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ABSTRACT
Just-in-time compilers (JITs) are here to stay. Unfortunately, they
also provide new capabilities to cyber attackers, namely the ability
to supply input programs (in languages such as JavaScript) that will
then be compiled to executable code. Once this code is placed and
marked as executable, it can then be leveraged by the attacker.

Randomization techniques such as constant blinding raise the
cost to the attacker, but they significantly add to the burden of
implementing a JIT. There are a great many JITs in use today, but not
even all of the most commonly used ones randomize their outputs.

We present librando, the first comprehensive technique to harden
JIT compilers in a completely generic manner by randomizing their
output transparently ex post facto. We implement this approach
as a system-wide service that can simultaneously harden multiple
running JITs. It hooks into the memory protections of the target OS
and randomizes newly generated code on the fly when marked as
executable.

In order to provide “black box” JIT hardening, librando needs to
be extremely conservative. For example, it completely preserves the
contents of the calling stack, presenting each JIT with the illusion
that it is executing its own generated code. Yet in spite of the heavy
lifting that librando performs behind the scenes, the performance
impact is surprisingly low. For Java (HotSpot), we measured slow-
downs by a factor of 1.15×, and for compute-intensive JavaScript
(V8) benchmarks, a slowdown of 3.5×. For many applications, this
overhead is low enough to be practical for general use today.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers, Code
generation; D.4.6 [Operating Systems]: Security and Protection
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1. MOTIVATION
Our computing infrastructure depends on high performance de-

livered by just-in-time (JIT) compilers to a large degree. Efficiently
executing JavaScript is a prerequisite for complex Web 2.0 appli-
cations. Similarly, Java’s success rests on performance delivered
by efficient dynamic code generation. From the early beginnings,
JIT compilers had to focus on producing code quickly. Usually,
they achieve this by optimizing the common case and forgoing time-
intensive optimizations altogether. As a result, this leads to highly
predictable code generation, which attackers exploit for malicious
purposes. This is evidenced by the rising threats of JIT spraying [2]
and similar attacks on sandboxes in JITs. The former is particularly
interesting: JIT spraying relies on JIT compilers emitting constants
present in input source code directly into binary code. Due to vari-
able length encoding, attackers can encode and subsequently divert
control flow to arbitrary malicious code arranged this way.

This attack vector is innate and specific to JIT compilers. From a
security perspective, the state-of-the-art in the field is to address JIT
spraying by encrypting and decrypting constants. This addresses
the code injection part of JIT spraying, but attackers can fall back
on code-reuse techniques. Specifically, return-oriented program-
ming [26] for JIT compiled code is problematic. Instead of finding
gadgets in statically generated code (as they would do an a generic
return-oriented programming attack), an attacker uses the JIT com-
piler to create new binary code containing the necessary gadgets
by supplying specially crafted source code. The ubiquity of JIT
compilers amplifies this security risk to such a degree that JITs
become a liability.

Recent work [9, 14, 11, 10, 22, 29] addresses code-reuse at-
tacks by attacking its foundation: the software monoculture. By
diversifying the binary code, attackers cannot construct reliable at-
tack code, because the binary code layout differs for each end-user.
Consequently, diversity increases the costs for attackers, ultimately
rendering them too costly. Unfortunately, existing approaches to
artificial software diversity do not protect dynamically emitted code
from a just-in-time compiler. We address this challenge by de-
scribing the first fully automatic technique to diversify existing JIT
compilers in a black-box fashion. Similar to the successful frontend-
backend separation in traditional compilers, our proposed black-box



approach has the advantage over a white-box solution—where de-
velopers would manually add diversification directly to JIT compiler
source code—of not requiring duplicated work for every existing
JIT compiler. Besides the obvious savings in implementation time,
the black-box approach allows for faster time-to-market for patches,
without having to rely on vendors to supply patches to known vul-
nerabilities. Another benefit is the added security for legacy JIT
compilers available only in binary form, where extra defenses cannot
be added by changing the source code.

Summing up, we make the following contributions:

• We present librando, the first automated software diversity
solution for hardening existing JIT compilers in a black box
fashion. Our solution implements two popular defensive tech-
niques: NOP insertion and constant blinding.

• We describe two optimizations (the Return Address Map and
optional white box diversification—taking advantage of com-
piler cooperation) to improve the performance of librando.

• We demonstrate applicability of black box diversification
on two pervasive industrial-strength JIT compilers: Oracle’s
HotSpot (used in the Java Virtual Machine) and Google’s V8
(used in the Chrome web browser). We then report the results
of our analysis of librando performance. We show that we
successfully protect:

HotSpot (a JIT compiler for Java—a statically-typed lan-
guage) with an overhead of 15%.

V8 (a JIT compiler for JavaScript—a dynamically-typed lan-
guage) with a slowdown of 3.5×.

2. BACKGROUND
A JIT compiler transforms a program written in a high-level lan-

guage (HLL), generating native code at program run-time. The
compiler emits native code into a code cache, after parsing and opti-
mizing HLL source code. The compiler itself is written in another
programming language, which we call the host language. JIT com-
pilers also contain a language runtime, which is a library of functions
that are written in the host language and provide or manage access
to system resources. Some examples of such resources are files,
networks, operating system threads and complex data structures
(maps, trees). When compiling a HLL program, the JIT compiler
emits native calls into the runtime whenever the program uses these
resources. Figure 1 shows a high-level structure of a JIT compiler
and its interactions with the generated code. After emitting all or
part of the native code (usually enough code to start execution of
the program), the compiler branches to the entry point of the HLL
program. The generated code continues execution, calling into other
generated functions or the language runtime. The HLL program
continues until termination, making repeated calls into the runtime
whenever needed.

From a security point of view, JIT compilers have one characteris-
tic that is important in our context: predictability. As JIT compilers
usually optimize code for performance, there are only a few optimal
translations of HLL code to native code, and a JIT compiler emits
one of these. When presented with the same HLL code many times
repeatedly, a compiler will emit the same native code; attackers
can use this characteristic to their advantage. This is not a prob-
lem specific to JIT compilers, but compilers in general; however,
predictability of JIT compilers has not been fully explored.

JIT spraying [2] is one recent attack that relies on predictability
of JIT compilers. This attack is a form of code injection targeted
at dynamically generated code. In its original form, it relies on
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Figure 1: High-level structure of a JIT compiler.
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a = (0x3C90C031
   ^ 0x3C907DB0

⋮
   ^ 0x909080CD);

MOV EAX, 0x3C90C031
XOR EAX, 0x3C907DB0

⋮
XOR EAX, 0x909080CD

B8 31 C0 90 3C
35 B0 7D 90 3C

⋮
35 CD 80 90 90

Emitted in Memory

XOR EAX, EAX
NOP
CMP AL, 0x35
MOV AL, 0x7D
NOP
CMP AL, 0x35

⋮
INT 0x80

31C0
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3C35
B07D
90
3C35

⋮
CD80

JIT Spray Payload

Attack entry point

Figure 2: JIT spraying example. The 32-bit constants from
HLL code (shown in light and dark grey) appear inside native
code, in little-endian form.

one unintended behavior of many JIT compilers: HLL program
constants reach native code unmodified, therefore becoming part
of the executable code. The attacker injects short sequences (32-
bit constants in the original paper), and later jumps to the injected
sequence through a separate attack vector. Figure 2 shows an ex-
ample of code injected using constants. For the attack to work, the
attacker must also predict the remaining bytes inserted between the
controlled sequences, and use those bytes as part of the payload; this
is often possible in practice, due to the predictability of the compiler.
This allows the attacker to execute arbitrary native code, even when
running on a compiler that runs the generated code in a sandbox
(with restricted access to memory, for example).

For many years, most arbitrary code execution attacks used the
same method of gaining control of the program: code injection
attacks. To prevent these, most operating systems now forbid the
same page to be both writable and executable at the same time.
Sidestepping this measure, a new class of attacks against applica-
tions surfaced and gained popularity: code reuse attacks. Instead of
adding new executable code to an application, code reuse attacks
locate reusable code sequences inside the application, then thread
these sequences into a program written by the attacker. Shacham de-
scribed one of the first versions of this attack, called Return-Oriented
Programming (ROP) [26]; he named the code sequences gadgets. A
gadget is simply a valid sequence of binary code that the attacker
can execute successfully (the gadget decodes correctly and does
not contain invalid instructions); a gadget can start anywhere inside
the generated code (including in the middle of a proper instruction)
and spans one or more of the original instructions emitted by the
compiler. ROP uses only gadgets that end in a RET instruction
(encoded by the C3 byte on x86); the attacker places addresses of
gadgets on the stack on consecutive stack slots, so that each gadget
proceeds to the next one using a return. Later work [3] extends this
idea to other indirect branch instructions.

This attack is even more potent in the presence of a JIT compiler,
as an attacker that controls HLL code can emit an arbitrary amount
of native code containing gadgets (by emitting as much HLL code as
needed to generate all the gadgets for the attack); Figure 3 illustrates
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foo() {
  return 0;
}

bar(a, b) {
  return a + b;
}

baz(x) {
  x++;
  return;
}

…
XOR EAX, EAX
RET
…

ADD EBX, EAX
…

INC EBX
…
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...
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...
FF C3
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Figure 3: Code reuse example. The compiler transforms HLL
code into native code containing ROP gadgets. The C3 byte
encodes the RET instruction at the end of a gadget.
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Figure 4: A JIT compiler with librando attached, with the con-
trol flow graph of the dynamically generated program. Greyed
out edges represent branches that are redirected or never taken
after diversification.

how HLL code sequences become gadgets. For example, this can be
a problem for web browsers that include a JavaScript compiler, as
many web pages include JavaScript code from unreliable (or hostile)
sources. Another problem is that current anti-ROP defenses [16, 20,
22, 10, 14, 11] target ahead-of-time compilers or binary rewriters,
but do not offer protection to dynamically generated code.

3. DESIGN
The librando library diversifies code generated by a JIT compiler.

It reads all code emitted by the compiler, dissassembles the code,
randomizes it, and then writes the randomized output to memory.
Figure 4 shows the structure of dynamically generated code, as a
function call graph.

The library diversifies dynamically-generated code under one of
the following models (illustrated in Figure 5):

Black box diversification with no assistance from the compiler
(the compiler is a black box and the library has no knowl-
edge of compiler internals). The library attaches to the com-
piler and intercepts all branches into and out of dynamically-
generated code, without requiring any changes to compiler
internals.
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Figure 5: Black and white box diversification architecture.

White box diversification with some assistance from the compiler
(the library has some knowledge of compiler internals). The
code emitter notifies librando through an API when it starts
running undiversified code. The library provides the diversi-
fied code addresses to the compiler, and the compiler executes
diversified code directly. We change all compiler branches
into emitted code to use the addresses returned by librando.
This approach is intended as a middle ground between the
previous model and a manual implementation of randomiza-
tion for each compiler, and it requires that compiler source
code is available.

As the first security measure, librando prevents execution of all
code generated dynamically by the compiler. Instead, the library
disassembles the code into a control flow graph, diversifies every
basic block in this graph, and then writes the diversified blocks to
a separate executable area. All branches (including function calls
and returns) to the original undiversified code are redirected to the
diversified code (Figure 6 shows an example of a diversified block).
While the undiversified code remains available and writable, the
compiler or HLL program cannot execute it anymore. The library in-
tercepts all memory allocation functions (the mmap function family
on Linux) that return executable memory, then removes the exe-
cutable flag on all intercepted allocation requests. The library also
keeps an internal list of all memory allocated by these requests, and
uses this list to distinguish between accesses to undiversified code
and all other memory accesses.

In the black box diversification model, the library transparently
intercepts all branches to protected blocks. To do this, we protect all
undiversified code pages against execution, then catch all attempts
to execute these protected pages. The library installs a handler for
the segmentation fault signal (SIGSEGV in Linux), which is raised
whenever a processor instruction attempts to access memory it does
not have permission for. Whenever the processor attempts to execute
a non-executable page, it triggers a page fault in the MMU. The
operating system handles this fault and calls our SIGSEGV signal
handler. The library then redirects execution to diversified code.

While static disassembly of binary code accurately is impossible
in the general case [6] (due to the need to distinguish code from
data), dynamic disassembly is much simpler for one reason: we only



Undiversified Diversified

CMP RAX, QWORD PTR [R13 - 40]
JNE 0xB4EC52C0F6
MOV RAX, 0x23E0A7104161
JMP 0xB4EC52C100

@0xB4EC52C0E0
@0xB4EC52C0E4
@0xB4EC52C0EA
@0xB4EC52C0F4

CMP RAX, QWORD PTR [R13 - 40]
NOP [90]
JNE 0x7F8E7C952BE3
MOV RAX, 0x23E0A7104161
NOP [66 90]
JMP 0x7F8E7C95339A

@0x0x7F8E7C952BCA

@0x0x7F8E7C952BCF
@0x0x7F8E7C952BD5

@0x0x7F8E7C952BE1

Figure 6: Block contents and diversification example.

disassemble bytes that we are certain represent code. Our use of
signals guarantees this: the signal handler is always called when the
JIT compiler executes an undiversified instruction at some address,
so the bytes at that address (and the entire block starting at that
address) are guaranteed to be code. The same is true for all blocks
in the control flow graph containing that instruction, since we follow
direct branches to find more code.

We make a few simplifying assumptions about the emitted code
that reduced our implementation effort significantly:

No stack pointer reuse On the x86 architecture, the stack pointer
register (RSP) is available as a general-purpose register. The
x86 64-bit ABI reserves this register for its intended purpose,
as stack register. However, compilers only need to follow the
ABI when calling into external libraries and system code; they
can ignore its guidelines inside emitted code. Code emitted by
a JIT compiler might use another register to keep track of the
HLL stack, and re-use RSP for another purpose. Generally,
JIT compilers do not do this in practice, so we assume that
this register always points to the top of a valid native stack.
This allows both code emitted by the compiler and by librando
to use several stack manipulation instructions, such as PUSH,
CALL and RET.

No self-modifying code While it is possible for a JIT compiler to
emit code that modifies itself, this is usually not the case. We
assume that only the compiler can modify code. Once emitted
code starts executing, it remains unchanged. This assumption
simplifies our implementation, as we only have to detect code
changes originating in the compiler itself; therefore, we can
safely discard old versions of modified code, without the risk
of having to continue execution inside discarded code.

Calls paired with returns Compilers often use the CALL x86 in-
struction for calls and RET for the corresponding returns, but
not always. The former pushes the return address on the na-
tive stack and branches to a function, while the latter pops
the return address and branches to it. There are equivalent
instruction sequences with the same behavior which a com-
piler can use instead, perhaps to push/pop the return address
to another stack. However, there is a performance penalty
from using these sequences, as modern processors use an
internal return address stack to improve branch prediction
for CALL/RET pairs, and only for those pairs. A compiler
optimized for performance always uses this combination for
function calls, simplifying our implementation as well. Con-
sequently, librando only needs to analyze and rewrite these
instructions when redirecting function calls.

Our technique diversifies code by relocating emitted code blocks,
rewriting the code, and inserting instructions. To preserve HLL
program semantics, a diversification library must be transparent
to both the compiler and the compiled program. We identified
several pieces of program state which librando must preserve when

rewriting code (related work [4, 17, 25] identifies a superset of these
for general-purpose dynamic binary rewriters):

Processor register contents including the flags register. The li-
brary inserts instructions that hold intermediate values in
registers. Also, some inserted instructions (like ADD and
XOR) modify the processor flags register. The library attempts
to only add instructions that do not change any registers or
flags; where this is not possible, it temporarily saves the reg-
ister(s) to the stack, performs the computation, then restores
the register(s).

Native stack contents Some JIT compilers use the native stack
for HLL code, while others switch to a separate stack when
branching to HLL code. To support the former, the library
must preserve all contents of the native stack inside diversi-
fied code. This must be true not only during execution of
dynamically generated code, but also during calls into the
runtime, as the runtime itself may read or write to the native
stack. For example, the V8 runtime walks the native stack
during garbage collection to find all pointers to data and code.
Changing any such pointer or any other data on the stack
leads to program errors and crashes. Therefore, native stack
contents must be identical when running with and without
librando. This includes return addresses; when a diversified
function calls another diversified function, the former must
push the undiversified address on the stack. Figure 7 illus-
trates this transformation. The original call pushes the address
of the next instruction on the stack, then jumps to the called
function. We replace it with a PUSH/JMP pair that pushes the
undiversified return address. There is one exception to this
restriction: we consider any memory past the top of the stack
(below RSP) to be unused, so we use it to save registers.

Undiversified code instructions JIT compilers frequently emit code
with temporary placeholders, then later replace them with
other instructions. The compiler usually uses fixed instruc-
tion sequences for these placeholders, so it first checks their
contents before patching. In other cases, certain instruction
sequences are used to flag properties of emitted code. The
library cannot modify any of the original, undiversified code
in-place, as it cannot distinguish between regular code and
these placeholders. Even if the compiler never reads back the
former, it may read back and validate the contents of the lat-
ter, then crash or execute incorrectly. The library is required
to preserve the undiversified code at all times, as originally
emitted by the compiler.

POSIX signals Some JIT compilers (such as HotSpot) intercept
POSIX signals and install their own handlers. We intercept
the SIGSEGV signal to catch execution and write attempts
on undiversified code, but pass all other signals (including
SIGSEGV we do not handle) back to the JIT compiler.
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foo:
…
CALL bar
…

bar:
…

foo':
…
PUSH 0x123789
JMP bar'
…

bar':
…

@0x123456

@0x345678

@0xABCDEF

@0xBCDEF0

@0x123789
@0x123784

Figure 7: Rewriting the CALL instruction.

3.1 Code Relocation
In our control flow graph, a block is a maximal continuous run

of instructions, so that the block ends in an unconditional branch
instruction, but contains no such instruction inside. We also break
blocks at function calls (the CALL instruction) and returns, but
not at conditional branches; a basic block can have one or more
conditional branches inside. However, we use one heuristic to split
blocks: whenever a block contains a number of consecutive zeroes
over a given threshold, we break the block after a small number
of those zeroes. This is needed because compilers sometimes emit
code only partially (or lazily), initializing the remainder with zeroes.
The compiler emits the rest of the code at a later moment, after some
event triggers generation of the missing code. We implemented
this heuristic to support the V8 compiler, which uses lazy code
generation.

Many JIT compilers perform garbage collection on generated
code, discarding unused code and reusing that space for new code.
The compiler will write and later execute this new code in place
of the old version. This happens frequently in the modern JIT
compilers we investigated. We detect such changes, discard the
diversified versions of old blocks, then read the new blocks and
integrate them into the existing control flow graph. To detect all
changes to a block, librando marks it read-only after diversification
using the mprotect function on Linux. If the compiler writes to
the block later, the library allows the write to succeed, but marks the
block as dirty.

The mprotect function has one significant restriction: it can
only change access rights on zones aligned to hardware pages; on
x86, a page is 4096 bytes by default. There are several issues to
consider when using mprotect to protect a block. First, a single
page may contain more than one block. Second, a block may be
spread across several consecutive pages. Third, for each page, one
or two blocks might cross its boundaries, one at each end. Figure 9
shows examples of all three cases. Instead of marking a block as
read-only, librando actually marks all pages containing that block as
read-only. However, those pages may contain other blocks that the
compiler might never modify.

After librando marks a page as read-only, the operating system
starts notifying the library of all writes to read-only pages. We also
use POSIX signals to receive these notifications. The operating
system calls the SIGSEGV signal handler each time a processor
instruction tries to write to a protected page, as long as the page is
protected. However, this occurs before the actual instruction writes
the data; we have to either emulate the instruction itself (while
keeping the page read-only), or make the page writable and allow
the original instruction to execute. As emulating x86 instructions
correctly requires significant development effort, we choose the
latter solution. However, once we allow writes to a page, there is
no way to catch each write to that page separately; the processor
will allow all writes to succeed without generating a page fault. At
this point, the only information available to librando is that at least
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Discarded&Block
No1Rights

Write&to&block

Branch&to&block
Contents&match

Branch&to&block
Contents&changed

Figure 8: Per-block finite state machine that handles block
changes.

Page%NPage%N'1 Page%N+1 Page%N+2

Block Block Block Block Block

Figure 9: Blocks spanning several memory pages and crossing
page boundaries.

one byte in that page may have been modified, but nothing more.
Therefore, we mark all blocks contained in a writable page as dirty.
The next time librando intercepts a branch to undiversified code, it
checks all dirty blocks to verify that the VM has actually modified
their contents. The library only discards and re-diversifies changed
blocks, keeping unchanged blocks as they are. Figure 8 shows this
process per block, in the form of a finite state machine.

To check whether a block has been modified, the library compares
the new contents of the block against its original contents. However,
this requires that two copies of each block be stored: the original and
current code. To save memory space, we do not store both copies
in memory; instead, each block stores a hash code of its original
contents. Every time librando checks if a block has been modified,
it hashes the current contents of the block and compares the hash
code to the one stored in the block. If the hash codes match, librando
assumes that the block has not been changed; otherwise, it discards
the block. While there is a very small possibility of collision (where
the contents of a block change, but the hash remains the same),
we performed all our experiments and benchmarks successfully
with this optimization. A librando user has the option of disabling
hashing and verifying the entire contents of blocks, which guarantees
correctness.

The user attaches librando to a JIT compiler in one of several
ways: either by linking it (statically or dynamically) to the compiler,
or through the LD_PRELOAD environment variable on Linux. The
latter mechanism preloads a library into a process at program start-
up time, allowing the library to override some of the program’s
symbols. We used the latter approach in our evaluation, but the
former is preferred in an actual deployment for increased security.

3.2 Diversification
The main security benefits from librando come from rewriting the

generated code. We propose two rewriting techniques that harden
the generated code against attacks.

NOP Insertion. Code reuse attacks rely on the code having
predictable location (address) and contents. We implement one
fine-grained instruction-level code layout randomization technique:
NOP insertion. To randomize code layout, we randomly insert
NOP instructions (instructions without effects) into the diversified
blocks, between the existing instructions. This technique has been
used successfully in other work to change instruction or block align-



Data: Input block B. Probability p of NOP insertion.
Result: Block B with NOPs inserted.
begin

for each instruction i ∈ B do
Pick a random real number in [0.0, 1.0]
v ← random()
if v < p then

i→ insert(randomNOP ())
end

end
end

Algorithm 1: NOP insertion algorithm.

ment to improve performance [12], security [18, 31, 14, 11], or
provide contention mitigation [28]. NOP insertion pushes each
proper instruction forward by a random offset (the total length of all
preceding inserted NOPs), making the location of each instruction
more difficult to predict. Since the total length of NOPs accumulates
as more instructions are added, uncertainty of code addresses in-
creases as more code is generated. This technique makes it difficult
for an attacker to predict not only addresses of known code, but
also distances between known locations. The attacker might try to
learn the address of some known code object, and access all other
code relatively to this address. This requires that the attacker know
relative locations of code in advance; NOP insertion makes this
much less likely, since NOPs displace instructions randomly.

We implemented the algorithm (shown in Algorithm 1) as a single
linear-time pass over the instructions in each block. After each
proper instruction, the algorithm decides whether to insert a NOP or
not by coin toss. In our tests, we set the probability of NOP insertion
to p = 0.5, but this can be adjusted for better performance or more
security. If the algorithm inserts a NOP, the next step picks a NOP
randomly from a set of candidates. We used the smallest three NOP
instructions from the set of canonical NOPs recommended by the
Intel architecture manual [13]: 90, 66 90, and 0F 1F 00.

Constant Blinding. We previously described JIT spraying as
an example of a code injection attack against JIT compilers. In
general, these attacks rely on the compiler emitting native code
that contains some binary sequence from the source-program as-
is. In the particular case of JIT spraying, this sequence is a set of
32-bit constants emitted as immediate operands to x86 instructions.
Recently, JavaScript compilers have started to implement their own
defensive measures particular to this attack [24]. There are two
ways that a HLL program value winds up in the executable code
region: the compiler stores the value either close to the code (without
executing it as code), or as an immediate instruction operand. In
the former case, NOP insertion shifts the location of the value
by a random offset, making its location hard to guess. For the
latter case, there is one simple solution based on obfuscation: emit
each immediate operand in an encrypted form, then decrypt its
value at run-time using a few extra instructions. We pick a random
value (a cookie) for every operand, blind the operand using the
cookie, emit the original instruction with the blinded immediate,
then emit the decryption code. While other implementations use an
XOR operation for encryption, we do not use it since it alters the
arithmetic flags, so librando would have to save them. Fortunately,
the processor provides an addition in struction that leaves the flags
intact: LEA. Therefore, we blind the original value by subtracting
the cookie from it, then add an immediate-operand LEA to add the
cookie back. Figure 10 shows an example of this transformation.

Undiversified Diversified

MOV EAX, 12345678h

PUSH R8
MOV EAX, B1AAB59Ch
MOV R8D, 6089A0DCh
LEA R8D, [R8D + EAX]
MOV EAX, R8D
POP R8

Decryp'on*cookie
Encrypted*value

Figure 10: Example of blinding the immediate operand
of an instruction. 12345678h is replaced with
B1AAB59Ch+6089A0DCh (modulo 232).

Operation Form Opcode
MOV MOV EAX, imm32 B8

MOV ECX, imm32 B9
...

MOV EDI, imm32 BF
MOV reg, imm32 C7

PUSH PUSH imm32 68
IMUL IMUL reg, reg, imm32 69
TEST TEST EAX, imm32 A9

TEST reg, imm32 F7
Arithmetic op reg, imm32 81

ADD EAX, imm32 05
OR EAX, imm32 0D
ADC EAX, imm32 15

...
CMP EAX, imm32 3D

Table 1: x86 instructions with 32-bit immediate operands. The
arithmetic class contains ADD, ADC, SUB, SBB, AND, OR, XOR
and CMP.

The x86 architecture supports 8-, 16-, 32- and 64-bit immediate
values for many instructions. We encountered only the latter two
types in most code we analyzed, so we implemented only these sizes;
the others can be trivially added. Table 1 shows all x86 instructions
that accept a 32-bit immediate. There is only a single instruction
that accepts a 64-bit immediate (the REX.W + B8 encoding of
MOV). Everytime librando encounters one of these instructions, it
transforms the instruction to the equivalent encrypted sequence.
Each instruction from Table 1 was sufficiently different from the
others, so we implemented different blinding code manually for
each type of instruction.

3.3 Optimizations
Intercepting branches to all generated code and rewriting their

contents has a cost in program performance, as our evaluation will
show. We propose several optimizations to our approach to reduce
this cost as much as possible.

The Return Address Map. One of the restrictions of our de-
sign was transparency of the native stack. Even when executing
diversified code, the native stack must have the same contents as
it would have under undiversified code. We meet this requirement
through one change: we rewrite call instructions to push undiversi-
fied return addresses on the stack, as shown in Figure 7. However,
this has one significant drawback: the later RET matching the re-
placed call pops the undiversified address and branches to it. Since
this address is now non-executable, this generates a page fault and a
call to our signal handler. As the SIGSEGV handler is called after
the processor interrupts the execution of another instruction, the
operating system saves a lot of processor state before calling the
handler; this makes signal handlers very slow. For this reason, RET
instructions in diversified code are also expensive.



Undiversified Diversified

RET

#"Load"return"address"into"RDI
MOV RDI, DWORD PTR [RSP]
CALL RAM_lookup
#"If"lookup"did"not"return"a"diversified"address
#"then"keep"the"original
CMP RAX, RDI
JE return
#"otherwise,"replace"the"undiversified"return"address
MOV DWORD PTR [RSP], RAX

return:
RET

Figure 11: Rewriting the RET instruction to use the Return Ad-
dress Map.

To improve performance, we prevent the SIGSEGV signal from
being triggered. We rewrite return instructions, adding code to han-
dle the case when the return address is in undiversified code that
also has a corresponding diversified address. In as few instructions
as possible, the diversified RET instruction now looks for the return
address in a data structure that maps undiversified to diversified
addresses (we call this data structure the Return Address Map). If
an entry is found, execution continues in diversified code; other-
wise, the original address is used as-is. Figure 11 shows how this
optimization rewrites the RET instruction.

We store the address mapping in a hash map. We require a
data structure that supports three operations: lookup, insertion and
removal. The library adds the addresses of a block to the map when-
ever it diversifies the block, then removes the addresses when it
discards the block. One significant factor in the choice of data struc-
ture is that lookups are far more frequent than the other operations
(every RET performs a lookup), so the data structure implementation
must perform the former as efficiently as possible. We use a cuckoo
hash map for this goal [21], as it provides both fast constant-time
lookups (we implemented a lookup function in 28 lines of assembly
code) and good memory utilization.

As returns are essentially just indirect branches (a pop followed
by a branch to the popped value), we also use this data structure to
optimize all other indirect branches. We extend the map to all basic
block addresses (not just return addresses), then prepend hash map
lookups to all branches with unknown targets (where the target is
not a direct address, but one loaded from a register or memory).

White Box Diversification. With the Return Address Map han-
dling all diversified-to-diversified-code indirect branches, and the
rewriting of all direct branches to target diversified code, the signal
handler only intercepts branches entering or exiting the diversi-
fied code (mainly the compiler and the language runtime). Some
HLL programs make many calls to the runtime (either explicitly
as function calls, or implicitly through language features or inline
caches), so the overhead from the signal handler remains signifi-
cant. This overhead is difficult to reduce without making changes
to the compiler itself, so the next step in optimization is white box
diversification. Under this model, librando provides an interface to
the compiler, which the latter uses to notify the former of branches
to generated code, with the goal of avoiding the signal handler.
JIT compilers frequently have one or a few centralized places in
their source code that all jumps to generated code pass through;
by manually inserting calls to librando in these few places, we
can significantly reduce the overhead of compiler-to-undiversified-
code jumps. For example, we identified a single function in V8
(called FUNCTION_CAST) that returns the memory address of a
JavaScript function; by inserting a single line that calls librando from

FUNCTION_CAST, we completely intercepted all indirect jumps
and function calls from V8 to generated code.

In many cases, functions in the language runtime are imple-
mented in a host language such as C; generated code calls these
functions directly (using the CALL instruction), and control flow
returns from the runtime to generated code not through explicit
branches, but through function returns. A host language compiler
(gcc, for example) generates these returns automatically, so we
cannot manually insert calls to librando for all of them. Also, pro-
grams written in a higher-level language usually do not have direct
access to the native stack, so they cannot change the return ad-
dress through host language code. For this reason, we implemented
a compiler-level extension for LLVM that adds a new function
attribute–rando_hash_return. The compiler adds calls to li-
brando at the return sites of all functions marked with this attribute;
whenever such a function returns, librando checks whether the func-
tion returns to undiversified code or not. As there is no automatic
analysis that can determine whether a runtime function is called
from the runtime or not, the librando user has to find all functions
that can be called from generated code and manually add this flag to
all of them1.

Table 2 shows the two operations that librando provides to the
compiler. Using only this small API, most (if not all) invocations of
the signal handler disappear.

4. EVALUATION
We implemented librando as a dynamic library for Linux and

loaded it into compilers using the LD_PRELOAD mechanism. We
evaluated the performance impact of librando on two JIT compil-
ers: V8 (the JavaScript compiler included in the Google Chrome
browser) and HotSpot (the Java client compiler from Oracle). We
ran all benchmarks on a 2.2GHz Intel Xeon E5-2660 system with 32
GiB of memory, running Ubuntu Linux with kernel version 3.2.0.

First, we benchmarked V8 using the benchmark suite included
with the compiler. These benchmarks stress different parts of the
compiler (integer operation optimizations, floating points optimiza-
tions, inline caches, regular expression implementation) differently,
and the overhead of librando varies accordingly. We sought to de-
termine the performance impact of control flow rewriting (without
diversification), our proposed optimizations, as well as the diversifi-
cation techniques. We first tested librando under the black box model
without optimizations or randomizations, and gradually added them
one by one in the following order: the Return Address Map
(RAM), NOP insertion, then constant blinding. We then imple-
mented white box randomization by manually changing V8 to inter-
act with librando (we changed 70 lines of code in total), then ran all
the benchmarks again to measure the effects of this interaction.

Figure 12 shows the results of our tests. The benchmark suite
reported both a per-test score, as well as the geometric mean of all
benchmarks (the Total column). The overall impact of librando on
the V8 benchmark suite is around 3.5x, with all optimizations and
randomizations enabled; without randomizations, this overhead is
approximately 2.7x. This overhead is not uniform across all bench-
marks; NavierStokes, for example, shows an overhead between
1.2× and 1.4×. The fastest benchmarks (as well as the second
best-performing one, Crypto) have a similar structure where the
impact of our approach is small: nested loops of primitive numeric
operations, where the types of variables are mostly static (either
integers or numbers). Most of the time spent in these benchmarks

1Most such functions in V8 are defined using a macro called
RUNTIME_FUNCTION, so we easily added the flag by searching
for all uses of this macro.



Function Description
rando_redirect(addr) Diversifies (if needed) the code starting at addr and returns the diversified address
rando_hash_return() Checks the return address of the current function and replaces it with the diversified equivalent

Table 2: Application Programming Interface provided by librando.

is in a highly-optimized loop that does not branch or call outside
the loop. The V8 compiler emits very well optimized code once for
such structures, then executes it for a substantial amount of time.
Primitive operations are implemented directly as native instructions,
so they contain very few calls to the runtime.

Second, we benchmarked the HotSpot client compiler for Java,
using the Computer Language Shootout Game benchmarks [8]. Fig-
ure 13 shows the per-benchmark slowdown factor for each bench-
mark, as well as the geometric mean over all four tests. Note that
the overall slowdown is smaller for HotSpot; the main cause for this
is that Java is a statically-typed object-oriented language, where the
data types of values are known ahead-of-time. While Java object
instances can have different types at runtime (based on the program
class hierarchy), primitive values have fixed types and primitive op-
erations can be emitted very efficiently on the first attempt. HotSpot
needs to collect substantially less type information than V8, as so
much is already available, so it requires a lot less time to fully opti-
mize a program. In our Java benchmarks, we see the same behavior
we saw in the NavierStokes test for V8. We see an average
slowdown of about 1.08× (a procentual slowdown of 8%) for rewrit-
ing and around 1.15× (15%) with full diversification. However, as
the impact of rewriting is now much smaller, we start to notice a
significant impact from NOP insertion. Since so much of the bench-
marks’s execution time is now spent in a very small loop (a few
instructions in length), every extra instruction starts to count. On
fannkuchredux, NOP insertion at pNOP = 0.5 almost triples
the overhead (from 15% to almost 40%).

In addition to these tests, we also ran the same benchmarks on
V8 and HotSpot without the Return Address Map optimization. V8
showed an average slowdown factor of 50× (with a maximum of
232× for EarleyBoyer), much higher than the 2.7× slowdown
for the optimized version. The impact on HotSpot is less severe
(about 1.6× slowdown without RAM as opposed to 1.08× with it),
but still substantial. The Return Address Map optimization is
crucial to librando performance. However, we leave further enhance-
ments to our choice and implementation of data structure (cuckoo
hash with hand-implemented lookup) to future work, as some of our
experiments showed that there is still room for some improvements.
We ran the Language Shootout benchmark binarytreesredux
(a recursive binary tree implementation in Java that makes extensive
use of function calls) on HotSpot and observed a slowdown of ap-
proximately 70x, even with the RAM optimization enabled. Further
profiling of both this benchmark and all V8 benchmarks showed
that around 25% of time spent inside librando takes place inside the
RAM lookup function, even with our optimized implementation (28
assembly instructions in total).

Overall, the performance impact depends greatly on the structure
and goal of the HLL program, but also on features of the HLL. As we
have shown, a statically-typed but just-in-time-compiled language
has much lower diversification overhead than a dynamically-typed
program. Another factor to account for is the ratio of time spent in
generated code versus time spent in the compiler or runtime. This
technique has higher overhead when new code is generated with high
frequency (as is the case with dynamically-typed languages), and
on other transitions from generated code to the outside. However,
synthetic CPU-bound benchmarks are not completely representative
of the average workload of a JIT compiler; these benchmarks per-

form very little input/output operations, and the time spent in the
few such operations is small. In contrast, real-world code interacts
much more with the rest of the system, and also makes much more
use of external libraries. When the execution time of a program is
dominated by input and output, or by calls to libraries, the overhead
should be much smaller. Our results show an upper-bound for this
overhead. This upper-bound is also not necessarily significant in a
real-world application; for example, we linked the Chrome browser
to librando and used it to visit various web pages, some only contain-
ing static content and some using JavaScript heavily. We observed
no noticeable degradation in browsing experience.

5. RANDOMIZATION DISCUSSION
We designed librando as a framework for intercepting and securing

dynamically-generated code. While the library only supports two
randomization techniques at present, the design allows for more
to be easily added. Based on our experience implementing the
current randomizations, we believe new ones could be added without
much effort. Examples of possible randomizations include (related
work [9, 14, 22, 29] also discusses and implements some of these
for statically-generated code diversification):

mmap Address Randomization On current operating systems, ASLR
guarantees that addresses returned by mapping functions
(mmap and similar) are randomized. However, this required
that ASLR is supported and enabled on the system. In many
cases, it is possible for the program (or librando) to ask for
a mapping at a specific address, instead of letting the oper-
ating system pick the address. By asking for a randomized
address, librando can add address randomization even on sys-
tems where ASLR is not enabled (some systems also allow
for ASLR to be disabled on a per-program basis, so librando
could be used only on those programs).

Basic Block Reordering Our diversifier can emit basic blocks in
any order (although some orders have better performance than
others, due to spatial locality). While we currently impose
no order on the blocks, the implementation can be extended
to explicitly reorder blocks randomly. This randomization
would be complementary to address randomization and NOP
insertion; the former randomizes the location of the entire ex-
ecutable region of code, basic block reordering would reorder
blocks inside the region and NOP insertion would randomize
instructions inside each block. The techniques would oper-
ate at different levels of granularity to provide even more
randomization of the location of an instruction.

Equivalent Instruction Substitution The x86 instruction set has
several possible encodings for some of the most used instruc-
tions. Randomly replacing some of these encodings with
equivalent ones changes the code without changing its be-
havior. In other cases, it is possible to change one or more
instruction with an equivalent sequence of other instructions,
while also maintaining behavior. Making such changes has a
similar effect on security as NOP insertion.

Register Re-allocation Register operands are encoded inside one
or more bytes of an x86 instruction. By randomizing the
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Figure 12: V8 benchmark results.
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Figure 13: HotSpot benchmark results.

registers allocated to program values, librando can randomize
instruction encoding further. However, this requires a dataflow
analysis stage to identify the unique values stored in physical
registers and their live ranges.

Instruction Reordering As an alternative (or complement) to in-
serting NOPs, we could reorder the instructions of each basic
block. However, this requires that all dataflow dependencies
are preserved; an instruction that generates a value cannot
be moved after instructions that use the value. This requires
running an algorithm to determine all data dependencies.

6. RELATED WORK

6.1 JIT Compiler Protection
One way of improving JIT compiler security is manually adding

security checks and diversity by modifying the compiler. JITDe-
fender [5] hinders JIT spraying attacks by marking all HLL code

pages as non-executable; the compiler changes these pages to ex-
ecutable on entry to the generated code, and changes them back
on return to the compiler or runtime. This effectively prevents
an attacker from redirecting any other branch (other than the in-
tended ones) to dynamically generated code. INSeRT [30] adds
code randomization (concretely, it randomizes the operand of ev-
ery emitted instruction) through a white box approach, requiring
manual changes to the native code emitter inside the compiler. Both
approaches successfully hinder most JIT spraying and code reuse
attacks against HLL code, but require changes to the compiler; they
are not feasible when source code is not available, or the modified
code cannot be deployed. On the other hand, librando can harden a
compiler without requiring any cooperation from the compiler itself.

A similar line of research investigates JIT code generation from
inside a sandbox (where control flow is restricted, and code must
follow certain restrictions). Native Client [31] is a sandboxed ex-
ecution environment which adds static checks to native code that
enforces restrictions on branch targets (such as 16-byte alignment
for all targets). The original implementation of the system did not
allow dynamic code generation at all, but later work [1] added this
feature. The JIT extensions adds an API to the sandbox that a JIT
compiler uses to generate new code; before executing that code, the
sandbox verifies that the new code respects all restrictions imposed
by Native Client, and therefore cannot break out of the sandbox.
Another of their contributions was an in-depth analysis on the differ-
ent types of NOPs to insert, which they use to enforce basic block
alignment; here, we use NOPs for randomization. This is, in some
ways, similar to our white box diversification approach: librando can
be viewed as the sandbox that the JIT compiler runs inside.

6.2 Software Diversity
Cohen [6] first introduced the idea of raising the costs to the

attacker by randomization, and presented several possible ways of
doing this: equivalent instruction substitution, instruction reorder-
ing, extra jump or call insertions and many others. Forrest et al. [7]
later described one of the first practical implementations of these
ideas, randomizing the layout of the program stack and global vari-
ables. They demonstrate that software diversity increases security
(preventing stack-based attacks) with a small performance overhead.

Address space layout randomization (ASLR) is an operating
system-level randomization technique that places parts of the pro-
gram at random addresses. While this is not possible for the en-



tire program (executable code is typically compiled as position-
dependent code that must be loaded at fixed addresses), it is active
for some significant areas like the stack and memory obtained from
mmap. This technique is enabled on all major operating systems
(Windows, Linux, Mac OS) and has significant security benefits.
However, it is not a sufficient security measure against code reuse
attacks, since only the base address of a region is randomized. If the
attacker somehow determines that base address, they gain access to
the rest of the code as well, as the contents remain the same and in
the same positions. Researchers have shown that ASLR has very
low entropy on 32-bit systems [27] (taking just a few minutes to
find the base address by brute force), so ASLR by itself does not
provide strong security. It may be possible to find the randomized
base address even on 64-bit systems through means other than brute
force (for example, through some other information leak in the
application).

A more fine-grained defense against code reuse attacks is code
randomization. Recent years have seen a resurgence of this ap-
proach; related work randomizes code layout at the compiler level [9,
14, 11], virtual machine level [10] or through static binary rewrit-
ing [22, 29]. These implementations use various randomization
techniques to diversify code: instruction and basic block reordering,
register re-allocation, instruction substitution and NOP insertion
(we discuss these techniques in Section 5). Much progress has been
made in this area in a short while, showing that diversification has a
positive impact on software security with negligible impact on per-
formance. However, these defenses only diversify code available to
the compiler or rewriter; even virtual machine-based solutions [10]
rely on some rewriting of the main program binary itself. To our
knowledge, no existing code layout randomization implementation
handles dynamically generated code.

6.3 Binary Rewriting
There is significant research into dynamic rewriting of program

code at run-time. DynamoRIO [4], PIN [17], Valgrind [19], and
Strata [25] all intercept and rewrite program code at run-time, for
purposes such as instrumentation, profiling, identifying program
errors and increasing security The transparency restrictions in their
designs are very similar to the restrictions we described for librando.
However, one difference that sets librando apart from other rewriters
is the limited scope of code rewriting: librando only intercepts and
rewrites dynamically generated code, whereas all other rewriters
handle all of the application code. For static program code, we
envision that a compiler-level diversification solution is used on
statically generated code; librando is only meant to diversify code
which ahead-of-time diversification solution cannot protect. Our
approach allows the JIT compiler and language runtime to run
natively, only intercepting dynamically generated code; all other
solutions would intercept and rewrite everything, starting with the
first instruction in the JIT compiler. Another difference is that
dynamic rewriters are designed as frameworks that allow arbitrary
changes to the intercepted code, which increases their complexity
significantly, whereas the magnitude of our changes to the code
is very small and security-focused (adding NOPs and rewriting
instruction operands). For example, Valgrind disassembles executed
code and converts it to an intermediate representation (IR), which all
code transformations operate on. After all transformations are done,
Valgrind converts this IR back to x86 code; this two-way translation
is not needed by librando.

Existing dynamic binary rewriters have been used for security.
Program Shepherding [15] (implemented using DynamoRIO) and
libdetox [23] add security checks before branches, function calls and
system calls by intercepting and rewriting program blocks. These

checks only allow branches to allowed code addresses, determined
algorithmically or from a given list. This effectively defends against
code reuse attacks (and more), albeit using a different approach
from diversification. Our proposed solution has similar goals, but
different methods: we randomize code layout, restricting whatever
knowledge the attacker possesses of program code. While determin-
istic techniques are successful at hardening applications, they are
also vulnerable in one regard: if an attacker finds a flaw in such a
technique, they are able to attack all hardened targets using this flaw.
Randomization, on the other hand, does not assume safety of the
defense itself; instead, the goal is to restrict any successful attack to
only a small subset of possible targets.

7. CONCLUSIONS
Traditional code injection attacks are becomming increasingly

hard. This prompted the evolution of attacks targeted at JITs: JIT
spraying and code reuse attacks. We describe librando, a binary
rewriting library that hardens JIT compilers, and generally any soft-
ware that generates new code at run-time, against these attacks. Our
library supports randomization of code from a JIT compiler without
requiring any internal changes to the compiler. This approach is
portable to any existing or new compiler, providing increased se-
curity while saving man-months or -years of development effort;
instead of having to redo the effort of implementing security mea-
sures on every JIT, developers may opt to use our library to secure
their compiler. The library can also be used as an interim measure,
providing security at a temporary performance penalty until security
measures are implemented more efficiently in the compiler itself. In
cases where compiler source code is not available, or where recom-
pilation and reinstallation are not feasible, this penalty is preferable
to the loss in security. If compiler source code is available, compiler
developers can improve diversification performance through white
box diversification, by adding calls from the compiler to librando.
We also presented an optimization with substantial impact on per-
formance: the Return Address Map. We successfully tested our
work on two industrial-strength JIT compilers, both widely used at
present. Our evaluation showed that the impact of diversification
depends greatly on the workload; librando provides great security
benefits at low performance cost (around 15%) for statically-typed
languages (where it can be enabled at all times), and at a larger cost
(a 3-4× slowdown) for dynamically-typed languages.

We have extended the reach of automated software diversity to
also encompass code generated by a JIT compiler. While we are
sure that we have not seen the last of JIT specific attacks, librando
gives defenders a quick and comprehensive response.
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