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Abstract

We use the notion of non-commutative Fitting invariants to give a reformulation of the
equivariant Iwasawa main conjecture (EIMC) attached to an extension F/K of totally
real �elds with Galois group G, where K is a global number �eld and G is a p-adic Lie
group of dimension 1 for an odd prime p. We attach to each �nite Galois CM-extension
L/K with Galois group G a module SKu(L/K) over the center of the group ring ZG
which coincides with the Sinnott-Kurihara ideal if G is abelian. We state a conjecture
on the integrality of SKu(L/K) which follows from the equivariant Tamagawa number
conjecture (ETNC) in many cases, and is a theorem for abelian G. Assuming the vanishing
of the Iwasawa µ-invariant, we compute Fitting invariants of certain Iwasawa modules via
the EIMC, and we show that this implies the minus part of the ETNC at p for an in�nite
class of (non-abelian) Galois CM-extensions of number �elds which are at most tamely
rami�ed above p, provided that (an appropriate p-part of) the integrality conjecture holds.

Introduction

Let L/K be a �nite Galois extension of number �elds with Galois group G. D. Burns [Bu01] used
complexes arising from étale cohomology of the constant sheaf Z to de�ne a canonical element
TΩ(L/K) of the relative K-group K0(ZG,R). This element relates the leading terms at zero of Artin
L-functions attached to L/K to natural arithmetic invariants. It was shown that the vanishing of
TΩ(L/K) is equivalent to the ETNC for the pair (h0(Spec(L))(0),ZG) (cf. loc.cit., Th. 2.4.1).
The ETNC is known to be true if L is absolutely abelian as proved by D. Burns and C. Greither
[BG03] with the exclusion of the 2-primary part; M. Flach [Fl02] extended the argument to cover
the 2-primary part as well. If L is in addition totally real, the ETNC was independently proved in
[RW02, RW03]. Some relatively abelian results are due to W. Bley [Bl06]; he showed that if L/K
is a �nite abelian extension, where K is an imaginary quadratic �eld which has class number one,
then the ETNC holds for all intermediate extensions L/E such that [L : E] is odd and divisible
only by primes which split completely in K/Q. Finally, if L/K is a CM-extension and p is odd, the
ETNC at p naturally decomposes into a plus and a minus part; it was shown by the author [Nia]
that the minus part of the ETNC at p holds if L/K is abelian and at most tamely rami�ed above
p, and the Iwasawa µ-invariant vanishes if p divides |G| (and some additional technical condition
is ful�lled). Note that the vanishing of µ is a long standing conjecture of Iwasawa theory; the most
general result is still due to B. Ferrero and L. Washington [FW79] and says that µ = 0 for absolutely
abelian extensions.
These results make heavily use of the validity of the EIMC attached to the extension L+

∞/K, where
L+
∞ is the cyclotomic Zp-extension of L+ which is the maximal real sub�eld of L. Note that the
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EIMC is known for abelian extensions of totally real number �elds with Galois group G such that
G is a p-adic Lie group of dimension 1 (cf. [Wi90a, RW02]). Most recently, Ritter and Weiss [RWa]
have shown that the EIMC (up to its uniqueness statement) holds for arbitrary p-adic Lie groups of
dimension 1 provided that µ vanishes.
In the abelian case, there is a natural formulation of the EIMC in terms of Fitting ideals. The theory
of Fitting ideals also plays an important role within the descent methods used in [BG03, Bl06, Wi90b,
Gr00, Ku03, Nia]. For not necessarily abelian G, we will introduce a reformulation of the EIMC in
terms of non-commutative Fitting invariants which have been introduced by the author [Ni10]. This
is the main purpose of section 2; we give some algebraic preparations on Iwasawa modules and their
Fitting invariants in section 3.
Now let L/K be a Galois CM-extension with Galois group G. Assuming the vanishing of µ and
using the validity of the EIMC due to Ritter and Weiss, we compute Fitting invariants of some
natural Iwasawa modules in section 4; this generalizes results of C. Greither [Gr04]. In section 5, we
introduce a module SKu(L/K) over the center of the group ring ZG which is a non-commutative
analogue of the Sinnot-Kurihara ideal (cf. [Si80], p. 193) and was already implicitly used in [Nib]
and [BJ]. We formulate an integrality conjecture on SKu(L/K) which is implied by the ETNC in
many cases and follows from the results in [Ba77], [Ca79], [DR80] if G is abelian. Assuming the
validity of this integrality conjecture, we generalize a descent method due to A. Wiles [Wi90b] in
the equivariant version of C. Greither [Gr00] to the non-abelian situation; this shows that the EIMC
implies the minus part of the ETNC at p provided that µ vanishes, the integrality conjecture holds
and the rami�cation above p is at most tame (and, as in the abelian case, some technical extra
assumption holds). For a special class of extensions, where no �trivial zeros� occur, the EIMC in fact
implies the relevant part of the integrality conjecture. This generalizes [Nia], Th. 4 to the non-abelian
situation. Moreover, it follows from the results in [Nib] that for the case at hand the EIMC implies
the non-abelian analogues of Brumer's conjecture, of the Brumer-Stark conjecture and of the strong
Brumer-Stark property as formulated in loc.cit., provided that µ = 0 and the integrality conjecture
holds.

1. Preliminaries

1.0.1 K-theory Let Λ be a left noetherian ring with 1 and PMod(Λ) the category of all �nitely
generated projective Λ-modules. We write K0(Λ) for the Grothendieck group of PMod(Λ), and
K1(Λ) for the Whitehead group of Λ which is the abelianized in�nite general linear group. If S is a
multiplicatively closed subset of the center of Λ which contains no zero divisors, 1 ∈ S, 0 ̸∈ S, we
denote the Grothendieck group of the category of all �nitely generated S-torsion Λ-modules of �nite
projective dimension by K0S(Λ). Writing ΛS for the ring of quotients of Λ with denominators in S,
we have the following Localization Sequence (cf. [CR87], p. 65)

K1(Λ) → K1(ΛS)
∂−→ K0S(Λ)

ρ−→ K0(Λ) → K0(ΛS). (1)

In the special case where Λ is an o-order over a commutative ring o and S is the set of all nonzero-
divisors of o, we also write K0T (Λ) instead of K0S(Λ). Moreover, we denote the relative K-group
corresponding to a ring homomorphism Λ → Λ′ by K0(Λ,Λ

′) (cf. [Sw68]). Then we have a Localiza-
tion Sequence (cf. [CR87], p. 72)

K1(Λ) → K1(Λ
′)
∂Λ,Λ′−→ K0(Λ,Λ

′) → K0(Λ) → K0(Λ
′).

It is also shown in [Sw68] that there is an isomorphism K0(Λ,ΛS) ≃ K0S(Λ). For any ring Λ we
write ζ(Λ) for the subring of all elements which are central in Λ. Let G be a �nite group; in the
case where Λ′ is the group ring RG, the reduced norm map nrRG : K1(RG) → ζ(RG)× is injective,
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and there exists a canonical map ∂̂G : ζ(RG)× → K0(ZG,RG) such that the restriction of ∂̂G to
the image of the reduced norm equals ∂ZG,RG ◦ nr−1RG. This map is called the extended boundary
homomorphism and was introduced by Burns and Flach [BF01].

1.0.2 Non-commutative Fitting invariants For the following we refer the reader to [Ni10]. We
denote the set of all m×n matrices with entries in a ring R by Mm×n(R) and in the case m = n the
group of all invertible elements of Mn×n(R) by Gln(R). Let A be a separable K-algebra and Λ be
an o-order in A, �nitely generated as o-module, where o is a complete commutative noetherian local
ring with �eld of quotients K. Moreover, we will assume that the integral closure of o in K is �nitely
generated as o-module. The group ring ZpG of a �nite group G will serve as a standard example.
Let N and M be two ζ(Λ)-submodules of an o-torsionfree ζ(Λ)-module. Then N and M are called
nr(Λ)-equivalent if there exists an integer n and a matrix U ∈ Gln(Λ) such that N = nr(U) ·M ,
where nr : A → ζ(A) denotes the reduced norm map which extends to matrix rings over A in the
obvious way. We denote the corresponding equivalence class by [N ]nr(Λ). We say that N is nr(Λ)-
contained in M (and write [N ]nr(Λ) ⊂ [M ]nr(Λ)) if for all N

′ ∈ [N ]nr(Λ) there exists M ′ ∈ [M ]nr(Λ)
such that N ′ ⊂ M ′. Note that it su�ces to check this property for one N0 ∈ [N ]nr(Λ). We will say
that x is contained in [N ]nr(Λ) (and write x ∈ [N ]nr(Λ)) if there is N0 ∈ [N ]nr(Λ) such that x ∈ N0.

Now let M be a �nitely presented (left) Λ-module and let

Λa
h−→ Λb � M (2)

be a �nite presentation of M . We identify the homomorphism h with the corresponding matrix in
Ma×b(Λ) and de�ne S(h) = Sb(h) to be the set of all b × b submatrices of h if a > b. In the case
a = b we call (2) a quadratic presentation. The Fitting invariant of h over Λ is de�ned to be

FittΛ(h) =

{
[0]nr(Λ) if a < b[
⟨nr(H)|H ∈ S(h)⟩ζ(Λ)

]
nr(Λ)

if a > b.

We call FittΛ(h) a Fitting invariant of M over Λ. One de�nes Fittmax
Λ (M) to be the unique Fitting

invariant ofM over Λ which is maximal among all Fitting invariants ofM with respect to the partial
order �⊂�. If M admits a quadratic presentation h, one also puts FittΛ(M) := FittΛ(h) which is
independent of the chosen quadratic presentation.
Now let C and C ′ be two �nitely generated o-torsion Λ-modules of �nite projective dimension and
denote by [C] and [C ′] the corresponding classes in K0T (Λ), respectively. If ρ([C] − [C ′]) = 0, we
choose x ∈ K1(A) such that ∂(x) = [C]− [C ′] and de�ne (cf. [Ni10], Def. 3.6)

FittΛ(C : C ′) :=
[
⟨nrA(x)⟩ζ(Λ)

]
nr(Λ)

.

1.0.3 Equivariant L-values Let us �x a �nite Galois extension L/K of number �elds with Galois
group G. For any prime p of K we �x a prime P of L above p and write GP resp. IP for the
decomposition group resp. inertia subgroup of L/K at P. Moreover, we denote the residual group
at P by GP = GP/IP and choose a lift ϕP ∈ GP of the Frobenius automorphism at P.
If S is a �nite set of places of K containing the set S∞ of all in�nite places of K, and χ is a (complex)
character of G, we denote the S-truncated Artin L-function attached to χ and S by LS(s, χ) and
de�ne L∗S(0, χ) to be the leading coe�cient of the Taylor expansion of LS(s, χ) at s = 0. Recall that
there is a canonical isomorphism ζ(CG) =

∏
χ∈Irr (G)C, where Irr (G) denotes the set of irreducible

characters of G. We de�ne the equivariant Artin L-function to be the meromorphic ζ(CG)-valued
function

LS(s) := (LS(s, χ))χ∈Irr (G).
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We put L∗S(0) = (L∗S(0, χ))χ∈Irr (G) and abbreviate LS∞(s) by L(s). If T is a second �nite set of places
of K such that S ∩ T = ∅, we de�ne δT (s) := (δT (s, χ))χ∈Irr (G), where δT (s, χ) =

∏
p∈T det(1 −

N(p)1−sϕ−1P |V IP
χ ) and Vχ is a G-module with character χ. We put

ΘS,T (s) := δT (s) · LS(s)♯,

where we denote by ♯ : CG → CG the involution induced by g 7→ g−1. These functions are the
so-called (S, T )-modi�ed G-equivariant L-functions and we de�ne Stickelberger elements

θTS := ΘS,T (0) ∈ ζ(CG).

If T is empty, we abbreviate θTS by θS . Note that the χ-part of θ
T
S vanishes for a non-trivial character

χ if there is an (in�nite) prime p ∈ S such that V
GP
χ ̸= 0. Now let L/K be a Galois CM-extension,

i.e. L is a CM-�eld, K is totally real and complex conjugation induces an unique automorphism j
of L which lies in the center of G. If R is a subring of either C or Cp for a prime p such that 2 is
invertible over R, we put RG− := RG/(1 + j) which is a ring, since the idempotent 1−j

2 lies in RG.
For any RG-module M we de�ne M− = RG− ⊗RGM which is an exact functor since 2 ∈ R×. Now
Stark's conjecture (which is a theorem for odd characters, see [Ta84], Th. 1.2, p. 70) implies

θTS ∈ ζ(QG−). (3)

Note that we actually have to exclude the special case |S∞(L)| = 1 (cf. the proof of [Nia], Prop. 3,
where (3) is shown in the relevant case S = S∞ and T = ∅), but in this situation the extension L/K
is abelian. Here, we write S(L) for the set of places in L which lie above those in S, and S is any
(�nite) set of places of K. Let us �x an embedding ι : C � Cp; then the image of θTS in ζ(QpG−)
via the canonical embedding

ζ(QG−) � ζ(QpG−) =
⊕

χ∈Irrp (G)/∼

χ odd

Qp(χ),

is given by
∑

χ(δT (0, χ
ι−1

) · LS(0, χ̌ι
−1
))ι, where we write χ̌ for the character contragredient to χ.

Here, the sum runs over all Cp-valued irreducible odd characters of G modulo Galois action. Note
that we will frequently drop ι and ι−1 from the notation.

1.0.4 Ray class groups Let T and S be as above. We write clTL for the ray class group of L to
the ray MT :=

∏
P∈T (L) P and oS for the ring of S(L)-integers of L. Let Sf be the set of all �nite

primes in S(L); then there is a natural map ZSf → clTL which sends each prime P ∈ Sf to the
corresponding class [P] ∈ clTL. We denote the cokernel of this map by clTS (L) =: clTS . Further, we
denote the S(L)-units of L by ES and de�ne ETS := {x ∈ ES : x ≡ 1 mod MT }. All these modules
are equipped with a natural G-action and we have the following exact sequences of G-modules

ETS∞ � ETS
v−→ ZSf → clTL � clTS , (4)

where v(x) =
∑

P∈Sf
vP(x)P for x ∈ ETS , and

ETS � ES → (oS/MT )
× ν−→ clTS � clS , (5)

where the map ν lifts an element x ∈ (oS/MT )
× to x ∈ oS and sends it to the ideal class [(x)] ∈ clTS of

the principal ideal (x). Note that the G-module (oS/MT )
× is c.t. (short for cohomologically trivial)

if no prime in T rami�es in L/K. If L/K is a CM-extension, we de�ne

ATS := (Z[12 ]⊗Z clTS )
−.

If S = S∞, we also write ATL and ETL instead of ATS∞ and ET
S∞

. Finally, we suppress the superscript
T from the notation if T is empty. If M is a �nitely generated Z-module and p is a prime, we put
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M(p) := Zp ⊗Z M . In particular, AL(p) is the p-part of the minus class group if p is odd.

2. A reformulation of the equivariant Iwasawa main conjecture

Let p ̸= 2 be a prime and let F/K be a Galois extension of totally real �elds with Galois group G,
where K is a global number �eld, F contains the cyclotomic Zp-extension K∞ of K and [F : K∞]
is �nite. Hence G is a p-adic Lie group of dimension 1 and there is a �nite normal subgroup H of G
such that G/H = Gal(K∞/K) =: ΓK . Here, ΓK is isomorphic to the p-adic integers Zp and we �x
a topological generator γK . We denote the completed group algebra Zp[[G]] by Λ(G) and the total
ring of fractions of Λ(G) by Q(G). If we pick a preimage γ of γK in G, we can choose an integer m
such that γp

m
lies in the center of G. Hence the ring R := Zp[[Γp

m
]] belongs to the center of Λ(G),

and Λ(G) is an R-order in the separable Quot(R)-algebra Q(G). Note that R is isomorphic to the
power series ring Zp[[T ]]. Let S be a �nite set of places of K containing all the in�nite places S∞
and the set Sp of all places of K above p. Moreover, let MS be the maximal abelian pro-p-extension
of F unrami�ed outside S, and denote the Iwasawa module Gal(MS/F ) by XS . If S additionally
contains all places which ramify in F/K, there is a canonical complex

C ·(F/K) : . . .→ 0 → C−1 → C0 → 0 → . . . (6)

of R-torsion Λ(G)-modules of projective dimension at most 1 such that H−1(C ·(F/K)) = XS and
H0(C ·(F/K)) = Zp. We put (cf. [RW04], �4)

fS = fS(F/K) := (C−1)− (C0) ∈ K0T (Λ(G)).

Since ρ(fS) = 0, there is a well de�ned Fitting invariant of fS ; more precisely,

FittΛ(G)(fS) := FittΛ(G)(C
−1 : C0).

Moreover, if F is an exact functor from the category of R-torsion Λ(G)-modules of projective di-
mension at most 1 to itself, we also set

FittΛ(G)(F(fS)) :=
{

FittΛ(G)(F(C−1) : F(C0)) if F is covariant

FittΛ(G)(F(C0) : F(C−1)) if F is contravariant.

We recall some results concerning the algebra Q(G) due to Ritter and Weiss [RW04]. Let Qc
p be an

algebraic closure of Qp and �x an irreducible (Qc
p-valued) character χ of G with open kernel. Choose

a �nite �eld extension E of Qp such that the character χ has a realization Vχ over E. Let η be an
irreducible constituent of res GHχ and set

St(η) := {g ∈ G : ηg = η}, eη =
η(1)

|H|
∑
h∈H

η(h−1)h, eχ =
∑

η|resG
Hχ

eη.

For any �nite �eld extension k of Qp with ring of integers o, we set Qk(G) := k⊗QpQ(G) and Λo(G) =
o[[G]]. By [RW04], corollary to Prop. 6, eχ is a primitive central idempotent of QE(G). By loc.cit.,
Prop. 5 there is a distinguished element γχ ∈ ζ(QE(G)eχ) which generates a procyclic p-subgroup

Γχ of (QE(G)eχ)× and acts trivially on Vχ. Moreover, γχ induces an isomorphism QE(Γχ)
≃−→

ζ(QE(G)eχ) by loc.cit., Prop. 6. For r ∈ N0, we de�ne the following maps

jrχ : ζ(QE(G)) � ζ(QE(G)eχ) ≃ QE(Γχ) → QE(ΓK),

where the last arrow is induced by mapping γχ to κr(γχ)γ
wχ

K , where wχ = [G : St(η)] and κ denotes
the cyclotomic character of G. Note that jχ := j0χ agrees with the corresponding map jχ in loc.cit.
It is shown that for any matrix Θ ∈Mn×n(Q(G)) we have

jχ(nr(Θ)) = det QE(ΓK)(Θ|HomEH(Vχ, Q
E(G)n)). (7)
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Here, Θ acts on f ∈ HomEH(Vχ, Q
E(G)n) via right multiplication, and γK acts on the left via

(γKf)(v) = γK · f(γ−1K v) for all v ∈ Vχ. Hence the map

Det ( )(χ) : K1(Q(G)) → QE(ΓK)
×

[P, α] 7→ det QE(ΓK)(α|HomEH(Vχ, E ⊗Qp P )),

where P is a projective Q(G)-module and α a Q(G)-automorphism of P , is just jχ ◦nr. If ρ is a char-
acter of G of type W , i.e. res GHρ = 1, then we denote by ρ♯ the automorphism of the �eld Qc(ΓK) :=
Qc
p ⊗Qp Q(ΓK) induced by ρ♯(γK) = ρ(γK)γK . Moreover, we denote the additive group generated

by all Qc
p-valued characters of G with open kernel by Rp(G); �nally, Hom∗(Rp(G), Qc(ΓK)

×) is the
group of all homomorphisms f : Rp(G) → Qc(ΓK)× satisfying

f(χ⊗ ρ) = ρ♯(f(χ)) for all characters ρ of type W and
f(χσ) = f(χ)σ for all Galois automorphisms σ ∈ Gal(Qc

p/Qp).

We have an isomorphism

ζ(Q(G))× ≃ Hom∗(Rp(G), Qc(ΓK)
×)

x 7→ [χ 7→ jχ(x)].

By loc.cit., Th. 5 the map Θ 7→ [χ 7→ Det (Θ)(χ)] de�nes a homomorphism

Det : K1(Q(G)) → Hom∗(Rp(G), Qc(ΓK)
×)

such that we obtain a commutative triangle

K1(Q(G))

nr

yyrrrrrrrrrrrrrr
Det

((QQQQQQQQQQQQQQQQQQQ

ζ(Q(G))× ∼ // Hom∗(Rp(G), Qc(ΓK)×).

(8)

We put u := κ(γK) and �x a �nite set S of places of K containing S∞ and all places which ramify
in F/K. Each topological generator γK of ΓK permits the de�nition of a power series Gχ,S(T ) ∈
Qc
p ⊗Qp Quot(Zp[[T ]]) by starting out from the Deligne-Ribet power series for abelian characters of

open subgroups of G (cf. [DR80]). One then has an equality

Lp,S(1− s, χ) =
Gχ,S(u

s − 1)

Hχ(us − 1)
,

where Lp,S(s, χ) denotes the p-adic Artin L-function, and where, for irreducible χ, one has

Hχ(T ) =

{
χ(γK)(1 + T )− 1 if H ⊂ ker(χ)
1 otherwise.

Now [RW04], Prop. 11 implies that

LK,S : χ 7→
Gχ,S(γK − 1)

Hχ(γK − 1)

is independent of the topological generator γK and lies in Hom∗(Rp(G), Qc(ΓK)
×). Diagram (8)

implies that there is a unique element ΦS ∈ ζ(Q(G))× such that

jχ(ΦS) = LK,S(χ).

The EIMC as formulated in [RW04] now states that there is a unique ΘS ∈ K1(Q(G)) such that
Det (ΘS) = LK,S and ∂(ΘS) = fS . The EIMC without its uniqueness statement hence asserts
that there is x ∈ K1(Q(G)) such that ∂(x) = fS and Det (x) = LK,S ; now diagram (8) implies
that nr(x) = ΦS , and thus ΦS is a generator of FittΛ(G)(fS). Conversely, if ΦS is a generator of
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FittΛ(G)(fS), then there is an element x ∈ K1(Q(G)) such that ∂(x) = fS and ⟨nr(x)⟩ζ(Λ(G)) is
nr(Λ(G))-equivalent to ⟨ΦS⟩ζ(Λ(G)), i.e. there is an u ∈ K1(Λ(G)) such that nr(x) = nr(u) · ΦS . But
then ΘS := x · u−1 has ∂(ΘS) = ∂(x) = fS and Det (ΘS) = LK,S , since nr(ΘS) = ΦS . We have
shown that the following conjecture is equivalent to the EIMC without the uniqueness of ΘS .

Conjecture 2.1. The element ΦS ∈ ζ(Q(G))× is a generator of FittΛ(G)(fS).

The following theorem is due to Ritter and Weiss [RWa]:

Theorem 2.2. Conjecture 2.1 is true provided that Iwasawa's µ-invariant vanishes.

We also discuss Conjecture 2.1 within the framework of the theory of [CFKSV05], �3. For this,
let

π : G → Gln(oE)

be a continuous homomorphism, where oE denotes the ring of integers of E and n is some integer
greater or equal to 1. There is a ring homomorphism

Φπ : Λ(G) →Mn×n(Λ
oE (ΓK)) (9)

induced by the continuous group homomorphism

G → (Mn×n(oE)⊗Zp Λ(ΓK))
× = Gln(Λ

oE (ΓK))

σ 7→ π(σ)⊗ σ,

where σ denotes the image of σ in G/H = ΓK . By loc.cit., Lemma 3.3 the homomorphism (9)
extends to a ring homomorphism

Φπ : Q(G) →Mn×n(Q
E(ΓK))

and this in turn induces a homomorphism

Φ′π : K1(Q(G)) → K1(Mn×n(Q
E(ΓK))) = QE(ΓK)×.

Let aug : ΛoE (ΓK) � oE be the augmentation map and put p = ker(aug ). Writing ΛoE (ΓK)p
for the localization of ΛoE (ΓK) at p, it is clear that aug naturally extends to a homomorphism
aug : ΛoE (ΓK)p → E. One de�nes an evaluation map

ϕ : QE(ΓK) → E ∪ {∞}

x 7→
{

aug (x) if x ∈ ΛoE (ΓK)p
∞ otherwise.

If Θ is an element of K1(Q(G)), we de�ne Θ(π) to be ϕ(Φ′π(Θ)). We need the following lemma.

Lemma 2.3. If π = πχ is a representation of G with character χ and r ∈ N0, then

K1(Q(G))
Φ′πχκr //

nr

��

K1(Mn×n(Q
E(ΓK)))

nr≃

��
ζ(Q(G))×

jrχ // QE(ΓK)
×

commutes. In particular, we have nr ◦ Φ′πχ = Det ( )(χ).

Proof. We recall that the map jχ induces a �eld extension QE(ΓK)/Q
E(Γχ), where Q

E(Γχ) =
ζ(QE(G)eχ). The results in [RW04] imply that in fact QE(ΓK) is a splitting �eld of QE(G)eχ and
we thus have an isomorphism

QE(ΓK)⊗QE(Γχ) Q
E(G)eχ ≃Mn×n(Q

E(ΓK)). (10)
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Since 1⊗ γχ = γ
wχ

K ⊗ 1 in QE(ΓK)⊗QE(Γχ)Q
E(G)eχ and πχ(γχ)⊗ γχ = 1⊗ γwχ

K in Mn×n(Q
E(ΓK)),

the homomorphism Φπχ induces a realization of the above isomorphism (10). Hence nr ◦Φ′πχ is just

the reduced norm on QE(G)eχ which takes values in QE(Γχ)
jχ
� QE(ΓK). This shows the lemma in

the case r = 0. For arbitrary r, we similarly have jrχ(nr(Θ)) = detQE(ΓK)(Θ|Vχ(r)) = nr(Φ′πχκr(Θ)),
where Θ ∈ K1(Q(G)) and Vχ(r) is the r-th Tate twist of the absolutely irreducible (right) module
Vχ := HomEH(Vχ, Q

E(G)) over QE(ΓK)⊗QE(Γχ) Q
E(G).

Conjecture 2.1 now implies that there is an element ΘS ∈ K1(Q(G)) such that ∂(ΘS) = fS and
for any r > 1 divisible by p− 1 we have

ΘS(πχκ
r) = ϕ(jrχ(ΦS)) = LS(1− r, χ).

3. Algebraic preparations

Let p ̸= 2 be a prime and let G be a p-adic Lie group of dimension 1, i.e. there is a �nite normal
subgroup H of G such that Γ := G/H is isomorphic to Zp. For any ring Λ and any Λ-module M , we
write pdΛ(M) for the projective dimension ofM over Λ. For any �nitely generated Λ(G)-moduleM ,
we write µ(M) for the Iwasawa µ-invariant of M . As before, let Γ′ ≃ Zp be a subgroup of G which
is central in G and put R = Zp[[Γ′]].

Proposition 3.1. Let M be a �nitely generated R-torsion Λ(G)-module which has no non-trivial
�nite submodule, has µ(M) = 0 and is cohomologically trivial as H-module. Then

pdΛ(G)(M) 6 1.

Proof. For any topological ring Λ, we denote the category of compact Λ-modules by C(Λ) and the
category of discrete Λ-modules by D(Λ). We have a functor

HomΛ(G)( , ) : C(Λ(G))×D(Λ(G)) −→ D(Zp)

and we can use either projective resolutions in C(Λ(G)) or injective resolutions in D(Λ(G)) to de�ne
functors

ExtiΛ(G)( , ) : C(Λ(G))×D(Λ(G)) −→ D(Zp), i > 0.

By [NSW00], Prop. (5.2.11), we have to show that Ext2Λ(G)(M,N) = 0 for all simple N . We consider

the spectral sequence (cf. loc.cit., Ch. V, �2, Ex. 4):

Ei,j
2 = H i(ΓK , ExtjZpH

(M,N)) =⇒ Ei+j = Exti+jΛ(G)(M,N).

Since M has no non-trivial �nite submodules and µ(M) = 0, it is free and �nitely generated as
Zp-module. Moreover, it is c.t. as H-module by assumption and hence ZpH-projective. This implies

Ei,j2 = 0 for j > 0. Since N and hence HomZpH(M,N) are p-torsion and the cohomological p-

dimension of ΓK is 1, we also have Ei,j2 = 0 if i > 1. This implies Ext2Λ(G)(M,N) = E2 ≃ E2,0
2 =

0.

Proposition 3.2. Let M be a �nitely generated R-torsion Λ(G)-module such that pdΛ(G)(M) 6 1
and µ(M) = 0. Assume that the Fitting invariant FittQpΛ(G)(Qp ⊗M) of Qp ⊗M over QpΛ(G) is
generated by an element Φ ∈ nr(K1(Λ(p)(G))), where the subscript (p) means localization at the
prime (p). Then also

FittΛ(G)(M) = [⟨Φ⟩ζ(Λ(G))]nr(Λ(G)).

Proof. By [Ni10], Lemma 6.2 the module M admits a quadratic presentation over Λ(G) such that
FittΛ(G)(M) exists and is generated by nr(ψ), where ψ : Λ(G)m → Λ(G)m has cokernel M . Since M
is torsion, ψ becomes an isomorphism if we tensor with Q(G), i.e. ψ ∈ Mm×m(Λ(G)) ∩Glm(Q(G)).
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Note that nr(QpΛ(G))-equivalence is just equality, since the reduced norm maps K1(QpΛ(G)) into
ζ(QpΛ(G))×. Hence by assumption

⟨Φ⟩ζ(QpΛ(G)) = ⟨nr(ψ)⟩ζ(QpΛ(G)),

and there is a unique x ∈ ζ(QpΛ(G))× with nr(ψ) = x·Φ. Let us denote the integral closure of ζ(Λ(G))
in ζ(Q(G)) by Z. Then the reduced norm maps K1(Λ(G)) into Z× and K1(Λ(p)(G)) into Z×(p). We have

shown that there is a natural number N such that pN · x ∈ Z. Since the µ-invariant of M vanishes,
the map ψ becomes an isomorphism after localization at (p) and hence nr(ψ) ∈ nr(K1(Λ(p)(G))).
Since, by assumption, this is also true for Φ, we �nd x ∈ nr(K1(Λ(p)(G))) ⊂ Z×(p). Thus we can choose
a Weierstraÿ polynomial f such that f ·x ∈ Z and hence x ∈ Z by Lemma 3.3 below. Since the same
observations hold for x−1, we actually have x ∈ Z×. Now [RW05], Th. B implies that

Hom∗(Rp(G),Λc(ΓK)
×) ∩Det (K1(Λ(p)(G))) ⊂ Det (K1(Λ(G))),

where Λc(ΓK) = Zc
p ⊗Zp Λ(ΓK) and Zc

p denotes the integral closure of Zp in Qc
p. Note that the

HOM∗-group used in loc.cit. is contained in Hom∗(Rp(G),Λc(ΓK)×), but this does not a�ect the
above intersection, since any element in the image of Det ful�lls all the conditions which occur in
the de�nition of HOM∗ (cf. [RW05], �1). Since Hom∗(Rp(G),Λc(ΓK)

×) corresponds to Z× under the
identi�cation of diagram (8) (cf. [RW04], Remark H), we have shown that

x ∈ Z× ∩ nr(K1(Λ(p)(G))) ⊂ nr(K1(Λ(G))).

Hence the ζ(Λ(G))-modules generated by Φ and nr(ψ) are nr(Λ(G))-equivalent.

We have used the following easy lemma.

Lemma 3.3. Let Λ be a ring, x ∈ Λ and y ∈ ζ(Λ). Assume that y is a nonzerodivisor and x is a
nonzerodivisor modulo y. Let S be a multiplicatively closed subset of ζ(Λ) which contains no zero
divisors, 1 ∈ S, 0 ̸∈ S and let Ψ ∈ ΛS such that x ·Ψ ∈ Λ and y ·Ψ ∈ Λ. Then also Ψ ∈ Λ.

Proof. The equation x · Ψ · y = x · y · Ψ implies that y · Ψ ≡ 0 mod y, since x is a nonzerodivisor
modulo y. Hence there is λ ∈ Λ such that y ·Ψ = y ·λ. But y is a nonzerodivisor and thus λ = Ψ.

If M is an Iwasawa torsion module, we write α(M) for the Iwasawa adjoint of M . If H is a
�nite group andM is a Zp[H]-module, we denote the Pontryagin dual Hom(M,Qp/Zp) ofM byM∨

which is equipped with the natural H-action (hf)(m) = f(h−1m) for f ∈M∨, h ∈ H and m ∈M .

Lemma 3.4. Let U be a subgroup of G of �nite index.

i) For any Λ(U)-module N , we have an isomorphism ind GU (N(1)) ≃ (ind GUN)(1).

ii) If M = ind GUZp, then α(M) ≃M .

Proof. Let us put N ′ := N(1). Then ind GUN
′ =

⊕
σN

′
σ, where σ runs through a set of (left) coset

representatives, and where N ′σ = N ′ as sets and gn′ = uσn
′ ∈ N ′σ̃ if gσ = σ̃uσ for g ∈ G, uσ ∈ U ,

n′ ∈ N ′σ; similarly, ind GUN =
⊕

σNσ. An easy computation shows that⊕
σ

N ′σ −→ (
⊕

Nσ)(1),
∑
σ

n′σ 7→
∑
σ

κ(σ)n′σ

is an isomorphism of Λ(G)-modules. This shows (i). For (ii) we compute

α(M) = lim
←
n

Hom(M/pn,Qp/Zp)

= lim
←
n

(ind GUZp/p
n)∨

≃ lim
←
n

ind GUZp/p
n

=M.
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We point out that Lemma 3.4 and Proposition 3.2 are non-abelian generalizations of [Gr04],
Lemma 1 and Lemma 2, respectively.

4. Fitting invariants of Iwasawa modules

In this section we �x the following setting: let L/K be a Galois CM-extension of number �elds with
Galois group G, i.e. K is totally real and L is a totally imaginary quadratic extension of a totally
real number �eld. This �eld is the maximal real sub�eld of L and will be denoted by L+. Complex
conjugation on C induces an automorphism j on L which is independent of the embedding into C
and lies in the center of G. Let p ̸= 2 be a prime and assume that j lies in the decomposition group
GP for each prime P of L above p which is wildly rami�ed in L/K (we will call this condition almost

tame above p). In particular, we consider all Galois CM-extension wich are at most tamely rami�ed
above p.
We choose a prime p0 - p of K which is unrami�ed in L/K and de�ne a set of places of K by

T = T0 := {p0} ∪ Sram \ (Sram ∩ Sp).

We may choose p0 such that ETS is torsionfree. Then ATL(p),the p-part of the minus ray class group

clT,−L , is c.t. as G-module by [Nia], Th. 1.

Let L∞ and K∞ be the cyclotomic Zp-extensions of L and K, respectively. We denote the Galois
group of K∞/K by ΓK . Hence ΓK is isomorphic to Zp, and we �x a topological generator γK .
Furthermore, we denote the n-th layer in the cyclotomic extension K∞/K by Kn such that Kn/K
is cyclic of order pn. Accordingly, we set ΓL = Gal(L∞/L) with a topological generator γL whose
restriction to K∞ is γp

a

K for an appropriate integer a. We enumerate the intermediate �elds starting
with L = La such that Ln/L is cyclic of order pn−a. This is because in this case Ln is the smallest
intermediate �eld of L∞/L which lies above Kn. It may also be convenient to de�ne Ln = L if n 6 a.
We put

X−T := lim
←
ATLn

(p).

We denote the Galois group of L∞/K by G, hence G = H o Γ, where H is a subgroup of G and
Γ is topologically generated by a preimage γ of γK under the canonical epimorphism G � G/H =
ΓK . Then X−T is a �nitely generated R-torsion Λ(G)− := Λ(G)/(1 + j)-module, where as before
R = Zp[[Γ′]] with Γ′ ≃ Zp central in G. Let L′ be the maximal sub�eld of L∞ �xed by Γ. Since
L′ is contained in Ln if n is su�ciently large, the layers of the cyclotomic extensions of L and L′

agree for n >> 0 and ATLn
(p) is Gal(Ln/Kn)-c.t., since each of the extensions Ln/Kn inherits the

required properties from the extension L/K. Hence X−T is c.t. as H-module and has no nontrivial
�nite submodule (as can be seen by the same argument as in the �rst step of the proof of [Gr04],
Prop. 7) such that Proposition 3.1 implies the following result.

Proposition 4.1. If L/K is almost tame above p and the Iwasawa µ-invariant µ(X−T ) vanishes,
then the projective dimension of X−T over Λ(G)− is at most 1.

Now let S be a �nite set of places of K containing S∞ (but not necessarily Sp) and let MS be
the maximal abelian pro-p-extension of L∞ unrami�ed outside S. Moreover, letM∞ be the maximal
abelian unrami�ed extension of L∞ and de�ne Λ(G)-modules

XS := Gal(MS/L∞), Xstd := Gal(M∞/L∞).

Hence Xstd is the �standard� Iwasawa module which is the projective limit of the p-parts of the class

10



On the equivariant Tamagawa number conjecture in tame CM-extensions, II

groups in the cyclotomic tower of L. If S = S∞∪Sp, we also write X{p} instead of XS∞∪Sp . Moreover,

if S = T ∪S∞, there is an isomorphism X−T∪S∞ ≃ X−T . Following Greither [Gr04], we will also de�ne
a �dual� Iwasawa module Xdu: There is a minimal integer n0 such that all the p-adic places ramify
in L∞/Ln0 . We denote the p-class �eld of Ln0 by Mn0 and put Xdu := Gal(M∞/Mn0L∞). So Xdu

is a submodule of Xstd of �nite index and the subscript �du� is chosen because of the following
description of X−du in the case ζp ∈ L, where ζp denotes a primitive p-th root of unity (cf. [Gr04],
beginning of �2 - note that G is assumed to be abelian in loc.cit., but in all cases, where we will
cite [Gr04], this assumption is not necessary; moreover, [Gr04] usually assumes L∩K∞ = K, but as
mentioned in the introduction and explained in more detail in �7 of loc.cit. this assumption is just
in order to keep the arguments simple):

X−du ≃ α(X+
{p})(1).

If S contains all places which ramify in L∞/K, we de�ne an Iwasawa module ZS = ZL,S by

ZS = α(X+
S )(1) if ζp ∈ L,

ZS = (ZL(ζp),S)∆ otherwise,

where ∆ = Gal(L(ζp)/L). Note that this de�nition slightly di�ers from the de�nition of the corre-
sponding module in loc.cit. But since p - |∆|, multiplication by N∆ :=

∑
δ∈∆ δ induces an isomor-

phism (ZL(ζp),S)∆ ≃ (ZL(ζp),S)
∆. For any prime p of K, we choose a prime ℘ in L∞ above p and put

P = ℘ ∩ L. Setting Zp := ind GG℘Zp, class �eld theory gives an exact sequence (cf. loc.cit., sequence

(1); for the proof replace loc.cit., Lemma 1 (i) by Lemma 3.4 (i)):⊕
p∈S\Sp

Zp(1)
+ � X+

S � X+
{p} (11)

We claim that this sequence induces an exact sequence

X−du � ZS �
⊕

p∈S\Sp

Z−p . (12)

This is clear if ζp ∈ L, since taking Iwasawa adjoints is exact on sequences of torsion Iwasawa
modules without �nite submodules and α(Zp(1))(1) = α(Zp) = Zp by Lemma 3.4 (ii). If ζp ̸∈ L, we
put L′ = L(ζp), L

′
∞ = L∞(ζp) etc. Since p - |∆|, the p-class groups of the layers in the cyclotomic

tower are c.t. as ∆-modules and we have thus isomorphisms AL′n(p)∆ ≃ ALn(p) which combine to
induce an isomorphism (X ′−std)∆ ≃ X−std. We have a commutative diagram

(X ′−du)∆
� � //

��

(X ′−std)∆
// //

≃

��

AL′n0
(p)∆

≃

��
X−du

� � // X−std
// // ALn0

(p)

Hence also the leftmost vertical arrow is an isomorphism and we obtain (12) in general, as we may
adjoin ζp �rst and then apply ∆-coinvariants to sequence (12) for L′.
Let x 7→ ẋ be the automorphism on Λ(G) induced by g 7→ κ(g)g−1 for g ∈ G. Let G+ := G/⟨j⟩ =
Gal(L+

∞/K) and let ΦS ∈ ζ(Q(G+))× be the unique element satisfying jχ(ΦS) = LK,S(χ) for each
even character of G with open kernel. We de�ne idempotents

e− =
1− j

2
, e+ =

1 + j

2
.

The following is a non-abelian generalization of [Gr04], Th. 2.
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Theorem 4.2. Assume that the Iwasawa µ-invariant attached to the extension L+
∞/K vanishes. Let

S be a �nite set of places of K which contains S∞ and all places which ramify in L∞/K.

i) If ζp ∈ L, then

Fittmax
Λ(G)(ZS) = Fittmax

Λ(G)(Zp(1))
♯[⟨Φ̇Se− + e+⟩]nr(Λ(G)).

ii) If ζp ̸∈ L, then pdΛ(G)(ZS) 6 1 and

FittΛ(G)(ZS) = [⟨Φ̇Se− + e+⟩]nr(Λ(G)).

Proof. Assume that ζp ∈ L. The canonical complex (6) for the extension L+
∞/K gives an exact

sequence

X+
S � C−1 → C0 � Zp.

Applying the functor α( )(1) to this sequence yields

Zp(1) � α(C0)(1) → α(C−1)(1) � ZS . (13)

Now [Ni10], Prop. 6.3 (ii) implies the �rst equality in

Fittmax
Λ(G)(ZS) = Fittmax

Λ(G)(Zp(1))
♯ · FittΛ(G)(α(fS)(1))

= Fittmax
Λ(G)(Zp(1))

♯ · [⟨Φ̇Se− + e+⟩]nr(Λ(G)).

We have to explain the second equality. Since µ = 0, the EIMC holds for L+
∞/K and hence

FittΛ(G+)(fS) is generated by ΦS . It su�ces to prove the following: Assume that C is a �nitely
generated R-torsion Λ(G+)-module of projective dimension at most 1 which has no nontrivial �-
nite submodule and that Φ is a generator of FittΛ(G+)(C); then FittΛ(G)(α(C)(1)) is generated by

Φ̇e− + e+. To see this, let ψ : Λ(G+)m → Λ(G+)m be a quadratic presentation of C such that
nr(ψ) = Φ. By [Ni10], Prop. 6.3 (i) resp. its proof it follows that ψT,♯ is a �nite presentation of α(C)
and nr(ψT,♯) = Φ♯ is a generator of FittΛ(G+)(α(C)), where ψ

T denotes the transpose of ψ. Now
Λ(G+) ≃ Λ(G)e+ and the involution g 7→ κ(g−1)g induces an isomorphism between the �rst Tate
twist of Λ(G+) and Λ(G)e−. We obtain a quadratic presentation ψ̇T : (Λ(G)e−)m → (Λ(G)e−)m of
α(C)(1) regarded as Λ(G)e−-module. Since nr(ψ̇T ) = Φ̇ and α(C)(1) is trivial on plus parts, we are
done.
If ζp ̸∈ L, we again put L′ = L(ζp). We apply ∆ = Gal(L′/L)-coinvariants to sequence (13) (for L′)
and obtain an exact sequence

α(C0)(1)∆ � α(C−1)(1)∆ � ZS .

Hence ZS has projective dimension at most 1 and

FittΛ(G)(ZS) = FittΛ(G)(α(fS((L
′
∞)+/K))(1)∆)

= FittΛ(G)(α(fS(L
+
∞/K))(1))

= [⟨Φ̇Se− + e+⟩]nr(Λ(G)),

where the second equality follows from [RW04], Prop. 12, whereas the last equality is the EIMC.

As in [Gr04], Prop. 6 we have an exact sequence

Zp(1) �
⊕
p∈T

Zp(1)
− → X−T � X−std (14)

if ζp ∈ L, and without the leftmost term if ζp ̸∈ L. For p ̸∈ Sp we put

Ξp := εp
κ(ϕ℘)− ϕ℘
1− ϕ℘

+ 1− εp ∈ Q(G℘), where εp = |IP|−1NIP ∈ QpH,

ξp := nr(1⊗ Ξp).
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Here, ϕ℘ ∈ G and IP are the Frobenius and the inertia subgroup at a chosen prime ℘ in L∞ above
p, respectively; note that the inertia subgroup depends only on the prime P in L above p, since p

lies not above p and is thus unrami�ed in the cyclotomic extension. The element 1⊗ Ξp belongs to
Q(G) = ind GG℘Q(G℘). Note that ϕ℘ and IP depend on the choice of ℘, but ξp does not. If S is a �nite
set of places of K containing Sp ∪ S∞, we put

ΨS :=
∏

p∈S\Sp

ξp · Φ̇Se− ∈ ζ(Q(G)−).

Proposition 4.3. The Fitting invariant FittQpΛ(G)−(QpX−T ) is generated by ΨT∪Sp . In particular,
ΨT∪Sp ∈ ζ(QpΛ(G)−).

Proof. We �rst observe that QpΛ(G) is a maximal Qp ⊗R-order in Q(G). In this case every �nitely
generated QpΛ(G)-module has a quadratic presentation, and taking Fitting invariants is multiplica-
tive on short exact sequences of Qp⊗R-torsion QpΛ(G)-modules. It su�ces to assume the EIMC in
the �maximal order case� which is a theorem ([RW04], Th. 16; cf. also loc.cit., remark H), and we
may use Theorem 4.2 over QpΛ(G) without assuming µ = 0. We put i = −1 if ζp ∈ L and i = 0
otherwise. Since QpXdu = QpXstd, the exact sequences (12) and (14) imply that

Fitt(QpX−T ) = Fitt(QpZ
−
T∪Sp

) · Fitt(Qp(1))
i ·
∏
p∈T

Fitt(QpZ
−
p )−1 · Fitt(QpZp(1)

−)

= ⟨Φ̇T∪Spe
−⟩ ·

∏
p∈T

Fitt(QpZ
−
p )−1 · Fitt(QpZp(1)

−),

where all Fitting invariants are taken over QpΛ(G)− and the second equality holds by Theorem 4.2.
The Fitting invariant of QpZ

−
p is generated by nr(1 ⊗ xp)e

− with xp = 1 − εp + (1 − ϕ℘)εp, since

QpZp = ind GG℘Qp and Qp is isomorphic to QpΛ(G℘)/xp as QpΛ(G℘)-module. Likewise, the Fitting

invariant of QpZp(1)
− is generated by nr(1⊗ ẋp)e

−. We obtain

Fitt(QpZ
−
p )−1 · Fitt(QpZp(1)

−) = ⟨nr(1⊗ (ẋpx
−1
p ))e−⟩ = ⟨ξpe−⟩.

We now prove the non-abelian analogue of [Gr04], Th. 6.

Theorem 4.4. Let L/K be almost tame above p. Assume that the Iwasawa µ-invariant attached
to the extension L+

∞/K vanishes. Then ΨT∪Sp generates the Fitting invariant FittΛ(G)−(X
−
T ).

Proof. Since µ = 0, the Λ(G)−-module X−T has projective dimension at most 1 by Proposition 4.1.
Since it is also R-torsion and �nitely generated and we know that ΨT∪Sp generates the Fitting
invariant FittQpΛ(G)−(QpX−T ) by Proposition 4.3, we wish to apply Proposition 3.2 such that it
remains to show that ΨT∪Sp ∈ nr(K1(Λ(p)(G)−)).
By µ = 0 again, the validity of the EIMC implies that there is an element Θ+ ∈ K1(Λ(p)(G+)) such
that nr(Θ+) = ΦT∪Sp . In fact, this is equivalent to the EIMC by [RW05], Th. A, but it is clearly
necessary, since fT∪Sp vanishes if we localize at (p). The discussion in the proof of Theorem 4.2 shows

that there is a matrix Θ ∈ Gln(Λ(p)(G)−) such that nr(Θ) = Φ̇T∪Sp . Now it su�ces to show that
ξpe
− ∈ nr(K1(Λ(p)(G)−)) for p ∈ T . For this, �x a prime p ∈ T and let q be the the rational prime

below p. We denote the q-Sylow subgroup of IP by RP and de�ne an idempotent rp = |RP|−1NRP

which lies in ZpH, since q ̸= p. Let a be a generator of IP/RP and choose a �xed lift of the Frobenius
automorphism ϕ℘ in G℘ which we also denote by ϕ℘. Then 1 − ϕ℘ is a nonzerodivisor and we may
de�ne

Ξ′p := (1− ϕ℘)
−1(b− ϕ℘)rp + 1− rp ∈ Λ(p)(G℘),
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where b :=
∑qp−1

i=0 ai and qp = κ(ϕ℘). We claim that nr(Ξ′p) = nr(Ξp). By [Ch85], Lemma p. 369 we
have ϕ℘a = aqpϕ℘. Thus using the relations rpεp = εp and (b − ϕ℘)εp = (qp − ϕ℘)εp, we compute
that

Ξ−1p Ξ′p = εp +
(
(1− ϕ℘)

−1(b− ϕ℘)rp + 1− rp
)
(1− εp).

We de�ne a unit in Q(G) by

βp := εp + ((a− 1)rp + (1− rp)) (1− εp).

Then one easily computes that Ξ−1p Ξ′pβp = (ϕ−1℘ − 1)−1βp(ϕ
−1
℘ − 1); hence Ξ−1p Ξ′p is a commutator

and has reduced norm equal to 1.
To conclude the proof it su�ces to show that Ξ′p is in Λ(p)(G℘)×. Since 1−ϕ℘ is a unit in Λ(p)(G℘), we
have to show that b−ϕ℘ is invertible in Λ(p)(G℘/RP) ≃ Λ(p)(G℘)rp. We thus may assume that RP is

trivial. Now let ep be the order of IP and let t be the order of qp mod ep; we put d := e−1p

∑ep−1
i=0 ai.

We claim that t−1∏
j=0

ϕj℘bϕ
−j
℘

− 1 = (qtp − 1)d. (15)

For the proof observe that ϕ℘(a−1)ϕ−1℘ = b(a−1) implies that ϕi℘(a−1)ϕ−i℘ =
(∏i−1

j=0 ϕ
j
℘bϕ

−j
℘

)
(a−1)

by induction on i. Setting i = t we see that the left hand side of equation (15) annihilates a− 1, as
ϕt℘ and a commute. But the ZpIP-annihilator of a − 1 is generated by epd such that the left hand
side equals w ·d for an appropriate w ∈ Zp. The claim follows, since both sides of equation (15) have
the same image (namely qtp − 1) under the augmentation map.
Now let H be the open subgroup of index t in G℘ containing a and ϕt℘. Then Λ(p)(H) is commutative
and Λ(p)(G℘) has Λ(p)(H)-basis ϕi℘, 0 6 i 6 t− 1. We need to solve the equation

1 = (

t−1∑
i=0

ciϕ
i
℘)(b− ϕ℘)

=

(
t−1∑
i=0

ci(ϕ
i
℘bϕ

−i
℘ )ϕi℘

)
−

t−1∑
i=0

ciϕ
i+1
℘

=
t−1∑
i=1

(ciϕ
i
℘bϕ

−i
℘ − ci−1)ϕ

i
℘ + (c0b− ct−1ϕ

t
℘)

for ci ∈ Λ(p)(H); that is ci−1 = ciϕ
i
℘bϕ

−i
℘ for 1 6 i < t and c0b = 1+ ct−1ϕ

t
℘. From the �rst relations

we obtain cs = ct−1
∏t−1
j=s+1 ϕ

j
℘bϕ

−j
℘ for 0 6 s < t by downward induction on s; setting s = 0 yields

c0b = ct−1

t−1∏
j=0

(ϕj℘bϕ
−j
℘ ) = ct−1(1 + (qtp − 1)d),

where the second equality is equation (15). Comparing with the second relation gives

ct−1(1 + (qtp − 1)d− ϕt℘) = 1

such that we have to show that 1+(qtp−1)d−ϕt℘ lies in Λ(p)(H)×. We may consider suitable multiples
of this element such that it su�ces to check that

(1 + (qtp − 1)d)p−1 − (ϕt℘)
p−1 = 1 + (q

(p−1)t
p − 1)d− ϕ(p−1)t℘ = (1− ϕ(p−1)t℘ ) + (q

(p−1)t
p − 1)d

lies in Λ(p)(H)×, and likewise that u := (1−ϕ(p−1)t℘ )2−(q
(p−1)t
p −1)2d is in Λ(p)(H)×. But (q

(p−1)t
p −1)d

lies in Λ(p)(H) and p divides (q
(p−1)t
p − 1); thus u ≡ (1− ϕ

(p−1)t
℘ )2 mod pΛ(p)(H) with 1− ϕ

(p−1)t
℘ ∈

Λ(p)(H)×; hence u ∈ Λ(p)(H)× as desired.

14
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We close this section with a few preparations for the Galois descent. If χ is a character of G with
open kernel, we de�ne

Sχ := {p ⊂ K|IP ̸⊂ ker(χ)} .

Lemma 4.5. Let S be a �nite set of primes of K containing S∞. Let χ be an even character of G
with open kernel and put Σ := S ∪ Sp and Σχ := (S ∩ Sχ) ∪ Sp.
i) If χ is of type S (i.e. Γ ⊂ ker(χ)), we have an equality

Lp,Σ(s, χ) = Lp,Σχ(s, χ)
∏

p∈Σ\Σχ

det(1− σ℘u
−scp |V IP

χω−1), (16)

where we write ϕ℘ = σ℘ · γcp with σ℘ ∈ H, cp ∈ Zp, and where ω denotes the Teichmüller
character.

ii) We have an equality

Gχ,Σ(T ) = Gχ,Σχ(T )
∏

p∈Σ\Σχ

gp,χω−1(T ),

where gp,χ(T ) := detQc(ΓK)(1− ϕ−1℘ εp|Vχ−1).

Proof. For (i), we have to evaluate both sides at s = 1− r, where r > 1 is divisible by (p− 1). We
observe that

u(r−1)cp = κ(ϕ℘)
r−1κ(σ℘)

1−r = N(p)r−1ω(σ℘).

Now we compute that the right hand side of equation (16) at s = 1− r equals

Lp,Σχ(1− r, χ)
∏

p∈Σ\Σχ

det(1− σ℘ω(σ℘)N(p)r−1|V IP
χω−1) = LΣχ(1− r, χ)

∏
p∈Σ\Σχ

det(1− σ℘N(p)r−1|V IP
χ )

= LΣ(1− r, χ)

= Lp,Σ(1− r, χ).

This proves (i). For (ii) we observe that gp,χ(u
s−1) = det(1−σ℘u−scpεp|Vχ) if χ is of type S. Hence

(i) implies (ii) in this case. If χ = ψ ⊗ ρ, where ψ is of type S and ρ is of type W , then we have an
equality

gp,ψ⊗ρ = gp,ψ(ρ(γK)(1 + T )− 1).

Since similar equalities hold for Gχ,Σ and Gχ,Σχ , we get (ii) in general.

Corollary 4.6. Keep the notation of Lemma 4.5, but assume that χ is an odd character and Σ
contains Sram . Then

jχ(Φ̇Σ) = LK,Σχ(χ
−1ω)

∏
p∈Σ\Σχ

gp,χ−1(γK − 1).

The following proposition is still contained in the author's dissertation [Ni08], Prop. 3.2.7, but
it was not yet published in a peer reviewed journal:

Proposition 4.7. Let L/K be a Galois CM-extension with Galois group G, p ̸= 2 a rational prime
and T a �nite G-invariant set of places of L such that T ∩Sp = ∅. If X−T denotes the projective limit
of the minus p-ray class groups ATLn

(p), there is an exact sequence of ZpG−-modules⊕
p∈Sp

(indGGP
Zp)− → (X−T )ΓL

� ATL(p).

Proof. The canonical restriction map XT → clTL(p) is surjective on minus parts, since the cokernel
is a quotient of ΓL on which j acts trivially. It clearly factors through (X−T )ΓL

.

15
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Recall that MT is the maximal abelian pro-p-extension of L∞ unrami�ed outside T . We put YT =
Gal(MT /L). Let P1, . . . ,Ps be the primes in L above p. Exactly these primes ramify in L∞/L, and
we denote the �nitely many primes in L∞, which lie above P1, . . . ,Ps, by P∞ik , 1 6 i 6 s. Moreover,
we choose above each P∞ik a prime P̃ik in MT , and denote its inertia group in YT by Iik.
We obviously have an isomorphism YT /XT ≃ ΓL. So we can pick a preimage γ ∈ YT of γL, and thus

YT = XT · ⟨γ⟩. (17)

Let Y ′T be the closure of the commutator subgroup of YT . Then G acts on YT /Y ′T via conjugation,
and we may assume that γj ≡ γ mod Y ′T , as we may choose a lift j̃ ∈ Gal(MT /K) of j and replace

γ by γ(1+j̃)/2. The condition on the set T forces that the extension MT /L∞ does not ramify above
p. Therefore Iik ∩XT = 1, and we get inclusions

Iik � YT /XT = ΓL.

Hence, each Iik is isomorphic to Γp
nik

L for an appropriate integer nik. We �x a topological generator

σik of Iik which maps to γp
nik

L via the above inclusion. But for �xed i, each two of these inertia
groups are conjugate, and hence ni := nik does not depend on k. Corresponding to (17) we write
σik = aikγ

pni with aik ∈ XT .
Let M0 be the p-ray class �eld of L to the ray MT such that Gal(M0/L) ≃ clTL(p). Because of the
obvious exact sequence

Gal(MT /M0) � YT � clTL(p)

we are interested in the Galois group Gal(MT /M0). We claim that it equals the subgroup N of YT
generated by Y ′T and the inertia groups Iik. For this, let N be the intermediate �eld of the extension
MT /L �xed by N . Then N is the largest sub�eld of MT which is abelian over L and unrami�ed
above p. Thus M0 ⊂ N . If we assume that M0 ̸= N , we �nd an intermediate �eld N0 of �nite degree
over L such that M0 ( N0 ⊂ N . Let N be the conductor of N0/L. Then the primes which divide N

are exactly the primes in T . The commutative diagram

o×L
// (oL/N)× //

����

clNL
// //

����

clL

o×L
// (oL/MT )

× // clTL
// // clL

now implies that the order m of the kernel of the surjection clNL � clTL is prime to p, since the primes
dividing m are below the primes in T . What we have shown is N0 = M0, in contradiction to our
assumption.

Lemma 4.8. Let Y ′T be the closure of the commutator subgroup of YT . Then

Y ′T = XγL−1
T .

Proof. The proof of [Wa82], Lemma 13.14 nearly remains unchanged. We only have to replace the
inertia subgroup I1 in loc.cit. by ⟨γ⟩.

Since γj = γ mod Y ′T , the above Lemma implies that we obtain an isomorphism

ATL(p) ≃ X−T /⟨(X
−
T )γL−1, a

e−
ik ⟩.

As already mentioned, the inertia groups Iik are conjugate for �xed i, hence σik ≡ σi1 mod Y ′T and
likewise aik ≡ ai1 mod Y ′T for all k. Hence

ATL(p) ≃ X−T /⟨(X
−
T )γL−1, a1, . . . , as⟩,

16
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where we have de�ned ai := a
e−
i1 . Since X−T /(X

−
T )γL−1 = (X−T )ΓL

, Proposition 4.7 follows from the
following lemma.

Lemma 4.9. If Pj = P
g
i for an element g ∈ G, then aj ≡ agi mod (X−T )γL−1.

Proof. Let τ ∈ Gal(MT /K) be a lift of g. Then g acts on (X−T )ΓL
via conjugation by τ . P̃τ

i1 is a
prime in MT above Pj , hence there exists an x ∈ YT such that P̃τ

i1 = P̃x
j1. Replacing τ by x−1τ we

may assume that x = 1. Hence

⟨σj1⟩ = Ij1 = Iτi1 = ⟨στi1⟩.

Since the restriction to L∞ induces an isomorphism Ij1 ≃ Γp
nj

L and

στi1|L∞ = (γp
ni

L )τ = (γp
ni

L )g = γp
ni

L ,

we have ni = nj and σj1 = στi1, i.e.

aj1 = (ai1γ
pnj

)τ · γ−p
nj
.

But γτ |L∞ = γL implies that γτ = xτ · γ for an element xτ ∈ XT . Hence, the assertion follows from
the above equation, since x

e−
τ vanishes in (X−T )ΓL

, as j trivially acts on γ mod Y ′T and commutes
with τ .

5. An integrality conjecture

Let L/K be a Galois CM-extension with Galois group G. Let S and T be two �nite sets of places
of K such that

� S contains all the in�nite places ofK and all the places which ramify in L/K, i.e. S ⊃ Sram∪S∞.
� S ∩ T = ∅.
� ETS is torsionfree.

We refer to the above hypotheses as Hyp(S, T ). For a �xed set S we de�ne AS to be the ζ(ZG)-
submodule of ζ(QG) generated by the elements δT (0), where T runs through the �nite sets of places
of K such that Hyp(S, T ) is satis�ed. Note that AS equals the ZG-annihilator of the roots of unity
of L if G is abelian by [Ta84], Lemma 1.1, p. 82.
For each �nite prime p of K, we de�ne a ZGP-module Up by

Up := ⟨NIP , 1− εpϕ
−1
P ⟩ZGP

⊂ QGP,

where we recall that εp = |IP|−1NIP . Note that Up = ZGP if p is unrami�ed in L/K such that the
de�nition of the following ζ(ZG)-module is indeed independent of the set S as long as S contains
the rami�ed primes:

U := ⟨
∏

p∈S\S∞

nr(up)|up ∈ Up⟩ζ(ZG) ⊂ ζ(QG).

Definition 5.1. Let S be a �nite set of primes which contains Sram∪S∞. We de�ne a ζ(ZG)-module
by

SKu(L/K, S) := AS · U · L(0)♯ ⊂ ζ(QG).
We call SKu(L/K) := SKu(L/K, Sram ∪ S∞) the (fractional) Sinnott-Kurihara ideal.

For abelian G, this de�nition coincides with the Sinnott-Kurihara ideal SKu(L/K) in [Gr07]
(see also [Si80], p. 193).
Let I(G) be the ζ(ZG)-module generated by the elements nr(H), H ∈Mn×n(ZG), n ∈ N. Actually,
I(G) is a commutative ring and we have inclusions

ζ(ZG) ⊂ I(G) ⊂ ζ(M(G)),
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where M(G) is a maximal order in QG. We now state the following integrality conjecture:

Conjecture 5.2. The Sinnott-Kurihara ideal SKu(L/K) is contained in I(G).

Remark 1. i) Since clearly SKu(L/K,S) ⊂ SKu(L/K, S′) if S′ ⊂ S, Conjecture 5.2 implies
SKu(L/K, S) ⊂ I(G) for all admissible sets S.

ii) If the sets S and T satisfyHyp(S, T ), the Stickelberger element θTS is contained in SKu(L/K, S).
Hence Conjecture 5.2 predicts that θTS ∈ I(G) which is part of [Nib], Conjecture 2.1.

iii) In the above de�nitions, we may replace Z and Q by Zp and Qp, respectively. We obtain a local
Sinnott-Kurihara ideal SKup(L/K) contained in ζ(QpG) and a ζ(ZpG)-module Ip(G). Since
we have an equality

I(G) =
∩
p

Ip(G) ∩ ζ(QG),

we have an equivalence

SKu(L/K) ⊂ I(G) ⇐⇒ SKup(L/K) ⊂ Ip(G) ∀p.

If G is abelian, we obviously have I(G) = ζ(ZG) = ZG and the results in [Ba77], [Ca79], [DR80]
each imply the following theorem (cf. [Gr07], �2).

Theorem 5.3. Conjecture 5.2 holds if L/K is an abelian CM-extension.

6. The ETNC in almost tame extensions

Let us �x a �nite Galois extension L/K of number �elds with Galois group G and a �nite set S
of places of K which contains Sram ∪ S∞. In [Bu01] the author de�nes the following element of
K0(ZG,R):

TΩ(L/K, 0) := ψ∗G(χG,R(τS , λ
−1
S ) + ∂̂G(L

∗
S(0)

♯)).

Here, ψ∗G is a certain involution on K0(ZG,R) which is not important for our purposes, since we will
be only interested in the nullity of TΩ(L/K, 0). Furthermore, τS ∈ Ext2G(ES ,∆S) is Tate's canonical
class (cf. [Ta66]), where ∆S is the kernel of the augmentation map ZS(L) � Z which maps each
P ∈ S(L) to 1. Finally, λS denotes the negative of the usual Dirichlet map, so λS : R⊗ES → R⊗∆S,
u 7→ −

∑
P∈S(L) log |u|PP, and χG,R(τS , λ

−1
S ) is the re�ned Euler characteristic associated to the

perfect 2-extension whose extension class is τS , metrised by λ−1S . For more precise de�nitions we
refer the reader to [Bu01]. The ETNC for the motive h0(L) with coe�cients in ZG in this context
asserts that the element TΩ(L/K, 0) is zero. Note that this statement is also equivalent to the
Lifted Root Number Conjecture formulated by Gruenberg, Ritter and Weiss [GRW99] (cf. [Bu01],
Th. 2.3.3).
It is also proven in loc.cit. that TΩ(L/K, 0) lies in K0(ZG,Q) if and only if Stark's conjecture
holds. In this case the ETNC decomposes into local conjectures at each prime p by means of the
isomorphism

K0(ZG,Q) ≃
⊕
p-∞

K0(ZpG,Qp).

Now let L/K be a Galois CM-extension. Since Stark's conjecture is known for odd characters
(cf. [Ta84], Th. 1.2, p. 70), TΩ(L/K, 0) has a well de�ned image TΩ(L/K, 0)−p in K0(ZpG−,Qp).
Recall that T consists of a prime p0 - p and all �nite places of K which ramify in L/K and do not
lie above p, and we have chosen p0 such that ETS is torsionfree. We have the following reformulation
of [Nia], Th. 2.
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Theorem 6.1. Let p be an odd prime and L/K a Galois CM-extension which is almost tame above
p. Then

TΩ(L/K, 0)−p = 0 ⇐⇒ FittZpG−(A
T
L(p)) = [⟨θTS1

⟩]nr(ZpG−),

where S1 denotes the set of all wildly rami�ed primes above p.

We have the following connection to the integrality conjecture 5.2 (cf. [Nib], proof of Th. 5.1 and
Cor. 5.6):

Theorem 6.2. Let p be an odd prime and L/K a Galois CM-extension and assume that TΩ(L/K, 0)−p
vanishes. If the p-part of the roots of unity of L is a c.t. G-module or if L/K is almost tame above
p, then the p-part of Conjecture 5.2 holds, i.e. SKup(L/K) ⊂ Ip(G).

The aim of this section is to prove a partial reverse of this theorem for almost tame extensions.

Lemma 6.3. Let p be an odd prime and L/K a Galois CM-extension which is almost tame above
p. Assume that the Iwasawa µ-invariant attached to the extension L+

∞/K vanishes. Then

FittZpG−(X−T /(γL − 1)) = [⟨θTSp
⟩]nr(ZpG−).

Proof. By Theorem 4.4, the Fitting invariant of X−T over Λ(G)− is generated by ΨΣ, where we put
Σ = T ∪ Sp. Now [Ni10], Th. 6.4 implies that FittZpG−(X−T /(γL − 1)) is generated by∑

χ∈Irr (G)

aug ΓL
(jχ(ΨΣ))eχ. (18)

But using Corollary 4.6 we compute

jχ(ΨΣ) =

∏
p∈T

jχ(ξp)

 · jχ(Φ̇Σ)

=

∏
p∈T

jχ(nr(Ξp · (1− ϕ−1P εp)))

LK,Σχ(χ
−1ω)

=

∏
p∈T

jχ(nr(εp(1−N(p)ϕ−1P ) + 1− εp))

LK,Σχ(χ
−1ω).

Hence (18) equals

∑
χ∈Irr (G)

∏
p∈T

det(1−N(p)ϕ−1P |V IP
χ )

LΣχ(0, χ
−1) = θTSp

.

We de�ne an element αp ∈ ζ(QpG−) by

αp =
∏

p∈Sp\S1

nr(1− εpϕ
−1
P )

such that we have an equality θTS1
· αp = θTSp

. We start with the following special case, where we get
Conjecture 5.2 for free.

Proposition 6.4. Let p be an odd prime and L/K a Galois CM-extension such that j ∈ GP for all
P above p. Assume that the Iwasawa µ-invariant attached to the extension L+

∞/K vanishes. Then
TΩ(L/K, 0)−p = 0 and the p-part of Conjecture 5.2 holds.
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Proof. As before, the canonical restriction map X−T → ATL(p) is surjective. By [Ni10], Prop. 3.5 (i)
this implies

FittZpG−(X−T /(γL − 1)) ⊂ FittZpG−(A
T
L(p)).

Since we have j ∈ GP for all P above p by assumption, the element αp lies in nr(K1(ZpG−)) and
thus Lemma 6.3 implies θTS1

∈ FittZpG−(A
T
L(p)). In particular, we have θTS1

∈ Ip(G). Let E be a

splitting �eld of QpG. Since θ
T
S1

= (δT (0, χ)LS1(0, χ
−1))χ and

|ATL(p)| = x ·
∏

χ∈Irr (G)

χ odd

(δT (0, χ)LS1(0, χ
−1))χ(1)

with an appropriate unit x ∈ o×E by [Nia], Prop. 4, the Stickelberger element θTS1
is actually a genera-

tor of FittZpG−(A
T
L(p)) by [Ni10], Prop. 5.4. Now Theorem 6.1 implies the vanishing of TΩ(L/K, 0)−p

which also implies Conjecture 5.2 by Theorem 6.2.

Let us denote the normal closure of L over Q by Lcl which is again a CM-�eld. We will henceforth
make the following additional assumption:

Lcl ̸⊂ (Lcl)+(ζp).

Note that this assumption fails only for �nitely many primes p, since such a p has to ramify in Lcl/Q.

Lemma 6.5. Let N > 0 be a natural number. Then there are in�nitely many primes r ∈ Z such that

i) r ≡ 1 mod pN .

ii) j ∈ GR for all primes R in L above r.

iii) The Frobenius automorphism Frobp at p in Gal(Q(ζr)/Q) generates Gal(kr/Q), where kr de-
notes the unique sub�eld of Q(ζr) of degree p

N over Q.

Proof. The proof of [Gr00], Prop. 4.1 carries over unchanged to the present situation.

Let N ∈ N be large and choose a prime r as in Lemma 6.5 which does not ramify in Lcl/Q.
We put L′ := Lkr, K

′ = Kkr and G
′ = Gal(L′/K) = G × CN , where CN ≃ Gal(kr/Q) is cyclic of

order pN , generated by Frobp. Note that L′/K is again almost tame above p. Moreover, we de�ne
T ′ := T ∪Sr, where Sr denotes the set of places in K above r. Using the same arguments as in [Nia]
following Prop. 9 we have an isomorphism

AT
′

L′ (p) ≃ ATL′(p)

and hence ATL′(p) isG
′-c.t. by loc.cit., Th. 1. As in loc.cit. the restriction map induces an isomorphism

(ATL′(p))CN
≃ ATL(p). (19)

We will need the following lemma.

Lemma 6.6. Assume that G′ is a direct product of a group G and an abelian group C. Then we
have |G| · Ip(G′) ⊂ ζ(ZpG′) for all primes p.

Proof. Choose a maximal order M(G) containing ZpG. Then M(G) is a direct sum of matrix rings
of type Mn×n(oD), where oD denotes the valuation ring of a skew �eld D. We have

ζ(Mn×n(oD)) = ζ(oD) = oF ,

where oF is the ring of integers of the �eld F = ζ(D) which is �nite over Qp. Since the reduced norm
maps M(G) into its center and |G| · ζ(M(G)) ⊂ ζ(ZpG), it su�ces to show that the reduced norm
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maps Mm×m(Mn×n(oD)[C]) into oF [C]. Let us at �rst assume that D = F . Then the map

σ :Mn×n(F )[C] −→Mn×n(F [C])∑
c∈C

Mcc 7→ (
∑
c∈C

αij(c)c)i,j

is an isomorphism of rings, where Mc = (αij(c))i,j lies in Mn×n(F ). Likewise, σ induces an isomor-
phism

σ :Mn×n(oF )[C] ≃Mn×n(oF [C]).

Therefore, we have

nr(Mm×m(Mn×n(oF )[C])) = nr(Mnm×nm(oF [C])) = nr(oF [C]) = oF [C].

For arbitrary D, there is a �eld E, Galois over F such that E ⊗F D ≃Ms×s(E) for some integer s.
We have just proven that the reduced norm maps Mm×m(Mn×n(oD)[C]) into oE [C]. But the image
is invariant under the action of Gal(E/F ) and is therefore contained in oF [C].

Let α′p ∈ ζ(QpG
′) be de�ned analogously to αp such that θT

′
S1

· α′p = θT
′

Sp
. Now choose a second

natural number M 6 N and put

ν :=

pM−1∑
i=0

Frobip
N−M

p ∈ ZpCN ⊂ ζ(ZpG′).

Lemma 6.7. Let f be the least common multiple of the residual degrees fp(K/Q) of all p ∈ Sp. If
N −M > vp(|G| · f), then |G| · α′p is a nonzerodivisor in ζ(ZpG′)/ν.

Proof. We �rst observe that Lemma 6.6 implies that |G| · α′p lies in ζ(ZpG′). Since ZpCN/ν and
likewise ζ(ZpG′)/ν are reduced rings, we have to show that no minimal prime of ζ(ZpG′) contains
both, |G| · α′p and ν. The minimal primes are given by

pχ′ := {x ∈ ζ(ZpG′)|χ′(x) = 0}, χ′ ∈ Irr (G′).

We may write χ′ as a product χ ·χN of irreducible characters χ of G and χN of CN ; then χ
′(Frobp) =

χ(1) · ζps for some s 6 N . Assume that ν ∈ pχ′ ; hence 0 = χ′(ν) = χ(1)
∑pM−1

i=0 ζip
N−M

ps . But since
χ(1) ̸= 0, this implies s > N −M . If also |G| ·α′p ∈ pχ′ , there is a prime p ∈ Sp and a prime P′ in L′

above p such that the inertia group at P′ acts trivially on Vχ′ and det(1− ϕ−1
P′ |V

IP′
χ ) vanishes. But

this determinant is a product of some 1 − ζ · ζ−fpps , where ζ is a root of unity of order dividing |G|
and, by assumption, we have vp(ord (ζ

fp
ps )) =

s
vp(fp)

> N−M
vp(fp)

> vp(|G|). This is a contradiction.

We are ready to prove the main result of this section which generalizes [Nia], Th. 4.

Theorem 6.8. Let p be an odd prime and L/K a Galois CM-extension which is almost tame
above p. Assume that the Iwasawa µ-invariant attached to the extension L+

∞/K vanishes and that
Lcl ̸⊂ (Lcl)+(ζp). Moreover assume that for each integer M there is an integer N > M such that
there is a prime r = r(N) as in Lemma 6.5, unrami�ed in Lcl/Q such that the p-part of Conjecture
5.2 is true for L′/K . Then TΩ(L/K, 0)−p = 0. In particular, the p-parts of the following conjectures
hold:

i) the strong Stark conjecture for odd characters as formulated by T. Chinburg [Ch83], Conj. 2.2.

ii) the (weak) non-abelian Brumer conjecture of [Nib], Conj. 2.1 and 2.3.

iii) the (weak) non-abelian Brumer-Stark conjecture of [Nib], Conj. 2.6 and 2.7.

iv) the weak non-abelian strong Brumer-Stark conjecture of [Nib], Conj. 3.6.
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Moreover, L/K ful�lls the non-abelian strong Brumer-Stark property at p (cf. [Nib], Def. 3.5).

Remark 2. i) Since Conjecture 5.2 is known to be true for abelian Galois groups, it seems to be
likely that we can prove this conjecture attached to the extensions L′/K if so for L/K.

ii) Since the strong Stark conjecture at p is a theorem for odd characters in the case at hand
(cf. [Nia], Cor. 2), it follows from the results in [Nib] that the weak variants of the above
conjectures are true unconditionally (cf. loc.cit., Cor. 4.2).

Proof of Theorem 6.8. We �rst observe that enlarging L to L′ does not a�ect the vanishing of µ by
[NSW00], Th. 11.3.8. Now choose natural numbers M 6 N such that r = r(N) ful�lls the above
conditions and N −M > vp(|G| · f), where f was de�ned in Lemma 6.7. Let G′ = Gal(L′∞/K)
and let X−T ′ be the projective limit of the minus p-ray class groups AT

′
L′n

(p). Then X−T ′ has projective
dimension at most one and the EIMC for the extension (L′∞)+/K implies

FittΛ(G′)−(X
−
T ′) =

[
⟨ΨT ′∪Sp⟩

]
nr(Λ(G′)−)

.

For each prime p of K let P′ ⊂ L′ be a prime above p. By Proposition 4.7, we have a right exact
sequence ⊕

p∈Sp

indGGP′
Zp → (X−T ′)ΓL′ � AT

′
L′ (p).

The Fitting invariant of the leftmost term is generated by α′p, whereas θ
T ′
Sp

= θT
′

Sp
(L′/K) is a generator

of FittZpG′−
((X−T ′)ΓL′ ) by Lemma 6.3. Since j ∈ GR for all primes above r, we may replace θT

′
Sp

by θTSp
.

The above sequence gives rise to the following inclusion of Fitting invariants (cf. [Ni10], Prop. 3.5
(iii)):

FittZpG′−

⊕
p∈Sp

indGGP′
Zp

 · FittZpG′−
(AT

′
L′ (p)) ⊂ FittZpG′−

((X−T ′)ΓL′ ).

If we choose a generator ξ′ of FittZpG′−
(AT

′
L′ (p)), there exists x ∈ ζ(ZpG′) such that

α′pξ
′ = x · θTSp

= x · α′pθTS1
.

It follows from Lemma 6.6 that multiplication by |G|2 yields an equality in ζ(ZpG′) (since Conjecture
5.2 holds by assumption) such that Lemma 6.7 gives

|G| · ξ′ ≡ |G| · x · θTS1
mod ν. (20)

Let aug : ZpG′ → ZpG be the natural augmentation map. Since Fitting invariants behave well
under base change (cf. [Ni10], Lemma 5.5), the element ξ := aug (ξ′) generates the Fitting invariant
of ATL(p) by (19). But since aug (θTSp

(L′/K)) = θTSp
(L/K) and aug (ν) = pM , equation (20) implies

ξ ≡ aug (x) · θTS1
(L/K) mod pM−mIp(G),

where pm is the exact power dividing |G|. This gives an inclusion

FittZpG(A
T
L(p)) ⊂ [⟨θTS1

⟩]nr(ZpG),

as we may choose M arbitrarily large. Now we can conclude as in Proposition 6.4 that θTS1
is in fact

a generator of FittZpG(A
T
L(p)) and we are done via Theorem 6.1.

Remark 3. Note that we have not used the whole statement of Conjecture 5.2. It su�ces to assume
that the denominators of the elements θTS1

(L′/K) for varying r = r(N) are bounded, independently
of N .
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