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ABSTRACT
Imparting diversity to binaries by inserting garbage instruc-
tions is an e↵ective defense against code-reuse attacks. Re-
locating and breaking up code gadgets removes an attacker’s
ability to craft attacks by merely studying the existing code
on their own computer. Unfortunately, inserting garbage in-
structions also slows down program execution. The use of
profiling enables optimizations that alleviate much of this
overhead, while still maintaining the high level of security
needed to deter attacks. These optimizations are performed
by varying the probability for the insertion of a garbage
instruction at any particular location in the binary. The
hottest regions of code get the smallest amount of diversifi-
cation, while the coldest regions get the most diversification.

We show that static and dynamic profiling methods both
reduce run-time overhead to under 2.5% while preventing
over 95% of original gadgets from appearing in any diversi-
fied binary. We compare static and dynamic profiling and
find that dynamic profiling has a slight performance advan-
tage in a best-case scenario. But we also show that dynamic
profiling results can su↵er greatly from bad training input.
Additionally, we find that static profiling creates smaller bi-
nary files than dynamic profiling, and that the two methods
o↵er nearly identical security characteristics.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration, optimization; K.6.5 [Management of Comput-

ing and Information Systems]: Security and Protec-
tion—unauthorized access
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1. MOTIVATION
Software profiling is a proven technique for identifying

which blocks of program code execute the most often [2, 17].
This information can then be used to implement a variety
of optimizations. Likewise, the diversification of binary code
[18] through the insertion of garbage instructions has been
shown to be an e↵ective defense against code-reuse attacks
[14, 15]. These garbage instructions displace the original in-
structions in the diversified binary, making any particular
piece of code di�cult to find for an attacker.

Inserting garbage instructions, however, makes the diver-
sified binary larger and slower than the original. Homescu et
al. [14] showed that profile-adaptive diversification reduced
the slowdowns to a negligible level. In their study, the use of
a profile-guided diversifying compiler that inserted garbage
instructions into the binary code resulted in run-time over-
heads of about 1% while successfully implementing code di-
versification.

Previous work, however, has only demonstrated the use of
one form of profiling in this process, dynamic [14, 15]. Dy-
namic profiling, at its best, can give a very accurate picture
of which part of a program is “hot” or “cold”, but the profile
that it creates can also be very misleading. The accuracy of
a dynamic profile depends on the quality of a training run.
If the input for that training run is representative of the typ-
ical use of a program, then the profile will likely be accurate
and optimizations will produce the expected benefits. How-
ever, if the input for the training run is not representative
of a typical run, the profile will not be accurate, misidenti-
fying which code regions are hot or cold. In consequence,
optimizations cannot yield their full potential. The repre-
sentative input sets, needed for an accurate training run,
could be non-representative, could be unavailable, or the
program’s use may just not lend itself to the creation of an
accurate profile from a single set of inputs. If any of these
things are true, performance will su↵er and the potential
improvements from profiling will not be achieved.

Static profiling, although it does not deliver as precise a



profile, does not have the potential problems of dynamic
profiling. Since a static profile is formed from the examina-
tion of the control structures in the code itself, no training
run is needed. We will show that by using static profiling
instead of dynamic profiling, the downside of dynamic profil-
ing can be avoided while still realizing many of the positive
aspects that it provides. Performance gains comparable to
those from the best-case of dynamic profiling can be achieved
with static profiling while still maintaining the same level of
security through the diversification of binary code.

2. BACKGROUND

2.1 Code-Reuse Attacks
Instead of inserting an attack program into a victim’s ma-

chine and executing it there, code-reuse exploits use pieces
of code that are already on a victim’s machine. Return-
to-libc attacks place the addresses of existing functions on
the stack [23], while return-oriented programming (ROP) at-
tacks place addresses of smaller pieces of code that end with
a return (called “gadgets”) [27] on the stack. Jump-oriented
programming uses gadgets like ROP, but does not rely on
the stack and return statements [5]. Blind ROP (BROP) is
a method that uses brute force probing of the binary code to
disclose code locations and then launches a ROP attack [3].
All of these methods work by getting the victim machine to
execute its own code to serve the attacker’s purposes. Since
return-oriented programming seems to currently be the most
commonly used code-reuse attack [22], we will concentrate
our discussion on ROP.

In ROP, the attacker’s goal is to get the CPU to load gad-
get addresses into the Program Counter (PC) and to control
the flow of execution. Any sequence of machine instructions
that leads to a return, whether using the original instruc-
tions or discovering new ones from portions of existing code
(as in Figure 1) can be used. In order to succeed, ROP
attacks rely on the following three things:

• The lack of diversity in distributed software

• The non-aligned instructions in x86 architecture

• The function return mechanism

The first thing that the attacker needs to carry out a
ROP attack is the knowledge of what files will be loaded
into memory on the target machine and the exact addresses
of the gadgets inside those files. This knowledge is actually
made possible by the current nature of software. When soft-
ware developers distribute their products, they deliver the
same code to all consumers. Because of this, an attacker can
simply examine the files on their own machine to discover
sequences of usable gadgets, knowing that there are millions
of other machines out in the world with the exact same files
containing the exact same code. This lack of diversity in
software was identified as a potential threat to computer se-
curity as early as 1993 by Cohen [7], and it remains a large
factor in making code-reuse attacks possible today.

The second thing that aids in the construction of ROP
attacks is the non-aligned nature of x86 architecture. In
the x86 architecture, some machine instructions can be as
short as a single byte, while others may be many bytes in
length. This representation is space-e�cient and does not
require an entire word of memory to represent an instruc-
tion that can be completely described in fewer bytes. But

at the same time it means that instruction execution has to
be able to start at any given byte address instead of just
at aligned word addresses. Figure 1 illustrates this point,
showing how gadgets could potentially be found starting at
any byte address as long as they eventually lead to a return
instruction. The numbers in the middle line of the figure
are a hexadecimal representation of binary machine code.
The assembly language instructions above the machine code
show the sequence that would be executed under normal cir-
cumstances. The assembly code written below the machine
code shows another possibility, where execution has been di-
rected to start at a location that is inside the original MOV
instruction. In this case, the targeted byte also contains le-
gal op-code information, so execution will successfully begin
at this location. The new binary sequence that begins at
this address (11 01 C3) represents a gadget containing the
ADC and RETN instructions. It is perfectly valid code even
though it is totally di↵erent from the original and so this dis-
covered code can be executed if its location is known. This
shows that the ROP attack does not necessarily even need
to find all of its tools at the end of existing functions. It can
discover code inside other instructions that can be manip-
ulated to act as returns. While the ability to discover new
gadgets is not essential to the creation of a successful ROP
attack, it does make an attack easier to craft by increasing
the number of available gadgets.

Using original instructions

MOV [ECX],EDX ADD EBX,EAX . . . RETN

89       11 01       C3 C3. . .

ADC [ECX],EAX RETN

Discovered gadget in unaligned instruction
Figure 1: A discovered gadget

In Figure 1, an executable instruction can be found by
beginning at any of the bytes that are shown. This is not
always the case, as many byte sequences do not form legal
instructions, but it illustrates the point that gadgets are very
common. In fact attackers have so many gadgets available in
existing files that ROP attacks have been shown to be Tur-
ing complete, meaning that ROP attacks can piece together
gadgets to produce any machine code that a programmer
could write.

Once a sequence of usable gadgets has been discovered,
the attacker just needs to put the gadget addresses on the
victim computer’s stack and get that computer to start ex-
ecuting its own code. By having knowledge of the code that
already resides on the computer and co-opting the return
mechanism, the attacker can redirect the flow of execution
to any series of gadgets that reside in the machine’s memory.

The third thing that makes a ROP attack possible is the
function return mechanism itself. When a function call is
encountered in the execution of a program, before the exe-
cution of the function begins, that function’s return address
is placed on the stack. When the function finishes running,
the return address, which was stored on the stack, is loaded
back into the PC. In this way execution returns to the in-



struction that immediately followed the function call in the
code. ROP attacks hijack this mechanism, placing other ad-
dresses on the stack that the machine interprets as return
addresses. Thus each time the computer attempts to return
from a function, it actually winds up jumping to and exe-
cuting the gadget it finds at the location of the next address
on the stack.

2.2 Diversification
Code-reuse attacks depend on predictability. The attacker

crafts their exploit using known addresses from an examina-
tion of the code on their own computer. If the loaded files on
a victim’s computer are not the same, at the binary level, as
the files that the attacker used to create their attack, then
the attack is likely to fail. The targeted gadgets, if they ex-
ist at all, are unlikely to be found in the same locations on
any two machines.

Address Space Layout Randomization (ASLR) is a di-
versification process that is currently implemented in some
form in all major operating systems. In ASLR, modules
are loaded into randomized memory locations instead of be-
ing placed in the exact same place every time. With this
move towards diversity in computers, all potential victim
machines appear to be di↵erent to attackers and di↵erent
from the attacker’s own machine as well. However, attack-
ers have found ways to have the operating system leak the
information about where the desired modules are located in
a victim’s machine [28, 11, 26, 30]. And, once the attacker
knows the location of the files, the addresses of all of the code
gadgets within those files are easily calculated since the code
inside all of the files is still identical to the attacker’s own
version. Fine-grained attempts at randomization take the
diversification one step further by relocating the functions
that exist inside the files [13]. But once again, the locations
of the functions can be leaked and the actual code inside the
functions is unchanged, so gadget addresses can be found as
o↵sets from the beginning of the functions [29]. Once the
locations of the gadgets are known, the attack can proceed
as before.

The introduction of ASLR into operating systems was a
step in the right direction for providing security through di-
versity, but has proved to be an insu�cient impediment to
code-reuse attacks. By inserting garbage instructions into
the binary code, diversity can be extended down to the in-
struction level, so that vulnerabilities that currently exist in
the same code on every machine are broken up or hidden
more e↵ectively.

Brute force code reuse attacks, such as BROP, require
special handling. Because they can use information leakage
to locate gadgets in the binaries, just moving the gadgets
around is not enough to stop these attacks. The diversifying
compiler currently uses booby traps [9] to counter this type
of exploit, but we believe that further diversity could also
be used to counter this type of attack. BROP depends on
the forking mechanism to produce an exact duplicate of the
current process, so diversifying when forking would remove
this required feature of the attack.

2.3 Diversity Through NOP-Insertion
The insertion of garbage instructions into a binary can

theoretically produce an infinite number of distinct bina-
ries from one original file. We will use the general term of
”NOPs” for these garbage instructions. They occupy space

B. Diversified code

A. Original code

MOV [ECX],EDX ADD EBX,EAX

89       11 01       C3

ADC [ECX],EAX RETNDiscovered
Gadget

MOV [ECX],EDX ADD EBX,EAX

89       11 01       C3

NOP

90

Invalid code
Figure 2: Breaking the discovered gadget

in the code, but do not a↵ect the state of the machine.
Therefore the created binaries are all functionally equiva-
lent, performing the same tasks, but internally they are all
unique. This massive diversification makes code-reuse at-
tacks that do not include information leakage impractical.
Even if the attacker gets around the ASLR employed by the
operating system, the code gadgets that they need to carry
out their attack are either not present at all or are located
in some other unknown place in memory.

Figure 2 demonstrates how the NOP insertion mechanism
works to relocate some gadgets and break up others. In
part A, the code from Figure 1 is repeated, showing how
the original code was vulnerable to ROP attacks. In part
B, a NOP instruction has been inserted between the MOV
and the ADD instructions. One e↵ect of this insertion is
that the gadget that was created by starting execution in
the middle of an instruction (11 01 C3) has been removed
entirely. That code, that the attacker may have needed in
order to perform their attack, no longer exists in this file.
The code that now begins at that address is not a valid in-
struction. It is possible that the inserted NOP could create
a new valid gadget, but that new gadget would not exist in
the attacker’s machine, so they would have no knowledge of
it. The next thing to notice from this figure is that a gadget
that began with the ADD instruction has been moved for-
ward to a new address in the code. This displacement means
that if the attacker wanted to use the ADD instruction as
the start of a gadget, they wouldn’t find it in its original
position. In this particular figure, an attack starting at the
original ADD location could still work, since the NOP will
be executed and then the desired ADD will still be found
as the next instruction. But every time a NOP is inserted,
every instruction that follows that NOP is moved to a new
address, so, there is a cumulative e↵ect of instruction spac-
ing caused by NOP insertion. Because of this, there is a
very small likelihood that execution starting at the address
of any original gadget will perform the action desired by the
attacker.

The creation of multiple binaries that are all di↵erent is



for i in instructions:
pct = findInsertionPct()
r = random(0.0,1.0)
if r < pct:

numNOPs = random(1,MaxNops)
for k in range(1, numNOPs):

choice = random(1,size(NopList))
insert(NopList[choice])

Figure 3: NOP insertion algorithm

accomplished through the use of a random number genera-
tor. When given the same seed each time, a pseudorandom
number generator will produce exactly the same series of val-
ues, while still producing a completely di↵erent set of values
for a di↵erent starting seed. So, randomization is achieved
while still preserving repeatability.

Figure 3 shows how NOP insertion is implemented. For
each instruction, the insertion percentage is determined, and
if a random value is less than this percentage, then one or
more NOP insertions will occur at that point. Addition-
ally, for each instance of a NOP insertion, another random
number is generated to choose which specific NOP should
be used in that location. These candidate machine instruc-
tions are all just one or two bytes in length. Other machine
instructions that function as NOPs were available, but we
chose these five for the purpose of minimizing the inserted
code’s impact on file size and speed of execution.

Having a variety of NOP instructions to choose from fur-
ther increases diversity. The candidate instructions in the
NOP list are shown in Table 1.

Table 1: NOP candidates
Instruction Machine Code
NOP 90
MOV ESP,ESP 89 E4
MOV EBP,EBP 89 ED
LEA ESI,[ESI] 8D 36
LEA EDI,[EDI] 8D 3F

The insertion percentage, for the fixed-percentage diversi-
fying compiler, is assigned at compile time and used through-
out the code. If an instruction occurs early in the code,
however, the insertion percentage is raised to increase the
diversity level at the beginning of the file. The profile-guided
compiler uses a more complex determination for the inser-
tion percentage, as will be discussed in section 3.2.

The diversifying compiler uses a di↵erent seed for the ran-
dom number generator for each di↵erent binary version. In
this way, the three random choices in the algorithm in Figure
3 get pseudorandom sequences of values, creating diversity,
but the choices made at those locations are also completely
repeatable by the compiler, using the same seed.

The seed value is also key in the maintenance of programs,
enabling updates and patches. Because each machine has its
own version of a particular file that is completely di↵erent
internally from all others, the same patch can’t be sent to
everyone. Instead the developer uses the seed value from a
customer’s version to reproduce that binary, and then sends
the patch that is specific to that version. Precompiling mul-
tiple versions in the cloud is relatively inexpensive [12].

The insertion of a large number of NOPs might be ex-

pected to greatly increase the size of diversified files and
slow down execution markedly. However, the use of small,
quick executing NOPs and the use of profiling minimizes the
increases in file size and execution time.

3. PROFILING

3.1 Types of Profiling
There are two types of software profiling that are available

in the LLVM compiler [19] : static and dynamic [24]. Static
profiling is an analysis that is performed at compile-time,
before the target program is executed. It creates a profile
that is based directly on the control flow graph (CFG) of the
file that is being compiled. The profile is created from the
CFG by using heuristics to estimate which basic blocks in
the graph are likely to be encountered the most frequently
during execution. A simple example of this is that a block of
code inside a loop would be identified as hotter than a block
of code in a simple if-statement, due to the expectation that
the loop block will be executed more than once.

The second method, dynamic profiling, inserts counters
at key locations in the code, compiles the code, and then
executes a training version of the program. The values in
the counters at the end of the training run accurately repre-
sent how often each basic block was actually executed in the
training run, and are used to form the profile. That profile,
based on the observed results of the training run, is then
used to optimize the compilation of the full version of the
program.

1 2

Number of executions
in a typical run

Block 1:   1000

Block 2:         5

Block 3:       50

3

Figure 4: A sample control flow graph

Figure 4 shows a sample control flow graph where some
dynamic counts have already been determined. If the CFG
from a training run represented these same tendencies, the
dynamic profile would indicate that the instructions in ba-
sic block 1 were much hotter than those in the other two
numbered basic blocks shown in the diagram. As such, the
greatest amount of optimization would correctly be focused
on the instructions in basic block 1. The least amount of
optimization would be applied to instructions in basic block
2, and the optimization level for the instructions in basic



block 3 would fall somewhere in between. Dynamic profil-
ing does not, however, always produce the fastest executing
code. If the input for the training run caused the execu-
tion to encounter block 2 more often than block 1, then the
resulting profile would not be representative of the values
shown in Figure 4 for a typical run. Worse yet, the training
input set could cause execution to skip the loop entirely in
the training run, causing the program to execute only block
3. Either of these last two scenarios would result in an inac-
curate profile, causing optimization to be focused on areas
that are rarely executed in a typical run. This would result
in little or no optimization being performed in the part of
the code that would actually be executed the most often.
Having a training run and a training input set that is repre-
sentative of normal use is therefore key to getting the best
performance out of dynamic profiling.

If a static profiler were to see this same CFG, it would
not already have an estimate of the number of executions
for di↵erent basic blocks. Instead, it would likely guess that
all of the code inside the loop was hot and seek to optimize
both blocks 1 and 2. Because program input is not known at
compile time, it is di�cult for the static profiler to predict
which branches in a CFG will be executed often and which
will not, so static profiling can sometimes over-predict code
hotness, classifying a seldom-executed basic block as hot.
Thus, in some cases optimization may be applied to blocks
where it will have little e↵ect. However, unlike the dynamic
profiling situation where the hottest code segments could
miss out on optimization entirely, static profiling will still
identify the hottest segments as hot and apply optimization
to them.

3.2 Profiled Optimization with NOP insertion
Section 2.3 describes how the diversifying compiler pro-

duces software diversity, using random numbers to decide if
a NOP should be inserted before any instruction, and if so,
then which one. An earlier study [14] showed that the maxi-
mum diversity imparted to a file by the diversifying compiler
was with a 50% NOP insertion probability. But this rate of
NOP insertion causes unacceptable execution slow-downs,
so optimizations are needed to allow the diversified binaries
to run faster.

The answer to the run-time overhead problem is to use
software profiling to determine which basic blocks are hot
and which are cold. Then optimization can be focused on the
code in the hot blocks. The Pareto Principle, when applied
to software optimization, states that 80% of a program’s ex-
ecution time is spent in only 20% of the code [17]. This
implies that for best results, optimizations to reduce execu-
tion time should be focused mainly on the smaller portion
of hot code, since improvements in these sections will have
the biggest impact on execution speed.

In the diversifying compiler, the optimization that profil-
ing makes possible is the use of ranges of insertion probabil-
ities rather than just fixed probability values. For instance,
instead of using a 50% insertion rate for the probability of
placing a NOP before a given instruction, a range of inser-
tion probabilities from 10% to 50% can be used. Using pro-
filing results, a logarithm-based formula [14] is used in the
findInsertionPct stage of the algorithm from Figure 3
to determine exactly which insertion rate to use for each in-
stance. For the code blocks that profiling has identified as
containing the hottest code, the 10% insertion level is used.

For the blocks determined to be cold, the maximum 50%
level is used, and other blocks that are found to be some-
what hot, but not the hottest, get some rate between 10 and
50. So, by the Pareto Principle, an estimated 80% or more
of the code gets near maximum diversification, and only a
small portion of the code will have a reduced percentage of
NOPs inserted. Thus, the blocks of code that execute the
most often have a very small increase in size and a very small
slowdown, reducing the run-time overhead to acceptable lev-
els. The less frequently executed blocks of code, making up
the majority of the program code, get the highest rate of
diversification. Thus, compilation with profiled NOP inser-
tion achieves the security goal of code diversification while
also reducing execution time.

4. RESULTS
In this study we compare the results from the static and

dynamic profiling methods on three criteria: run-time over-
head, their e↵ectiveness at removing gadgets, and file size.
For experimental data, we compiled seventeen benchmarks
from the Spec2006 suite with both dynamic and static pro-
filing. We built each of the benchmarks using five di↵erent
seed values to create di↵erent distributions of the NOPs in-
side the binaries. Then we ran each benchmark three times
for each seed value and NOP insertion range. Previous work
[14] demonstrated that the ranges of 10%– 50% and 0%–30%
were good ranges for dynamic profiling results, so those same
ranges were also used in this study. The diversification was
implemented as a back-end pass in LLVM 3.1 in the previ-
ous study. Our implementation uses the same compilation
method, but with a more recent version, LLVM 3.4. All of
the profiling results were found using the options that are
available in this compiler.

4.1 Execution time
Figure 5a shows the average run-time slowdown results

from the test runs, including results achieved with both dy-
namic profiling and static profiling. The key feature to see
from both types of profiling is the relationship between the
fixed percentage settings and the ranged settings with the
same maximum value (50 vs. 10-50 and 30 vs. 0-30). These
results show that both dynamic and static profiling opti-
mizations produce large speedups in execution time by using
the probability ranges. In the mean case, the ranged version
slowdown was less than half of the fixed percentage slow-
down for each range. Several benchmarks that were some
of the slowest with the fixed insertion percentages showed
the biggest improvements with the use of ranges. These in-
clude namd, dealII, h264ref, and sphinx3. The data
shows that dynamic profiling dropped the execution time
overhead for the geometric mean from a 12.8 percent slow-
down to 3.95 percent for the 50% insertion rate and 10–50
range respectively. Similarly the overhead was reduced from
7.31 percent to 1.08 percent for the 30% insertion rate and
the 0–30 range. For static profiling, the data shows that
similar overhead reductions occurred, dropping the geomet-
ric mean value for 50% insertion from 12.88 percent to 5.54
with the 10–50 range, and lowering the slowdown for the 30%
insertion rate from 6.92 percent to 2.23 for the 0–30 range.
Comparing the dynamic profiling results to the static results
shows that most of the runs that used dynamic profiling were
faster than the corresponding runs using static profiling. Of
the 34 runs for each version, the graph shows only four cases
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where the static run was faster than the corresponding dy-
namic run. The di↵erences between static and dynamic pro-
filed results were small, however, when compared to the dif-
ferences between unprofiled and profiled results. The mean
static profiled run for the 10–50% range had a slowdown of
5.54% compared to the dynamic value of 3.95%. For the 0–
30% range, the static mean value was 2.23%, in comparison
with the 1.08% from dynamic. So the mean run-time cost of
using static profiling instead of dynamic profiling was only
about 1.5% of the overall execution time.

4.2 Security
In order to see how well the diversification process per-

formed in preventing gadget transmittal to the diversified
binaries, we compiled 25 diversified versions of each bench-
mark, using a di↵erent random seed for each one. We then
compared the 25 binary files to the original and correlated
how many original gadgets existed in the diversified files.
The results of these comparisons are shown in Figure 5b.
The vertical axis of this graph shows the percentage of orig-
inal gadgets that appear in any of the 25 diversified files.
Separate sections of the columns represent the percentage
of gadgets found in none of the 25 diversified files, in 1 or 2
of the files, in 3–5 files, in 6–12 files, or in 13–25 files. The
first thing to note about this graph is that the color rep-
resenting zero matches (no shared gadgets) dominates for
every benchmark. Over 75% of the gadgets in every original
benchmark file appear in none of the diversified files. In fact
the geometric mean for the 0 matches category is over 95%
for every variety of profile-guided diversity.

The graph also shows some outlier behavior. The cate-
gory that represents the highest amount of gadget sharing
(13–25) appears in every column, and three benchmarks,
mcf, lbm, and libquantum show a larger percentage of
remaining gadgets than the rest of the benchmarks. The
actual counts used to make this graph show that at least 22
original gadgets survived in every setting for every bench-
mark in all 25 runs. We believe that these surviving gadgets
are coming from assembly code that exists in the C library.
The assembly code is not compiled and thus does not get di-
versified by the compiler, but still gets linked into the final
program. This small number of gadgets that are surviv-
ing into the diversified binaries also explains the apparent
weaker security in the mcf, lbm, and libquantum bench-
marks. These three benchmarks have the smallest file sizes
of those tested, and thus have a smaller number of original
gadgets. Therefore the ratio of the number of surviving gad-
gets to the number of original gadgets is higher than in the
other larger benchmarks, and so the same number of assem-
bly survivors shows as a larger percentage. Another possible
e↵ect of their small file sizes is just that they have less code
and so they contain less overall diversification.

Comparing the graph columns representing the dynamic
profile runs to those representing the static profile runs in-
dicates that there is little di↵erence between the two forms
of profiling with regards to gadget survival. For the 10–
50% probability range, both dynamic and static had exactly
the same mean results, stopping 96.8% of all original gadgets
from appearing in any of the diversified binaries. The 0–30%
range showed only a very slight di↵erence in the mean, with
dynamic profiling stopping 96% and static stopping 95% of
all original gadgets from appearing in the diversified files.

4.3 File Size
Figure 5c shows the changes in file size of the compiled

benchmark binaries after diversification, for the same profil-
ing ranges as previously used. Change in file size gives some
indication of the amount of NOP code that is being inserted
into each build, and thus gives some sense of how much inter-
nal diversity is being added. This graph shows that the files
from the dynamic profiling builds are the same size or larger
than those from the corresponding static profiling builds in
every case. This indicates that dynamic profiling is adding
more NOP code during the compilation process than static
profiling.

For e�ciency reasons, the linker aligns on-disk sections of
the binary to the memory page size of 4k so that they can
be loaded directly into memory. This coarse granularity in
reported file size causes some issues with the smaller bench-
marks. For example, in mcf, with an original file size of only
16k, the dynamic version of the 10–50% build expanded the
file size from four pages to five pages, showing a file size in-
crease of 4k. But, even though NOP insertion also occurred
in the static version, it was not enough to expand the code
beyond the limit of the fourth page, and so the file size is
reported as being unchanged. The same zero growth indi-
cation is seen in the data for the other small files as well.
But, while the file size increments used to make the graph
do not yield a totally accurate representation of the amount
of binary code in the files, they do still clearly illustrate
the overall trend that compilation using dynamic profiling
produces larger increases in file size than when using static
profiling.

5. DISCUSSION
In the absence of information leakage, the random in-

sertion of NOP instructions into program binaries, as per-
formed by the diversifying compiler, is an e↵ective method
for thwarting ROP and other code-reuse attacks (Section
2.2 mentions the extra steps needed to counter attacks that
do include information leakage). Gadgets that exist in the
original files are relocated or broken up in each binary by
the diversification process. However, the insertion of extra
code into a file causes that program to run slower. At the
50% insertion setting, Figure 5a shows a mean slowdown
of over 10%, with some benchmarks slowing down by over
20%. The use of software profiling eliminates the majority
of these slowdowns while still maintaining high levels of se-
curity. Figure 5b shows that an average build prevents over
95% of all gadgets from being passed on to diversified files
regardless of which profiling method is used.

Comparison of the static and dynamic profiling methods,
the two alternatives available in the LLVM compiler, shows
that the results are very similar with respect to execution
speed. Static profiling, results in binaries that run slightly
slower than those created using dynamic profiling, but the
di↵erence in slowdown is only about 1.5% of the total pro-
gram run time, a small amount when compared to the overall
speedup that profiling provides in the diversification process.
Also, these results for dynamic profiling were found using
benchmarks that have very good training data, yielding ac-
curate profiles. A poor training set could produce a profile
that does not represent how the program normally runs,
and optimization using that profile would result in a binary
that would run nearly as slowly as an unprofiled version.
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Figure 6: Dynamic profiling with good and bad training
input

Figure 6 illustrates this point. Here a deliberately bad set
of training data was used as the input for the perlbench
benchmark. The figure shows that with the bad training
input, the compiled binary, created using dynamic profiling,
had a 22.9% slowdown, versus a 23.8% slowdown from the
unprofiled run; almost no improvement. The dynamically
profiled version with the standard Spec2006 input, at 8.9%,
showed less than half of the slowdown of either of these.
Static profiling results, which are not subject to the same
downsides as dynamic profiling, compare very favorably to
this kind of dynamic result.

The security comparison of the two profiling methods shows
that profiled NOP insertion, in general, is very e↵ective at
preventing the transfer of gadgets from original benchmark
code to compiled binaries, stopping 95% in all cases. But
it also shows that there is very little di↵erence between the
static and dynamic diversification techniques with respect to
how they protect against gadget sharing. For the insertion
range of 10–50%, the mean values showed no di↵erence be-
tween static and dynamic results, and for the 0–30% range
the dynamic versions stopped only 1% more gadgets than
did the static versions. The size of the file being compiled
was a much bigger factor in what percentage of gadgets sur-
vived the diversification process.

The overall di↵erence in the performance of the two profil-
ing methods can be explained by understanding how the dif-
ferent methods predict the location of hot code. The static
method tends to over-predict which code will be executed
the most frequently since, without knowledge of the program
input, it may consider any repetition equally likely to be hot.
Since fewer NOP instructions are inserted into hot sections
of code, this over-prediction means that binaries built using
static profiling will have fewer NOPs inserted than the bina-
ries created with dynamic profiling. The smaller amount of
NOP insertion also means that there is slightly less overall
diversification and that small files are therefore susceptible
to having a higher percentage of gadgets surviving. Dynamic
profiling, on the other hand, uses a training run to predict
which code will be expected to be hot in a typical run. If
the training run input is similar to the input used in normal
circumstances, then the profile can be very accurate. The
NOP insertion rate in the hottest areas can be lowered, while
still maintaining a higher rate of insertion in the rest of the
code. In this way, the diversification level is maintained at a
high level while also reducing the execution time. The weak-
ness of dynamic profiling, however, is that it does depend on

the training run being representative of a typical full run.
If the training run uses a di↵erent set of control structures
than a normal run, then the wrong portion of the code will
be identified as being hot. In that case, optimizations will
be made in locations that improve performance very little,
while omitting optimizations in areas with high need, and
therefore performance will su↵er.

A comparison based on file size shows that that binaries
created using static profiling tend to be smaller than those
created using dynamic profiling. This result supports the
concept that static profiling is predicting a larger amount of
hot code than the dynamic version. Identifying more code
as hot means that those sections will have less new garbage
code inserted and the file size will not grow as much.

One unexpected finding was that although static files are
smaller, indicating that they have less NOPs inserted, they
tend to run slightly slower than the well-trained dynamic
files. We believe that this indicates that the static heuristics
do over-predict the amount of hot code in a file, reducing
the amount of NOP insertion and thus the file size, but that
they do not identify most of these sections as belonging to
the hottest category. So, for example, in a 10-50 range, the
hottest portions of the code might be getting a 20% insertion
rate instead the 10% rate that they will get in a well-trained
dynamic run. Thus a higher percentage of the code is seen
as hot, but less is seen as extremely hot, compared to the
well-trained dynamic version.

6. RELATED WORK
Most compilers currently include some type of profiling

mechanism. The profiling information is typically used to
identify the hot sections of code to enable optimizations to
increase program performance or to reduce file size. There
are other applications, however, that produce optimizations
from the less frequently executed cold code.

Code compression is one example where profiling has been
used to identify cold code instead of hot code. Debray and
Evans [10] found that compressing cold code sections and
then decompressing them when needed resulted in a signifi-
cant decrease in file size.

Khudia et al. [16] presented another use for cold code de-
tection. Their work involved code duplication for the pur-
pose of detecting transient faults in processors. Original in-
structions were duplicated and then original and duplicate
versions were both executed. The results of the two exe-
cutions were compared and faults were detected when the
results were not the same. They used edge profiling to re-
duce the number of duplicated instructions. Their method
involved adding extra instructions to the code and found
that adding it only to the cold code sections produced the
best results.

The implemention of software diversity is an e↵ective method
to defend against code-reuse attacks, but it is not the only
one. There are also other methods that seek to prevent or
detect such attacks. Coppens et al. [8] introduced feedback-
driven diversification. Their feedback-driven compiler tool
flow iteratively transforms code to thwart “exploit Wednes-
day” attacks.

DROP [6] is an example of detection software that runs
at the same time as the program that it is examining. It dy-
namically instruments the running program to detect when
a return is executed. If too many returns are taken within a
certain amount of time, it is determined that a ROP attack



is in progress and DROP takes steps to counter the attack.
”Return-less kernels”[20] reorder program instructions and

re-allocate registers so that free branch instructions never
appear inside a binary. Since ROP attacks rely on these
branches, their elimination e↵ectively stops those attacks.

Other methods that use a combined compile-time and run-
time approach include G-Free [25], control-flow locking [4],
control-flow integrity [1], and software fault isolation (SFI)
[21, 32]. The compiler adds code to the program, instru-
menting all of the branch instructions and restricting the
control flow of the program to only those edges in the origi-
nal CFG. These methods have proven to be e↵ective against
ROP attacks. However, because of their focus on just ROP,
some are unable to defend against other types of code-reuse
attacks. As such, whoever implements these methods must
modify and update them to deal with newer code-reuse at-
tacks, if they can be so modified.

Some of the methods mentioned here incur much larger
overheads than our profile-guided NOP insertion. However,
many also rely on code insertion, so it is feasible that these
other methods could also benefit from profile-guided opti-
mization.

Larsen et al. [18] provided a much more complete overview
of the overall field of code diversification in their SoK paper.

7. CONCLUSION
Diversifying binaries through NOP insertion successfully

combats code-reuse attacks, but causes slowdowns that may
be unacceptable. Static and dynamic profiling methods both
enable optimizations that deliver very good performance re-
sults in speeding up the execution of diversified files while
maintaining the high level of security needed to deter code-
reuse attacks. Dynamic profiling is slightly preferred when
representative training input is available, but if the training
set is bad, there is no training data at all, or file size is a
major factor, then dynamic profiling su↵ers in comparison
to static profiling. Static profiling is a good alternative to
dynamic profiling in the well-trained scenario, and is signif-
icantly better than dynamic in other situations.

The advantages of static profiling that we demonstrate
in this paper are not limited to just profile-driven NOP in-
sertion. Profile-driven optimization is sometimes seen as
impractical [31], but this is typically because of the di�cul-
ties involved with setting up the training run for dynamic
profiling or the inability of dynamic profiling to deal with
programs with phase shifts. Static profiling can dependably
be used instead of dynamic in these cases and in other ran-
domizing transformations, without the up-front costs, while
still providing a high quality profile for optimizations.
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