Interpreter Instruction Scheduling

Stefan Brunthaler

Institut fiir Computersprachen
Technische Universitat Wien
Argentinierstrafle 8,
A-1040 Wien

brunthaler@complang.tuwien.ac.at

Abstract. Whenever we extend the instruction set of an interpreter,
we risk increased instruction cache miss penalties. We can alleviate this
problem by selecting instructions from the instruction set and re-arranging
them such that frequent instruction sequences are co-located in memory.
We take these frequent instruction sequences from hot program traces
of external programs and we report a maximum speedup by a factor
of 1.142. Thus, interpreter instruction scheduling complements the im-
proved efficiency of an extended instruction set by optimizing its instruc-
tion arrangement.

1 Motivation

For compilers instruction scheduling is an important optimization that re-arranges
assembler instructions of a program to optimize its execution on a native machine
without changing the semantics of the original program, i.e., the native machine
is constant, but we can change the order of assembler instructions of the pro-
gram. Interestingly, the situation is actually the other way around in interpreters.
Usually, the bytecode instructions of an interpreter cannot be re-arranged with-
out changing the semantics of the corresponding programs. However, we can
re-arrange the instructions of an interpreter, such that frequently executed se-
quences of instructions become co-located in memory, which allows for better
instruction cache utilization. So, for interpreters, the program is constant, but
we can change the virtual machine to optimize the execution of a program.

Interpreter instruction scheduling becomes increasingly important when an
interpreter has a large instruction set, because in such an interpreter not all
instructions can be held in caches at all times. Consequently, there is a trade-
off between the optimizations and their benefit being influenced by possible
cache miss penalties. Our own previous work [4J3] on improving the efficiency of
interpreters using purely interpretative optimization techniques, relies heavily on
instruction set extension. Fortunately, these optimization techniques are efficient
enough to offset increased cache-miss penalties, however, we feel that by using
interpreter instruction selection, the gains of these optimization techniques can
be noticeably improved.

Other optimization techniques like superinstructions and replication [5] fo-
cus on improving branch prediction and instruction cache utilization by copying

instruction implementations together into one instruction or distributing copies
of the same instruction over the interpreter dispatch routine to improve local-
ity. Contrary to these approaches, interpreter instruction scheduling does not
increase the size of the interpreter’s dispatch loop, but focuses on improving
instruction cache utilization instead of improving branch prediction.

Our contributions are:

— We formalize the general concept of interpreter instruction scheduling.

— We present detailed examples of how interpreter instruction scheduling works,
along with an implementation of our algorithm; the implementation is com-
plemented by a detailed description and results of running the algorithm on
an actual benchmark program.

— We report a maximum speedup of 1.142 and an average speedup of 1.061
when using interpreter instruction scheduling on the Intel Nehalem architec-
ture, and provide results of our detailed evaluation.

2 Background

We present a formal description of the problem of interpreter instruction schedul-
ing.

IZ:i07i1,...,in

A:=ag,ai,...,a,

P::p()apla"'apm
VpeP:3j:i;€lNa; € Aep=(ij,a;)

T:={(p,f)|pePNfeN}
K:={plpfleTNnf>L}
KcP

We define an interpreter I as a set of n instructions 7. To each instruction 4
corresponds a native machine address a of the set of n addresses A, i.e., the
address for some interpreter instruction i; is a;. Next, we define a program
P consisting of m instruction occurrences, which are tuples of an instruction
7 and the corresponding address a. This concludes the definition of the static
view on an interpreter. However, our optimization requires profiling information
obtained at run-time. Thus, we define the trace 1" of a program P as the set of
all tuples of an instruction occurrence p and its execution frequency f. Since a
trace contains much more information than we need, we define a kernel K, that
contains all instruction occurrences p of our program P that have execution
frequencies above some definable threshold L.

Given these definitions, the following functions allow us to precisely capture
the concept of the distance.

s(pi) = laipr — ai

d(ps,py) = laj —a;| —s(p;) ifi <7,
ol la; — aj| — s(p;) otherwise. 2)

m

doverall(P) = Zd(pjfhpj)
j=1

First, we define a function s that computes the size of an instruction 7. Next,
we define a function d that computes the distance of two arbitrary instructions.
Here, the important thing is to note, that if two instruction occurrences p; and
p; refer to two adjacent instructions, i.e., p; = (4;, a;) and p; = (4,41, Gi41), then
the distance between them is zero. (d(p;,pj) = |ai+1 — ai| — |as+1 — a;]) Finally,
the overall distance of a program is the sum of all of its sequential distances.
Using static program data, this makes no sense, because we do not a priori know
which parts of program P are hot. Here, we use our kernel K, which contains only
relevant parts of the program, with respect to the overall computational effort.
Thus, we define interpreter instruction scheduling as finding a configuration of
interpreter instructions that results in a minimal overall distance over some
kernel K.

For further illustration, we introduce a working example here. We are go-
ing to take a close look on how interpreter instruction scheduling works, using
the fasta benchmark of the computer language benchmarks game [6]. Running
the fasta program on the Python interpreter, for example with an argument
of 50,000, results in the execution of 10,573,205 interpreter instructions. If we
instrument a Python interpreter to trace every instruction executed, with ad-
ditional location information, such as the instruction offset and the function it
belongs to, we can easily extract the computationally relevant kernels from a
running program. If we restrict ourselves to only consider kernels for interpreter
instruction scheduling, we can significantly reduce the amount of information
to consider. For example, an aggregated trace of the fasta program shows that
the interpreter executes 5,976,237 instructions while interpreting the genRandom
function, i.e., more than half of the totally executed instructions can be at-
tributed to just one function. (cf. Table[l)) Another function—an anonymous list
comprehension—requires 4,379,824 interpreted instructions. (cf. Table To-
gether, the genRandom function and the list comprehension represent 97.95% of
all executed instructions.

Though Tables [1} and [2| indicate that our trace gathering tool is imprecise,
since it seems to lose some instruction traces, it is precise enough to indicate
which parts of the instructions are kernels. For example, the kernel of function
genRandom includes all 15 instructions between the offsets 64 and 184, whereas
the kernel of the anonymous list comprehension includes all 12 instructions be-
tween the offsets 24 and 104. In consequence, our interpreter instruction schedul-
ing algorithm only has to consider the arrangement of 27 instructions which

Frequency[Offset[lnstruction Identifier

16]STORE_FAST_A
24|LOAD_GLOBAL_NORC
32|LOAD_FAST_B_NORC
40|CALL_FUNCTION_NORC
48|STORE_FAST_C

56|SETUP_LOOP

396,036/ 64|LOAD_FAST_A_NORC

400,000| 72|LOAD_FAST_NORC

400,000/ 80|INCA_LONG_MULTIPLY_NORC
396,037| 88|LOAD_FAST_NORC

400,000| 96|INCA_LONG_ADD_NORC_TOS
396,041| 104|LOAD_FAST_B_NORC

400,000| 112|INCA_LONG_REMAINDER NORC_TOS
396,040| 120|STORE_FAST_A

400,000/ 128|LOAD_FAST_D_NORC

400,000 136|LOAD_FAST_A_NORC

400,000/ 144|INCA_FLOAT_MULTIPLY_NORC
396,039| 152|LOAD_FAST_C_NORC

400,000| 160|INCA_FLOAT_TRUE_DIVIDE_NORC_TOS
396,039| 168|YIELD_VALUE

399,999| 184|JUMP_ABSOLUTE

1
1
1
1
1
1

Table 1. Dynamic bytecode frequency for genRandom function of benchmark
program fasta.

Frequency‘Offset‘lnstruction Identifier

6,600 16|LOAD_FAST_A
402,667 24|FOR_ITER_RANGEITER
396,002 32|STORE_FAST B
399,960 40|LOAD_DEREF
396,001 48|LOAD_DEREF _NORC
396,000 56|LOAD_DEREF _NORC
396,000 64|LOAD_DEREF _NORC
396,000 72|FAST_PYFUN_DOCALL_ZERO_NORC
395,999 80|FAST_C_VARARGS_TWO_RC_TOS_ONLY
395,999 88|INCA_LIST_SUBSCRIPT
395,998 96 |LIST_APPEND
395,998| 104|JUMP_ABSOLUTE
6,600/ 112|RETURN_VALUE

Table 2. Dynamic bytecode frequency for an anonymous list comprehension of
benchmark program fasta.

constitute almost the complete computation of the fasta benchmark. If all 27
instructions are distinct, the optimal interpreter instruction scheduling consists

of the these 27 instructions being arranged sequentially and compiled adjacently,
according to the order given by the corresponding kernel. However, because of
the repetitive nature of load and store instructions for a stack-based architec-
ture, having a large sequence of non-repetitive instructions is highly unlikely.
Therefore, our interpreter instruction scheduling algorithm should be able to
deal with repeating sub-sequences occurring within a kernel. In fact, our fasta
example contains repetitions, too. The genRandom function:

— LOAD_FAST_A_NORC, at offsets: 64, 136.
— LOAD_FAST_NORC, at offsets: 72, 88.

The anonymous list comprehension contains the following repetition:
— LOAD_DEREF_NORC, at offsets: 48, 56, 64.

Fortunately, however, only single instructions instead of longer sub-sequences
repeat. Therefore, for the fasta case, an optimal interpreter instruction schedul-
ing can easily be computed. We generate a new optimized instruction set from
the existing instruction set and move instructions to the head of the dispatch
loop according to the instruction order in the kernels. We maintain a list of all
instructions that have already been moved, and whenever we take a new in-
struction from the kernel sequence, we check whether it is already a member of
that remembered list. Thus, we ensure that we do not re-reorder already moved
instructions. For our fasta example, this means that for all the repeated in-
structions, we only generate them when we process them for the first time, i.e.,
only at the first offset position for all occurrences. Consequently, interpreter in-
struction scheduling generates long chains of subsequently processed instruction
sequences that correspond extremely well to the major instruction sequences
occurring in the fasta benchmark. In fact, we report our highest speedup by a
factor of 1.142 for this benchmark.

Thus, if we have an interpreter with many instructions—such as interpreters
doing extensive quickening based purely interpretative optimizations, such as
inline caching via quickening [4], or eliminating reference counts with quick-
ening [3]—we can reduce potential instruction cache misses using interpreter
instruction scheduling.

3 Implementation

The implementation includes all details necessary to implement interpreter in-
struction scheduling. First, we present an in-depth discussion of how to deal
with sub-sequences and why we are interested in them (Section . Next, we
are going to explain how to compile an optimized instruction arrangement with

gec (Section [3.2)).

3.1 Scheduling in the Presence of Repeating Sub-Sequences

As we have seen in the previous section (cf. Section , not all kernels contain
repeating sub-sequences. However, all larger program traces are likely to contain

sub-sequences, or at least similar sequences of instructions. Thus the overall dis-
tance of a kernel K depends substantially on the distance of its sub-sequences.
We encode the whole trace into a graph data structure and will create an inter-
preter instruction schedule that contains the most frequent sequences.

In order to demonstrate this approach, we introduce another example from
the computer language benchmarks game [6], viz. the nbody benchmark. Run-
ning the nbody benchmark with an argument of 50,000 on top of our instru-
mented Python interpreter for dynamic bytecode frequency analysis results in
the execution of 68,695,970 instructions, of which 99.9% or 68,619,819 instruc-
tions are executed in the advance function. Its kernel K consists of a trace of
167 instructions, distributed among just 29 instructions.

Creating an instruction schedule using the simple algorithm of the previous
section (cf. Section [2)) is going to be sub-optimal, since it does not account for
representation of repeating sub-sequences. To properly account for these sub-
sequences, we create a weighted directed graph data-structure of all 29 instruc-
tions as nodes. Since the kernel is a sequence of instructions, we create an edge
in this digraph for each pair of adjacent instructions. Whenever we add an edge
between two nodes that already exists, we increment the weight of the already
existing edge, instead of adding another one. (cf. Figure |1

Once we have such a digraph, we obtain an instruction schedule with a mini-
mum distance the following way. Given we have some node, our algorithm always
chooses the next node by following along the edge with the highest weight. First,
we create a list named open that contains tuples of nodes and the collective
weight of edges leading to that node. We sort the open list in descending order
of the collective weight component. Because we actually only need the collective
weight for choosing the first node and ensuring that we process all nodes, we can
now safely zero out all weights of the tuples in the open list. Then, we start the
actual algorithm by fetching and removing the first tuple element from the open
list; we assign the node part to n and ignore the weight. Next, we check whether
n as already been scheduled by checking whether the schedule list contains it.
If it has not yet been scheduled, we append it to the schedule list. Then, we
start looking for a successor node m. We process the successor nodes by having
them sorted in descending order of the edge-weight associated between nodes n
and m. We repeatedly fetch nodes m from the list of successors until we find a
node that has not already been scheduled or the list finally is empty. If we do
not find a node m, then we have to restart by fetching the next node from the
open list. If we find a node m, then we add the reachable nodes from n to m to
the open list and sort it, such that the successors with the highest weight will be
chosen as early as possible. Next we assign m to n and restart looking for m’s
SUCCESSOTS.

The following listing shows our implementation in Python, followed by a
detailed description of how it works:

FOR_ITER_RANGEITER
i
LOAD_FAST_B_NORC

INCA_LOAD_CONST_NORC

DUP_TOPX_NORC
INCA_FLOAT_POWER_NORC_TOS

INCA_FLOAT_MULTIPLY_NORC_SEC

INCA_FLOAT_ADD

INCA_FLOAT_MULTIPLY_NORC_TOS

INCA_FLOAT_SUBTRACT

FOR_ITER_LISTITER

INCA_UNPACK_TUPLE_TWO

STORE_FAST_B
LOAD_FAST_A_NORC

Fig. 1. Instructions of kernel for nbody benchmark.

def rsorted(dict):
"""Sorts dictionary entries by their numeric values 1in
descending order.

wun

return sorted(dict.items(), key=lambda (key, value): -value)

def schedule_instr (graph):
schedule= []

open= rsorted(graph.most_frequent_vertices())

open is a list of tuples (mode, number of edges)

open= [(node, 0) for (node, edge_count) in open]

now, we erased the number of edges, such that when we add
the reachable destination nodes for the current source

node, and we sort the <open> list, the node that can be
reached with the edge having the highest weight will be
the first element on the <open> list

while open:
fetch the tuple, ignore the number of edges
(n, _)= open.pop(0)
while n:
if n not in schedule:
schedule.append(n)

reachable= rsorted(n.get_destinations())
if not reachable:
break

find reachable nodes that have not been scheduled yet
(m, _)= reachable.pop(0)
while m in schedule:
if len(reachable) > O0:
(m, _)= reachable.pop(0)

else:
m= None
if m:
n=m ## assign successor node
open= rsorted(reachable + open) ## keep reachable nodes sorted
else:
break

return schedule

Running this algorithm on our kernel for the nbody benchmark computes the
schedule presented in Table

3.2 Compilation of the Interpreter

Once we have determined a schedule of the interpreter instructions, we need to
compile the interpreter with that schedule. We have extended our interpreter
generator from our previous work ([3]) to generate all instructions, not just the
optimized derivatives. Since we already have a schedule, it is straightforward
to generate an optimized instruction set from the standard instruction set. We
just process the schedule in order an move instructions from the old instruction
set and add these instruction to the optimized instruction set. Once, we have
processed the plan, we just add the remaining instructions to the new optimized
instruction set.

There are compiler optimizations that can change the instruction order as
computed by our interpreter instruction scheduling. First of all, basic block re-

l No. [Instruction [No. [Instruction

1|INCA_LOAD_CONST_NORC 16|LOAD_DEREF_NORC
2|INCA_LIST_SUBSCRIPT_NORC 17|GET_ITER_NORC
3|LOAD_FAST_NORC 18|FOR_ITER_LISTITER
4|INCA_FLOAT_MULTIPLY_NORC 19|STORE_FAST_A
5|INCA_FLOAT_ADD 20|STORE_FAST_B
6|ROT_THREE 21|STORE_FAST.D
7|INCA_LIST_ASS_SUBSCRIPT_NORC_TOS| 22|INCA_FLOAT_MULTIPLY _NORC_SEC
8|LOAD_FAST_A_NORC 23|JUMP_ABSOLUTE
9|DUP_TOPX_NORC 24|POP_BLOCK
10|LOAD_FAST_B_NORC 25|LOAD_FAST_C_NORC
11|INCA_FLOAT_SUBTRACT 26|LOAD_FAST_D_NORC
12|STORE_FAST_C 27|INCA_UNPACK_TUPLE_TWO
13|INCA_FLOAT_MULTIPLY_NORC_TOS 28|INCA_FLOAT_POWER_NORC_TOS
14|STORE_FAST 29|FOR_-ITER_RANGEITER
15|SETUP_LOOP

Table 3. Interpreter Instruction Schedule for the nbody benchmark.

ordering as done by gcc will eliminate our efforts by reordering basic blocks
after a strategy called “software trace-cache” [10]. Fortunately, we can switch
this optimization off, by compiling the source file that contains the interpreter
dispatch routine with the additional flag ~fno-reorder-blocks. However, the
instructions are still entangled in a switch-case statement. Since it is possible for
a compiler to re-arrange case statements, we decided to remove the switch-case
statement from the interpreter dispatch routine as well. Because our interpreter
is already using the optimized threaded code dispatch technique [2], removing
the switch-case statement is simple. However, we stumbled upon a minor mishap:
gcc now decides to generate two jumps for every instruction dispatch. Because
the actual instruction-dispatch indirect-branch instruction is shared by all inter-
preter instruction implementations, available expression analysis indicates that
it is probably best to generate a direct jump instruction back to the top of the
dispatch loop, directly followed by an indirect branch to the next instruction.
On an Intel Nehalem (i7-920), gcc generates the following code at the top of the
dispatch loop:

.L1026:

xorl Y%eax, %eax
.L1023:

jmp *jrdx

And a branch back to the label .L1026 at the end of every instruction:

movq opcode_targets.14198(,%rax,8), %rdx

jmp .L1026

Of course, this has detrimental effects on the performance of our interpreter.
Therefore, we use gcc’s —save-temps switch while compiling the interpreter
routine with -fno-reorder-blocks to retrieve the final assembler code emit-
ted by the compiler. We implemented a small fix-up program that rebuilds the

basic blocks and indexes their labels from the interpreter’s dispatch routine
(PyEval EvalFrameEx), determines if jumps are transitive, i.e., to some basic-
block that itself contains only a jump instruction, and copies the intermediate
block over the initial jump instruction. Thus, we obtain the original threaded-
code jump sequence by using this fix-up program:

movq opcode_targets.14198(,%rax,8), %rdx

xorl Y%eax, %eax

jmp *jrdx

Finally, we need to assemble the fixed-up file into the corresponding object
file and link it into the interpreter executable.

4 Evaluation

We use several benchmarks from the computer language benchmarks game [6].
We ran the benchmarks on the following system configurations:

— Intel i7 920 with 2.6 GHz, running Linux 2.6.32-25 and gcc version 4.4.3.
(Please note that we have turned off Intel’s Turbo Boost Technology to have
a common hardware baseline performance without the additional variances
immanently introduced by it [7].)

— Intel Atom N270 with 1.6 GHz, running Linux 2.6.28-18 and gcc version
4.3.3.

We used a modified version of the nanobench program of the computer language
benchmark game [6] to measure the running times of each benchmark program.
The nanobench program uses the UNIX getrusage system call to collect usage
data, for example the elapsed user and system times as well as memory usage of
a process. We use the sum of both timing results, i.e., elapsed user and system
time as the basis for our benchmarks. Because of cache effects, and unstable
timing results for benchmarks with only little running time, we ran each program
50 successive times and use arithmetic averages over these repetitions for our
evaluation. Furthermore, we compare our improvements to the performance of
our most recent interpreter without interpreter instruction selection [3].

Figure [2| contains our results of running comparative benchmarks on the In-
tel Nehalem architecture. For each of our benchmarks, we generate a dedicated
interpreter that has an optimized interpreter instruction schedule based on the
profiling information obtained by running this benchmark program. We normal-
ized our results by those of our previous work [3], such that we can tell whether
interpreter instruction scheduling improves performance of an interpreter with
an extended instruction set (our interpreter has 394 instructions). Similarly, Fig-
ure [3] contains our results of running this comparative setup on our Intel Atom
CPU based system. First, lets discuss the results we obtained on the Intel Atom
system (cf. Figure ‘ We obtained the maximum speedup by a factor of 1.1344
when running the spectralnorm benchmark, the minimum speedup by a factor
of 1.0736 when running the mandelbrot benchmark, and an average speedup
by a factor of 1.1032. The figure clearly indicates that for every benchmark, the

1.15

11254
1.10
1.075+
Interpreters
1IS-binarytrees
1.05 1IS-fannkuch
lIS—fasta
. lIS-mandelbrot
1.025+ 11S-nbody
.- I . 1IS-spectralnorm
1.0 I - —J. -
0.9754 | | ‘ ‘

0.95 -

Speedup

o

% q o‘«
05 0o e uo“ ,05 A AT (o2 oA (o B0 g 080T A A 0 e
oot bmaw\‘a - aﬁ“e «“““‘ (O e e ‘as\’b “de\w “de\m “de\‘o‘ “WN oo “‘00‘::& “a\“o“)eo“a\o“)

Benchmarks

Fig. 2. Comparative benchmark results on the Intel Nehalem CPU.

1.1254
1.10
1.0754
1.05
Interpreters
1IS-binarytrees
S 1.0254 lIS—fannkuch
B I I I I I IS-fasta
=3 I lIS-mandelbrot
8 10l n
11S-nbody
. 1IS-spectralnorm
0.975+
0.95
\k‘ ‘ 0 B B
o ® o ® 080 A0 g0t a0 a0 ,050 A 20 2
g b\“m“ee“m“ee a(\“w ar\“*“ ‘as\a s \as\’d de\b“’ o \\3(0 e\wo “ocw 10odY Wzic“a‘“c’wc“a\“(’;\c\‘a‘“mm

Benchmarks

Fig. 3. Comparative benchmark results on the Intel Atom CPU.

interpreter with the instruction scheduling corresponding to that benchmark
achieves the highest speedup. Interestingly, most instruction schedules perform
better on most benchmarks, with the notable exception being the mandelbrot
benchmark—a finding that holds true for our results on the Intel Nehalem, too.

Our results on the Intel Nehalem architecture paint a different picture. While
the maximum speedup by a factor of 1.142 is higher than the one we report for
the Atom CPU, its average speedup by a factor of 1.061 is lower. It is reasonable
to assume that this is due to the Nehalem architecture having bigger caches,
which affects the performance potential of interpreter instruction scheduling. In
addition, there are only two benchmarks, viz. fasta and mandelbrot, where
the interpreter having an optimized instruction schedule for the corresponding
benchmark actually perform better than the others. For all other benchmarks,
the computed instruction schedule given the profiling information is not optimal,
i.e., the schedules computed for some other benchmark allow some of the other
interpreters to perform noticeably better. Further investigation is necessary, to
identify the cause of this rather surprising finding—particularly in presence of
the actually expected findings confirmed on the Atom CPU.

5 Related Work

We group the discussion of related work into two groups, viz., related work on
compilers and related work on interpreters. First, we will discuss the related
work on compilers.

Pettis and Hansen [9] present their work on optimizing compilers for the
Hewlett Packard’s PA-RISC architecture. They optimize the arrangement of
procedures and basic blocks based on previously obtained profiling information.
Interestingly, our reordering algorithm is almost identical to their “algol” algo-
rithm; they may even be identical, but because no implementation is given, this
remains unclear. Another interesting fact is that both our maximum achievable
speedups are identical, i.e., both our work achieves a maximum speedup by a
factor of 1.14.

More recently, Zhao and Amaral [II] demonstrate algorithms to optimize
switch-case computation as well as case-statement ordering in the Open Re-
search Compiler [I]. While both our approaches employ information gathered at
run-time, the application scenario is quite different. For instance, their approach
focuses on optimizing switch-case statements, and they calculate the order in
which they are should be generated by their rank according to frequency. In
contrast, our work focuses on optimization of interpreters, particularly those
without using the switch-case dispatch technique. Because of better instruction
cache utilization, we choose to use another algorithm that recognizes the im-
portance of properly covering instruction sequences. So in a sense, the major
difference is that their optimization approach focuses on larger compiled pro-
grams that use switch-case statements, whereas we recognize the nature of an
interpreter, where execution remains within its instruction set at all times. An-
other direct consequence of this fundamental difference is that in an interpreter

we are usually not interested in the default case, since this indicates an error,
i.e., an unknown opcode, which in practice happens never—the exception being
malicious intent of a third party.

As for related work on interpreters, the most important work is by Lin and
Chen [8]. Their work is similar to ours, since they show how to partition inter-
preter instructions to optimally fit into NAND flash pages. Furthermore, they
describe that they too use profiling information to decide which combination of
interpreter instructions to co-locate on one specific flash page. Their partition-
ing algorithm pays attention to the additional constraint of NAND flash page
size, i.e., their algorithm obtains a configuration of interpreter instructions that
fits optimally within the flash pages and keeps dependencies between the pages
at a minimum. For the context of our work it is unnecessary to superimpose
such a constraint to our algorithm. Though, if one were to set the parameter NV
determining the NAND flash page size of their algorithm to the maximum repre-
sentable value, all instructions would be packed into just one partition. Then, our
algorithms should produce similar interpreter instruction arrangements. Another
difference between our respective approaches is that ours operates on a higher
level. While they post-process the assembly output generated by gcc to enable
their optimizations, our approach is based on re-arranging the instruction at the
source code level. Though we admittedly have to fix-up the generated assembly
file as well, due to the detrimental effects of a misguided optimization. Because
of their ties to embedded application of the technique and its presentation in
that context, we think that our presentation is more general in nature. In ad-
dition, we complement our work with extensive performance measurements on
contemporary non-embedded architectures.

Ertl and Gregg [5] present an in-depth discussion of two interpreter opti-
mization techniques—superinstructions and replication—to improve the branch
prediction accuracy and instruction cache utilization of virtual machines. While
the optimization technique of replication is not directly related to interpreter
instruction scheduling, it improves the instruction cache behavior of an inter-
preter at the expense of additional memory. The idea of the superinstructions
optimization technique is to combine several interpreter instructions into one su-
perinstruction, thus eliminating the instruction dispatch overhead between the
single constituents. While this improves branch prediction accuracy, it improves
the instruction cache utilization, too: Since all instruction implementations must
be copied into one superinstruction, their implementations must be adjacent,
i.e., co-located in memory, which is optimal with respect to instruction cache
utilization and therefore results in extremely good speedups of up to 2.45 over a
threaded-code interpreter without superinstructions. However, superinstructions
can only be used at the expense of additional memory, too. Since interpreter in-
struction scheduling happens at pre-compile, and compile time respectively, of
the interpreter, there are no additional memory requirements—with the notable
exception of minor changes because of alignment issues. Because the techniques
are not mutually exclusive, using interpreter instruction scheduling in combina-

tion with static superinstructions will further improve the performance of the
resulting interpreter.

Summing up, the major difference between the related work on compilers and
our work is that the former focuses on optimizing elements visible to the com-
piler, such as procedures, basic blocks, and switch-case statements, whereas our
work focuses on re-arranging interpreter instructions—which are transparent to
compilers. Related work on interpreters achieves a significantly higher speedup,
however, at the expense of additional memory. Our work demonstrates that is
possible to improve interpretation speed without sacrificing memory.

6 Conclusion

We present a technique to schedule interpreter instructions at pre-compile time
in order to improve instruction cache utilization at run-time. To compute the
schedule, we rely on profiling information obtained by running the program
to be optimized on an interpreter. From this information, we extract a kernel,
i.e., an instruction trace that consumes most of the computational resources,
and construct a directed graph of that kernel. We use a simple algorithm that
recognizes the importance of repeating sub-sequences occurring in that kernel
when scheduling the interpreter instructions, and report a maximum speedup
by a factor of 1.142 using this technique.

Future work includes investigation on the effectiveness of other scheduling
algorithms—such as implementation of a dynamic programming variant, or com-
paring the effectiveness of algorithms mentioned in the related work section—,
as well as addressing the pending question regarding the optimality of computed
schedules. In addition, we are interested in devising a dynamic variant comple-
menting our static interpreter instruction scheduling technique.

Acknowledgments

We express our thanks to Jens Knoop for reviewing early drafts of this paper,
as well as to Anton Ertl for providing extensive information concerning related
work. Finally, we thank the anonymous reviewers for providing helpful remarks
for improving the contents of this paper, in addition to making valuable sugges-
tions for addressing future work.

References

1. Open Research Compiler. http://ipf-orc.sourceforge.net/ (October 2010)

2. Bell, J.R.: Threaded code. Communications of the ACM 16(6), 370-372 (1973)

3. Brunthaler, S.: Efficient interpretation using quickening. In: Proceedings of the
6th Symposium on Dynamic Languages, Reno, Nevada, US, October 18, 2010
(DLS ’10). ACM Press, New York, NY, USA (2010), to appear.

http://ipf-orc.sourceforge.net/

10.

11.

Brunthaler, S.: Inline caching meets quickening. In: Proceedings of the 24th Euro-
pean Conference on Object-Oriented Programming, Maribor, Slovenia, June 21-25,
2010 (ECOOP ’10). Lecture Notes in Computer Science, vol. 6183/2010, pp. 429—
451. Springer (2010)

Ertl, M.A., Gregg, D.: Optimizing indirect branch prediction accuracy in virtual
machine interpreters. In: Proceedings of the SIGPLAN ’03 Conference on Pro-
gramming Language Design and Implementation (PLDI ’03). pp. 278-288. ACM,
New York, NY, USA (2003)

Fulgham, B.: The computer language benchmarks game. http://shootout.
alioth.debian.org/

Intel: Intel Turbo Boost Technology in Intel Core microarchitecture (Nehalem)
based processors. Online (November 2008), http://download. intel.com/design/
processor/applnots/320354.pdf7iid=tech_tb+paper

Lin, C.C., Chen, C.L.: Code arrangement of embedded java virtual machine for
NAND flash memory. In: Stenstrém, P., Dubois, M., Katevenis, M., Gupta, R., Un-
gerer, T. (eds.) Proceedings of the Third High Performance Embedded Architec-
tures and Compilers International Conference, Géteborg, Sweden, January 27-29,
2008 (HiPEAC ’08). Lecture Notes in Computer Science, vol. 4917, pp. 369-383.
Springer (2008)

Pettis, K., Hansen, R.C.: Profile guided code positioning. SIGPLAN Notices 25(6),
16—27 (1990)

Ramirez, A., Larriba-Pey, J.L., Navarro, C., Torrellas, J., Valero, M.: Software trace
cache. In: Proceedings of the 13th International Conference on Supercomputing,
Rhodes, Greece, June 20-25, 1999 (ICS ’99). pp. 119-126. ACM, New York, NY,
USA (1999), referenced by gce/bb-reorder.c

Zhao, P., Amaral, J.N.: Feedback-directed switch-case statement optimization. In:
Proceedings of the International Conference on Parallel Programming Workshops,
Oslo, Norway, June 14-17 2005 (ICPP 05 Workshops). pp. 295-302. IEEE (August
2005)

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech_tb+paper
http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech_tb+paper

	Interpreter Instruction Scheduling
	Stefan Brunthaler

