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Many guest languages are implemented using the Java Virtual Machine as a host environment. There are
two major implementation choices: custom compilers and so-called hosted interpreters. Custom compilers are
complex to build but offer good performance. Hosted interpreters are comparatively simpler to implement but
until now have suffered from poor performance.

We studied the performance of hosted interpreters and identified common bottlenecks preventing their
efficient execution. First, similar to interpreters written in C/C++, instruction dispatch is expensive on the
JVM. Second, Java’s semantics require expensive runtime exception checks that negatively affect array
performance essential to interpreters.

We present two optimizations targeting these bottlenecks and show that the performance of optimized
interpreters increases dramatically: we report speedups by a factor of up to 2.45 over the Jython interpreter,
3.57 over the Rhino interpreter, and 2.52 over the JRuby interpreter, respectively. The resulting performance
is comparable with that of custom compilers. Our optimizations are enabled by a few simple annotations that
require only modest implementation effort; in return, performance increases substantially.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Interpreters, Code
generation, Optimization, Compilers

General Terms: Design, Languages, Performance

Additional Key Words and Phrases: Interpreters, threaded code, just-in-time compilers, dynamic languages,
Jython, Rhino, JRuby, Java virtual machine

ACM Reference Format:

Savrun-Yenicgeri, G., Zhang, W., Zhang, H., Seckler, E., Li, C., Brunthaler, S., Larsen, P., and Franz, M. 2013.
Efficient Hosted Interpreters on the JVM. ACM Trans. Architec. Code Optim. V, N, Article A (January YYYY),
24 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. MOTIVATION

The easiest way to get a new dynamic language off the ground is by writing an in-
terpreter. If that interpreter runs on top of a widely available virtual machine such
as the JVM, the new language then becomes instantly available on all the platforms
that already have the underlying VM. Unfortunately, this “hosted” approach in which
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A2 G. Savrun-Yenigeri et al.

one VM runs on top of another has serious performance implications. Compiler-based
implementations of dynamic languages typically run much faster than hosted ones.

Hence, implementers often invest effort into building a compiler once a dynamic
language becomes more popular. Among possible compiler-based implementation choices
are “native” compilers that translate directly into executable machine code and “host-
VM targeted” compilers that translate into a host VM’s instruction set and thereby
preserve portability of the implementation. Many recent implementations of dynamic
languages follow this “host-VM targeted” model. For example, both Jython and Rhino
implement a custom compiler in addition to their bytecode interpreters. Similar to their
corresponding traditional C/C++ implementations, these custom compilers frequently
emit a simple bytecode representation of the program, but usually do not perform
expensive optimizations. Nevertheless, implementation costs for these custom compilers
are significantly higher than the effort needed to implement an interpreter.

In this paper we investigate the performance potential of optimizing hosted JVM
interpreters, with the intent to reconcile the ease-of-implementation of interpreters
with the performance of custom compilers. To this end, our paper makes the following
contributions:

— We illustrate the primary factors explaining why interpreters targeting the Java
virtual machine are inefficient (Section 2)).

— We describe the implementation of two optimizations targeting the identified inef-
ficiencies (Section 3). We added these optimizations to the virtual machine, such
that they are available to all language implementers targeting the JVM by using
annotations.

— We report the results of a careful and detailed evaluation of three hosted JVM in-
terpreters, Jython/Python, Rhino/JavaScript, and JRuby/Ruby (Section 4). Following
these data, we conclude:

— Performance: We report speedups of up to a factor of 2.45, 3.57, and 2.52 for
Jython, Rhino, and JRuby, respectively (Section 4.2).

— Ease of implementation: Manually transforming an existing bytecode inter-
preter to use our optimizations requires orders of magnitude less effort than

implementing a custom Java bytecode compiler (Section 4.5).

2. EFFICIENT INTERPRETATION

Interpreters are attractive precisely because they inhabit a sweet spot on the price/per-
formance curve of programming language implementation. With comparatively little
effort, implementers get off the ground quickly and obtain portability at the same
time. Prior research addresses the performance problems of interpreters, identifying
several techniques that have significant optimization potential. In 2003, Ertl and Gregg
pinpointed the most important bottleneck for interpreters: instruction dispatch [2003b].

Each interpreter implements its own instruction set, where the interpreter needs
to dispatch from one instruction to its successor, i.e., to execute an instruction the
interpreter has to decode and dispatch it first. As a result, instruction dispatch is on
the critical path and its performance greatly affects overall interpreter performance.
When implementing an interpreter, developers usually use the classic switch-dispatch
technique, illustrated in the upper half of In this figure, instruction dispatch
encompasses the decoding of the opcode and subsequent dispatching via switch(opcode).
From a performance perspective, the biggest problem with switch-dispatch is its in-
herent impediment to modern CPUSs’ branch predictors. Specifically, the compiler will
generate an address-table for all the case-blocks and use a native indirect branch
instruction to find the address for the current opcode. Consequently, all interpreter
instructions share just one native indirect branch instruction. Since the target for each
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Fig. 1: Switch-based dispatch vs. subroutine threading.

of those indirect branches depends entirely on the interpreted program and not on the
machine context, the branch prediction will invariably fail most of the time.

Several optimization techniques address this problem. For example, researchers
proposed to combine multiple instructions into so called superinstructions [[Proebsting
1995; [Ertl and Gregg 2004]. The rationale behind this is that for frequently executed
interpreter sequences, a superinstruction, comprising the single instructions of the
sequence, eliminates the necessary inter-instruction dispatches. Analogously, using a
register-based architecture instead of the more common stack-based architecture helps
to mitigate performance penalties incurred by instruction dispatch overhead [[Shi et al|
2008]l. But, both of these techniques only shift the problem, without solving it.

The technique that solves the branch prediction problem of switch-dispatch is
called threaded code |Bell 1973], and has been previously explored by several re-
searchers [Kogge 1982;|Debaere and van Campenhout 1990]. The basic idea of threaded
code is to “spread out” the instruction dispatch to each operation implementation, or
i-op for short. For example, by using computed jumps (e.g., something like goto **ip++;
for C/C++) at the end of each i-op, there are multiple indirect branches, giving branch
prediction more context. If, for example, instruction B is likely to follow instruction A,
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then the likelihood of correct branch prediction increases. To improve this even further,
Ert]l and Gregg introduced a technique known as replication [2003al], where frequently
occurring instructions, such as load instructions, are duplicated multiple times and
distributed over each original instruction sequence.

The lower half of shows a particularly effective variant of threaded code,
called subroutine threaded code. The guiding principle is to move the interpreter instruc-
tion operation implementation (recall the i-op abbreviation) to functions and then create
a sequence of function calls for each bytecode instruction. Therefore, branch prediction
is only necessary for the native return instructions transferring control back to the
list of native call instructions. This native indirect branch/return instruction is highly
likely to be correctly predicted, as modern x86 CPUs include a “return address stack”
for exactly this purpose. Generating subroutine threaded code, or its even more effective
context-threaded code derivative [Berndl et al. 2005], requires machinery similar to a
small just-in-time compiler. This is due to the requirement of dynamically generating
the sequence of native call-instructions and subsequently executing it, whereas for
other threaded code techniques, the program “lives” in data memory and the execution
happens in the dispatch loop. Unfortunately, all of the machinery required to create and
execute threaded code is not available to Java programmers. It is impossible to program
indirect branches in Java, such as those generated by computed goto instructions.

A separate problem preventing efficient interpretation is more subtle and specific
to hosted interpreters. Virtual machine interpreters use auxiliary data structures for
passing operands. In a stack-based architecture, this data structure is usually referred
to as the operand stack. Interpreter operations push operands onto the operand stack
via load instructions, and pop them off in operation instructions, such as add or multiply
instructions. Usually, developers use an array to implement this operand stack. Thus,
pushing operands corresponds to writing to the array, and popping operands to reading
from the array.

In a stack-based virtual machine interpreter, almost every instruction is going to push
its result onto stack. In addition, Shi et al. [2008]] measured that load instructions for
Java bytecode account for almost half of all executed interpreter instructions. Similar
measurements for Python confirm that this observation holds for Python bytecode
interpreters, too [Brunthaler 2011[l. In consequence, we establish that due to this
unusually high frequency, efficient interpreters need high array store performance.

In systems programming languages, such as C and C++, implementers need not give
this a second thought, because arrays are implicitly low-level and therefore yield the
desired performance. But in Java, array semantics are different. In addition to the
NullPointerException and ArrayIndexOutOfBoundsException exceptions in the case
of arrays, Java’s array semantics guarantee type-safety, too. To this end, Java checks
whether the insertion-candidate object matches the type of the array elements for each
write to an array. Whenever the Java virtual machine detects a type-safety violation, it
will raise an ArrayStoreException.

While it is known that exception checks are expensive, and that exception elimination
has been actively researched and successfully addressed in previous work, the case
for virtual machine interpreters is particularly pathological. The reason for this is
twofold: (i) the unusually high frequency of array stores on the operand stack, and (ii)
the expensive nature of involved type checking operations.

3. REUSABLE, ANNOTATION-BASED OPTIMIZATIONS

The previous section highlights the importance of optimizing both instruction dispatch
and high performance array stores to make hosted JVM interpreters efficient. In
this section, we discuss our implementation of reusable, annotation-based interpreter
optimizations addressing both issues. By adding these optimizations to the Java virtual
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Fig. 2: Subroutine threaded code system overview.

machine, they become immediately available to all hosted language implementations.
As aresult, language implementers can leverage this foundation to unleash performance
potential previously reserved for custom compilers.

Figure [2] illustrates the overall architecture of our system compared to the hosted
language’s custom compiler. The front end parses hosted language’s source code and
generates an abstract syntax tree (AST). Then, the hosted language’s custom compiler
(Figure 2, upper half) compiles the AST to Java bytecode. The underlying JVM compiles
the generated Java bytecode down to native machine code. On the other hand, our
subroutine threaded code interpreter lower half) takes the hosted language’s
bytecode generated by the front end, and generates threaded code by using threaded
code generator (abbreviated as TCG). Threaded code is native machine code that
dispatches to the hosted language’s i-ops at runtime.

3.1. Efficient Instruction Dispatch

As we described in a previous section (see [Section 2), traditional threaded code im-
plementation techniques cannot be translated to Java. This is primarily due to the
restricted access to pointers, preventing the use of computed goto’s or function pointers.
We address this fundamental issue by adding the ability to generate efficient subroutine
threaded code to the Java virtual machine. The following sections address the two
different perspectives to providing subroutine threaded code to implementers: the point-
of-view of programming language implementers on the one hand, and the perspective
of JVM implementers on the other hand.

The Language Implementer’s Perspective. For a language implementer, our current full-
fledged prototype implementation requires only negligible sets of changes. First, we
assume that the language implementer already implemented a switch-dispatch based
interpreter. Frequently, this resembles a straightforward port of an interpreter present
in a system that does not target the Java virtual machine. For example, Jython’s
bytecode interpreter resembles the interpreter of CPython.
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Listing 1: Original switch-based interpreter.

while (True) {
int opcode= instructions[pc++];
/+ optional operand decoding x/
switch (opcode) {
case Opcode.LOAD_FAST:
/* i—op implementation
omitted
*/
case Opcode.BINARY ADD:
PyObject b = stack.pop();
PyObject a = stack.pop();
stack .push(a._add(b));
break;

presents an abstracted view of this interpreter, with the BINARY_ADD i-op
highlighted. For the implementer to enable threaded code generation and execution, we
require only two steps:

(1) extract the i-op implementations to their own methods, and
(2) add annotations to these methods.

illustrates these changes for Python’s BINARY_ADD instruction:

Listing 2: After performing transformations.

@I_OP (Opcode .BINARY_ADD)

public void binary_add () {
PyObject b = stack.pop();
PyObject a = stack.pop();
stack.push(a._add(b));

shows that the annotation on the first line binds the actual opcode value to
the binary_add method. Our implementation of automated threaded code generation
requires this mapping of opcodes to method addresses; the following section explains
this in detail.

It is worth noting that this transformation is purely mechanical. This is precisely, why
we believe that this transformation could be automated in future work. For example,
by annotating only the dispatch loop, one should be able to automate the subsequent
processing steps. But, even without automation, this task is straightforward and intro-
duces two new lines of code per i-op (one for the annotation, and one for the method
declaration), and replaces the break statement with a closing parenthesis.

The JVM Implementer’s Perspective. The effort of adding a threaded code generator to
the Java virtual machine pales in comparison to writing a full-blown just-in-time
compiler. But, before delving into the implementation details we will first summarize
what we know from threaded code. This is interesting insofar, as in a virtual machine
environment we are free to support multiple threaded code techniques and the VM can
choose which one to generate based on other sources of information, such as platform
or profiling information. As mentioned in [Section 2| subroutine threaded code is a
particularly attractive derivative of the original threaded code technique. This is due to
having the full context of each function’s bytecode sequence mapped to native machine
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code. It is precisely this representation, which allows full exploitation of the speculative
execution features of modern CPUs.

In consequence, a JVM implementation might choose among several different
threaded code representations. We implemented both subroutine threaded code and
direct threaded code in our prototype.

To generate subroutine threaded code, we need to map the hosted virtual machine
instructions to the native machine instructions. This requires (i) decoding of the hosted
virtual machine instructions, and (ii) finding operation implementations, the i-ops, corre-
sponding to opcodes. The former is mostly an engineering problem, as most interpreter
implementations use reasonably similar instruction encodings. An industrial-strength
implementation could, e.g., support multiple different instruction encodings by hav-
ing separate annotations or more parameters for each annotation. The second point,
binding opcode values to i-ops, is precisely what we require from guest language imple-
menters. To emit the actual native machine code, we rely on the Java virtual machine
implementation’s backend and assembler; this makes our implementation portable by
design.

Algorithm 1 I-Ops Code Table Initialization
1: procedure INITIALIZEICT(i_ops)

2 for i_op € i_ops do

3: opcode < i_0p.GETANNOTATIONVALUE()
4: ICTlopcode] < COMPILE (i_op)

5 end for

6: end procedure

shows how we build an internal representation—known as the i-ops
code table, or ICT for short—that maps each opcode to the native machine address of
the compiled code. It is worth noting that we leverage the existing JIT compiler for
generating the i-ops assembly code. Furthermore, we initialize the ICT when booting
up the Java virtual machine.

Algorithm 2 Threaded Code Generator

1: procedure GENTHREADEDCODE(py_code)
2 threaded_code < ALLOCATE (py_code)

3 while py_code # () do

4: opcode <— py-code. NEXTOPCODE()

5: compiled_i_op < ICT[opcode]
6.

7

8

address < compiled_i_op. GETENTRYPOINT()
code < GENCALLORJUMP (opcode, address)
: threaded_code. APPEND(code)
9: end while
10: end procedure

Next, we need to generate the actual subroutine threaded code. presents
the algorithm at the heart of our threaded code generator (TCG): This algorithm
contains several interesting details. First of all, we see that we need to be able to decode
the python bytecode representation, py_code. For both of the language implementations
we evaluated on our prototype, the necessary changes are restricted to this part only.
Then, we see how we use the ICT to map the opcode to the actual machine code address.
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Finally, we see that our threaded code generator emits either a native call instruction
or a native jump instruction on line 7 via GENCALLORJUMP. This is due to handling
simple intra-procedural control flow, such as backwards jumps and returns. Context-
threaded code includes inlining native jump instructions into standard subroutine
threaded code, too, but in contrast we do not perform its tiny inlining [Berndl et al|
2005].

Inlining Control-Flow Instructions. Inlining unconditional branches is straightfor-
ward. We just translate an unconditional branch into a native jmp instruction, thus
eliminating the corresponding native call instruction. To find the native jump target,
we need to extract the virtual target address from the input bytecode instruction, and
convert it to the corresponding target address at machine level while assembling the
native jmp instruction.

Inlining conditional branches is not directly possible, however. The key issue pre-
venting this is that we cannot in general infer Boolean expression evaluation logic
implemented in the interpreted hosted language. To optimize subsequent processing us-
ing native machine instructions, we require the guest language implementers to return
integer results consistent with commonly agreed upon semantics, i.e., zero for false and
non-zero for true. The actual branch takes place based on the returned result. [Listing 3
shows the machine code generated for a conditional branch. The i-op of JUMP_IF_TRUE
returns a value indicating whether the branch is taken or not. After the comparison,
the actual jump executes.

Listing 3: Emitted native machine code for a conditional branch.

call &jump_if_true
test rax, rax
jnz &branch_target

An Example. Listings [4] [5] and [6] explain the details of threaded code generation as
described above. shows a simple Python function, add, that “adds” two local

variables, item0, and iteml. Due to dynamic typing and ad-hoc polymorphism, we will
not know which operation to invoke until we witness the actual operands and choose
the actual operation, e.g., numeric addition or string concatenation, at runtime.

Listing 4: Python function add.

def add(itemO, iteml):
return itemO + iteml

presents the Python bytecode representation of the add function of [Listing 4]
as emitted by the CPython compiler. Both of the LOAD_FAST instructions require an

operand, zero and one respectively, to identify the corresponding local variables.

Listing 5: Python bytecode sequence for add function.

LOADFAST 0 (itemO)
LOADFAST 1 (iteml)
BINARY_ADD
RETURN_VALUE

Listing 6|displays the native machine code we emit for the bytecode sequence of
ing 5l Note that we inline the immediate operands zero and one from the LOAD_FAST
instructions directly into the generated native machine code, thereby eliminating in-
struction decoding altogether.
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Listing 6: Emitted subroutine threaded code for add function.

mov rsi, 0x0 ; LOAD_FAST 0
call &load_fast ; LOAD_FAST O
mov rsi, Oxl1 ; LOAD_FAST 1
call &load_fast ; LOAD_FAST 1
call &binary_add ; BINARY_ADD
call &return_value ; RETURN_VALUE
ret

Putting It All Together

details the actual implementation of how all of the parts fit together. We
lazily generate subroutine threaded code at runtime, in a just-in-time fashion, i.e.,
before its first execution. If our code cache is of limited size, we can easily remove
previously generated, cached subroutine threaded code. Subsequent invocation triggers
re-generation, which requires only a linear pass and therefore is efficient.

Algorithm 3 Putting It All Together.

1: procedure INTERPRET(method)

2 code + GETTHREADEDCODE (method)

3 if code = () then

4: code < GENTHREADEDCODE (method)
5: method.CACHE (code)
6

7

8:

end if
CALLTHREADEDCODE(code)
end procedure

Direct Threaded Code Dispatch

In addition to the subroutine threaded code, our system supports the translation
to direct threaded code. As described in Section [2| direct threaded code [Bell 1973]]
duplicates the instruction dispatch to each i-op.

We implement direct threaded code dispatch using an intrinsic next method. Intrinsic
is a special mechanism of the underlying Java VM, and defines a set of functions that
the JIT compiler compiles in a special way. The underlying JIT compiler compiles the
call to next directly to an indirect branch. To duplicate the instruction dispatch, the
language implementer needs to insert a call to next in each transformed i-op method
(Listing[7). The initialization of the ICT in turn uses the addresses of the modified i-op
methods. After that, the direct threaded code generator produces direct threaded code
by replacing each opcode with the method address of its i-op. Listing [8]illustrates the
generated direct threaded code. At runtime, the intrinsified next method fetches the
address of the next i-op and performs an indirect branch to the next i-op. Note that the
dispatch from one i-op to another does not allocate a new stack frame.
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Listing 7: Modified i-op for direct threaded code.

@I_OP (Opcode .BINARY_ADD)
public void binary_add(Address[] table, int pos) {
PyObject b = stack.pop();
PyObject a = stack.pop();
stack .push(a._add(b));
next(getAddress(table, pos++), this, table, pos);

Listing 8: Translated direct threaded code for add function.

&load_fast

0 (itemO)
&load_fast

1 (iteml)
&binary_add
&return_value

As described above, the next instruction dispatch performs a native indirect branch
instead of a call. Therefore, i-ops need to reuse the same stack frame allocated for each
Python function invocation. We implement this using two special i-ops, PROLOGUE and
EPILOGUE. Both of them are manually assembled instead of compiled from Java source
code. PROLOGUE, used at the beginning of a function, allocates a stack frame that is big
enough to accommodate all i-ops. EPILOGUE, used to model RETURN, deallocates the stack
frame and returns. The interpretation of a Python method always start with a PROLOGUE
and end with an EPILOGUE.

Stack frame reusing reduces the number of native machine instructions executed
for each hosted virtual machine instruction dispatch. However, in direct threaded code,
hosted virtual machine instruction dispatches of the same i-op share the same indirect
branch, which comparing to subroutine threaded code dispatch decreases the likelihood
of correct branch predictions.

3.2. Efficient Array Stores

The second major problem affecting hosted interpreter performance on the Java virtual
machine is array-write performance. We identified the detrimental effect of preserving
array type-safety for hosted interpreters. Since almost all interpreter instructions write
the results of their execution to the operand stack, repeatedly verifying the type-safety
of the array used to model the operand stack is expensive. This is particularly costly due
to the nature of type compatibility checks incurred by hosted language implementations.

For example, Jython uses PyStack to manage the operand stack. Internally, PyStack
uses an array of PyObject objects to implement a stack. However, PyObject is the root
class of Jython’s object hierarchy, used to model Jython’s object model on the Java
virtual machine. During actual interpretation, elements of the stack array will be
instances of PyDictionary, PyComplex, PyInteger, etc. As a result, type checking the
stack Java array requires repeatedly verifying that the objects actually derive from
PyObject.

It turns out, however, that checking this exception is completely redundant. Since
PyObject is the root class for all Jython-level classes, it follows that a sound interpreter
implementation will exclusively operate on objects corresponding to this class hierarchy.
Consequently, while checking the ArrayStoreException is necessary in the general case,
it is strictly not necessary for a hosted interpreter operating on its own class hierarchy.
Put differently, by construction the interpreter will never operate on an object not
deriving from PyObject.
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Similar to Java bytecode verification [Leroy 2003[l, we should be able to verify that
the interpreter only operates on objects of the same type. We would need to implement
the data-flow analysis described by Leroy to apply to all i-ops and show that for all
possible combinations, operands are bounded by the PyObject, or some other base class
for another interpreter implementation. We did not, however, implement this step
and leave this for future work. Our current prototype implementation provides an
annotation that acts like an intrinsic and instructs the just-in-time compiler to omit
the ArrayStoreException check.

Note that the same argument holds not only for Jython, but for other implemen-
tation, too, such as Rhino/JavaScript and JRuby, which we use in our evaluation.
Similarly, for languages like Python, JavaScript, and Ruby, we can compute the
maximum stack size for the operand stack and could subsequently eliminate the
ArrayIndexOutOfBoundsException by verifying that an actual function sequence’s stack
height does not exceed its precomputed limit.

4. EVALUATION

In this section, we evaluate the performance of our system for Jython, Rhino and JRuby.
We start by explaining the system setup and Maxine, which is the underlying Java VM
used in our implementation. Then, we show our benchmark results for Jython, Rhino
and JRuby, and analyze the effectiveness of subroutine threaded code and array store
optimization. First, we compare our optimizations against switch-dispatch interpreters.
Next, we compare the performance of our optimized interpreters against custom Java
bytecode compilers. Moreover, we present the results from our direct threaded code
interpreter for Jython. Then, we compare the baseline of using the client compiler, C1X,
against using the HotSpot server compiler, C2. Furthermore, we present our results of
investigating the implementation effort required by implementing an interpreter and
a custom compiler. Finally, we compare the frequency of array store checks between
regular Java programs and our subroutine threaded code interpreter.

4.1. System Setup

Hardware and Java virtual machines. We use Oracle Labs’ meta-circular Max-
ine [Wimmer et al. 2013] research virtual machine to implement the previously de-
scribed optimizations. Maxine’s just-in-time compilation strategy eschews a mixed-mode
interpretation strategy that is found in the HotSpot virtual machine, and relies on
a fast, non-optimizing template just-in-time compiler, known as T1X, instead. Once
profiling information embedded by T1X discovers a “hot” method, Maxine relies on its
derivation of the optimizing HotSpot client compiler [Kotzmann et al. 2008], named
C1X, to deliver high performance execution. Since Maxine does not have regular release
numbers, we used the Maxine build from revision number 8541 (committed on October
16th, 2012) for implementing our optimizations.

For our comparison against the HotSpot server compiler [Paleczny et al. 2001/, we
use Oracle’s HotSpot Java virtual machine version 1.6.

Regarding hardware, we use an Intel Xeon E5-2660 based system, running at a
frequency of 2.20 GHz, using the Linux 3.2.0-29 kernel and gcc version 4.6.3.

Interpreters. We evaluated the performance potential of our optimizations using
three popular language implementations targeting the Java virtual machine: Jython,
Rhino and JRuby, which implement Python, JavaScript, and Ruby, respectively. Both
Jython and Rhino have a bytecode interpreter, therefore, we use their existing bytecode
interpreters in our evaluation. On the other hand, JRuby does not have a bytecode in-
terpreter, so we port the YARV (yet another RubyVM) [Sasada 2005] interpreter, which
is the bytecode interpreter of Ruby in C, into Java. These three language implementa-
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tions implement their own custom compilers, which compile their corresponding input
languages directly down to Java bytecode. Therefore, we can provide comprehensive
performance evaluation that compares against both, interpreters and custom compilers.
We implemented our system for Jython version 2.7.0a2, Rhino version 1.7R4, and JRuby
version 1.7.3.

Interpreter Benchmarks. We select several benchmarks from the computer language
benchmarks game [Fulgham 2002], a popular benchmark suite for evaluating the
performance of different programming languages. We use the following benchmarks
to measure the performance of our modified systems in Jython, Rhino, and JRuby:
binarytrees, fannkuchredux, fasta, mandelbrot, meteor (not only available for Rhino),
nbody, and spectralnorm.

Procedure. We run each benchmark with multiple arguments to increase the range of
measured running time. We turn dynamic frequency and voltage scaling off to minimize
measurement noise [Intel 2012[]. We run ten repetitions of each benchmark with each
argument and report the geometric mean over all runs.

4.2. Raw Interpreter Performance

Figure 3| reports the speedups of our interpreter optimizations over Jython’s, Rhino’s
and JRuby’s switch-based interpreters, respectively. We normalize the performance by
the switch-based interpreter.

We achieve a 1.73x speedup over the switch-based interpreter only from subrou-
tine threaded code in Jython. Similarly, we achieve a 2.13x speedup from subroutine
threaded code in Rhino. Furthermore, we gain a 1.64x speedup over the switch-based
interpreter by applying subroutine threaded code in JRuby.

The average speedup of 2.13x over Rhino’s switch-based interpreter is higher than
the average speedups from Jython’s and JRuby’s interpreter from subroutine threaded
code. The reason is that Rhino executes more instructions for the same benchmarks, so
the dispatch overhead is higher in Rhino. Therefore, reducing the dispatch overhead by
subroutine threaded code gives higher speedups in Rhino.

Efficient Array Store Performance. We gain an additional 42% speedup by applying efficient
array stores to our subroutine threaded code interpreter for Jython. With the efficient
array stores, we achieve a 2.45x speedup over the switch-based interpreter in Jython.
Similarly, we achieve an extra 68% speedup by applying the same optimization to our
subroutine threaded code interpreter for Rhino. When combined with the efficient array
stores, we achieve a 3.57x speedup over the switch-based interpreter in Rhino. Moreover,
we gain an additional 54% speedup from efficient array stores in JRuby. Together with
the efficient array stores, we achieve a 2.52x speedup over the switch-based interpreter
in JRuby. We use the perf [Linux 2009 tool to measure the number of native machine
instructions eliminated by this optimization. We find out that array store optimization
removes 35% of the executed native machine instructions on average in our subroutine
threaded code interpreter for Jython. Similarly, it reduces the executed native machine
instructions by 44% on average in our subroutine threaded code interpreter for Rhino.
Furthermore, it removes 31% of the executed native machine instructions on average in
our subroutine threaded code interpreter for JRuby.

The spectrum of the speedups is relatively wide. Our subroutine threaded code
interpreter and efficient array stores together performs better in the benchmarks that
have higher dispatch overhead, such as fannkuchredux. For example, the Python version
of this benchmark only has one Python function, therefore, the interpreter is only
invoked once. Currently, Maxine does not support on-stack replacement which allows
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Fig. 3: Speedups of subroutine threaded code interpreter over switch-based interpreters.
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the VM to replace the stack frame with that of an optimized version. Therefore, Maxine
never gets a chance to recompile the switch-based interpreter for fannkuchredux.

When C1X recompiles the switch-based interpreter, it produces better code, so the
switch-based interpreter performs better. For instance, the subroutine threaded code
interpreter speedups are lower for the call-intensive binarytrees benchmark.

shows the speedups of our direct threaded code interpreter over the switch-
based interpreter for Jython. Direct threaded code itself achieves an average speedup
of 1.66x over the switch-based interpreter. Combined with the efficient array stores, it
achieves an average speedup of 2.45x over the switch-based interpreter.

binarytrees.py 12+
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Fig. 4: Speedups of direct threaded code interpreter over Jython’s switch-based inter-
preter.

4.3. HotSpot Server Compiler Performance

Previous studies of threaded code used a traditional, ahead-of-time compiler which
performs many time-consuming optimizations. In contrast, Maxine’s C1X compiler—and
the compiler it is modeled after, HotSpot’s client compiler C1 [Kotzmann et al. 2008]—
focuses on keeping compilation time predictably low by omitting overly time-consuming
optimizations. On the other hand, HotSpot’s server compiler—known as C2
et al. 2001]—generates higher-quality code at the expense of higher latency imposed by
longer compilation times.

To qualify the potential gain from using a more aggressive compiler, we compare
the impact of our optimizations to compiling Jython’s switch-based interpreter with
the server compiler. shows the speedups of compiling Jython’s switch-based
interpreter with the Java Hotspot’s server compiler. We normalize the performance by
the client compiler. We find that the server compiler delivers 81% better performance
on average for Jython. Similarly, it achieves 10% better performance on average for
Rhino. Moreover, server compiler delivers 9% better performance on average for JRuby.
Therefore, while using an aggressively optimizing compiler does give a better baseline to
the interpreter, it does not offset our performance gains, but puts them into perspective
with the reported speedup potential in the relevant literature [Ertl and Gregg 2003b|.

Furthermore, our technique allows the fast client compiler to outperform the server
compiler without using any of the more expensive optimization techniques, which
certainly has practical implications, for example in embedded systems or smartphones,
where energy-efficiency is key.
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Fig. 5: Performance of compiling switch-based interpreters with Java Hotspot’s server

compiler relative to client compiler.
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4.4. Custom Compiler Performance

Figure 6/shows the speedups of our optimizations over Jython’s, Rhino’s and JRuby’s
custom Java bytecode compilers, respectively. We normalize the performance by the
custom compiler performance, i.e., values lower than 1.0 indicate a slow-down relative
to the custom compiler.

For Jython, subroutine threaded code achieves 70% of the performance of the custom
compiler. Together with the efficient array stores, it delivers 99% of the performance of
Jython’s custom compiler. Likewise, subroutine threaded code itself delivers 42% of the
performance of the custom compiler in Rhino. In combination with the efficient array
stores, the subroutine threaded interpreter achieves 72% of the performance of Rhino’s
custom compiler. Moreover, subroutine threaded code brings 36% of the performance of
the custom compiler in JRuby. When combined with the efficient array stores, it delivers
58% of the performance of the custom compiler.

Our average performance of 0.72x and 0.58x compared to Rhino’s and JRuby’s custom
compilers are lower than our average performance of 0.99x compared to Jython’s
custom compiler. The reason is that Rhino and JRuby have a more complex compiler
implementing aggressive optimizations, such as data flow and type inference analyses.
For example, Rhino’s custom compiler uses nine different optimization levels, and we
use the highest optimization level in our evaluation.

Our subroutine threaded code interpreter with efficient array stores outperforms the
custom compiler in fannkuchredux, fasta, mandelbrot, and nbody benchmarks in Jython.
We report the two highest speedups in fannkuchredux, and mandelbrot.

Jython’s custom compiler compiles each Python program into one class file, and
generates a Java method for each Python function. Maxine initially compiles each
Java method using its template-based just-in-time compiler, T1X. When a method
becomes hot, Maxine recompiles it using its optimizing just-in-time compiler, C1X.
Hence, subsequent invocations of this method execute the optimized code. However, the
Java method generated by Jython’s custom compiler must be invoked at least more than
a certain threshold number of times to trigger the recompilation by C1X. Fannkuchredux
and mandelbrot have only one Python function that executes a hot loop. Without on-stack
replacement, Maxine is not able to produce optimized code for these two benchmarks.
As a result, the custom compiler does not perform well for these benchmarks.

For call intensive benchmarks, such as binarytrees, our optimized interpreter performs
worse than the custom compiler. The optimizing JIT compiler is able to recompile the
Java methods generated by the custom compiler at a very early stage in this benchmark.

reports the performance of our direct threaded code interpreter for Jython
compared to the compiler. Our direct threaded code achieves 66% of the performance of
Jython’s compiler, and with the efficient array stores it achieves 98% of the performance
of the Jython’s compiler.

4.5. Implementation Effort

4.5.1. Custom Compiler Effort. We found that some implementations targeting the Java
virtual machine started out by porting their C implementation counterparts to Java.
Due to the bottlenecks identified in performance-conscious language im-
plementers will invariably write a custom Java bytecode compiler. This investment,
however, is costly in terms of initial implementation and continuous maintenance
efforts.

Comparing the number of lines of code in an interpreter and a custom compiler gives
an indication of the complexity of a custom compiler. Therefore, we counted the number
of lines of code in an interpreter and a custom compiler for various programming
language implementations. We used the sloccount program [David A. Wheeler 2001] to
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Fig. 6: Performance of subroutine threaded code interpreter relative to custom Java
bytecode compilers.
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Fig. 7: Performance of direct threaded code interpreter relative to Jython’s custom Java
bytecode compiler.

measure the number of Java lines of code for Jython, JRuby, and Rhino. reports
the lines of code numbers for each of these programming language implementations.
The second and fourth columns list the package names counted. The third and fifth
columns show the number of lines counted from these packages. The last column shows
the factor of the code size reduction between the custom compiler and the interpreter of
a particular implementation.

[ Language ]| Custom Compiler Package | # Lines [ Interpreter Package/File [ # Lines [ Reduction |
Jython org.jython.compiler 5007 | org.jython.core.PyBytecode 1097 ~ 5x
org.jruby.compiler 5095
org.jruby.compiler.impl 6744
JRuby org.jruby.compiler.util 339
total 12178 | org.jruby.ir.Interpreter.java 631 ~ 19x
org.mozilla.classfile 4183
Rhino org.mozilla.javascript.optimizer 5790
total 9973 | org.mozilla.javascript.Interpreter.java 2584 ~4dx

Table I: Implementation Effort Comparison.

Jython’s custom compiler has 5007 lines of Java code. This line count does not include
the ASM Java bytecode framework [Bruneton et al. 2002] used by the compiler for
bytecode assembling. Jython’s custom compiler relies extensively on generating JVM-
level calls to its runtime system to simplify the compilation process. This technique
results in a relatively small and manageable compiler. Rhino has a more complicated,
optimizing compiler consisting of 9973 lines of Java code.

4.5.2. Manual Transformations. As explained in[Section 3.1} the language implementer
only needs to add two new lines of code for each i-op to the existing switch-based inter-
preter to enable threaded code generation. For example, this manual transformation
results in ~ 250 new lines of Java code in Jython, and ~ 140 new lines of Java code in
Rhino, and ~ 160 new lines of Java code in JRuby.

4.5.3. Virtual Machine Implementation Efforts. On the other hand, the threaded code gen-
erator for Jython requires only 337 lines of Java code. Similarly, the threaded code
generator for Rhino needs 393 lines of Java code, and JRuby requires 317 lines of Java
code.
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4.6. Array Store Check Frequency

As mentioned in we find that efficient array stores are crucial for the
performance of the interpreters. Interpreters written in Java are atypical since they
perform significantly more of array store checks. To show that array store checks in
interpreters are more frequent than regular Java programs, we compare the DaCapo
benchmarks [Blackburn et al. 2006] to our subroutine threaded code interpreter for
Jython. We select several benchmarks from the DaCapo benchmark suite.
and show the measurements from the DaCapo benchmarks and Jython’s
subroutine threaded code interpreter. The first column shows the total number of
executed native machine instructions and the second column reports the total number
of array store checks performed in millions for each specific benchmark. The last column
shows the frequency of the array store checks per million native machine instructions.

The average frequency of the array store checks is 97 per million native machine
instructions in the DaCapo benchmarks whereas it is 2,311 per million native machine
instructions in our subroutine threaded code interpreter. Therefore, the frequency of
the array store checks is ~ 24 x that of typical Java programs. The high frequency of
array store checks in interpreters means that array store optimizations are particularly
effective at improving the performance of hosted interpreters.

Benchmark | # Native Machine | # Array Store | Frequency
Instructions Checks
avrora 42,598 2 57
eclipse 433,621 16 39
fop 37,252 3 101
h2 230,879 47 204
Tuindex 24,730 2 86
lusearch 82,630 7 88
pmd 124,284 17 137
sunflow 119,884 2 17
tomcat 90,257 12 135
xalan 92,174 10 109

Table II: Array store check frequencies in millions for the DaCapo benchmarks.

Benchmark # Native Machine | # Array Store | Frequency
Instructions Checks
binarytrees 16 366,053 1,039 2,840
fannkuchredux 10 840,451 1,772 2,110
fasta 2,500,000 184,670 280 1,522
mandelbrot 1,000 168,844 373 2,217
meteor 2098 205,587 337 1,639
nbody 500,000 328,593 924 2,809
spectralnorm 1000 488,248 1,485 3,040

Table III: Array store check frequency in millions for Jython’s subroutine threaded code
interpreter.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 G. Savrun-Yenigeri et al.

4.7. Discussion

Unsurprisingly, comparing against the optimized vs. switch-dispatch virtual ma-
chine interpreters of both Jython, Rhino and JRuby shows significant speedups. It
is worth noting, however, that half of the speedup is due to eliminating the expensive
ArrayStoreException check. Interestingly, for fannkuchredux on Rhino, the dramatic
speedup is due to having efficient array stores. This is since fannkuchredux executes the
most hosted virtual machine instructions and almost all instructions include an array
store check before writing their result to the operand stack.

Relatively to custom Java bytecode compilers, we find that a Java virtual machine im-
plementing our optimizations makes the price/performance ratio of interpretation even
more attractive: with little manual modification, an efficient hosted JVM interpreter is
competitive with a simple custom compiler. Unlike Jython’s custom compiler, Rhino’s
JavaScript custom compiler performs multiple optimizations. This generally decreases
the potential of our optimizations (modulo cases where Maxine cannot demonstrate its
full potential due to the lack of on-stack replacement) by about a third, resulting in a
performance within 60% of Rhino’s custom compiler. Furthermore, we notice that the
performance impact of eliminating the ArrayStoreException check changes noticeably.
Compared with custom compiler performance, it does not contribute half, but roughly a
third of the reported speedups. We investigate whether the evaluated custom Java byte-
code compilers use an array to pass operands. Rhino’s and JRuby’s custom compilers
map the local variables in the guest language to Java locals. Therefore, they operate on
Java local variables and don’t use arrays as operand stacks. On the other hand, Jython’s
custom compiler does not map Python variables to Java local variables. It generates
virtual calls to Jython’s runtime methods to perform operations. If the method returns
a result, it pushes its result onto the Java operand stack. So, Jython’s custom compiler
uses Java operand stack to pass operands instead of implementing a separate operand
stack. As a result, custom Java bytecode compilers do not necessarily benefit from array
store optimization while interpreters gain substantial speedups from it.

Direct threaded code dispatch performs similar to subroutine threaded code dispatch
when used for the hosted interpreter. It eliminates the overhead of allocating and deal-
locating a stack frame in each hosted virtual machine instruction dispatch. However,
the direct threaded code translation only duplicates the indirect branch of the dispatch
at the end of each i-op. Efficient indirect branch prediction relies on the existence of fre-
quently repeating hosted virtual machine instruction patterns in Python programs. The
translation to direct threaded code is more straightforward than that of the subroutine
threaded code. It only involves replacing the opcode of each bytecode instruction with
the address of the i-op and does not generate executable machine code. This simplifies
the implementation of the threaded code generator. As a consequence, it is easier to
generalize direct threaded code translation for different hosted languages. Although
they perform similarly on modern x86 CPUs, preliminary experiments suggest that
the performance of direct threaded code exceeds that of subroutine threaded code on
ARM-based architectures. In future work, we will extend our system to be architecture
aware, so it can automatically switch to a threaded code representation that performs
better for the underlying hardware.

Concerning the implementation effort, our evaluation led to the following insights.
First, using annotations for enabling our optimizations requires minimal effort by the
guest language implementer; this supports our claim that we can measure the effort in
a matter of hours. Second, our investigation of the implementation effort for the Java
virtual machine implementer shows that the threaded code generators mostly diverge
in supporting separate bytecode decoding mechanisms. Most of the bytecode decoding

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Efficient Hosted Interpreters on the JVM A:21

logic can be factored into separate annotations which is why we think that supporting a
large set of different decoding mechanisms is largely an engineering problem.

We present both the hosted language implementer and the JVM language imple-
menter perspective in our implementation. When our dispatch optimizations can be
applied automatically, the features of threaded code generator need not be exposed to
the hosted language implementer. Therefore, regular Java programmers should not
be able to access to the parts of the threaded code generator that might cause security
holes in the JVM. On the other hand, our array store elimination might break the JVM
code if used in inappropriate places. We can add an additional verification to make it
more secure. However, JVMs already provide unsafe features such as sun.misc.Unsafe
and JNI that can also destabilize the VM.

5. RELATED WORK

We group the related work into two subsections: on interpreter optimizations and on
approaches leveraging existing virtual machines. To the best of our knowledge, there is
no previous work on adding interpreter optimizations to existing JIT compilers.

5.1. Threaded Code

The canonical reference for threaded code is Bell’s paper from 1973, introducing direct
threaded code [Bell 1973]]. In 1982, Kogge describes the advantages of using threaded
code and systematically analyzes its performance potential [1982]. In 1990, a book by
Debaere and van Campenhout [1990]] reports the state-of-the-art for threaded code,
including an in-depth discussion of all threaded code techniques known at the time, plus
the effects of using a dedicated co-processor to “offload” the interpretative overhead from
the critical path of the CPU. In 1993, Curley [1993a};[1993b] explains the subroutine
threaded code for Forth.

In 2003, Ertl and Gregg [2003Db] find that using threaded code for instruction dispatch
makes some interpreters more efficient than others. They describe how threaded code
with modern branch prediction can result in performance speedups by a factor of up
to 2.02. In 2004, Vitale and Abdelrahman [2004] report dramatically lower effects on
using threaded code when optimizing the Tcl interpreter. In 2005, Berndl et al. [2005]
introduce context threading technique for virtual machine interpreters which is based
on subroutine threading. They show that context threading technique significantly
improves branch prediction and reduces execution time for OCaml and Java interpreters.
In 2009, Brunthaler [2009] explains that the optimization potential for threaded code
varies with the complexity of the i-ops.

All of the previous work in the area of threaded code focuses on interpreter imple-
mentations using a low level systems programming language with an ahead-of-time
compiler. In addition to improving array store performance—which, after all, constitutes
almost half of the speedup—we present threaded code as a simple, domain-specific opti-
mization for virtual machines having a just-in-time compiler. Furthermore, wrapping
threaded code generation in annotations gives implementers a straightforward way to
enable efficient interpretation, which can also be reused for several different hosted
interpreters.

5.2. Targeting Virtual Machines

The idea of optimizing dynamic languages in an existing JIT environment is not new.
For example, the Da Vinci Machine Project [Oracle Corporation 2008] extends the Java
HotSpot VM to run non-Java languages efficiently on a JVM. The project introduces
a new Java bytecode instruction: invokedynamic [Sun Microsystems Inc. 2011]l. This
instruction’s intent is to improve the costly invocation semantics of dynamically typed
programming languages targeting the Java virtual machine. Similar to invokedynamic,
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our system can also be adopted by JVM vendors to improve the performance of guest
language interpreters running on top of them.

In 2009, Bolz et al. [2009] and Yermolovich et al. [2009] describe an approach to opti-
mize hosted interpreters on top of a VM that provides a JIT compilation infrastructure.
This is particularly interesting, as this work provides a solution to circumvent the con-
siderable implementation effort for creating a custom JIT compiler from scratch. There
are two key parts in their solution. First, they rely on trace-based compilation [Chang
et al. 2009]] to record the behavior of the hosted program. Second, they inform the trace
recorder about the instruction dispatch occurring in the hosted interpreter. Therefore,
the subsequent trace compilation can remove the dispatch overhead with constant
folding and create optimized machine code.

There are several differences between the approach of hierarchical layering of VMs
and automatically creating threaded code at runtime. Our approach does not trace the
interpreter execution, i.e., subroutine threaded code compiles a complete method, more
like a conventional JIT compiler. In addition, our technique does not depend on any
tracing subsystem, such as the trace compiler, recorder and representation of traces.
Furthermore, our approach does not need to worry about bail out scenarios when the
interpreter leaves a compiled trace so it does not require any deoptimization. Finally,
we think that using both approaches together could have mutually beneficial results,
though they inhabit opposing ends in the implementation effort/performance spectrum.

In 2012, Ishizaki et al. [2012] describe an approach to optimize dynamic languages
by “repurposing” an existing JIT compiler. They reuse IBM J9 Java virtual machine
and extend the JIT compiler to optimize Python. Their approach and ours share the
same starting point, as we both believe that developing a JIT compiler for each dynamic
language from scratch is prohibitively expensive. However, their technique is still
complicated to use for programming language implementers, as they need to extend
the existing JIT with their own implementation language. In contrast, our approach
requires only minimal mechanical transformations that are independent of the inter-
preted programming language (e.g., Python or JavaScript) to generate a highly efficient
interpreter.

6. CONCLUSION

In this paper we look into the performance problems caused by hosted interpreters
on the Java virtual machine. Guided by the identified bottlenecks, we describe a sys-
tem that optimizes these interpreters for multiple guest languages by using simple
annotations. Specifically, we present two optimizations that improve interpretation per-
formance to such a big extent that they become comparable to performance previously
reserved for custom Java bytecode compilers. First, we optimize instruction dispatch
by generating subroutine threaded code with inlined control-flow instructions. Second,
we improve array store efficiency by eliminating redundant type-checks, which are
particularly expensive for hosted interpreters.

To evaluate the potential of our approach, we apply this technique to three real-world
hosted JVM interpreters: Jython, Rhino and JRuby. Our technique gives language
implementers the opportunity to execute their language efficiently on top of a Java
virtual machine without implementing a custom compiler. As a result of freeing up
these optimization resources, guest language implementers can focus their time and
attention on other parts of their implementation.
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