Safe and Efficient Hybrid Memory Management for Java

Codru Stancu™! Christian Wimmer*

*Oracle Labs, USA

c.stancu@uci.edu christian.wimmerQoracle.com

Abstract

Java uses automatic memory management, usually imple-
mented as a garbage-collected heap. That lifts the burden
of manually allocating and deallocating memory, but it can
incur significant runtime overhead and increase the mem-
ory footprint of applications. We propose a hybrid mem-
ory management scheme that utilizes region-based memory
management to deallocate objects automatically on region
exits. Static program analysis detects allocation sites that are
safe for region allocation, i.e., the static analysis proves that
the objects allocated at such a site are not reachable after
the region exit. A regular garbage-collected heap is used for
objects that are not region allocatable.

The region allocation exploits the temporal locality of ob-
ject allocation. Our analysis uses coarse-grain source code
annotations to disambiguate objects with non-overlapping
lifetimes, and maps them to different memory scopes. Region-
allocated memory does not require garbage collection as the
regions are simply deallocated when they go out of scope.
The region allocation technique is backed by a garbage col-
lector that manages memory that is not region allocated.

We provide a detailed description of the analysis, provide
experimental results showing that as much as 78% of the
memory is region allocatable and discuss how our hybrid
memory management system can be implemented efficiently
with respect to both space and time.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Memory management
(garbage collection); F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—Program
analysis

General Terms
ment

Algorithms, Experimentation, Measure-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ISMM’15, June 14, 2015, Portland, OR, USA

ACM. 978-1-4503-3589-8/15/06
http://dx.doi.org/10.1145/2754169.2754185

81

Stefan Brunthaler' Per Larsen' Michael Franz'
JrUniversity of California, Irvine, USA
s.brunthaler@uci.edu perl@uci.edu franz@uci.edu

Keywords Static program analysis, region-based memory
management, garbage collection

1.

Many memory intensive applications follow a regular exe-
cution pattern that can be divided into execution phases. For
example, an application server responds to user requests; a
database performs transactions; or a compiler applies op-
timization phases during compilation of a method. These
applications allocate phase-local temporary memory that is
used only for the duration of the phase. Such coarse-grain
phases can be identified by the application developer with a
minimum of effort.

Following this insight, our formulation of hybrid memory
management combines garbage collection with region-based
memory management. The goal of hybrid memory manage-
ment is to optimize the runtime resource utilization by reduc-
ing the time spent managing memory, i.e., reducing garbage
collection time and reducing the number of garbage collec-
tions.

Using source code annotations inserted by the program-
mer, each execution phase is mapped to a memory scope.
Objects that do not escape such a memory scope are al-
located in memory regions. Objects escaping all memory
scopes are allocated into a global, garbage-collected heap.
A region lifetime starts when the application enters an ex-
ecution phase and ends when the application leaves the ex-
ecution phase, triggering deallocation by freeing memory.
In general, the region-allocated memory can be deallocated
without the overhead of garbage collection. Static analysis
determines which allocation sites are amenable to region
allocation. This enforces memory safety and cannot lead
to dangling pointers, i.e., it is not possible that a region-
allocated object is reachable after its region has exited. A
region’s size is not bounded and can increase dynamically
to accommodate the object allocation. The region allocation
scheme is complemented by a garbage collector which is
triggered if the size of region-allocated memory grows be-
yond a configurable size. This enforces an upper bound on
the total region-allocated memory and eliminates the pos-
sibility of excessive region sizes. In the worst case, if the
programmer does a poor job annotating regions, our hy-

Introduction

brid memory management behaves like a regular garbage-
collected heap.

We present a static analysis that maps allocation sites to
memory regions, and evaluate the analysis on the industry
standard SPECjbb2005 [25] benchmark. SPECjbb2005 is a
memory intensive benchmark with a transactional execution
pattern which makes it a good candidate for our intended
scenario and gives an understanding of the potential of this
technique. For the SPECjbb2005 benchmark, 78% of the to-
tal memory can be region allocated with a peak region mem-
ory size of less than 1 MByte. Our implementation is based
on an ahead-of-time compilation system for Java that uses
static analysis to also find all reachable methods. However,
our findings are generally applicable for Java and other man-
aged languages, since the static analysis for region-based
memory management can be performed at runtime by a tra-
ditional Java VM, e.g., while the application is warming up,
so that the just-in-time compiler can use the static analysis
results.

In summary, this paper contributes the following:

e We present a static program analysis that enables hybrid
memory management based on source code annotations

e We show that our approach preserves memory safety and
cannot lead to dangling pointers.

e We present the modifications of the allocator and garbage
collector. The static analysis results can be reduced to one
compile-time constant region offset per allocation site,
minimizing the impact on allocation performance.

e We present empirical results for the SPECjbb2005 bench-
mark. The hybrid memory management reaches similar
performance with a significantly smaller young genera-
tion when compared to a pure garbage-collected scheme.

2. Background

In this paper we present the design of a static program anal-
ysis that finds the mapping of allocation sites to regions. Our
program analysis formulation is an extension to a context-
sensitive points-to analysis [24]. We augment the definition
of static context to include the region scopes in addition to
call stack information. The region analysis extends naturally
systems already relying on context-sensitive points-to anal-
ysis.

2.1 Region-Based Memory Management

Region-based memory management has been studied exten-
sively [27]. Traditional region inference analysis translates
the source language into a form with region annotated ex-
pressions. The original program is instrumented with alloca-
tion and deallocation directives at compile time. The tradi-
tional region inference algorithm depends on the notion of
region polymorphism, which allows region descriptors to be
passed to functions at runtime. The passed region descrip-

82

tors are used by value creating expressions to determine the
allocation region.

Our program analysis takes a different approach in infer-
ring the allocation regions and instrumenting the code for
region allocation memory management. Our transformation
does not require parameterizing methods with region de-
scriptors. We instrument the allocation sites with statically
determined allocation site to region mappings. For instru-
mentation we use compile-time constants provided by the
analysis such that the runtime can determine the concrete
allocation region in a constant number of steps. Thus, our
analysis formulation enables fast region allocation.

Unlike previous work [6l [7]] that proposes explicit region
constructs as language extensions for fine-grained region al-
location, our approach uses annotations at a method granu-
larity. The effort required to port application code that fits the
described scenario is minimal, it is only necessary to identify
coarse-grain application execution phases and insert annota-
tions.

The relation between region allocation and garbage col-
lection has been studied before by [9]. Their work is based
on a fine grained region inference algorithm and uses re-
gion polymorphism. The specifics of our program analysis
influence the relation between region-based and garbage-
collected memory and opens the door to further optimiza-
tions. Unlike previous work, our technique deals with a rel-
atively small number of larger regions. This can be seen as
a disadvantage since a single region can potentially account
for a large portion of the allocated memory, however it en-
ables efficient region handling.

In particular, the programmer could annotate the entry
point of a thread execution to get thread-local allocated
memory. Multi-threaded applications are naturally organized
in independent execution phases that share a limited amount
a memory. Thus threads, or tasks executed by a thread pool,
are a good candidate for coarse-grain region management.
Similarly [26]] proposes the use of escape analysis to enable
allocation of thread-specific data in thread-specific heaps.
This effects in independent garbage collection of data in
thread-specific heaps, reducing garbage collection latency
for active threads in a multi-threaded program and enabling
concurrent garbage collection on multi-processor comput-
ers.

2.2 Points-to Analysis

In this section we talk about our choice of base static anal-
ysis on top of which we develop our region analysis. Since
our target programming language is Java, an object-oriented
language, we use a static program analysis that has a proved
accuracy in precisely modeling its runtime behavior, i.e., a
context-sensitive points-to analysis. For this paper, we only
use call-stack sensitivity as the context, and not other choices
of context that have been proposed in the literature (such as
object recency, heap-connectivity information, and enclos-
ing type [[11L[15])). Call-stack sensitivity enables each method

to be analyzed separately for each calling context in which
it can appear at runtime. The two main choices of context in
literature are method invocation site, named call-site sensi-
tivity [21122]], and receiver object abstraction, named object-
sensitivity [[16]. We chose the latter because it closely models
the runtime behavior of object-oriented languages and yields
a better precision at a cost comparable to that of call-site sen-
sitivity [3} [12H14} [17]. A comprehensive survey of the var-
ious flavors of context sensitivity is covered in the work of
Smaragdakis and Balatsouras [23]].

Our points-to analysis follows the formalism described
in [24], a state-of-the-art specification to points-to static
analysis for object-oriented languages. We implement a vari-
ation of the hybrid context-sensitive analysis formalized
by [11]. The instance methods are modeled using the re-
ceiver object abstraction. The static methods are modeled
using a combination of invocation site and abstraction of
receiver objects of the methods on the call stack. The anal-
ysis is control flow insensitive, assuming that all control
flow paths can be executed at runtime. The basic object ab-
straction is the allocation site. Our analysis implements a
context-sensitive heap abstraction, i.e., it distinguishes be-
tween allocation sites of an object in different contexts of its
allocator method.

The points-to analysis uses abstract interpretation and a
fixed-point algorithm to discover the reachable world on-
the-fly. We define the reachable world as the call graph plus
the collection of fields that may be read or written. The
base analysis outputs the call graph and points-to sets for
reference variables and fields.

3. Memory Region Aware Points-to Analysis

The goal of the region analysis, given the programmer-
defined region scopes, is to determine for each allocation
site the runtime region in which it must be allocated.

3.1 Analysis Definition

The region analysis relies on programmer-defined, coarse-
grain annotations matching method borders as shown in
Figure[I] The programmer annotates program points where
the application enters execution phases that make significant
use of temporary memory.

1 @RegionScope(name = "foo-region")
2 public void foo() {

3 /7

4 3}

Figure 1. Annotation example.

The region analysis uses the programmer-defined region
scopes as additional context information. By augmenting
the context with region elements the points-to analysis can
disambiguate the various abstractions of objects allocated
in multiple regions. A method is analyzed separately for

83

each different region scope from which it is invoked. Each
allocation site has a different abstraction for each region
scope in which it is encountered.

To keep track of the region context, the analysis builds
a region tree, as depicted in Figure [2] It does this on the
fly while discovering the call graph: each region annotated
method adds a new node in the region tree when it is ana-
lyzed. The graph formed by the region annotated methods is
transformed into a tree by cloning each region that has more
than one parent. This simplifies the implementation, because
a tree node implicitly stores its context in the path to the root.
At runtime, the memory regions form a stack. The various
paths through the tree correspond to runtime region stacks.
When talking about a region’s age relative to its position in
the region stack a region closer to the bottom of the stack is
older than a region closer to the top of the stack. Thus, an
older region has a larger scope than a younger region.

We distinguish between in-region recursion and across-
region recursion. In-region recursion does not affect the re-
gion analysis. We treat across-region recursion by not reen-
tering a region if it is already present in the region tree on
the path from root. There is only one copy of each region
on each distinct tree path. Across-region recursion requires
a runtime check; a region is pushed onto the stack only if it
is not already there.

By keeping track of the region context, the analysis ex-
tends the call-stack context. Thus each method, in addition
to the calling context, is analyzed in the region context of its
caller or, if it is region annotated, it expands the region tree
and is analyzed in the newly created region. Each object has
a different abstraction for each context in which it is discov-
ered, hence for each different region from where its alloca-
tor method is invoked. In this new formulation a context-
sensitive analysis configuration such as 2-object-sensitive
with 1-context-sensitive heap analysis, i.e., a calling context
of depth 2 with a heap context of depth 1, becomes 2-object-
sensitive with I-context-sensitive heap and I-region-context,
where the added element represents the active region when
the current method is processed.

3.2 Analysis Results

The analysis determines for each abstract object a definition
region to use region mapping. The definition region repre-
sents the active region context when the abstract object is
created, i.e., its allocating method is analyzed. The use re-
gion represents the lowest common ancestor, relative to the
region tree, of all region contexts in which the abstract ob-
ject is used. Object uses are field stores, field loads, invo-
cations and reference comparisons. Return statements cause
objects to escape to the caller’s region; field stores to static
fields cause objects to escape to the global region. Due to
context sensitivity, an allocation site generates as many ab-
stract objects as the contexts in which its allocator method is
analyzed. Consequently, when the analysis converges each
allocation site is characterized by a set of definition-region-

method call edge ———»

@R('A) a()

N\

@R('D) d()

a) Call graph

®
=
Q
2

b) Region annotated call graph

region dependency edge ———>

A
[Garbage Collected]
/ \ Heap
—> B ¢ = 5| A)
»n
[4 (G ca—
D
D2 ¢\ D2)

c) Region tree d) Runtime region stack

Figure 2. Control flow graph transformation.

to-use-region mappings, one mapping for each region tree
branch in which the allocation site is analysed.

For each allocation site each use region is, in runtime
terms, a possible allocation region. At runtime, the decision
of which specific allocation region to be used at a particular
moment is based on the runtime region context. The runtime
region context is given by the region at the top of the runtime
region stack when the allocation instruction is executed. The
top of the runtime region stack is guaranteed by the analysis
to be among the allocation site’s definition regions. Thus, the
runtime system chooses the allocation region corresponding
to the runtime region stack top in the allocation site’s analy-
sis results.

To facilitate efficient allocation, we attach to the (defi-
nition region, allocation region) pair a new value, an off-
set. The offset represents the distance of the allocation re-
gion from the top of the runtime region stack, i.e., the depth
of the allocation region. The offset value is a compile-time
constant. It is used to efficiently determine the allocation re-
gion based on the runtime region context. Thus, the runtime
system does not have to query the allocation site analysis
results looking for the allocation region. Furthermore using
this strategy, a memory management system using our anal-
ysis does not need to pass regions as parameters to functions.
The details of how the offset is used for an efficient runtime
region management are discussed in Section

3.3 Example

To facilitate the discussion we first define a region mapping
function that maps each allocation site to a set of tuples (def-
inition region, allocation region, offset), shown in Figure@

m(A) ={(d,a,0)}, where
m is the region mapping function,
A is an allocation site,
d is definition region context,
a is allocation region,
o is offset in runtime region stack

Figure 3. Region mapping function.

Figure [4] presents the region analysis results for a short
program. Figure [d(a) shows the region annotated control
flow graph. For simplicity, we assume that all the methods
in the graph presented are region annotated. In the example
there is a single allocation site in method f(). The x objects
allocated in the region scope defined by the method f() may
escape on two separate paths to the region scope defined
by the method b() and on a third path to the region scope
defined by the method c().

method call edge
object reference
region dependency edge —>

/N
=/
L

b) Region tree

\\\f()/:’,/
X X =new X()

a) Call graph

m(x) ={(F1, B, 2), (F2, B, 2), (F3, C, 1)}
c) Region mapping

Figure 4. Region analysis example.

The corresponding region tree is presented in Figure[d{b).
Region scope F is cloned three times, once for each separate
region context that reaches it.

Figure(c) shows the results of the region analysis. The x
objects allocated in f() are mapped to three different regions
depending on the active region context.

3.4 Region Analysis Invariant

The described region analysis allows both pointers from
older regions to newer regions and from newer regions to

older regions. The pointers from older regions to newer re-
gions can turn into dangling pointers when the newer region
is deallocated. Consider the example in Figure [5| In Fig-
ure[5|(a), an object from a newer region pointing to an object
from an older region is safe and it cannot result in a dangling
pointer. However, if in Figure [5|b) region B is deallocated
then x.f becomes a dangling pointer. Since x.f is not deref-
erenced in the context of region A (this is guaranteed by the
static analysis) this dangling pointer is safe at runtime. Yet,
the region analysis must accommodate tracing pointers when
garbage collection is triggered. Thus we insert an additional
analysis step that prevents dangling pointers.

Global

a) No dangling pointer b) Dangling pointer

Figure 5. Region analysis invariant.

The additional step processes the abstract objects using a
fixed-point approach. It enforces the invariant that the allo-
cation region of an object cannot be older than the allocation
regions of the objects that it references, it must be at least
the same age or younger. A referenced object that breaks
this invariant is hoisted to the referencing object’s allocation
region and, since its allocation region changed, the analysis
processes the objects that it may further reference. In Fig-
ure[5|b), to respect the invariant, object y must be hoisted to
region A.

Following the same approach as in previous example
Figure [6] shows how the region analysis modifies the region
mappings to enforce this invariant. Initially, the y objects
allocated in d() escape to region scopes B and C. On the
call path from c() objects returned by d() are assigned to an
object x that escapes to the region context A. To prevent x.f
to become a dangling pointer, the analysis hoists y into the
same allocation region as x. Out of the two y abstract objects
only the one in region context D1 is updated.

The problem of dangling pointers could also be solved
through a runtime mechanism, avoiding weakening of the
region analysis. A write barrier could keep track of all the
pointers inside a region that come from an older region.
Then, when the younger region is deallocated all the result-
ing dangling pointers could be invalidated. However, this ap-
proach would increase the runtime overhead.

4. Hybrid Memory Management

In this section we discuss how the memory management sys-
tem was modified for an efficient hybrid memory manage-
ment using the results of our analysis.

85

a() p~ \\\ A
X x ='new X() I/ \q
f’fo\ /“» i
o 90 DO D1

Yy =new Y()

a) Call graph b) Region tree
m(x) ={(C, A, 1)}
m(y) ={(Do, B, 1), (D1, C, 1)}, before x.f=y
m(y) ={(D0, B, 1), (D1, A, 2)}, after x.f=y

¢) Region mapping

Figure 6. Region analysis invariant example.

4.1 Efficient Allocation

The runtime system must keep track of the region stack. The
regions on the stack are scoped, i.e., a region at the bottom
of the stack has a wider scope than a region closer to the
top. When a region scope is entered its identifier is pushed
on the stack; when the region scope exits it is popped off
the stack. At the bottom of the region stack is, conceptually,
the garbage-collected heap. This represents the global region
scope, i.e., the memory scope that is opened when the appli-
cation starts and is closed when the application terminates.

Our analysis does not require passing region descrip-
tors as parameters to methods at runtime. A straightforward
way to determine the allocation region for an allocation site
would be to query the analysis results for the allocation site
and determine the corresponding allocation region given the
current region scope. The current region scope is always at
the top of the region stack and it corresponds to the defini-
tion region in the analysis results. However, this would incur
a high overhead in both the space needed to store the analy-
sis results for each allocation site and in the time required to
query the mapping.

The first step in optimizing the region allocation is reduc-
ing the analysis results to an allocation site region mapping
table. As discussed in Section we compute an offset in
the runtime region stack for each region mapping . Using
the offset the allocation region can be easily discovered by
offset arithmetic. To find the correct offset given the active
region context, we assign each region a unique ID. Thus the
allocation site region mapping table consists of rows of re-
gion ID to allocation offset mappings Since the number of
regions is small the offset table size is manageable. We call
this strategy hybrid allocation table in the evaluation.

A table lookup for each object allocation incurs a sig-
nificant overhead. To further reduce the allocation overhead
we can trade-off some of the analysis precision. We modi-
fied the analysis to normalize the region mappings such that

. 7

7

N s

NP
Uzz
e

X x =new X()

X x =new X()

a) Call graph before normalization b) Call graph after normalization

F1, B, 2), (F2, B, 2), (F3, C, 1)}, before normalization
{(F1, B, 2), (F2, B, 2), (F3, A, 2)}, after normalization

c) Region mapping

Figure 7. Region analysis normalization example.

each allocation site has a unique runtime offset. The offset
is a compile-time constant, unique for each allocation site,
and can be injected in the allocation code. The unique offset
is the maximum of all offsets of an allocation site’s map-
pings. Using this approach the object is not always allocated
in the optimal region, i.e., the youngest possible region in
the stack, but in an older region. This optimization affects
the allocation sites that have a high variance among their al-
location offsets. In the worst case the unique offset is higher
than the stack depth on some paths in the region tree. In this
case we conservatively allocate in the global region.

The region analysis preserves correctness using a fixed-
point approach. Transformations that break the invariant
cause a chain of updates that restore the invariant, e.g., mov-
ing an object into an older region through offset normaliza-
tion effects in updating the region mappings of all reachable
objects. The algorithm reaches a fixed point when all the
mappings respect the invariant.

In Figure [7] we continue the example in Figure [4] and
show how the offset normalization affects allocation. When
reached in context F3, object x is initially allocated in region
C at offset 1. After normalization the unique offset of x’s
allocation site has a value of 2, thus, when reached in context
F3 object x is allocated in region A. The unique offset can
now be used by the allocation code for x at compile time.
This transformation only impacts the allocation on one of the
region paths, the object is allocated in an older region than
the optimal one. We call this strategy hybrid normalized in
the evaluation.

Another approach for performing allocations without a
table lookup would be method cloning. By cloning meth-
ods at compile time for each region context in which they
are reached the offset is a compile time constant. In Fig-
ure [8| we reuse the example from Figure 4| and show how
method cloning transforms the call graph. In the worst case
method f() is cloned three times, since it is reached from

86

it NHO T f2()

X x =new X() new X() new X()

a) Call graph before cloning b) Call graph after cloning

m(x) ={(F1, B, 2), (F2, B, 2), (F3, C, 1)}
¢) Region mapping

Figure 8. Region analysis cloning example.

three different region contexts. However, in this example the
mappings of the allocation site in f() have only two different
offset values. This results in only two versions of f(). There-
fore by analyzing the region mapping offsets of the various
allocation sites belonging to a method and identifying the
conflicts, i.e., those mappings that have different offset val-
ues, the cloning factor can be reduced. Method cloning has
unwanted side effects, such as increasing the code size of
the application. Our evaluation shows that the normalization
based approach works well in practice, so we did not imple-
ment method cloning.

4.2 Efficient Garbage Collection

To support unbounded regions that can increases dynami-
cally to accommodate object allocation, the region memory
must be organized in pages. The paging system can use ei-
ther fixed or variable size pages. The pages corresponding to
a region are linked together and when the last page is full,
a new page is requested from the runtime system. Each re-
gion is managed by a region descriptor that keeps track of
the linked list of pages. To enable fast region allocation, the
region descriptors must track the last free location in the last
page.

When a region scope exits, its pages are returned to the
runtime system without the need for garbage collection.
However, the implementation must be conservative and as-
sume that the size of the allocated memory can increase
beyond the reserved heap space. This triggers a garbage col-
lection. In general any garbage collection algorithm can be
adapted to function within a hybrid memory management
scheme. Using a generational GC the the garbage-collected
heap is divided into old and young generations. In this sce-
nario the region-allocated memory is conceptually part of
the young generation and must be scavenged together with
it.

To maintain the region scope invariant, region-allocated
objects surviving GC must be placed into the same regions

they were allocated in. This requires separate survivor spaces
for all regions. To simplify the collection, we decided to
break the region invariant during GC and copy all surviving
objects into the global space. All regions active at the time of
GC must be marked as inactive, i.e., the region stack is not
cleared per se, it is logically reset to the empty stack state.
The physical shape of the region stack must always corre-
spond to paths from the root in the region tree, even when
GC occurs. This is required by the across-region recursion
reentrancy check. Attempting to allocate into an inactive re-
gion forces conservative allocation in the global region and
exiting an inactive region does not deallocate any memory.
Regions are reactivated the next time they are entered, re-
suming normal region allocation. This approach does not
need any changes to the GC algorithm.

The region stack implicitly orders objects by their life-
time. This would allow a partial GC when the size of a region
exceeds a configurable allocation threshold. The partial GC
only needs to scavange the region that exceeds the thresh-
old together with the younger regions. The region scope in-
variant ensures that there are no outside references into the
scavanged space since none of the older regions can have
pointers into the scavanged space. In our experiments, this
approach is not necessary however since the maximum size
of a region stays well below every reasonable region GC
threshold.

S.

We implemented the region analysis in an ahead-of-time
(AOT) compilation system for Java. The system assumes a
closed-world of Java code, so that all reachable code can
be determined by the static analysis before the AOT com-
pilation. The Graal compiler [18]] is used both for the static
analysis and the AOT compilation. The resulting executable
contains application code, third party libraries, the reachable
parts from the Java class library, as well as a Java runtime
system including a generational GC. The memory region
analysis uses the static analysis results computed for AOT
compilation, i.e., we do not perform a separate static analy-
sis just for the memory region analysis.

However, our approach is not limited to AOT compila-
tion. The analysis can be integrated in a traditional Java VM
that performs just-in-time (JIT) compilation of frequently
executed methods. The static analysis can run during the
warmup period of the application, so that the region informa-
tion is available to JIT compiler when it optimizes a method.
Or the runtime system can perform the pointer analysis on-
line during program execution as discussed in [[10]. Because
of the explicitly marked memory regions, the static analy-
sis does not need to analyze all Java code (e.g., the whole
JDK). This eliminates the requirement of a closed-world as-
sumption for the static analysis. At the same time, this elim-
inates the scalability and precision limitations that a whole-

Implementation

87

program points-to analysis has when analyzing a language
like Java.

We built the hybrid memory management scheme on top
of the generational GC. The garbage-collected heap consists
of two generations, young and old. Each generation is or-
ganized in spaces and each space consists of two types of
chunks. Aligned fixed size chunks are used for small object
allocation. Unaligned variable size chunks are used for large
array allocation. We use a stop-and-copy algorithm for both
generations. The incremental GC copies all live objects from
the young generation into the old generation, i.e., there is no
aging of objects in the young generation. The full GC copies
all live objects from both generations into the survivor space
of the old generation.

6. Evaluation

We evaluate the accuracy of the region analysis and the ef-
ficiency of the hybrid memory management technique on
a memory intensive benchmark whose execution pattern
fits the intended use of our technique, SPECjbb2005 [25].
SPECjbb2005 evaluates the performance of server side Java
by emulating a three-tier client/server system, with emphasis
on the middle tier. It makes heavy use of dynamic memory
allocation, one of its design goals being to exercise the im-
plementation of garbage collectors.

The SPECjbb2005 is organized as a collection of Ware-
houses processing transactions. The core of the bench-
mark is a TransactionManager dispatching user transactions
within a warehouse. We modified the benchmark to run for
a fixed number of iterations instead of a fixed period of
time and use the same random seed to ensure reproductiv-
ity. The starting number of warehouses is 4, the warehouse
increment is 1 and the ending number of warehouses is 8.
Configuring the benchmark this way causes the sequence of
simulated warehouses to progress from the starting number
to the ending number, incrementing by the increment value.
We collected the results while running each warehouse for
100,000 iterations. The results do not change significantly
when varying the number of iterations between 5,000 and
one million.

The effort required to port code to our system is minimal.
For the 12,581 lines of SPECjbb2005 code we only inserted
7 annotations. The annotations were inserted to map the ex-
ecution of each transaction type to a region. Overall this re-
sults in around 3 millions region enteries/exits for the cho-
sen benchmark. The depth of runtime region stack reaches a
maximum of 3.

By analyzing the execution of SPECjbb2005, we want to
see how much of the memory is region allocated and what is
the impact on overall execution time. We present the detailed
results of our experiment in Figure[9]

We run the benchmark in three configurations:

® Normal GC: Generational GC without region allocation.

Young generation size (MByte)
1 2 4 8 16 32 64 128 256
Allocated memory (MByte) all configurations 56777\ 56777| 56777 56777) 56777| 56777| 56777| 56777 56777
normal GC 56301 56396 56467| 56520] 56309] 56375 56361 56315| 56497
GC freed memory (MByte) hybrid alloc. table 12432 12373 12366| 12174| 12152 12279 12098| 12237 12124
hybrid normalized 12432 12373] 12366] 12174| 12166| 12276 12098] 12237] 12124
. hybrid alloc. table 43446| 43537| 43581 43604 43615 43621 43623 43625 43625
Region freed memory (MByte)
hybrid normalized 43446] 43537] 43581 43604 43615] 43620] 43623| 43625| 43625
. hybrid alloc. table |~ 77.30%| 77.46%| 77.54%| 77.58%| 77.60%| 77.61%| 77.61%| 77.62%| 77.62%
Region freed memory (%)
hybrid normalized | 77.30%| 77.46%| 77.54%| 77.58%| 77.60%| 77.61%| 77.61%| 77.62%| 77.62%
Max region stack size (KByte) hybrid alloc. table 26 28 33 43 62 100 170 303 584
hybrid normalized 26 28 33 43 61 99 170 303 583
Region enter # hybrid 3000030] 3000030] 3000030f 3000030[3000030 3000030] 3000030] 3000030 3000030
. . hybrid alloc. table | 2987623 2993844| 2996931| 2998469 2999235 2999616] 2999808 2999904| 2999952
Region deallocation #
hybrid normalized | 2987623 2993844| 2996931| 2998469 2999235 2999616] 2999808 2999904| 2999952
normal GC 11 11 11 11 10 9 6 3 2
Fulll GC # hybrid alloc. table 10 10 10 8 5 3 1 1 0
hybrid normalized 10 10 10 8 5 3 1 1 0
normal GC 28509] 19002 11397 6326 3344 1719 871 439 219
Incremental GC # hybrid alloc. table 12572 6280 3139 1569 783 391 196 97 49
hybrid normalized 12572 6280 3139 1569 784 391 196 97 49
normal GC 4,08 412 420 429 3.98 3.44 252 1.28 095
Full GC time (s) hybrid alloc. table 3.97 3.98 3.92 322 2.07 1.29 042 049 0.00
hybrid normalized 3.91 3.91 3.96 3.7 2.06 1.28 042 050 0.00
normal GC 92.44 68.06 46.76 31.54 2288 15.82 10.34 593 468
Incremental GC time (s) hybrid alloc. table 60.15 36.13 23.91 15.93 9.46 5.38 3.19 2.05 1.70
hybrid normalized 47.62 31.00 21.21 14.52 8.80 5.06 3.02 207 1.64
normal GC 21450 186.39| 16370 147.56| 137.95] 13207 12659 12075 127.43
Execution time (s) hybrid alloc. table 197.98] 17159 160.97| 151.85| 14348 13817 13580] 13338 13592
hybrid normalized 168.29] 150.54| 140.82] 132.94| 127.16] 12264 12008 119.12] 124.12
hybrid alloc. table 8% 8% 2% -3% 4% 5% 7% -10% 7%
Speedup (%)
hybrid normalized 22% 19% 14% 10% 8% 7% 5% 1% 3%

Figure 9. Memory allocation results for SPECjbb2005.

® Hybrid allocation table: Hybrid memory allocation with
a region mapping allocation table for each allocation site.

e Hybrid normalized: Hybrid memory allocation with off-
set normalization, i.e., a unique region allocation offset
for each allocation site.

Each section of Figure [9] is divided among the three
configurations or only the hybrid configurations for re-
gion specific metrics. We fix the the old generation size
to 512 MByte, and vary the young generation size from
1 MByte to 256 MByte. The columns represent the results
for the various young generation sizes. Each benchmark con-
figuration is run 10 times and the results are averaged.

SPECjbb2005 is known to allocate a lot of memory dur-
ing transaction processing, but only has a small set of long-
lived objects (the data warehouses). Published benchmark
results on the SPEC homepage typically use a multi-GByte
young generation size to avoid full GC at all costs. We want
to show that region-based memory management can sig-
nificantly reduce the pressure on the incremental GC, i.e.,

88

we can achieve the same performance with a significantly
smaller young generation size. Therefore we vary the young
generation size only. Varying the old generation size would
not add additional insights.

The region metrics for the two hybrid configurations dif-
fer only slightly. The reason is that the region tree is bal-
anced: there is a parent region mapped to the transaction
dispatcher and child regions mapped to each type of transac-
tion. Thus, the normalization performed for the hybrid nor-
malized configuration preserves the optimal allocation re-
gion for all of the frequently executed allocation sites of
SPECjbb2005.

The first rows of Figure[9]show the allocation behavior. In
our configuration, SPECjbb2005 allocates about 56 GByte
of memory. This number scales mostly linearly with the
number of executed transactions. We do not count memory
allocations that are eliminated by escape analysis.

In the normal configuration, all allocated memory (apart
from the heap that is present at application exit, roughly
0.5 GByte) is freed by the GC. In our hybrid configura-

200

—_
($2]
o

100

Time (seconds)

50

1 2 4 8

———p—

64 128 256

) 04

16

Young Generation Size (MByte)

@ E xecution: Normal GC
=== GC Time: Normal GC

@@= Execution: Hybrid Alloc. Table
==B==GC Time: Hybrid Alloc. Table

@mpmm = ecution: Hybrid Normalized
=== GC Time: Hybrid Normalized

Figure 10. Execution and GC time for SPECjbb2005 with varying young generation size.

tions, the GC reclaimed memory is much smaller; a sig-
nificant fraction moves to the region freed memory. For
SPECjbb2005, about 78% of the memory is region freed.

This percentage varies slightly with the different young
generation sizes: A small young generation leads to a higher
number of incremental garbage collections (see later table
rows). Since we treat the region memory as part of the
young generation during GC, the GC frees a small amount of
region-allocated memory. The fraction is small enough for it
to not be a concern. The maximum size of region-allocated
memory is never higher than 600 KByte. This number varies
greatly with the young generation size. The frequent incre-
mental collections due to a small young generation size tend
to empty the longer-living regions more often, limiting their
maximum size.

The number of entered regions shows how many times
a region is pushed on the region stack. Since region place-
ment only depends on the static analysis results, this number
must be the same for all hybrid configurations and all heap
sizes. The number of deallocations represents how many re-
gion exits perform memory deallocation, i.e., how many of
the entered regions are exited before garbage collection de-
stroys the region invariants (see Section [4.2). This number
increases as the young generation size increases, since there
are fewer garbage collections that can collect the region be-
fore it gets released. But even with small young generation
sizes, the vast majority of regions are exited before a garbage
collection.

The second part of Figure [9] focuses on GC count and
execution time. The number of GCs and GC time decreases
as the young generation size is increased. Our largest young
generation size of 256 MByte has a total GC overhead of less

&9

than 2%, so presenting numbers for larger heap sizes would
not add additional insights to the paper.

The hybrid memory allocation significantly decreases the
number of incremental garbage collections, which also re-
duces the time spent performing GC. This is the expected
benefit of hybrid memory management. The number of full
garbage collections is also affected by the young generation
size and the hybrid strategy. Every incremental GC promotes
some short-living objects that happen to be alive at the time
of GC to the old generation (we do not have multiple gener-
ations or aging of objects within the young generation). This
fills up the old generation, so eventually a full GC is needed.
Hybrid memory management needs only about 1/4 of the
young generation size to reach the same GC performance as
with the normal GC. This mathces our finding that about 3/4
(our 78%) of all memory is region managed.

The improved GC time is also reflected in the overall ex-
ecution time. The final lines of Figure [9] show total execu-
tion time of the three configurations and the speedup of the
hybrid memory configurations over normal GC. Figure [I0]
visualizes these numbers. The garbage collection time in
Figure [T0] includes both the full and incremental GCs time.
The hybrid normalized configuration speeds up the execu-
tion time because it reduces the GC time. As expected, the
hybrid with allocation table configuration is often slower
than the other configurations: Since every allocation needs
a table lookup to find the appropriate region, the mutator
time is increased considerably. The hybrid normalized con-
figuration does not add any overhead to allocation because
the region offset is a compile time constant, i.e., no runtime
computation is necessary to pick the allocation region.

Enter # Deallocation # | Total (KByte) | Max (KByte) |Average (KByte)| Region freed %
StartJBBthread 30 0 0 0 0 0.00%
CustReportTxn 499521 499520 9569044 19 19 21.42%
DeliveryTxn 90913 90911 1665517 18 18 3.73%
NewOrderTxn 1318655 1318629 18337609 14 13 41.05%
OrderStatusTxn 90907 90906 1379782 15 15 3.09%
PaymentTxn 909093 909076 12498165 13 13 27.98%
RunStockLevelTxn 90911 90911 1222326 13 13 2.74%

Figure 11. Detailed memory regions for SPECjbb2005 with a young generation size of 256 MByte.

Figure[TT]shows the detailed region statistics for a young
generation size of 256 MByte. We only show the numbers
for the hybrid allocation table configuration since the two
hybrid configurations generate similar results. We show the
number of activations and actual deallocations for each re-
gion. We show the region total, region average and the re-
gion percent of total allocated memory. The region total rep-
resents the total memory freed by region exits. The region
max represents the maximum memory allocated in the re-
gion at any time. The region freed percent is the fraction of
the total region freed memory. Most of the memory is allo-
cated in regions corresponding to customer transactions as
intended. For the StartJBBthread region the number of ac-
tivations is 30 but all other metrics are 0. This region is al-
ways garbage-collected before the region exit, so no region
memory deallocation is possible. This is expected since the
StartJBBthread is the topmost region in the region tree and
the GC is triggered before this region ever gets the chance
to exit and deallocate memory. Since no important alloca-
tion sites are in this region, switching to a GC scheme that
preserves memory regions would not change the results sig-
nificantly.

7. Related Work

In this section we briefly summarize previous work in
region-based memory management that is directly related
to our approach. The body of work in region-based memory
management is vast and this is by no means an exhaustive
list. We point the interested reader to the retrospective paper
[27]].

Most of the work in region memory management for
Java addresses the particular case of real-time Java. In real-
time Java, unlike the standard Java, garbage collection is
rarely used due to the unpredictability of temporal behavior
of dynamic memory collection which affects the real-time
scheduling policies. The Real-Time Specification for Java
(RTSJ) [L]] proposes extensions to the syntax and semantics
of Java attempting to make the execution more predictable.
RTSJ introduces region memory allocation through scoped
memory regions to eliminate the unbounded pauses caused
by interference from the garbage collector. Regions are used
explicitly through programming language directives.

90

The RTSJ uses runtime checks to ensure that deleting
a region does not create dangling references and that real-
time threads do not access references to objects allocated in
the garbage-collected heap. [2] use a static type system to
guarantee that the runtime checks will never fail for well-
typed programs. The safety guarantee makes it possible to
remove the runtime checks and their associated overhead.

To address the problem of dynamic memory management
in real-time Java, [20] propose a static region inference al-
gorithm coupled with region-based memory management.
They involve the developer in the analysis process by pro-
viding feedback on programming constructs likely to pro-
duce memory leaks.

[19]] introduce the idea of an adaptive, region-based al-
locator for Java. They use a dynamic approach which does
not require static analysis or programmer annotations. They
start by assuming that the scope of each method is mapped
to a memory region and that all allocated objects are local to
their allocator method region. Using runtime write barriers
they catch escaping objects and adapt accordingly by mark-
ing the allocation site as non-local for future allocations.

[4] propose a region analysis and transformation system
for Java. First the analysis determines fine grained memory
regions then the compiler transforms the input program into
an equivalent program with region-based memory manage-
ment. Their approach allows dangling references and uses
non lexically scoped regions.

In their masters thesis Christiansen and Velschow [5] ex-
plored region allocation for a subset of Java using explicit
region annotations. The subset of Java leaves out features
like concurrency, arrays and exception handling. They rely
on language constructs for allocating, updating and deallo-
cating regions.

[6, (7] explore extending C with explicit region annota-
tions. They prevent unsafe region deletions by keeping a
count of references to each region. By making the struc-
ture of a program’s regions more explicit using type annota-
tions, they reduce the overhead of reference counting. There
is also the work on region-based memory management in
Cyclone [8], a type safe dialect of C. Cyclone uses a com-
bination of explicit annotations, implicit default annotations
and local type inference.

8. Conclusions

We presented a region analysis that enables hybrid, garbage-
collected and region-based, automatic memory management
for Java. We presented compelling evidence that using such
an approach can result in significant reduction in mem-
ory management costs. We implement our analysis in an
ahead-of-time compilation system for Java, but the results
are not limited to this context. Our experiments show that
the amount of garbage-collected memory can be reduced by
as much as 78%.

Acknowledgments

This material is based upon work partially supported by
the Defense Advanced Research Projects Agency (DARPA)
under contracts D11PC20024 and N660001-1-2-4014.

Oracle and Java are registered trademarks of Oracle
and/or its affiliates. Other names may be trademarks of their
respective owners.

References

[1] G. Bollella. The Real-time Specification for Java.
Addison-Wesley Java Series. Addison-Wesley, 2000.
ISBN 9780201703238. URL |https://jcp.org/about]ava/
communityprocess/first/jsrO01/rtj.pdf.

[2] C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard.
Ownership types for safe region-based memory management
in Real-Time Java. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, pages 324-337. ACM Press, 2003. .

[3] M. Bravenboer and Y. Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In Proceedings of
the ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 243-262.
ACM Press, 2009. .

[4] S. Cherem and R. Rugina. Region analysis and transforma-
tion for Java programs. In Proceedings of the ACM Inter-
national Symposium on Memory Management, pages 85-96.
ACM Press, 2004. .

[5] M. V. Christiansen and P. Velschow. Region-based memory
management in Java. Master’s thesis, DIKU, University of
Copenhagen, May 1998.

[6] D. Gay and A. Aiken. Memory management with explicit
regions. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
313-323. ACM Press, 1998. .

[7] D. Gay and A. Aiken. Language support for regions. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 70-80. ACM
Press, 2001. .

[8] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-based memory management in Cyclone. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 282-293.
ACM Press, 2002. .

91

[9] N. Hallenberg, M. Elsman, and M. Tofte. Combining region
inference and garbage collection. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pages 141-152. ACM Press, 2002. .

[10] M. Hirzel, D. V. Dincklage, A. Diwan, and M. Hind. Fast
online pointer analysis. ACM Transactions on Programming
Languages and Systems, 29(2), 2007. .

[11] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity
for points-to analysis. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, pages 423-434. ACM Press, 2013. .

[12] O. Lhotdk. Program Analysis using Binary Decision Dia-
grams. PhD thesis, McGill University, 2006.

[13] O. Lhoték and L. Hendren. Evaluating the benefits of context-
sensitive points-to analysis using a BDD-based implemen-
tation. ACM Transactions on Software Engineering and
Methodology, 18(1):1-53, 2008. .

[14] D. Liang, M. Pennings, and M. J. Harrold. Evaluating the im-
pact of context-sensitivity on Andersen’s algorithm for Java
programs. In Proceedings of the ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engi-
neering, pages 6—12. ACM Press, 2005. .

P. Liang, O. Tripp, M. Naik, and M. Sagiv. A dynamic evalu-
ation of the precision of static heap abstractions. In Proceed-
ings of the ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
411-427. ACM Press, 2010. .

A. Milanova, A. Rountev, and B. G. Ryder. Parameterized ob-
ject sensitivity for points-to analysis for Java. ACM Transac-
tions on Software Engineering and Methodology, 14(1):1-41,
2005. .

M. Naik, A. Aiken, and J. Whaley. Effective static race detec-
tion for Java. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
pages 308-319. ACM Press, 2006. .

[18] OpenJ]DK. Graal Project. URL http://openjdk.java.net/
projects/graal,

[15]

(16]

(17]

[19] E. Qian and L. Hendren. An adaptive, region-based allocator
for java. In Proceedings of the ACM International Symposium
on Memory Management, pages 127-138. ACM Press, 2002.

[20] G. Salagnac, C. Rippert, and S. Yovine. Semi-automatic
region-based memory management for real-time java embed-
ded systems. In Embedded and Real-Time Computing Sys-
tems and Applications, pages 73—80. IEEE Computer Society,
2007. .

[21] M. Sharir and M. Pnueli. Two approaches to interprocedu-
ral data flow analysis. Program Flow Analysis: Theory and
Applications, pages 189-234, 1981.

[22] O. G. Shivers. Control-flow Analysis of Higher-order Lan-
guages of Taming Lambda. PhD thesis, Carnegie Mellon Uni-
versity, 1991.

[23] Y. Smaragdakis and G. Balatsouras. Pointer analysis. Foun-

dations and Trends in Programming Languages, 2(1):1-69,
2015. .

https://jcp.org/aboutJava/communityprocess/first/jsr001/rtj.pdf
https://jcp.org/aboutJava/communityprocess/first/jsr001/rtj.pdf
http://openjdk.java.net/projects/graal
http://openjdk.java.net/projects/graal

[24] Y. Smaragdakis, M. Bravenboer, and O. Lhotdk. Pick your
contexts well: Understanding object-sensitivity. In Proceed-
ings of the ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 17-30. ACM Press, 2011. .

[25] SPEC. SPECjbb2005, 2005. URL http://www.spec.org/
jbb2005.

92

[26] B. Steensgaard. Thread-specific heaps for multi-threaded pro-
grams. In Proceedings of the ACM International Symposium
on Memory Management, pages 18-24. ACM Press, 2000. .

[27] M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A ret-
rospective on region-based memory management. Higher-
Order and Symbolic Computation, 17(3):245-265, Sept.
2004. .

http://www.spec.org/jbb2005
http://www.spec.org/jbb2005

	Introduction
	Background
	Region-Based Memory Management
	Points-to Analysis

	Memory Region Aware Points-to Analysis
	Analysis Definition
	Analysis Results
	Example
	Region Analysis Invariant

	Hybrid Memory Management
	Efficient Allocation
	Efficient Garbage Collection

	Implementation
	Evaluation
	Related Work
	Conclusions

