
that our conservative collector outperforms a state-of-the-art generational GC on some
workloads, such as the memory-intensive Splay benchmark in the V8 benchmark suite.

Besides delivering high performance, browsers must safeguard confidential and sen-
sitive information. To that end, browsers employ several types of isolation: JavaScript
code executes in a sandbox-mode to prevent interference with applications outside the
browser. Additionally, scripts are restricted in terms of what they may access—mainly
via the same-origin policy [Rudermann 2001]. In the domain of web content, the origin
refers to the (protocol, hostname, port)-triplet of any URL. For instance, the origin of

—http://www.mozilla.com/a.html equals the origin of
—http://www.mozilla.com/b.html

but not to the origins of

—http://mozillalabs.com/a.html,
—http://www.mozilla.com:81/a.html, or
—https://www.mozilla.com/a.html

Some web browsers, such as Google Chrome or Microsoft Internet Explorer 8, isolate
web content by creating a new process for new tabs or origins. This is good for security,
since process boundaries act like “hardware fences” between browsing instances, and
memory management can be handled completely separately for every tab. Chrome also

3Here, throughput refers to the ratio between the workloads of the collector and the mutator.
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spawns separate instances of the JavaScript VM for every process. Since the created
browsing instances are heavyweight, Chrome limits the number of processes to 20 [Reis
and Gribble 2009].

There are two problems with this approach: Certain web features, such as iframe
navigation, require pages to maintain references to objects belonging to other pages. To
support this pattern, Chrome loads such pages into the same rendering process, losing
any benefits of process separation along the way. Furthermore, creating a new process
leads to the allocation of additional memory for thread stacks, relocation tables, and
other metadata; the exact overhead varies with the operating system. The use of extra
memory per origin is undesirable for environments with limited resources, such as
mobile devices.

Since our compartmentalized approach separates the JavaScript heap based on ori-
gin, providing isolation in accordance with the same-origin policy becomes simple and
efficient (see Section 3.1). Not relying on processes for isolation means that our solution
is equally suited for high- and low-end hardware, including phones.

On the other hand, process separation for web applications that avoid cross-origin
communication is beneficial in high-end computing environments, as it can prevent pro-
gramming errors from destabilizing the entire browser. Therefore, we do not view com-
partmental memory management and multiprocess solutions as mutually exclusive.

3. DESIGN

To set the context for the introduction on compartments, we start by outlining the basic
organization of the JavaScript heap prior to our work.

The scripting engine in Firefox, SpiderMonkey4, is used to congregate all JavaScript
objects in a single heap. The heap layout follows a scheme introduced by Hanson [1990].
We allocate memory in 1MB chunks from the underlying operating system (Figure 2). A
chunk is aligned on 1MB boundaries such that its address can be computed efficiently
from the addresses of any object it contains. Chunks are further subdivided into a fixed
number of 4 KB arenas aligned on 4 KB boundaries. We use the term arena to avoid
confusion between virtual memory pages and webpages. In addition to arenas, chunks
also contain metadata, including a bitmap used to mark reachable objects during GC.

Each arena consists of a header, padding bytes, and number of slots of a particular
size. The header identifies the slot size of the arena, a free list that tracks unused
slots and a pointer to the next arena having the same slot size (or the next free arena
when the arena is unused). The free-list approach allows efficient allocation; a pointer
comparison and increment is all that is required.

Arenas are divided into equal-sized slots such that each arena contains objects of one
particular size. Being a dynamic language, the size of a JavaScript object is not fixed at
allocation time. Therefore, objects are allocated with an initial size chosen empirically.
The memory initially allocated consists of a header and a number of slots. If the number
of properties exceeds the number of available slots, a new set of slots is dynamically
allocated using malloc, and all properties are copied to this memory outside any arena.

Typically, users have several tabs or windows5 open; eventually one will have allo-
cated enough objects to trigger garbage collection. Since memory from different tabs is
interspersed, the marking phase must traverse the entire heap. This is wasteful since

4SpiderMonkey is the name of the original interpretive JavaScript engine developed by Mozilla. To increase
the execution speed, several JIT compilers targeting frequently executed code have been added. These include
TraceMonkey [Gal et al. 2009], JägerMonkey, and IonMonkey [Hackett and Guo 2012]. Since the choice of a
JIT compilation strategy is independent of our enhancements to the garbage collection scheme, we equate
SpiderMonkey with the entire VM.
5We use tabs and windows interchangeably since it makes no difference with regard to memory management.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 3, Article 9, Publication date: April 2016.



9:6 G. Wagner et al.

Fig. 2. The JavaScript heap is partitioned into 1MB chunks that are further divided into 4KB arenas. Every
arena has a header that stores basic information about the arena. Simple bit arithmetic suffices to compute
the chunk or arena header address.

many tabs may be idle and are therefore not producing any garbage to be collected.
The fact that the Firefox user interface, or chrome code (not to be confused with Google
Chrome), is implemented in JavaScript only exacerbates the problem. Even though ob-
jects created by the chrome code typically outlive those allocated by scripts on a page,
each collection computes the reachability of these objects.

3.1. Compartments

The key change to the memory-management scheme in the browser is in how JavaScript
objects are grouped. As we have already mentioned, generational scavenging groups
objects based on age, that is, the number of GCs that they survive. The novelty of our
approach is that we partition the heap using a domain-specific property—the origin of
an object—rather than a generic property that every object has. (Section 3.2 describes
why we choose the level of granularity.)

The objects created by http://gmail.com and http://www.bank.com are placed in
two separate compartments, for example. We choose to separate chrome objects (e.g.,
chrome://content/browser.xul) from objects created by webpages. Since chrome ob-
jects tend to outlive objects created by webpages, this separation avoids tracing of
chrome objects each time a webpage triggers GC. This heuristic is specific to browsers
and other applications whose UIs are scriptable (e.g., using JavaScript).

Compartments are stable in the sense that objects are not allowed to change com-
partments; nor can compartments be split or joined.

We require that cross-origin references between objects go through wrapper objects
while allowing objects inside the same compartment to reference each other directly
(Figure 3). The wrapper objects are stored in a special per-compartment structure called
the “WrapperMap.” Wrappers predate compartmentalization and are created whenever
a script would reference content in another tab or iframe; they enforce access control
on the underlying object according to the same-origin policy.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 3, Article 9, Publication date: April 2016.
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Fig. 3. An overview of possible references between compartments. The dotted arrows represent the old way
of communicating between two objects. In the new approach, we add a wrapper object between two objects
that reside in different compartments.

The SpiderMonkey VM optimizes the handling of certain6 strings via interning: if two
or more scripts contain the same string, each script will reference a single immutable
copy of that string. The main benefit is that each interned string is unique; thus,
equality testing can be done in constant time by comparing pointers. To facilitate shar-
ing, interned strings (called “atoms” internally) go into a special “atoms compartment.”
Since referencing an interned string is always permitted, objects in all compartments
reference these directly instead of going through wrappers. Because interned strings
do not reference other objects, the atoms compartment has no outgoing references. This
means that only global GC cycles can reclaim interned strings. Many strings are not
interned, however.

Compartmentalization has the following benefits:

(1) We can now perform incremental GC one compartment at a time. Since all outside
references to objects inside a compartment go through wrappers, these track the set
of objects that are externally reachable and eliminate the need for write barriers (at
the expense of a level of indirection for cross-container pointers). When performing
a per-compartment GC, we simply walk the object graph inside the compartment
while assuming that all externally referenced objects are live; heap areas unrelated
to the tab that triggered garbage collection are no longer walked. All objects not
marked during the walk are safe to reclaim.

(2) Wrappers are now used in a more principled and efficient way. The wrapper ap-
proach of FireFox 3.6 (which mirrors the use of wrappers in other browsers) requires
wrappers to be injected manually and at the right places in the C++ code to be se-
cure. With our compartmentalized approach, the JavaScript engine now enforces
this invariant uniformly at a low level—leaving less room for error. Wrappers are
now private to each compartment, whereas they could previously be accessed by
functions from different origins. This means that the origin of the wrapped ob-
ject as well as the accessing function (which is also an object) in known when it is

6The optimization is done at the VM level and remains invisible to users. String literals and identifiers in
JavaScript code are typically interned by the parser.
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instantiated. Access checks are therefore performed as wrappers are created rather
than at access time. The “wrapper factory” simply creates a wrapper that always
allows or denies access to the object it contains.

(3) Allocation of new objects does not need synchronization. In the previous design,
threads allocated arenas from an arena list and kept them in thread local storage.
To avoid data races among multiple threads, the allocation path for arenas was
locked. After a GC cycle, arenas would be returned to the shared arena list to be
allocated again with locking. Using compartments, we can dispense with almost
all locking since arenas stay within a compartment until they are empty and re-
leased; the allocation path simply traverses arenas within a compartment without
the need for synchronization. Allocation of interned strings still needs fine-grain
synchronization, however, since multiple threads may trigger it.

(4) Last, compartmentalization improves locality of reference. To bridge the gap be-
tween processor and memory speeds, the CPU loads an entire cache line whenever
reads are serviced by the memory subsystem. This is likely to bring more than a
single object into the CPU cache. In the old design, objects were adjacent to other
objects of the same size regardless of origin. In the new design, objects are only
co-located with other objects from the same domain. Since cross-origin objects are
used together infrequently, the new design results in higher data-cache utilization
and thus higher execution speed.

Per-compartment garbage collection is triggered whenever the allocation level of
a compartment reaches a threshold. If the overall allocation exceeds 150%7 of the
triggering compartment’s allocation, a global garbage collection is performed instead.
(Additional triggers of global GC exist as well, but fall outside the scope of this article.)
Even if we wanted to, global GC cycles cannot be entirely eliminated. The reason is that
cycles can exist in the global object graph that span multiple compartments. No objects
in such a cycle can be reclaimed from collecting any single compartment because the
wrapper map would keep them alive; hence, a global walk of the heap is required.

The relationship between compartments, chunks, and arenas is shown in Figure 4.
Compartments contain a list of arenas for each size class and the header of each arena
was extended with a reference to the compartment to which the arena belongs. Instead
of pointing to the next arena with the same size class, each arena header now points
to the next arena that holds similarly sized objects and that belongs to the same
compartment.

Since arenas are no longer shared across origins, we end up consuming more memory.
The allocation of a new object can require allocation of a new arena in more situations
than in the past. The increased fragmentation is essentially due to the requirement
that new memory cannot come from any compartment; the origin of the compartment
must match that of the allocating script. In the worst case, the user opens m different
pages from different origins and each allocates n objects of different sizes. The objects
belonging to each page will partially fill n different 4KB arenas, thus making the
worst-case internal fragmentation O(n × m). On the other hand, the new design often
uses direct references for which wrappers would previously have been injected. This
partially offsets the increased memory consumption from having private arenas.

Brain Transplants. We finish our overview of our basic approach by discussing an in-
teresting corner case in the design of compartments. Containers of webpages (i.e.,

7This heuristic was put in place to avoid performance regressions for mobile devices. If too many compart-
ments allocate memory and we trigger only a single-compartment GC, we would miss freeing all the memory
for the other compartments. Low-end devices showed performance regressions when we missed too much
memory during a GC.
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Fig. 4. Compartments keep an arena list which points to the first arena of each size class. Every arena
has a header that stores basic information about the arena. It includes a reference to the corresponding
compartment.

windows, tabs, and iframes) are represented in a somewhat peculiar way in the
JavaScript Document Object Model (DOM)8. Two objects exist for each DOM win-
dow: the inner window and the outer window. The outer window represents the UI
element, which acts as a container for the web content that the user sees. The inner
window refers to the displayed content itself. This design was implemented as a secure
way to handle windows navigating to a new URL.

When the user clicks a hyperlink, the inner window is replaced by a new object,
whereas the outer window stays unchanged. Whenever the destination URL has a
new origin, we allocate a new inner window in a new compartment as needed. Due to
our rules on cross-origin references, the outer window cannot directly reference inner
windows with a new origin.

Our solution to this problem—which we call “brain transplants”—copies the outer
window into the compartment of the inner window whenever it changes. We keep the
object in the old compartment around by transforming it into a wrapper object pointing
into the newly created compartment.

3.2. Granularity

It is possible to compartmentalize web content using several granularities; the choice
of per-origin granularity is not obvious. One end of the spectrum is represented by
the previous design: no compartmentalization at all. The other end of the spectrum
is more difficult to define because the boundaries between web programs are unclear.
When designing the security architecture of the Google Chrome browser, it was found
that “web programs are easy to understand but difficult to define precisely” [Reis and
Gribble 2009]. The reason is that any individual web application may contain content,

8The DOM is a set of API bindings that allows the structure and contents of HTML documents to be read
and manipulated by the JavaScript engine.
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Table I. Compartments and Corresponding Cross Compartment
Pointers When Creating New Compartments Per Origin

(Columns 2 and 3) or Per iframe (Columns 4 and 5)

URL Origin Wrappers IFrame Wrappers
280slides.com 1 26 2 85
amazon.com 4 280 16 563
bing.com 1 80 3 105
digg.com 3 114 3 115
ebay.com 1 48 1 50
facebook.com 1 249 6 445
flickr.com 3 185 23 1094
docs.google.com 6 552 7 277
maps.google.com 1 88 2 82
mail.google.com 2 183 9 5654
google.com 1 60 2 209
hulu.com 1 103 10 245
imageshack.us 6 776 41 1396
techcrunch.com 11 2324 154 3094
goo.gl/ngdQ1 1 35 1 35
youtube.com 2 183 7 204
Note: The selected sites were visited on January 30, 2011.
Some sites required an account in order to perform basic tasks.
goo.gl/ngdQ1 is a shortened link to Google’s V8 benchmark
suite.

scripts and substructures originating from any number of unrelated sources. Further,
the user may run several instances of the same web application in different tabs.

If we create too many compartments, we will create more compartment metadata
and cross-origin wrappers, which will create a space and performance overhead from
increased indirection. If we create too few compartments, we will again end up walking
more of the heap for each per-compartment GC cycle; this has an adverse effect on
pause times and throughput.

To better understand the trade-off, we carried out measurements with compartmen-
talization at two different granularities: object separation by origin and separation
by the iframe in which they are contained. HTML <iframe> is an element that can
contain another web document, an advertisement, for instance. There is no general
way to measure how many iframes a webpage has; thus, we choose to compare the two
design choices on a list of popular webpages.

We see from Table I that some sites, such as ebay, benefit from the increased granular-
ity offered by separation at the level of iframes. However, the number of compartments
and wrappers increases significantly for other pages. TechCrunch, for example, leads
to the creation of 154 compartments instead of just 11. Similarly, Google Mail, which
uses iframes extensively, sees wrapper usage increase by a factor of 30 (183 to 5654
wrappers). We conclude that the compartment-per-origin granularity is most suitable
and note that it is simultaneously the most natural choice with regard to enforcing the
same-origin policy.

4. ENHANCEMENTS

As we will see in the evaluation section, the basic compartmentalized scheme reduces
pause times. However, we also recognize several opportunities to optimize the de-
sign. Our optimizations offer further improvements to latency and throughput. These
are: background finalization, parallel marking, and reduced fragmentation. Wagner
describes each of these optimizations in detail [Wagner 2011].
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4.1. Background Finalization

The Java language specification exposes a finalization method at the language level
and explicitly allows parallel finalization. In contrast, JavaScript does not expose a
finalization method at the language level. However, the internal design of the Spider-
Monkey VM calls for internal finalization prior to deallocating the memory for each
object. In particular, we expose certain object properties to the DOM implementation
and let the DOM handle their destruction. Background finalization is therefore spe-
cialized to the Firefox rendering engine (Gecko). However, programs that embed the
JavaScript VM can override this finalization function.

Hence, the SpiderMonkey GC cycle consists of four steps happening in sequence:

(1) mark reachable objects in each arena,
(2) identify unreachable objects,
(3) finalize and deallocate unreachable objects, and
(4) insert each deallocated object into the free list of its arena.

Among the applications that we analyzed, some spent upwards of 95% of the total GC
pause time in the finalization step. This inhibits or degrades certain uses of JavaScript,
including games and other interactive applications, which can have high allocation
rates of short-lived objects.

We observe that many JavaScript objects can be finalized on a separate thread in the
background rather than on the critical path. Objects with a finalizer defined outside
the JavaScript VM are still finalized on the critical path, and so are external strings.
These objects are in the minority, however, accounting for less than 5% of the finalized
objects in our measurements.

When background finalization is ongoing, all arenas in use are locked by the final-
ization thread. New arenas must be allocated to create new objects concurrent with
background finalization. Upon completion, all deallocated arenas are added to the per-
compartment list of free objects and signals that allocation of new objects can once
again use already allocated arenas.

When two GC cycles happen back to back, the second cannot start before the back-
ground finalization associated with the first cycle is complete. Furthermore, in out-
of-memory situations, execution will have to wait until free arenas become available
before continuing.

4.2. Parallel Marking

Sweeping a single compartment is much faster than sweeping the entire heap. Greatly
reducing the sweeping time shifts the bottleneck to the marking step.

The marking phase consists of the following steps:

—Build root set. This is done by conservatively scanning the machine stack, adding
global objects and additional roots, including wrapper objects. Root objects are pushed
onto the marking stack.

—Once all roots have been identified (or the marking stack is full), mark the set of
reachable objects. For each nonleaf object, we push the children objects onto the
marking stack.

While both steps allow for parallelization, we focus on the second step of the marking
phase; this is particularly profitable for workloads with a big working set. Modifications
to the marking stack need to be synchronized to avoid data races. However, data
races when marking reachable objects are actually benign: since each thread treats
objects identically (setting a mark bit if it is reached) it is safe to mark objects without
synchronization.
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Our design uses two threads, each having their own marking stack. The main thread
collects the root set in its own marking stack. The secondary thread is used only
to mark reachable objects and balances the workload with the main thread using a
work-stealing approach [Blumofe and Leiserson 1999]. The design can easily scale to
an arbitrary number of threads. In our tests, however, using more threads leads to
increased overheads. The performance of our benchmarks did not increase past two
threads, with the exception of a purpose-built micro-benchmark.

Marking of Rope Strings. Since string objects are among the most frequently used,
SpiderMonkey employs several optimizations. A rope string is a string representation
developed by Boehm et al. [1995] supporting fast, nondestructive concatenation and
practically unlimited string lengths. Ropes represent strings as binary trees in which
internal nodes are string headers with no content and whose leaf nodes are either
linear strings (character buffers) or rope strings themselves. Delaying copying until a
linear string representation is required makes concatenation fast.

The marking of rope strings previously used the Deutch-Schorr-Waite (DSW) algo-
rithm [Schorr and Waite 1967]. The key feature of this approach is its space efficiency.
All reachable rope nodes can be marked without using a separate marking stack be-
cause storage in the nodes is used to hold the nodes that would be on the marking stack.

Since the graph is mutated during garbage collection, our synchronization-free mark-
ing approach is not compatible with this approach. Rather than using locking for mark-
ing of rope strings, we switched these to use a regular marking stack approach as well.
We think that this is most appropriate for two reasons. First, this allows parallel mark-
ing for string-intensive codes as well. Second, the DSW algorithm was developed at a
time when memory and processors were almost on parity in terms of speed and mem-
ory was a scarce resource. Today, the situation is entirely different. Modern computers
and mobile devices have large, but slow, memories and comparatively fast processors.
This means that it is usually beneficial to use a little extra memory to avoid the need
to write into every node during marking since superfluous writes cause expensive
TLB and data-cache misses. In other words, an algorithm that performs well on older,
sequential architectures is not necessarily the best for modern, parallel architectures.

4.3. Reducing Fragmentation

An important measure of the quality of a memory management system is how well it
uses the memory that it requests from the underlying OS. By reducing fragmentation,
we can allocate less memory from the OS.

There are three kinds of fragmentation:

(1) Internal fragmentation represents allocated memory with the main purpose of
padding or place holders. This space is wasted and there is no intention to use it.
The padding bytes in arenas cause internal fragmentation, for example.

(2) External fragmentation is caused by many small, reachable objects that are scat-
tered over time. A high external fragmentation rate is particularly bad for our
memory management system, because it prevents chunks from being returned to
the OS.

(3) Data fragmentation occurs when a logical entity is broken into separate pieces
that are not stored adjacently. This kind of fragmentation is most relevant to file
systems and is not of concern here.

The enhancement that we discuss here is concerned with external fragmentation. A
typical usage scenario is that a user continually opens and closes new tabs such that
the number of open tabs varies over time [Dubroy and Balakrishnan 2010]. External
fragmentation can now cause a situation in which the memory consumption does not
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decrease from its high watermark even if the user closes all tabs (see Figure 8(a) in our
evaluation).

We identified the sharing of chunks across compartments as the root cause: chrome
objects as well as objects belonging to a webpage routinely get allocated to the same
chunk. Chrome objects are typically longer lived than web content; thus, even when
closing all tabs, each chunk containing just a single chrome object stays allocated. Sim-
ilarly, interned strings that are shared among all JavaScript code are typically longer
lived than objects private to a single origin. Some interned strings are truly immor-
tal and are released from memory only when the browser shuts down. Consequently,
chunks containing immortal strings are immortal themselves.

This may be a minor annoyance for users of powerful desktop systems in which
unused pages in the virtual memory subsystem are written to secondary storage un-
til needed. However, the situation is entirely different for mobile devices that must
perform as little work as possible in the interest of energy efficiency.

Our solution follows our overarching theme of being domain specific. Given that
our memory management is specialized to browsers, we know the expected lifetimes
of objects: chrome objects and interned strings are longer lived than web content.
Consequently, we allocate these objects in separate chunks from those used for web
sites. This makes it more likely that objects with similar lifetimes are co-located and
thereby increases chances that memory chunks can be released to the OS as tabs are
closed.

Algorithm 1 shows a high-level overview of our combined GC enhancements.

5. EVALUATION

We evaluate the improvements described in the earlier two sections—compartments,
background finalization, and parallel marking—in terms of space, scalability, and time.
We mainly use the synthetic V8 JavaScript benchmarks from Google to demonstrate our
approach. We focus on V8 because the SunSpider benchmarks do not allocate enough
objects to trigger a GC cycle, and Mozilla’s Kraken benchmark was new and unstable at
the time that we performed our experiments. V8 consists of seven benchmarks ported
from other languages. It contains several applications that create many short-lived
objects, thus stresses the memory management subsystem.

All benchmarks were run at least five times; we manually verified that the variance
was negligible between runs. The numbers are stable between each run; thus, we
report observations from a single run. Additional results from two allocation-intensive
applications are given in the appendix.

Since the implementation and evaluation has been ongoing for an extended period
of time, our evaluation contains results obtained from two different machines.

Space and Scalability. The evaluation of space and scalability is performed on a
Mac Pro workstation having two 2.66GHz Intel Xeon processors with two CPU cores
each. The machine also has 4GB RAM running Mac OS X 10.6 and Firefox 4.0 beta 10
with our compartments enabled by default. Our fundamental changes to the memory-
management system are too involved to turn off using a compile or runtime flag.
We therefore measure the effects before and after applying the patch introducing
compartments.

Performance. All performance measurements were carried out on a MacBook Pro
having a 2.66GHz Intel Core i7 processor, 8GB RAM running Mac OS X 10.7 and a
nightly build of Firefox 7. Due to the significant changes in the SpiderMonkey VM
code base done by others, it is not possible to isolate the changes in GC performance
between Firefox versions 4 and 7.
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ALGORITHM 1: High-Level Overview of GC Enhancements
begin Allocate:

if compartment allocation > watermark then
if global allocation > 1.5 × watermark then

Deallocate(global);
else

Deallocate(partial);
end

end
if allocating chrome object or interned string then

allocate in system compartment;
else

allocate in compartment for script origin;
end

end

begin Deallocate:
Input: scope
begin Mark:

; /* sequentially: */
build root set by scanning native and JavaScript stacks;
add explicit roots and all global objects to root set;
if scope = partial then

add cross compartment wrappers to root set;
end
; /* in parallel (using work stealing to balance load): */
recursively mark objects;

end
begin Sweep:

; /* sequentially: */
foreach unreachable object with external finalizer do

run finalizer ;
deallocate object and insert into arena free list;

end
; /* in parallel with mutator: */
foreach unreachable object with internal finalizer do

run finalizer ;
deallocate object and insert into arena free list;

end
end

end

Anyone wishing to repeat our experiments can do so by obtaining the proper
versions and setting the javascript.options.mem.gc_per_compartment option in the
about:config page in Firefox.

5.1. Space Overhead

We start by examining how compartments affect memory consumption. In our scenario,
50 tabs are opened in sequence and then closed one by one with a forced GC in between
(Figure 5). We chose 50 tabs because our test machine became unusable after opening
that many pages. The tabs load the websites listed in Online Appendix A. We force a
GC after closing each page to determine the memory footprint, as there is no automatic
GC after each close.
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Fig. 5. Opening 50 tabs and closing them again with the baseline and compartment approach. We can see
a higher memory consumption peak for the opening process with the new approach, but once we close tabs
(to the right of the dotted line), we also deallocate arenas faster.

We see that peak memory consumption is 13% (15MB) higher with compartments.
This is expected given that objects from different origins no longer share arenas; this
increases fragmentation since we are forced to allocate more arenas (see Section 3.1).
We also notice an advantage of the compartmentalized model: memory is released
earlier when closing tabs. Because a closed tab releases objects from a given origin, the
corresponding arenas become empty.

5.1.1. Effectiveness. Since we are changing the memory-management system design
from fully collecting the heap to a partial, per-compartment cycle, another space-related
question is how much garbage we miss in each partial collection cycle. We cannot know
how much garbage we miss whenever we do a partial sweep. To perform this exper-
iment, it was necessary to change the way our per-compartment sweeping strategy
works to record unreclaimed objects across the entire heap. Our solution is the follow-
ing: whenever a compartment triggers a partial GC, we perform a full GC in a special
mode that does not reclaim objects outside the triggering compartment. To emulate a
scenario in which many tabs are open and all but a single one remain dormant, we open
50 tabs. Once they are all fully loaded, we start an instance of the V8 benchmark suite.
Note that the number of GC events differs from those that we observe when measur-
ing JavaScript performance (e.g., Table IV) since our instrumentation increases pause
times, hence affects the benchmark scores.

Figure 6(a) shows the results of our experiment. The label 50 Tabs Reachable repre-
sents all reachable JavaScript objects excluding those created by the V8 benchmark.
The remaining objects are labeled V8 Reachable and constitute the marking workload
for the per-compartment GC. Figure 6(b) shows the number of unreachable objects that
are deallocated as well as the ones that are missed by a partial GC. In both figures, the
first three GC cycles that happen as tabs are opened are global. Once the V8 bench-
mark suite is running, we see only per-compartment GGs until three global GCs are
triggered as the browser terminates.

To quantify the storage reclamation efficiency of compartmentalized GC relative to
full GC, we define the following metrics:

Reachable fraction = V8 Reachable
50 Reachable + V8 Reachable

Missed fraction = Missed
Missed + Finalized

Missed to total = Missed
Missed + Finalized + 50 Tabs Reachable + V8 Reachable
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Fig. 6. Reachable and finalized objects when running the V8 benchmarks. The dotted lines separate the
opening of tabs from the benchmarking phase.

After we start the V8 benchmarks, less than 1% reachable objects belong to the V8
compartment (Reachable fraction in Figure 6(c)). For the EarleyBoyer benchmark, we
see a triangle allocation scheme and a jump to 8% reachable objects in the compartment.
Only during the Splay benchmark, which creates and modifies a huge splay tree, does
Reachable fraction represent 60% of the entire browser heap.
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The number of objects that are missed due to partial rather than full GC (Missed
fraction) create at most 4% garbage in other compartments that remain unreclaimed
during benchmarking. At GC event 37, we see a sharp drop in the number of objects
deallocated during the Splay benchmark. This indicates that the GC did not free any
memory; thus, the heap must increase in size. The following events deallocate 4.5
million objects, as shown in Figure 6(b).

Finally, we measured the number of missed objects relative to the total number of
objects that populate the browser heap (Missed to total in Figure 6(c)). The fraction of
objects that we do not reclaim due to compartmentalized GC never exceeds 2% of the
total object count. In summary, we find that the effectiveness of the garbage collector
is largely unaffected by compartmentalization.

5.1.2. Fragmentation. Recall that memory is allocated from the operating system in
1MB chunks. Chunks are subdivided into 4KB arenas and are not released until all
arenas are released. We know from experience that chrome objects tend to live on
longer than objects created by web content. To reduce fragmentation, we avoid mixing
long-lived objects with short-lived ones within a single arena.

To measure the impact of fragmentation, we load 50 tabs with webpages, then close
the tabs one by one. Figure 7 shows how fragmentation is reduced using a heap visu-
alization tool implemented by Nicholas Nethercote from Mozilla. Each row represents
a 1MB chunk, and each cell inside is a 4KB arena. Colors are used to distinguish
compartments (with reuse due to limited colors). Empty or unused arenas are white.

Figure 7(a) shows the heap when all 50 tabs are open. The mixing of colors show
that each chunk contains arenas for several compartments. After closing all the tabs
(Figure 7(b)), we see that most chunks are nearly empty but must stay allocated.
When we avoid mixing long- and short-lived objects (Figure 7(c)), we see that each row
contains fewer distinct colors, hence fewer distinct arenas. After closing all the tabs
again (Figure 7(d)), most of the chunks have been deallocated and the remaining ones
pack arenas more densely.

Figure 8(a) shows the number of chunks, arenas, and compartments over time (per
GC event) before optimizing fragmentation. We see that, even though the number of
compartments and arenas decrease, the number of chunks (thus, memory consumption
at the OS level) stays essentially constant. We see from Figure 8(b) that separating
objects based on their expected lifetimes releases memory to the OS as soon as the
compartment for each tab is collected.

The reduced memory footprint is particularly beneficial to users of resource-
constrained systems such as laptops and mobile devices.

5.1.3. Scalability. As explained in Section 3.1, our compartmentalized design affects
peak memory consumption; for example, we saw a 15% increase over the baseline de-
sign when opening 50 tabs. Browsers that isolate web content using operating-system
processes also see an overhead from the resources and metadata allocated for each
process. Firefox, which uses a single process model, does not incur this overhead. We
therefore compare the space overhead from compartments with the overhead from pro-
cess isolation, as it is implemented in the Chrome canary version from July 2011 [Reis
and Gribble 2009] and Opera 11.50. Note that, since the implementations of the three
browsers diverge beyond the design of their garbage collectors, we cannot isolate the
impact of the GC design.

For this experiment, we use JavaScript code that opens 150 websites, one after
another. We close all windows except one, and close the browser afterwards. The results
are measured with the UNIX time command, and can be seen in Table II. Real shows
the elapsed wall clock time in seconds, user shows the total number of CPU seconds
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Fig. 7. Heaps before and after separating objects based on lifetimes. Colored squares represent 4KB arenas
that belong to a certain compartment.

that the process spent in user mode, and sys shows the total number of CPU seconds
that the process spent in kernel mode.

We see that Firefox with our modifications and Opera both take little more than
6min to open all websites, whereas Chrome spends almost 30min. The Chrome user
experience degrades after about 70 pages and the browser barely responds after open-
ing all the pages. Presumably, the observed slowdown is due to excessive disk paging
activity; increasing the amount of physical memory in the system would ameliorate
this. Firefox, in contrast, remains fully responsive and scrolling is smooth as well.

We show two columns for Chrome due to the following observation. In our experi-
ments, we ended up with far fewer processes than expected, just three: the renderer
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Fig. 8. Fragmentation before and after separation of short- and long-lived objects. The dotted line separates
the opening and closing of tabs.

Table II. Scalability Test

Firefox 7 Chrome I Chrome II Opera 11.50
real 6min 14s 28min 55s 27min 59s 6min 55s
user 3min 55s 21min 58s 41min 05s 5min 23s
sys 0min 49s 14min 40s 20min 35s 1min 13s

process, the main Chrome process, and a helper process. It turns out that programmat-
ically opened pages do not spawn new processes. A documented workaround9 allowed
us to spawn processes for new pages, creating the effect of manually opening the pages.
The column labeled Chrome II shows the measured times with proper process isolation.
We observed 43 Chrome renderer processes in addition to the main and helper pro-
cesses. Chrome’s self-reported memory consumption (about:memory) slightly exceeds
5GB, and the browser is unresponsive; in comparison, Firefox consumes 2GB.

We also noticed that Chrome reported an uneven mapping from sites to processes.
Some processes apparently host 2 to 3 sites, while others host about half of the sites
due to a bug in Chrome’s task manager10.

The main Chrome process contains 368 threads with 150 tabs open and as many as
420 during browser shutdown. Even in the presence of inaccurate reporting of memory
consumption, we can directly observe that the system does not scale. Near the end of

9http://dev.chromium.org/developers/design-documents/process-models.
10http://code.google.com/p/chromium/issues/detail?id=91757.
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Fig. 9. Wall-clock time required to open 150 tabs in Firefox and Chrome. The graph on the left shows the
performance on a high-end laptop with 8 GB RAM whereas the one on the right was obtained on a netbook
having only 1 GB of RAM. Note the different scales.

the test, we cannot help but notice that opening a new tab takes far too long. In 2011,
a bug report was opened based on our finding11.

Figure 9 shows the detailed scaling behavior of Firefox and Chrome on two dif-
ferent systems: a laptop in which RAM is plentiful (left) and a memory constrained
netbook (right). We see that Firefox shows essentially linear scaling behavior, whereas
the curve for Chrome is exponential after about 70 tabs. On a netbook, Firefox scales
linearly until 80 sites are open; after that, we see warnings that scripts are no longer
responsive. In comparison, Chrome stops rendering pages correctly after 40 tabs and
several seconds.

Finally, we compared our approach with the Opera browser. We find that it offers
comparable speed while having a higher peak memory consumption (2.5GB vs. 2GB
for Firefox).

5.2. Performance

Several well-known JavaScript benchmarks are available, including SunSpider from
Apple, Kraken from Mozilla, as well as V8 and Octane from Google. We focus on the
results that we obtained using the V8 benchmark in this section; results from Sun-
Spider, Kraken, and two JavaScript-intensive web applications are found in Appen-
dices A and B, respectively.

The V8 benchmark is rate-based, meaning that it measures completed runs of a
benchmarking kernel within a certain time frame (1s). Fixing the time during which
each benchmark is run means that the amount of memory allocated varies with the
execution speed. Speeding up an allocation-intensive benchmark causes it to allocate
more objects within the same amount of time.

We performed VM internal measurements to correlate the GC events with the V8
benchmark workloads. We use the rdtsc [Intel 1997] instruction to measure the dura-
tion of GC events with high accuracy.

From our motivating example, we know that the number of tabs open affects the
JavaScript performance markedly before the introduction of compartments. Therefore,
we divide our experiments into two sets: a single-tab scenario and a multiple-tab one.

5.2.1. Single-Tab Performance. Table III shows the benchmark scores when no additional
tabs are open. With compartments, we still benefit from separation of objects belonging
to the user interface, strings, and the contents of the tab. We see that the introduction
of compartments increases the benchmark score by 2% on its own (4872 to 4983) due to

11https://groups.google.com/a/chromium.org/group/chromium-dev/browse_thread/thread/ba8c629ec7f7096c#.
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Table III. V8 Scores with a Single Tab Running the V8 Benchmark Suite

Background Parallel
Base Comp Finalize Marking Relative

Richards 8109 8059 8038 8162 1%
DeltaBlue 4954 4813 5139 5020 1%
Crypto 8614 8586 8663 8716 1%
RayTrace 3590 3956 4107 4083 12%
EarleyBoyer 4247 4569 4846 4931 14%
RegExp 2143 2125 2112 2134 0%
Splay 5761 5965 6421 6450 11%
Score 4872 4983 5154 5172 6%
Note: Relative compares the base approach with parallel marking
where all optimizations are enabled. Larger scores are better.

Table IV. Average Times Per GC Event for the V8 Benchmark.
With the New Compartment Approach and all Optimizations

Background Parallel Percent
Base Compartments finalize marking reduction

Marking [ms] 805 474 522 370 54
Sweeping [ms] 1323 1265 236 241 82
Finalize objects [ms] 1072 1051 221 228 79
Finalize strings [ms] 224 200 0 0 100
Total [ms] 2240 1823 837 690 69
Note: We reduce the time spent in the GC during the V8 benchmark by 69%. Relative
compares the base approach with the parallel marking approach. Lower values are
better.

better performance in memory-intensive benchmarks such as Raytrace, EarleyBoyer,
and Splay. Background finalization increases the performance by an additional 3%
(4983 to 5154). Again, the performance increases are highest for allocation-intensive
codes. We see only a slight overall increase in performance from parallel marking. One
benchmark, DeltaBlue, sees a 2% slowdown. In summary, the aggregate effect of our
optimizations increase overall performance by 6% and the performance of allocation-
intensive codes by as much as 14%.

Table IV shows the average GC pause times. We observe that the overall number
of GC events increased due to compartmentalization (6% in line with the performance
gains). The ability to mark a single compartment decreases the marking time by 54%
(805ms to 370ms).Many features within Firefox are implemented in JavaScript and
allocate objects in the systems compartment. Therefore, compartmentalization is ben-
eficial even when only a single tab is open. The sweeping time dropsfurther due to
background finalization: 82%. Objects with external finalizers still contribute 220ms
to the sweeping phase. All strings, however, are now finalized in the background. The
aggregate reduction of pause times on the V8 benchmark in a single-tabbed scenario
is 69%. The basic compartmentalized design is responsible for 19% of the overall im-
provement. Background finalization and parallel marking account for 54% and 18% of
the pause-time reduction, respectively.

We graph the individual pause times of each GC event when running the V8 bench-
mark in Figure 10. We see that, without compartments (Figure 10(a)), marking con-
tributes about one-third to the overall pause, whereas sweeping contributes two-thirds.
The pause time hovers round 20ms until it peaks at 120ms for the Splay benchmark.
We see that, with the basic compartment approach (Figure 10(b)), the marking time
decreases while the sweeping time remains mostly the same. Adding background fi-
nalization dramatically reduces sweeping time; parallel marking reduces the marking
time further (Figure 10(c)).
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Fig. 10. Single-tab GC pause times with four different GC schemes.

When comparing with the Chromium browser (Figure 10(d)), which uses generational
scavenging to manage the heap, we observe low pause times during most benchmarks.
(Several GC events reportedly take 0ms.) In part, the reason is that Chromium GC
cycles are much more frequent. As a result, Chromium spends a factor of 2.5 more time
on GC compared to Firefox (1837ms vs. 690ms). Moreover, the Splay benchmark shows
peak pause times of up to 240ms on Chromium; this is about 6 times longer than the
peak GC latency with compartments.

5.2.2. Multiple-Tab Performance. We repeated our experiments in a setting intended to
emulate a user who keeps many tabs open in addition to a JavaScript-intensive page
(V8). In particular, we started the browser and loaded 50 webpages, starting measure-
ments once all pages were loaded. As the motivating example in Section 1 demon-
strated, this is a situation in which the baseline memory-management approach does
not perform well.

We start by looking at the individual benchmark improvements listed in Table V. In
comparison to Table III, we see that the baseline score drops by more than one-third,
from 4872 to 3082 by keeping 50 tabs open. The memory-intensive benchmarks—
Raytrace, EarleyBoyer, and Splay—run significantly slower, which identifies memory
management as the bottleneck. In particular, EarleyBoyer drops to less than half of its
single-tab score.

Compartmentalization increases the scores by 33%, on average, and by a factor of
2.3 in the case of EarleyBoyer. Background finalization increases performance further
by about 5% on allocation-intensive benchmarks—indicating that finalization is not so
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Table V. V8 Scores with 50 Open Tabs and One Tab Running
the V8 Benchmark Suite

Background Parallel
Base Comp Finalize Marking Relative

Richards 7216 8137 8127 8035 10%
DeltaBlue 2543 4860 4311 4540 44%
Crypto 7351 8594 8024 8495 13%
RayTrace 1864 3594 3899 3860 52%
EarleyBoyer 1815 4198 4449 4517 60%
RegExp 1377 1526 1569 1613 15%
Splay 4213 5664 6169 6275 33%
Score 3083 4611 4652 4795 36%
Note: Relative compares the base approach with parallel marking
where all optimizations are enabled. Larger scores are better.

Table VI. Basic Internal Measurements for the V8 Benchmark

Background Parallel
Base Comp Finalize Marking Relative

GC Events 49 66 68 69 41%
Marking [ms] 7711 1641 1651 1366 82%
Sweeping [ms] 2821 1923 913 873 69%
Finalize objects [ms] 2219 1610 802 764 66%
Finalize strings [ms] 303 207 6 6 98%
Total [ms] 11998 4342 3448 3024 75%
Note: With the new compartment approach and all optimizations, we reduce the
time spent in the GC during the V8 benchmark by 75%. Relative compares the
base approach with the parallel marking approach. Smaller scores are better.

much of a bottleneck with multiple open tabs. Similarly, parallel marking increases
performance by an additional 3%. Overall, the aggregate impact of our enhancements
on the V8 benchmark score is 36% when 50 additional tabs are open. By comparing
with Table III once more, we see that the benchmarking score with 50 tabs open is on
par with the single-tab performance without compartments and about 7% slower than
single-tab benchmarking with compartments.

Again, we measured how the individual phases in GC cycles contributed to the
overall pause time (Table VI). First, we see that the baseline approach spends almost
8s to mark reachable objects versus just 805ms in the single-tab scenario. The basic
compartment design reduces marking time back down to about twice the single-tab
time (1641ms). The residual increase in marking time is due to the remaining global
GC events, as we will see when we graph the GC events. Overall, we see marking times
reduced by 89% and sweeping times reduced by 69%, which leads to an an aggregate
improvement of 75%. In terms of wall clock time, the cumulative GC pause time goes
from 12s to just 3s.

In Figure 11(a), we see that running the V8 benchmark with 50 additional tabs open
using the baseline design results in pause times lasting 230ms, on average, and up
to 340ms under the Splay benchmark. With compartments, GC pause times follow a
bimodal distribution (Figure 11(b)). Global GC cycles, which appear during loading of
the 50 pages (events 1–16), when running RegExp and during shutdown, are not any
faster than with the baseline approach. The RegExp benchmark allocates large arrays
outside the JavaScript heap. Since the heap size is not tracked on a per-compartment
level, a runtime-wide watermark is passed. This triggers a global collection. Looking
at the per-compartment cycles, we see that these are markedly faster; they take 30ms
in general and 130 during the Splay benchmark. Adding background finalization
(Figure 11(c)) reduces the sweeping times, as expected. Finally, we add parallel
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Fig. 11. Multiple-tab GC pause times with four different GC schemes. The dotted lines separate the opening
of 50 tabs from the benchmarking phase.

marking (Figure 11(d)). This optimization has the greatest impact on the time to
perform global GCs; their durations decrease from about 230ms to 150ms as a result
of global marking times dropping from around 170ms to 100ms.

6. RELATED WORK

There is a wealth of research on the design and implementation of automatic-memory
management; Jones et al. [2011], Wilson [1992], and Zorn [1989] all offer good
overviews.

While this article builds on many previous works within the field, we restrict our
discussion to the most important ones. In the interest of clarity, we discuss work related
to each individual addition separately: basic compartmentalization, enhancements to
finalization, then parallel marking. Finally, we describe how other modern browsers
handle memory management and isolate web content.

6.1. Compartments

Currently, the Firefox memory management system uses mark-and-sweep GC. In par-
ticular, the way that the heap is divided into regions for fast allocation is due to Hanson
[1990], who showed that explicit regions in C could achieve the fastest known heap al-
location mechanism based on time performance per allocated byte.

Regions are also known as arenas, zones, generations, partitions, and compartments.
The idea of partitioning the heap to increase locality and decrease the workload of the
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garbage collector has been studied in great detail. The key challenge is to find a good
partitioning heuristic; properties such as age, stack, and object connectivity have been
used to map objects to partitions. The most successful scheme, generational scaveng-
ing [Ungar 1984], is based on the weak generational hypothesis—the expectation that
most objects die young [Hanson 1977].

The basic mark-and-sweep approach is also well known [Knuth 1973]; we do not
claim that this work is novel because we extend it. Rather, we describe an alternative
partitioning of the heap into regions and a new way to map objects to these—both are
distinguished by virtue of being domain specific rather than generic.

As early as 1967, Ross [1967] created a library that allocates memory to different
zones. Each zone has its own allocator and can be deallocated all at once. Vmalloc [Vo
1996] extends this idea by providing more flexible allocation and deallocation inter-
faces. The allocation policy is per region and includes memory layout, type, and alloca-
tion algorithm.

Hayes [1991] observed that some objects act as roots to entire clusters of objects.
Dependent objects are likely to be unreachable if their roots are; thus, examining the
roots more frequently than other objects can reduce the work of the garbage collector.
Similarly, our compartmentalized approach seeks to focus on the region (cluster) of the
heap that has seen the most allocation activity since the last collection cycle, and saves
work by ignoring all other compartments.

Barrett and Zorn [1993] present a region-based system in which they predict the
lifetime of objects during allocation. They use a profile-based predictor that segregates
short-lived objects from long-lived ones. Objects that are predicted to be short-lived
are allocated in small spaces by incrementing a pointer and deallocated together when
they are all unreachable.

Aiken et al. [1995] use static analysis to replace runtime GC with compile-time an-
notations. All memory allocation and deallocations are placed explicitly in the program.

Grunwald et al. [1993] present a performance evaluation of the reference locality
of dynamic storage-allocation algorithms. Similar to our findings, they show that the
design of a memory allocator can significantly affect the reference locality, and therefore
lead to an increased number of page faults and cache misses.

Tofte and Talpin built a region inference system [Tofte and Talpin 1997; Tofte 1998].
They use a type inference system that specifies where regions can be allocated and
deallocated. They further specify to which region each allocation site writes.

Berger et al. [2002] study custom allocators in applications that use explicit mem-
ory management. They find that the use of custom allocators is often outperformed
by the use of a high-performance, general-purpose memory allocator with the excep-
tion of region-based allocators. They propose a new abstraction, reaps, that gener-
alizes region and heap abstraction by allowing both single-object and bulk-memory
reclamation.

6.2. Heap Partitioning

Hudson and Moss [1992] developed a generational GC toolkit in which the mature
object space is divided into multiple fixed-size areas to allow incremental collection.
Like our compartments, a remembered set tracks references into each area so that
each area can be collected separately. Collecting just one area during each scavenging
cycle bounds the time that the collector spends on the mature object space.

Appel [1989] and Barrett and Zorn [1995] also address the problem of reclaim-
ing tenured garbage more effectively. They dynamically adjust the boundary between
young and old objects to achieve optimal memory usage. Tenured objects can even
move to the untenured space again by a boundary adjustment. The Beltway system
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[Blackburn et al. 2002] also separates objects in “belts” with the main focus on com-
paring generational GC aspects. It, too, features configurable partitions.

The hoard memory allocator [Berger et al. 2000] partitions application memory into
a global heap and P thread-local heaps. The heaps are divided into superblocks and
blocks similar to our use of arenas and chunks. Each thread can allocate memory
only from its corresponding heap. This design reduces false sharing of cache lines and
bounds the “blowup,” that is, the difference between maximum memory consumption
under serial and parallel executions of the same program.

Hirzel et al. [2002] analyze the connectivity of heap objects. First, they show the
importance of understanding heap connectivity of objects. Second, they provide hints
on improving existing partitioning models. While the research is focused on Java,
the focus on connectivity remains relevant for JavaScript as well. Similar to our
work, they seek to co-locate objects with similar lifetimes and access patterns inside a
partition.

Domani et al. [2002] research thread-local heaps for Java. Each thread is assigned
partition of the heap, to which it allocates its objects. Write barriers guard accesses from
other threads, and objects known to be shared are allocated in a shared-heap partition.
They allow thread local GCs so that the collection of local objects is synchronization-
free; as with our approach, global collections remain necessary to reclaim shared ob-
jects. Steensgaard [2000] also studies thread-specific heaps. Partitioning, coupled with
escape analysis to detect thread-private objects, lowers the workload of thread-specific
GC cycles and allows allocation to happen without synchronization—mirroring how we
are able to eliminate locking from the allocation path.

Seidl and Zorn [1998] build a profile-driven object lifetime and access frequency
predictor. They use it to reduce the number of page faults by placing highly referenced
objects next to each other on a small set of pages. Short-lived objects, on the other hand,
are placed on a small set of different pages.

Previous works use properties such as age, size, sharing, and connectivity to allo-
cate objects to partitions. These are all generic properties, and can be determined or
estimated for every object irrespective of the application domain. In contrast, we use
the provenance of objects created by scripts—an attribute that is specific to web con-
tent and browser chrome code. By customizing our solution to the application that we
target, we can dispense with complex static analysis or dynamic profiling to determine
which objects are likely to be used together because it follows from our understanding
of the web-browsing domain.

Researchers have proposed static analysis [Guyer and McKinley 2004], dynamic
profiling [Chilimbi and Larus 1998], changes in the traversal algorithm [Wilson et al.
1991], online object reordering [Huang et al. 2004], and allocation heuristics [Shuf et al.
2002] to improve cache utilization. Our approach achieves good locality of references
naturally as a side effect of separating objects based on their origin because cross-origin
references are rare.

Our approach is conceptually similar to a simple distributed garbage collector
[Abdullahi and Ringwood 1998]. Besides being confined to a single machine, the key
differences are as follows. Even if objects change compartment (on navigation), the
containing process never changes. This is in contrast to distributed approaches, such
as the Emerald system [Juul and Jul 1992; Jul et al. 1988], which can move objects
between two physically distributed nodes. Second, we retain the ability to perform a
global GC across the entire heap.

Our basic compartmentalized memory-management system, which shipped in Fire-
fox 4.0, was previously published by Wagner et al. [2011]. It does not describe our
subsequent enhancements to compartmentalization, that is, background finalization,
parallel marking, and separation of objects based on expected lifetimes.
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6.3. Finalization

The idea of finalizing objects on a separate thread is also used in the Microsoft .NET
environment [Richter 2000]. Unlike our background finalization solution, which re-
mains fully hidden from JavaScript developers, .NET developers must know when and
how to properly use the exposed Finalize method. The problem is that Microsoft UI
frameworks follow a long-standing convention that only the thread that created a UI
object may finalize it. This is inherently at odds with background finalization since
objects created by a UI thread are thereby prevented from being finalized on another
thread. In particular, the .NET finalization thread must send a message to the UI
thread to dispose of an object that it created. The finalizer thread stalls as long as the
UI thread is busy; thus, performance quickly deteriorates for applications that allocate
many objects requiring finalization on the UI thread.

This problem is related to our background finalization constraint: objects created
outside SpiderMonkey are finalized on the main thread. Since we finalize objects of
this kind on the main thread, the thread that processes objects with VM-internal
finalizers does not need to synchronize its execution with other threads.

In Java, support for background finalization is part of the language itself. The docu-
mentation [Oracle 2010] for java.lang.Object.finalize states that:

The Java programming language does not guarantee which thread will invoke the
finalize method for any given object.

Background finalization can be compared to lazy sweeping [Zorn 1989; Hughes 1982].
The latter performs sweeping on demand as new allocations are requested. The allo-
cator traverses unswept memory objects, sweeps the first suitable object it finds, and
returns it to satisfy the memory request. Lazy sweeping thereby distributes the sweep-
ing cost among allocation sites. Reallocating an object shortly after it is swept also
increases spatial locality. The Safari browser from Apple uses this strategy.

6.4. Parallel Marking

The prevalence of dual and multicore machines has allowed parallel GC algorithms to
enter the mainstream. Parallel marking is now supported by all major JavaScript VMs.
Blelloch and Cheng [1999] and Cheng and Blelloch [2001] present a parallel real-time
garbage collector. Like our system, they use a conservative stack-scanning approach.
They split large objects such as arrays so that they may be marked in parallel.

Endo et al. [1997] and Flood et al. [2001] describe parallel, nonconcurrent collec-
tors that use load balancing. Like our implementation, work stealing [Blumofe and
Leiserson 1999] is used to distribute the work evenly among the threads.

Siebert [2008] discusses the limits of parallel-marking GC. Parallel-marking algo-
rithms perform poorly when only some of the available processors can perform scanning
work. Processors pick the next element out of the gray set—if the gray set is empty,
the processors must stall. An example with poor marking performance is a linked list
with only one root. Our parallel-marking approach uses a single-helper thread that
starts when the first root objects are discovered. The main thread pushes all roots on
the marking stack and the background thread starts marking them.

Barabash and Petrank [2010] also study the scalability of parallel tracing collectors.
In particular, they investigate the heap depth (an object at depth d must be derefer-
enced d times sequentially, thus limiting the available parallelism) of standard Java
benchmarks and show that several produce heap shapes with low scalability. They also
suggest two measures to extract additional parallelism from such heap shapes: heap
shortcuts into long, narrow structures such as linked lists; and speculative tracing on
idle processors starting at random heap objects.
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6.5. Isolation and Fragmentation

Soman et al. [2006, 2008] discuss performance issues with multitasking managed run-
time environments for Java. They find that the memory-management subsystem per-
forms poorly compared to their single-tasking counterparts. Similar to our approach,
they introduce heap isolation and use heap space efficiently to lower the multitasking
overhead. Their multitasking memory manager performs generational collection such
that the young generations of applications are swept individually; intergeneration ref-
erences are remembered with a card-making scheme. GC cycles consist of marking
reachable objects, selecting regions for evacuation, evacuation itself, and sweeping. Af-
ter marking, regions are selected for evacuation based on the amount of fragmentation
caused by sweeping.

Lang and Dupont [1987] partition the heap and support both mark-and-sweep and
copying collection. During collection, a partition to be compacted is chosen at random;
the remaining ones are swept.

Siebert [2000] studies fragmentation in a noncopying GC and introduces a new
object model in the Jamaica JVM. Like chunks and arenas in our design, the heap is
divided into fixed block sizes from which objects are allocated; large objects are handled
specially using a linked list of noncontiguous blocks. By choosing the proper block size
for each benchmark program, overall fragmentation is greatly reduced.

Johnstone [1997] and Johnstone and Wilson [1998] shows that fragmentation costs
for most programs are insignificant. His real-time, noncopying generational garbage
collector uses a write-barrier optimization to deliver hard real-time behavior.

Reducing fragmentation is also related to reducing the cost of copying in generational
GC. Researchers have shown that information available during allocation may be used
to reduce the number of objects that are copied during GC [Blackburn et al. 2001].

6.6. Competing Browsers

The designs of modern browsers are not discussed extensively in the academic liter-
ature as their development is largely taking place outside universities and research
labs. Out of necessity, we resort to information from developer documentation, blog
posts, and bug reports maintained by the developers.

Chrome. Reis and Gribble [2009] discuss the boundaries of web applications and how
these are reflected in the design of the Chrome browser from Google. They compare
different process isolation models (monolithic process, process-per-browsing-instance,
process-per-site, and process-per-site-instance) that are all supported by Chrome. In
contrast to our work, they attempt to create new processes for new domains. Sec-
tion 5.1.3 shows how the Chrome (Chromium) process model compares to compartment-
level isolation in terms of scalability.

Currently, Chrome’s V8 JavaScript engine employs a stop-the-world, generational
collector to focus the effort on the youngest part of the heap [Google 2012]. As we
saw in Section 5.1.3, the pauses created by Chrome’s generational collector are mostly
short; but, in the worst case, they can be much longer than with compartments (see
Figure 10(d)). Since surviving objects are promoted into the old generation, the V8
engine must track the location of all object references precisely such that they may be
updated when the referenced objects move.

Internet Explorer. Microsoft [2008] also uses OS processes to isolate content in dif-
ferent tabs in Internet Explorer 8. This protection mechanism is insufficient from a
security standpoint since a user may browse multiple mutually distrusting sites in a
single tab via iframes.
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Internet Explorer 9 shipped with the Chakra JavaScript engine, which makes exten-
sive use of parallelism to improve performance and shorten GC pause times [Miadowicz
2012]. Microsoft describes the memory-management system as a “conservative, quasi-
generational, mark-and-sweep” garbage collector that runs mostly concurrent on a
dedicated thread. A second point of similarity is related to string handling. As with our
atoms compartment, Internet Explorer dedicates a part of the heap to string objects
(and numbers) since these cannot point to other objects and need not be marked.

Safari. Apple builds its Safari browser atop the WebKit layout engine, which also
happens to be used by Google’s Chrome browser. Following the introduction of process-
level separation in Chrome, WebKit 2.0 received built-in support for a split-process
model in which the sandboxed web content runs in a separate process from the privi-
leged UI code. Like Chrome, Safari uses a generational garbage collector [Apple 2012].

Opera. Although details are scarce and the code proprietary, the Carakan JavaScript
engine in the Opera browser also seems to employ a scheme that partitions the heap
based on object provenance. Each document loaded in a tab or an iframe gets its own
partition [Lindström 2009]. Rather than using wrappers, Carakan detects when object
references cross partitions and merge two heaps into one when (permissible) accesses
would otherwise cross partitions. The Opera developers seek the same benefits as we
do: each collection is faster since it traverses only part of the heap and the JavaScript
performance does not degrade as more tabs are opened. Our scalability experiments
show that Opera and Firefox with compartments perform comparably. This result
reinforces our expectation that the techniques that we present benefit not just Firefox
but other browser implementations as well.

7. CONCLUSIONS

This article demonstrates that a custom memory-management strategy can outperform
state-of-the-art approaches (such as generational scavenging) by exploiting domain
knowledge. Our hypothesis is supported by our implementation that is now part of the
popular Firefox browser.

The usage model of browsers has changed to the point that a rethinking of the
GC strategy was necessary to keep up with the increasingly JavaScript-intensive web
content and the popularity of tabbed browsing. Our solution—partitioning the heap into
compartments—addresses both of these challenges and facilitates further optimization.
In contrast to approaches that isolate web content using many OS processes, our
approach easily scales to 150 open tabs without degrading the user experience; hence,
our techniques apply equally well to regular PCs and mobile devices.

In the single-tab experiments, our combined techniques increase V8 benchmark
scores by 6%, on average, and as much as 14% on allocation-intensive codes. Further,
we observe that pause times are reduced by 69%, on average.

In scenarios in which users keep many (50) tabs open, our improvements are even
more pronounced. We report a 36% increase in V8 benchmarking scores and a 75%
reduction in pause times.

By gradually integrating our techniques into the mainline Firefox code over three
major releases, several hundred million users have already benefited from this work
in two ways. First, the reduced pause times enable a wider range of latency-sensitive
applications to be built with web technologies. Second, the JavaScript performance
with many tabs open is now sufficiently close to single-tabbed performance levels;
thus, users need not artificially limit the number of open tabs.

Perhaps the strongest testament to the relevance of compartmentalization is that
Mozilla is continuing the effort on its own. For example, scripts have access to global
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Table VII. Kraken Benchmarks with and without Per-Compartment GC Optimization.
For Each Run

Benchmark Base [ms] +/− [%] Comp [ms] +/− [%] Speedup [%]
astar 1236.3 5.0 1182.7 5.8 1.05
beat-detection 457.0 12.9 418.5 3.4 1.09
dft 496.8 13.2 473.5 3.6 1.05
fft 343.2 13.5 348.6 3.7 0.96
oscillator 290.8 0.7 290.8 0.7 1
gaussian-blur 492.5 0.2 492.0 0.2 1
darkroom 221.7 0.5 221.0 0.2 1
desaturate 487.6 5.1 477.1 0.2 1.02
parse-financial 131.3 32.7 111.8 1.3 1.17
stringify-tb 96.2 51.2 71.8 2.3 1.34
aes 231.6 23.4 234.8 9.4 0.99
ccm 154.5 2.1 161.3 8.2 0.96
pbkdf2 313.4 23.8 237.6 7.4 1.32
sha256a-it 198.2 39.0 95.9 2.7 2.07
Total 5151.1 1.8 4817 1.7 1.07
Note: We report the mean Runtime and the 95% Confidence Interval.

objects describing the current request, session, window, and so on. Establishing a one-
to-one mapping between global objects and compartments simultaneously enables the
SpiderMonkey JITs to generate better machine code and simplifies the design of the VM
itself. Or, as one enthusiastic developer put it12: “having one compartment per origin
was an amazing milestone, having one compartment per object [...] is a never-ending
stream of goodness.”

APPENDICES

A. ADDITIONAL JAVASCRIPT BENCHMARK RESULTS

While the bulk of the performance evaluation uses the Google V8 benchmarks, we
also measure the performance impacts on the older SunSpider suite from Apple and
Mozilla’s more recent Kraken suite.

A.1. Kraken Benchmarks

Table VII shows the Kraken benchmark [Mozilla 2011] results. The benchmark was
executed in a browser while having 50 websites loaded, replicating the multiple tab V8
benchmark run from Section 5.2.2. We observe an overall performance increase from
6.9% due to shorter GC pause times. The Base column represents the baseline and the
Comp column represents the per-compartment GC approach. The new approach also
reduces the variability of the benchmark scores.

A.2. SunSpider Benchmarks

We claim to improve locality of reference with our new approach. Since we do not allo-
cate objects in already used arenas from another compartment, and rather allocate a
new arena, we place objects near other objects from the same origin. Running the Sun-
Spider benchmark suite is an indicator for a better locality during the benchmark run
because no GC events occur during benchmarking. Also, the reduced synchronization
for arena allocation increases performance. The benchmark suite executes all bench-
marks 10 times with a forced GC in between that does not impact the benchmark
scores. SunSpider is a time-based benchmark suite in which actual execution time is
measured. Table VIII shows the results of the SunSpider benchmark suite. (We do not

12http://bholley.wordpress.com/2012/05/04/at-long-last-compartment-per-global/.
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Table VIII. SunSpider Benchmarks with and without
Per-Compartment GC Optimization

Benchmark Base [ms] Comp [ms] Speedup [%]
cube 16.1 15.7 2.48
morph 16.1 15.8 1.86
raytrace 36.5 36.2 0.82
binary-trees 19.9 19.1 4.02
fannkuch 13 12.9 0.77
bitwise-and 1.3 1.2 7.69
nsieve-bits 4.3 4.2 2.33
recursive 21.3 20.9 1.88
aes 10.5 10.3 1.90
md5 5.3 5.2 1.89
format-tofte 20.1 19.4 3.48
format-xparb 13.4 12.8 4.48
cordic 8.3 4.6 44.58
partial-sums 7.9 7.8 1.27
dna 11.8 11.9 −0.85
base64 3.3 3.1 6.06
fasta 12.4 12.7 −2.42
tagcloud 22.4 21.4 4.46
unpack-code 29.6 28.9 2.36
validate-input 5.3 4.9 7.55
Total 300.7 291.1 3.19

Fig. 12. GC pause times for a real-time ray tracer.
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Fig. 13. GC pause times for a browser-based flight simulator.

show six benchmarks that do not show any change: nbody, nsieve, 3bits-in-byte, bits-
in-byte, sha1, and spectral-norm, but include them when calculating averages). We see
a 3% overall improvement with our compartmentalized scheme.

B. NONSYNTHETIC WEB WORKLOADS

Reducing the GC pause time not only helps increase synthetic benchmark scores,
our new approach also greatly improves the performance of all allocation heavy web
applications such as JavaScript-based animations and games. The GC pause time
during an animation is no longer related to the number of open tabs, and users do not
have to close all other tabs in order to get the best performance for JavaScript-based
games.

B.1. Real-Time Ray Tracer

Figure 12(a) shows the GC events for a real-time ray tracer. We can see that equal
amounts of time are spent in marking and sweeping. The average GC pause time
is about 175ms, which results in noticeable pauses during the animation. Single-
compartment GC reduces the overall GC pause time to about 160ms by not including
the objects allocated in the system compartments during the GC, as can be seen in
Figure 12(b). A more pronounced improvement comes from background finalization.
Figure 12(c) shows that the average GC pause time decreases to about 80ms. Finally,
Figure 12(d) shows the result with the parallel-marking approach on top of background
finalization. The average GC pause time reduces to about 60ms. There is still a little
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hiccup during the animation, but the user experience improves significantly in com-
parison to the original 175ms pause time.

B.2. Flight of the Navigator

The Flight of the Navigator animation uses the modern WebGL API for hardware-
accelerated graphics and stresses the memory-management part of the SpiderMonkey
VM. Figure 13(a) shows the baseline situation for the animation. We see that the
animation contains peak pause times of up to 140ms, which results in noticeable jumps
within the animation. Switching to the compartmentalized approach (Figure 13(b))
reduces the average GC pause time to about 100ms. Most of the GC cost comes from
marking the data structures that the animation allocates in the JS heap. Background
finalization reduces the average pause time further to about 85ms (Figure 13(c)). The
marking cost of the GC becomes the major bottleneck. Adding parallel marking on top
of background finalization reduces the pause time further, to about 60ms (Figure 13(d)).
These are similar results to the real-time ray tracer (Section B.1). A pause time of 60ms
does not eliminate all stutter, but is nevertheless a big improvement over the pause
times that we see with the baseline approach.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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