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Abstract

We introduce non-abelian generalizations of Brumer's conjecture, the Brumer-Stark
conjecture and the strong Brumer-Stark property attached to a Galois CM-extension of
number �elds. Moreover, we discuss how they are related to the equivariant Tamagawa
number conjecture, the strong Stark conjecture and a non-abelian generalization of
Rubin's conjecture due to D. Burns.

Let L/K be a �nite Galois CM-extension of number �elds with Galois group G. To each �nite
set S of places of K which contains all the in�nite places, one can associate a so-called �Stickelberger
element� θS(L/K) in the center of the group ring algebra CG. This Stickelberger element is de�ned
via L-values at zero of S-truncated Artin L-functions attached to the (complex) characters of G.
Let us denote the roots of unity of L by µL and the class group of L by clL. Assume that S contains
the set Sram of all �nite primes of K which ramify in L/K. Then it was independently shown in [8],
[13] and [1] that for abelian G one has

AnnZG(µL)θS(L/K) ⊂ ZG. (1)

Now Brumer's conjecture asserts that AnnZG(µL)θS(L/K) annihilates clL. There is a large body of
evidence in support of Brumer's conjecture (cf. the expository article [14]); in particular, C. Greither
[15] has shown that the appropriate special case of the equivariant Tamagawa number conjecture
(ETNC) as formulated by Burns and Flach [6] implies the p-part of Brumer's conjecture for an odd
prime p if the p-part of µL is a c.t. (short for cohomologically trivial) G-module. A similar result for
arbitrary G was recently proven by the author [20], improving an unconditional annihilation result
due to D. Burns and H. Johnston [7]. Note that the assumptions made in loc.cit. are adapted to
ensure the validity of the strong Stark conjecture. These two results will provide some evidence for
our conjecture.
Moreover, we will introduce a non-abelian generalization of the Brumer-Stark conjecture and of the
strong Brumer-Stark property. The extension L/K ful�lls the latter if certain Stickelberger elements
are contained in the (non-commutative) Fitting invariants of corresponding ray class groups; but it
does not hold in general, even if G is abelian, as follows from the results in [16]. But if this property
happens to be true, this also implies the validity of the (non-abelian) Brumer-Stark conjecture and
Brumer's conjecture. We will show that the p-part of this property is implied by the ETNC if the
rami�cation above the odd prime p is at most tame.
D. Burns [3] has introduced a non-abelian analogue of a conjecture formulated by Rubin ([25],
Conj. B). It is shown in loc.cit. that this conjecture is implied by the strong Stark conjecture, and
we will show that Burns' conjecture implies slightly weaker annihilation results as predicted by the
(non-abelian) Brumer-Stark resp. Brumer's conjecture.

2000 Mathematics Subject Classi�cation 11R42, 11R29

Keywords: Stark conjecture, equivariant L-values, class groups
I acknowledge �nancial support provided by the DFG



Andreas Nickel

1. Preliminaries

1.0.1 K-theory Let Λ be a left noetherian ring with 1 and PMod(Λ) the category of all �nitely
generated projective Λ-modules. We write K0(Λ) for the Grothendieck group of PMod(Λ), and
K1(Λ) for the Whitehead group of Λ which is the abelianized in�nite general linear group. If S is a
multiplicatively closed subset of the center of Λ which contains no zero divisors, 1 ∈ S, 0 ̸∈ S, we
denote the Grothendieck group of the category of all �nitely generated S-torsion Λ-modules of �nite
projective dimension by K0S(Λ). Writing ΛS for the ring of quotients of Λ with denominators in S,
we have the following Localization Sequence (cf. [12], p. 65)

K1(Λ) → K1(ΛS)
∂−→ K0S(Λ) → K0(Λ) → K0(ΛS). (2)

In the special case where Λ is an o-order over a commutative ring o and S is the set of all nonzero-
divisors of o, we also write K0T (Λ) instead of K0S(Λ). Moreover, we denote the relative K-group
corresponding to a ring homomorphism Λ → Λ′ by K0(Λ,Λ

′) (cf. [26]). Then we have a Localization
Sequence (cf. [12], p. 72)

K1(Λ) → K1(Λ
′)

∂Λ,Λ′
−→ K0(Λ,Λ

′) → K0(Λ) → K0(Λ
′).

It is also shown in [26] that there is an isomorphism K0(Λ,ΛS) ≃ K0S(Λ). For any ring Λ we write
ζ(Λ) for the subring of all elements which are central in Λ. Let L be a sub�eld of either C or Cp for
some prime p and let G be a �nite group. In the case where Λ′ is the group ring LG the reduced norm
map nrLG : K1(LG) → ζ(LG)× is always injective. If in addition L = R, there exists a canonical
map ∂̂G : ζ(RG)× → K0(ZG,RG) such that the restriction of ∂̂G to the image of the reduced norm
equals ∂ZG,RG ◦nr−1

RG. This map is called the extended boundary homomorphism and was introduced
by Burns and Flach [6].

1.0.2 χ-twists We largely adopt the treatment of [3], �1. Let G be a �nite group and denote the
set of all irreducible characters with values in C resp. Cp by Irr (G) resp. Irr p(G). Fix an irreducible
character χ ∈ Irr (G) resp. χ ∈ Irr p(G) and let Eχ be the minimal sub�eld of C resp. Cp over which
χ can be realized and which is both, Galois and of �nite degree over Q resp. Qp. We put

prχ :=
∑
g∈G

χ(g−1)g, eχ :=
χ(1)

|G|
prχ.

Hence eχ is a central primitive idempotent of EχG and prχ is the associated projector. We write oχ
for the ring of integers of Eχ and choose a maximal oχ-order M in EχG which contains oχG. We �x
an indecomposable idempotent fχ of eχM and de�ne an oχ-torsionfree right oχG-module by setting
Tχ := fχM. Note that this slightly di�ers from the de�nition in [3], but follows the notation of [7] and
[20]. Tχ is (locally) free of rank χ(1) over oχ and the associated right EχG-module Vχ := Eχ ⊗oχ Tχ
has character χ. For any left G-module M we set M [χ] := Tχ ⊗ZM resp. M [χ] := Tχ ⊗Zp M , upon
which G acts on the left by t ⊗m 7→ tg−1 ⊗ g(m) for t ∈ Tχ, m ∈ M and g ∈ G. For any integer
i we write H i(G,M) for the Tate cohomology in degree i of M with respect to G. Moreover, we
write MG resp. MG for the maximal submodule resp. the maximal quotient module of M upon
which G acts trivially. We obtain a left exact functor M 7→Mχ and a right exact functor M 7→Mχ

from the category of left G-modules to the category of oχ-modules by setting Mχ := M [χ]G and
Mχ := M [χ]G. The action of NG :=

∑
g∈G g induces a homomorphism t(M,χ) : Mχ → Mχ with

kernel H−1(G,M [χ]) and cokernel H0(G,M [χ]). Thus Mχ ≃Mχ whenever M and hence also M [χ]
is a c.t. G-module.
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1.0.3 Non-commutative Fitting invariants For the following we refer the reader to [20]. We
denote the set of all m × n matrices with entries in a ring R by Mm×n(R) and in the case m = n
the group of all invertible elements of Mn×n(R) by Gln(R). Let A be a separable K-algebra and Λ
be an o-order in A, �nitely generated as o-module, where o is a complete commutative noetherian
local ring with �eld of quotients K. Moreover, we will assume that the integral closure of o in K is
�nitely generated as o-module. The group ring ZpG will serve as a standard example. Let N and M
be two ζ(Λ)-submodules of an o-torsionfree ζ(Λ)-module. Then N andM are called nr(Λ)-equivalent
if there exists an integer n and a matrix U ∈ Gln(Λ) such that N = nr(U) ·M , where nr : A→ ζ(A)
denotes the reduced norm map which extends to matrix rings over A in the obvious way. We denote
the corresponding equivalence class by [N ]nr(Λ). We say that N is nr(Λ)-contained in M (and write
[N ]nr(Λ) ⊂ [M ]nr(Λ)) if for all N

′ ∈ [N ]nr(Λ) there existsM
′ ∈ [M ]nr(Λ) such that N ′ ⊂M ′. Note that

it su�ces to check this property for one N0 ∈ [N ]nr(Λ). Moreover, we write [N ]nr(Λ) ⊂M if N ′ ⊂M
for all N ′ ∈ [N ]nr(Λ). We will say that x is contained in [N ]nr(Λ) (and write x ∈ [N ]nr(Λ)) if there is
N0 ∈ [N ]nr(Λ) such that x ∈ N0.

Now let M be a �nitely presented (left) Λ-module and let

Λa h−→ Λb � M (3)

be a �nite presentation of M . We identify the homomorphism h with the corresponding matrix in
Ma×b(Λ) and de�ne S(h) = Sb(h) to be the set of all b × b submatrices of h if a > b. In the case
a = b we call (3) a quadratic presentation. The Fitting invariant of h over Λ is de�ned to be

FittΛ(h) =

{
[0]nr(Λ) if a < b[
⟨nr(H)|H ∈ S(h)⟩ζ(Λ)

]
nr(Λ)

if a > b.

We call FittΛ(h) a Fitting invariant of M over Λ. One de�nes Fittmax
Λ (M) to be the unique Fitting

invariant ofM over Λ which is maximal among all Fitting invariants ofM with respect to the partial
order �⊂�. If M admits a quadratic presentation h, one also puts FittΛ(M) := FittΛ(h) which is
independent of the chosen quadratic presentation (cf. also [22]). Finally, we denote by I = I(Λ) the
ζ(Λ)-submodule of ζ(A) generated by the elements nr(H), H ∈Mb×b(Λ), b ∈ N.

For any ZpG-module M we denote the Pontryagin dual Hom(M,Qp/Zp) of M by M∨ which is
equipped with the natural G-action (gf)(m) = f(g−1m) for f ∈ M∨, g ∈ G and m ∈ M . If M is
�nite, we have

AnnZpG(M
∨) = AnnZpG(M)♯, (4)

where we denote by ♯ : QpG → QpG the involution induced by g 7→ g−1. We will frequently make
use of the following proposition.

Proposition 1.1. Let M , M ′ and M ′′ be �nitely presented Λ-modules. Then it holds:

i) If M � M ′ is an epimorphism, then Fittmax
Λ (M) ⊂ Fittmax

Λ (M ′).

ii) If M ′ →M � M ′′ is an exact sequence of Λ-modules, then

Fittmax
Λ (M ′) · Fittmax

Λ (M ′′) ⊂ Fittmax
Λ (M).

iii) If θ ∈ Fittmax
Λ (M) and λ ∈ I, then also λ · θ ∈ Fittmax

Λ (M).

iv) If M admits a quadratic presentation, then Fittmax
Λ (M) = I · FittΛ(M).

v) If Λ = ZpG and M � C → C ′ � M ′ is an exact sequence of �nite Λ-modules, where C and

C ′ are c.t., then we have an equality

Fittmax
Λ (M∨)♯ · FittΛ(C ′) = Fittmax

Λ (M ′) · FittΛ(C).
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Proof. For (i), (ii) and (v) see [20], Prop. 3.5 (i), (iii) and Prop. 5.3 (ii). For (iii) let h be a �nite
presentation of M such that FittΛ(h) = Fittmax

Λ (M). Then θ =
∑

H zHnr(H), zH ∈ ζ(Λ), where
the sum runs through all the submatrices H ∈ Sb(h). Hence it su�ces to show that λ · nr(H) ∈
Fittmax

Λ (M) for any H ∈ Sb(h). We may assume that λ = nr(H ′) with H ′ ∈ Mb′×b′(Λ), and by
adding an appropriate identity matrix on H ′ resp. h we may also assume that b = b′. Consider the
diagram

Λb H◦H′
//

H′

��

Λb // // cok (H ◦H ′)

����
Λb H // Λb // // cok (H).

Now (i) implies nr(H)nr(H ′) ∈ Fittmax
Λ (cok (H ◦ H ′)) ⊂ Fittmax

Λ (cok (H)), and since there is an
epimorphism cok (H) � M , also Fittmax

Λ (cok (H)) ⊂ Fittmax
Λ (M). This shows (iii) and the inclusion

I · FittΛ(M) ⊂ Fittmax
Λ (M) of (iv). Now let ψ be a quadratic presentation and h be an arbitrary

presentation of M . Then it follows from [20], Th. 3.2 resp. its proof that we may assume that
h = (ψ|0) ◦ X, where X ∈ Gla(Λ) for some a ∈ N. Since ψ is quadratic, each H ∈ S(h) is the
product ψ ◦ X̃ for some submatrix X̃ of X and thus nr(H) = nr(X̃) · nr(ψ) ∈ I · FittΛ(M).

Assume now that o is an integrally closed commutative noetherian ring, but not necessarily
complete or local. We choose a maximal order Λ′ containing Λ. We may decompose the separable
K-algebra A into its simple components

A = A1 ⊕ · · · ⊕At,

i.e. each Ai is a simple K-algebra and Ai = Aei = eiA with central primitive idempotents ei,
1 6 i 6 t. For any matrix H ∈ Mb×b(Λ) there is a unique matrix H∗ ∈ Mb×b(Λ

′) such that
H∗H = HH∗ = nr(H) · 1b×b and H∗ei = 0 whenever nr(H)ei = 0 (cf. [20], Lemma 4.1; the
additional assumption on o to be complete local is not necessary). If H̃ ∈ Mb×b(Λ) is a second
matrix, then (HH̃)∗ = H̃∗H∗. We de�ne

H = H(Λ) := {x ∈ ζ(Λ)|xH∗ ∈Mb×b(Λ)∀b ∈ N ∀H ∈Mb×b(Λ)} .

Since x · nr(H) = xH∗H, we have in particular

H · I = H ⊂ ζ(Λ), (5)

where I is de�ned as before even if o is not complete and local. The importance of the ζ(Λ)-module
H will become clear by means of the following result which is [20], Th. 4.2.

Theorem 1.2. If o is an integrally closed complete commutative noetherian local ring and M is a

�nitely presented Λ-module, then

H · Fittmax
Λ (M) ⊂ AnnΛ(M).

Now we specialize to Λ = oG, where o is either Z or Zp. As before, let Λ′ be a maximal order
containing Λ. The central conductor of Λ′ over Λ is de�ned to be F = F(Λ) := {x ∈ ζ(Λ′) : xΛ′ ⊂ Λ}
and is explicitly given by (cf. [11], Th. 27.13)

F =
⊕
χ

|G|
χ(1)

D−1(K(χ)/K), (6)

where D−1(K(χ)/K) denotes the inverse di�erent of the extension K(χ) := K(χ(g) : g ∈ G) over
K = Quot(o) and the sum runs through all the irreducible characters with values in C resp. Cp

modulo Galois action.
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Lemma 1.3. Let Λ = oG, where o is Z or Zp. Then it holds:

i) F ⊂ H.

ii) If G is abelian or if Λ = ZpG and p - |G|, then H = ζ(Λ).

Proof. (i) and the case p - |G| of (ii) are clear from the observations above. If G is abelian, we may
choose H∗ to be the adjoined matrix of H and we get (ii).

In the sequel we will use the following notation: F(G) = F(ZG), Fp(G) = F(ZpG) and similarly
for H and I. We denote the normalized valuation at a prime P by vP and for x =

∑
g∈G xgg ∈ ZG

resp. x ∈ ZpG we put vp(x) := ming∈G vp(xg).

Lemma 1.4. Let p be a prime and let G be a �nite group. Then H(G) is dense in Hp(G) with respect

to the p-adic topology.

Proof. Let x ∈ Hp(G) and choose x′ ∈ ζ(ZG) close to x. Then for any H ∈Mn×n(ZpG) we have

x′H∗ = xH∗ + (x′ − x)H∗ ∈Mn×n(ZpG)

if vp(x
′ − x) > n, where |G| = m · pn with p - m. Thus x′ ∈ Hp(G). Now let N ∈ N be large;

since p does not divide m, we can choose a multiple m′ of m such that m′ ≡ 1 mod pN . Then m′x′

is also close to x, since vp(x − m′x′) > min{vp(x − x′), vp((1 − m′)x′)}. But since m|m′, we have
m′x′ ∈ Hq(G) for all primes q. Now let H ∈Mn×n(ZG). Then

m′x′H∗ ∈
∩
q

Mn×n(ZqG) ∩Mn×n(QG) =Mn×n(Λ)

and hence m′x′ ∈ H(G).

1.0.4 Equivariant L-values Let us �x a �nite Galois extension L/K of number �elds with Galois
group G. For any prime p of K we �x a prime P of L above p and write GP resp. IP for the
decomposition group resp. inertia subgroup of L/K at P. Moreover, we denote the residual group
at P by GP = GP/IP and choose a lift ϕP ∈ GP of the Frobenius automorphism at P.
If S is a �nite set of places of K containing the set S∞ of all in�nite places of K, and χ is a (complex)
character of G, we denote the S-truncated Artin L-function attached to χ and S by LS(s, χ) and
de�ne L∗

S(0, χ) to be the leading coe�cient of the Taylor expansion of LS(s, χ) at s = 0. Recall that
there is a canonical isomorphism ζ(CG) =

∏
χ∈Irr (G)C. We de�ne the equivariant Artin L-function

to be the meromorphic ζ(CG)-valued function

LS(s) := (LS(s, χ))χ∈Irr (G).

We put L∗
S(0) = (L∗

S(0, χ))χ∈Irr (G) and abbreviate LS∞(s) by L(s). If T is a second �nite set
of places of K sucht that S ∩ T = ∅, we de�ne δT (s) := (δT (s, χ))χ∈Irr (G), where δT (s, χ) =∏

p∈T det(1−N(p)1−sϕ−1
P |V IP

χ ), and put

ΘS,T (s) := δT (s) · LS(s)
♯.

These functions are the so-called (S, T )-modi�ed G-equivariant L-functions and we de�ne Stickel-
berger elements

θTS := ΘS,T (0) ∈ ζ(CG).
If T is empty, we abbreviate θTS by θS . Note that the χ-part of θ

T
S vanishes for a non-trivial character

χ if there is an (in�nite) prime p ∈ S such that V
GP
χ ̸= 0. This is the main reason why we will

assume henceforth that L/K is a CM-extension, i.e. L is a CM-�eld, K is totally real and complex
conjugation induces an unique automorphism j of L which lies in the center of G. If R is a subring of
either C or Cp for a prime p such that 2 is invertible over R, we put RG− := RG/(1 + j) which is a
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ring, since the idempotent 1−j
2 lies inRG. For anyRG-moduleM we de�neM− = RG−⊗RGM which

is an exact functor since 2 ∈ R×. If M is a ZG-module, we de�ne M− to be Z[12 ]G/(1 + j)⊗ZG M .
This notation is nonstandard, but practical, since taking minus parts is again an exact functor. Now
Stark's conjecture (which is a theorem for odd characters, see [28], Th. 1.2, p. 70) implies

θTS ∈ ζ(QG−). (7)

Note that we actually have to exclude the special case |S∞(L)| = 1 (cf. the proof of [19], Prop. 3,
where (7) is shown in the relevant case S = S∞ and T = ∅), but in this situation the extension L/K
is abelian. Let us �x an embedding ι : C � Cp; then the image of θTS in ζ(QpG−) via the canonical
embedding

ζ(QG−) � ζ(QpG−) =
⊕

χ∈Irrp (G)/∼

χ odd

Qp(χ),

is given by
∑

χ(δT (0, χ
ι−1

) · LS(0, χ̌
ι−1

))ι. Here the sum runs over all Cp-valued irreducible odd

characters of G modulo Galois action. Note that we will frequently drop ι and ι−1 from the notation.

1.0.5 Ray class groups For any set S of places of K, we write S(L) for the set of places of L
which lie above those in S. Now let T and S be as above. We write clTL for the ray class group of
L to the ray MT :=

∏
P∈T (L) P and oS for the ring of S(L)-integers of L. Let Sf be the set of all

�nite primes in S(L); then there is a natural map ZSf → clTL which sends each prime P ∈ Sf to
the corresponding class [P] ∈ clTL. We denote the cokernel of this map by clTS (L) =: clTS . Further, we
denote the S(L)-units of L by ES and de�ne ET

S := {x ∈ ES : x ≡ 1 mod MT }. All these modules
are equipped with a natural G-action and we have the following exact sequences of G-modules

ET
S∞ � ET

S
v−→ ZSf → clTL � clTS , (8)

where v(x) =
∑

P∈Sf
vP(x)P for x ∈ ET

S , and

ET
S � ES → (oS/MT )

× ν−→ clTS � clS , (9)

where the map ν lifts an element x ∈ (oS/MT )
× to x ∈ oS and sends it to the ideal class [(x)] ∈ clTS

of the principal ideal (x). Note that the G-module (oS/MT )
× is c.t. if no prime in T rami�es in

L/K. We de�ne

AT
S := (clTS )

−.

If S = S∞, we also write AT
L and ET

L instead of AT
S∞

and ET
S∞

. Finally, we suppress the superscript
T from the notation if T is empty. If M is a �nitely generated Z-module and p is a prime, we put
M(p) := Zp ⊗Z M . In particular, AL(p) is the p-part of the minus class group if p is odd.

2. Statement of the conjectures

Let L/K be a Galois CM-extension with Galois group G. Let S and T be two �nite sets of places
of K such that

� S contains all the in�nite places ofK and all the places which ramify in L/K, i.e. S ⊃ Sram∪S∞.

� S ∩ T = ∅.
� ET

S is torsionfree.

We refer to the above hypotheses as Hyp(S, T ). We put Λ = ZG and choose a maximal order Λ′

containing Λ. For a �xed set S we de�ne AS to be the ζ(Λ)-submodule of ζ(Λ′) generated by the
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elements δT (0), where T runs through the �nite sets of places of K such that Hyp(S, T ) is satis�ed.
The following is a non-abelian generalization of Brumer's conjecture.

Conjecture 2.1 B(L/K, S). Let S be a �nite set of places of K containing Sram ∪ S∞. Then
ASθS ⊂ I(G) and for each x ∈ H(G) we have

x · ASθS ⊂ AnnΛ(clL).

Before we make some clarifying remarks, we state the following lemma.

Lemma 2.2. Let S be a �nite set of places of K containing Sram ∪S∞. Then the elements ϕP−N(p),
where p runs through all the �nite places of K such that the sets S and Tp = {p} satisfy Hyp(S, Tp),
generate AnnZG(µL). Moreover, if we restrict to the primes p such that ϕP = 1, the greatest common

divisor of the integers 1−N(p) is |µL|.

Proof. The proof of [28], Lemma 1.1, p. 82 (where G is assumed to be abelian) remains unchanged.

Remark 1. i) Since AS is generated by the elements δT (0) such that Hyp(S, T ) holds, Conjecture
2.1 is equivalent to the assertion that for all these sets T the Stickelberger element θTS lies in
I(G) and xθTS annihilates the class group for each x ∈ H(G). Note that θTS ∈ I(G) implies
xθTS ∈ ζ(Λ).

ii) Lemma 2.2 implies that in fact [AS(p)]nr(ZpG) is a Fitting invariant of µL(p) over ZpG. Moreover,
we have

Ip(G) · [AS(p)]nr(ZpG) ⊂ Fittmax
ZpG(µL(p))

by Proposition 1.1. So it is reasonable to ask if this inclusion might be an equality (at least if
S = Sram ∪ S∞).

iii) If G is abelian, Lemma 2.2 implies that the module AS equals AnnZG(µL). In this case the
inclusion ASθS ⊂ I(G) = Λ follows from (1), and since H(G) = Λ by Lemma 1.3, Conjecture
2.1 recovers Brumer's conjecture.

Since H(G) always contains the central conductor F(G), we can state the following weaker form
of Conjecture 2.1.

Conjecture 2.3 Bw(L/K,S). Let S be a �nite set of places of K containing Sram ∪ S∞. Then
ASθS ⊂ ζ(Λ′) and for each x ∈ F(G) we have

x · ASθS ⊂ AnnΛ(clL).

Lemma 2.4. Let S be a �nite set of places of K containing Sram ∪ S∞. Then

B(L/K, S) =⇒ Bw(L/K, S).

If S ⊂ S′, then

B(L/K,S) =⇒ B(L/K, S′),

Bw(L/K,S) =⇒ Bw(L/K,S
′).

Proof. The �rst assertion is obvious. Now assume that B(L/K, S) resp. Bw(L/K, S) holds. Since
θS′ = nr(λ)θS , where λ =

∏
p∈S′\S(1 − ϕ−1

P ) ∈ Λ, we see that also AS′θS′ ⊂ ASnr(λ)θS lies in

I(G) resp. ζ(Λ′). Moreover x̃ := x · nr(λ) lies in H(G) resp. F(G) if x does. Hence we �nd that
xAS′θS′ ⊂ x̃ASθS annihilates clL.

Replacing the class group clL by its p-parts clL(p) for each rational prime p, ConjectureB(L/K,S)
resp. ConjectureBw(L/K, S) naturally decomposes into local conjecturesB(L/K, S, p) resp.Bw(L/K, S, p).

7
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Note that it is possible to replace H(G) by Hp(G) by means of Lemma 1.4. Taking Lemma 1.3 into
account, a similar proof shows the following lemma.

Lemma 2.5. Let S be a �nite set of places of K containing Sram ∪ S∞ and let p be a prime. Then

B(L/K, S, p) =⇒ Bw(L/K, S, p).

If p - |G| then
B(L/K, S, p) ⇐⇒ Bw(L/K,S, p).

If S ⊂ S′, then

B(L/K, S, p) =⇒ B(L/K, S′, p),

Bw(L/K, S, p) =⇒ Bw(L/K, S
′, p).

For α ∈ L× we de�ne

Sα := {p �nite prime of K : p|NL/K(α)}
and we call α an anti-unit if α1+j = 1. Let ωL := nr(|µL|). The following is a non-abelian general-
ization of the Brumer-Stark conjecture.

Conjecture 2.6 BS(L/K, S). Let S be a �nite set of places of K containing Sram ∪ S∞. Then
ωL · θS ∈ I(G) and for each x ∈ H(G) and each fractional ideal a of L, there is an anti-unit
α = α(x, a, S) ∈ L× such that

ax·ωL·θS = (α)

and for each �nite set T of primes of K such that Hyp(S ∪ Sα, T ) is satis�ed there is an αT ∈ ET
Sα

such that

αz·δT (0) = αz·ωL
T (10)

for each z ∈ H(G).

Remark 2. If G is abelian, we have I(G) = H(G) = ZG and ωL = |µL|. Hence it su�ces to treat
the case x = z = 1. Then [28], Prop. 1.2, p. 83 states that the condition (10) on the anti-unit α is
equivalent to the assertion that the extension L(α1/ωL)/K is abelian.

As above we can state the following weaker conjecture.

Conjecture 2.7 BSw(L/K, S). Let S be a �nite set of places of K containing Sram ∪ S∞. Then
ωL · θS ∈ ζ(Λ′) and for each x ∈ F(G) and each fractional ideal a of L, there is an anti-unit
α = α(x, a, S) ∈ L× such that

ax·ωL·θS = (α)

and for each �nite set T of primes of K such that Hyp(S ∪ Sα, T ) holds there is an αT ∈ ET
Sα

such
that

αz·δT (0) = αz·ωL
T (11)

for each z ∈ F(G).

Remark 3. i) Since ET
Sα

is torsionfree, we may replace the equalities (10) and (11) by the equality

αδT (0) = αωL
T in Q⊗ ET

Sα
.

ii) If a and b are two fractional ideals of L for which Conjecture BS(L/K, S) resp. BSw(L/K, S)
holds, then it is easy to see that this conjecture is also true for the product a · b. Since it is also
true for principal ideals, it su�ces to verify these conjectures for totally decomposed primes,
as these primes generate the class group.
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iii) If we restrict Conjecture BS(L/K, S) resp. BSw(L/K, S) to ideals whose class in clL has p-
power order, we get local conjectures BS(L/K, S, p) resp. BSw(L/K,S, p).

iv) If the prime p is odd, we may omit the condition that the generator α is an anti-unit by the
following reason (cf. [17], remark preceding Prop. 1.1): Let a be a fractional ideal whose class
in clL has p-power order. Since squaring is invertible on clL(p) we �nd b such that a = (u)b2

for some u ∈ L×. Now let x ∈ H(G) resp. x ∈ F(G) and assume that bx·ωLθS is generated
by β ∈ L× such that (10) holds (with α replaced by β). But since (1 − j)θS = 2θS , we have
ax·ωLθS = (ux·ωLθS )bx·ωL2θS = (ux·ωLθS · β1−j) and this generator is an appropriate anti-unit.

v) Burns [4] has meanwhile formulated a new conjecture which generalizes many re�ned Stark con-
jectures to the non-abelian situation. In particular, it implies our generalization of Brumer's con-
jecture (cf. loc.cit., Prop. 3.5.1). Since it also implies the Brumer-Stark conjecture (cf. loc.cit.,
Remark 3.5.2) in the abelian case, the author expects that it also implies ConjectureBS(L/K, S).
If this is true, loc.cit., Th. 4.1.1 would give a di�erent proof of Theorem 5.1 below.

We have the following implications which are either obvious or which are proved by a similar
argument as in Lemma 2.4.

Lemma 2.8. Let S be a �nite set of places of K containing Sram ∪ S∞ and p be a prime. Then

BS(L/K, S) =⇒ BSw(L/K,S), BS(L/K, S, p) =⇒ BSw(L/K, S, p).

If p - |G|, then
BS(L/K, S, p) ⇐⇒ BSw(L/K, S, p).

If S ⊂ S′, then

BS(L/K, S) =⇒ BS(L/K, S′), BS(L/K, S, p) =⇒ BS(L/K,S′, p),

BSw(L/K, S) =⇒ BSw(L/K, S
′), BSw(L/K, S, p) =⇒ BSw(L/K, S

′, p),

We have the following relation to the non-abelian Brumer Conjectures:

Lemma 2.9. Let S be a �nite set of places of K containing Sram ∪ S∞ and p be a prime. Then

BS(L/K, S) =⇒ B(L/K,S), BS(L/K, S, p) =⇒ B(L/K, S, p),

BSw(L/K,S) =⇒ Bw(L/K,S), BSw(L/K, S, p) =⇒ Bw(L/K,S, p).

Proof. Let a be a fractional ideal of L whose class in clL is assumed to have p-power order if we are
in the local case. Let x ∈ H(G) resp. x ∈ F(G). Then ax·ωLθS = (α) and (α)z·δT (0) = (αT )

z·ωL for
all z ∈ F(G). Hence

ax·z·ωL·θTS = (α)z·δT (0) = (αT )
z·ωL . (12)

Since ωL ∈ ζ(QG)×, we �nd N ∈ N such that N · ω−1
L ∈ ζ(Λ). Moreover, |G| · ζ(Λ) ⊂ F(G) such

that we may choose z = |G| ·N · ω−1
L . But the group of fractional ideals has no Z-torsion such that

equation (12) implies ax·θ
T
S = (αT ).

3. Burns' Conjecture and the strong Brumer-Stark property

We �rst recall a non-abelian generalization of the Rubin-Stark conjecture due to D. Burns [3]. Note
that our slightly di�erent de�nition of χ-twist will lead to some minor changes. Let L/K be an
extension of number �elds with Galois group G and �x a non-trivial irreducible complex character
χ of G. For any �nite non-empty set S of places of K we write YS for the free abelian group on S(L)

9
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and XS for the kernel of the augmentation map YS → Z which sends each element of S(L) to 1. If
S contains S∞, the Dirichlet map

λS : R⊗Z ES → R⊗Z XS , ε 7→ −
∑

P∈S(L)

log |ε|pP

is an isomorphism of RG-modules. The Noether-Deuring Theorem combines with the fact that XS

is torsionfree to imply the existence of G-invariant embeddings ϕ : XS � ES . For any such ϕ we set

RS
ϕ(χ) := det(λS ◦ ϕ|C⊗Eχ (Vχ̌ ⊗ZG XS)) ∈ C×,

where χ̌ denotes the character contragredient to χ. Then Stark's conjecture (as interpreted in [28],
Conj. 5.1,p. 27, but see [3], �2) states that for each α ∈ Aut(C) one has

L∗
S(0, χ

α)

RS
ϕ(χ

α)
= α

(
L∗
S(0, χ)

RS
ϕ(χ)

)
,

where χα := α ◦ χ. We put

rS = rS(χ) :=
∑
p∈S

dimEχ(V
GP
χ ).

Then, since χ is non-trivial, one has

rS = dimEχ(Vχ̌ ⊗ZG XS) = dimEχ(Eχ ⊗oχ XS,χ̌)

and the function LS(s, χ) vanishes to order rS at s = 0 by [28], Prop. 3.4, p. 24. Further, if we
denote by

λ
(χ)
S : C⊗Eχ (∧rS

Eχ
(Vχ̌ ⊗ZG ES))

∼−→ C⊗Eχ (∧rS
Eχ

(Vχ̌ ⊗ZG XS))

the isomorphism of C-spaces induced by λS , one �nds that Stark's conjecture implies

L∗
S(0, χ) · ∧

rS
Eχ

(Vχ̌ ⊗ZG XS)) = λ
(χ)
S (∧rS

Eχ
(Vχ̌ ⊗ZG ES)). (13)

Let L∗
S,T (0, χ) := δT (0, χ̌) ·L∗

S(0, χ) if S and T satisfy Hyp(S, T ). For any G-module resp. oχ-module

M we write Mtor for the Z-torsion submodule of M and set M := M/Mtor which we identify as a
submodule of Q ⊗Z M resp. Eχ ⊗oχ M in the natural way. Now Burns' conjecture ([3], Conj. 2.1)
asserts the following re�nement of (13):

Conjecture 3.1 RS(L/K, S, T, χ) (Burns). Let S and T be two �nite sets of places of K such
that Hyp(S, T ) is satis�ed and let χ be a non-trivial irreducible complex character. Then Stark's
conjecture holds for χ and in C⊗Eχ (∧rS

Eχ
(Vχ̌ ⊗ZG XS)) one has

|G|rSL∗
S,T (0, χ) · ∧rS

oχ
XS,χ̌ ⊂ Fittoχ(H

−1(G,XS [χ̌])) · λ(χ)S (∧rS
oχ
ET,χ̌

S ).

Moreover, we will say that RS(L/K, S, χ) holds if RS(L/K,S, T, χ) holds for all �nite sets of
places T such that Hyp(S, T ) is satis�ed.

Remark 4. It is reasonable to expect that the inclusion in Conjecture 3.1 is an equality for su�ciently
large S (cf. [3], Prop. 4.8).

If Stark's conjecture holds, the quotient L∗
S(0, χ)/R

S
ϕ(χ) belongs to Eχ. The strong Stark con-

jecture as formulated by T. Chinburg ([9], Conj. 2.2) further predicts that

L∗
S(0, χ)

RS
ϕ(χ)

oχ = q(ψχ̌)
−1, (14)

where ψχ denotes the composite homomorphism of oχ-modules

XS,χ
ϕχ // ES,χ

t(ES ,χ) // Eχ
S ,

10
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and for each irreducible character χ we use the following general notion: if f : M → N is a
homomorphism of �nitely generated oχ-modules with �nite kernel and �nite cokernel, then q(f)
denotes the frational oχ-ideal Fittoχ(cok (f)) · Fittoχ(ker(f))−1.

Theorem 3.2 ([3], Th. 4.1). If the strong Stark conjecture (14) holds for the character χ, then
RS(L/K, S, χ) is valid for all admissible sets S.

We will need the following result which is [3], Prop. 3.2. We set cS(χ) := Fittoχ(H
−1(G,XS [χ̌])).

Proposition 3.3. Assume that rS = 1 and |S| > 1. Let p1 be the unique place in S with V
GP1
χ ̸= 0

and set S1 := S∞ ∪{p1}. If RS(L/K, S, T, χ) is valid, then for any element d of cS(χ)
−1D(Eχ/Q)−1

there exists an element u(d) ∈ ET
S1

which at each place P of L satis�es

− log |u(d)|P =

{
0, if P - p1∑

γ∈Gal(Eχ/Q)

∑
h∈GP1

γ(d)χγ(gh)L∗
S,T (0, χ

γ), if P = P
g
1, g ∈ G.

Theorem 3.4. Let S be a �nite set of places of K containing Sram ∪ S∞. If RS(L/K,S ∪ {q}, χ)
is valid for all characters χ such that rS = 0 and all primes q which are totally split in L/K, then

BSw(L/K, S) and Bw(L/K, S) hold. In particular, if the strong Stark conjecture (14) holds for these

characters, then BSw(L/K,S) and Bw(L/K, S) hold for all admissible sets S.

Proof. By means of Lemma 2.9 and Theorem 3.2, it su�ces to show that the relevant case of Burns'
conjecture implies BSw(L/K,S). Since eχ · θTS = 0 if rS > 0, we only have to treat characters χ
with rS = 0. Let T be a �nite set of primes of K such that Hyp(S, T ) is satis�ed and let q be a
totally decomposed prime not in S ∪ T . We claim that 1

2 ∈ cS∪{q}(χ)
−1. Taking this for granted for

the moment, let x ∈ F(G) and write

1
2 · x · θTS =

∑
χ

∑
γ∈Gal(Q(χ)/Q)

γ(12xχ)L
∗
S,T (0, χ

γ) · prχ̌γ ,

where the �rst sum runs over all irreducible characters with rS(χ) = 0 modulo Galois action,
and where xχ ∈ D−1(Q(χ)/Q) according to the description (6) of the central conductor. Since
L∗
S,T (0, χ) = L∗

S∪{q},T (0, χ) and the trace maps D−1(Eχ/Q) onto D−1(Q(χ)/Q), we can apply Propo-

sition 3.3 to the set S ∪ {q} and obtain

Q
1
2xθ

T
S = (αT ),

where αT ∈ ET
S∞∪{q} and Q is a prime in L above q. Since the ray class group clTL is generated by

totally decomposed primes, we have for any fractional ideal a of L, coprime to the ideals in T that

a
1
2xθ

T
S = (αT (a)) (15)

with αT (a) ∈ ET
S(a), where S(a) contains all the primes of K below the primes dividing a. Now let p

be a prime and let a be a fractional ideal of L such that its class [a] ∈ clL has p-power order . Then
Lemma 2.2 implies that there is a totally decomposed prime p0 such that |µL| = (1−N(p0))·c, where
c ∈ Q with vp(c) = 0. We may assume that p0 is coprime to a and that Hyp(S, {po}) is satis�ed.
The observations above imply that for any x ∈ F(G) we have

axωLθS = a
1
2xωL2θS = a

1
2xnr(c)(1−j)θ

{po}
S = (α′)(1−j) = (α)

for an appropriate α′ ∈ L× and an anti-unit α = α′(1−j). Note that there is a natural number N
with vp(N) = 0 such that N · xnr(c) ∈ F(G) and raising to the N th power is a bijection on clL(p).
Moreover, if T is a �nite set of primes such that Hyp(S ∪ Sα, T ) holds, then (15) implies that for
any z ∈ F(G) we have

(α)z·δT (0) = a(1−j)z·12xωLθ
T
S = (α′

T (a)
(1−j))z·ωL ,

11
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where α′
T (a) ∈ ET

Sα
and αT := α′

T (a)
(1−j) is an anti-unit. Hence αz·δT (0) = uT · αz·ωL

T , where uT is
a unit and an anti-unit, thus a root of unity. But uT is also congruent 1 modulo MT and therefore
uT = 1.
We are left with the proof of 1

2 ∈ cS∪{q}(χ)
−1 (which was only needed for the case p = 2). Since

rS(χ) = 0, we have V
GP
χ = 0 for any prime p ∈ S. Let us �x an in�nite p ∈ S. Since there is no

unrami�ed extension of the rational numbers, there are at least two primes in S such that cS∪{q}(χ)
is contained in Fittoχ((Tχ)GP

) by [3], Rem. 2.3. But (Tχ)GP
= Tχ/(1− j)Tχ = Tχ/2Tχ such that

cS∪{q}(χ) ⊂ Fittoχ((Tχ)GP
) = 2χ(1)oχ ⊂ 2oχ

and we have proven the claim.

Now we discuss a non-abelian generalization of the strong Brumer-Stark property.

Definition 3.5 StBS(L/K, S, T, p). Let p be a prime and let S and T be two �nite sets of places
of K such that Hyp(S, T ) is satis�ed. The CM-extension L/K satis�es the strong Brumer-Stark

property StBS(L/K,S, T, p) if

θTS ∈ Fittmax
ZpG−(A

T
L(p)) = Fittmax

ZpG(clL(p))
− if p ̸= 2

1
2θ

T
S ∈ Fittmax

ZpG(clL(p)) if p = 2.

The above property does not hold in general as follows from the results in [16]. But it is reasonable
to state the following conjecture which is the above property over the maximal order.

Conjecture 3.6 StBSw(L/K,S, T, p). Let p be a prime and let S and T be two �nite sets of places
of K such that Hyp(S, T ) is satis�ed. Choose a maximal order Λp containing ZpG. Then

θTS ∈ Fitt(Λp)−((Λp)− ⊗ZpG− A
T
L(p)) = FittΛp(Λp ⊗ZpG clTL(p))

− if p ̸= 2
1
2θ

T
S ∈ FittΛp(Λp ⊗ZpG clTL(p)) if p = 2.

Moreover, we will say that StBS(L/K,S, p) resp. StBSw(L/K,S, p) holds if StBS(L/K,S, T, p)
resp. StBSw(L/K, S, T, p) holds for all �nite sets of places T such that Hyp(S, T ) is satis�ed.

Lemma 3.7. Let p be a prime and let S and T be two �nite sets of places of K such that Hyp(S, T )
is satis�ed.

i) If S ⊂ S′, then

StBS(L/K,S, T, p) =⇒ StBS(L/K, S′, T, p),

StBSw(L/K,S, T, p) =⇒ StBSw(L/K, S
′, T, p).

ii) If T ⊂ T ′, then

StBS(L/K,S, T, p) =⇒ StBS(L/K, S, T ′, p),

StBSw(L/K,S, T, p) =⇒ StBSw(L/K, S, T
′, p).

Proof. The �rst assertion follows from Proposition 1.1 (iv), as we observe that θTS′ =
∏

p∈S′\S nr(1−
ϕ−1
P ) · θTS . For (ii) consider the following special case of sequence (9):

ET
L � EL → (oL/MT )

× → clTL � clL.

Since we have a similar sequence with T replaced by T ′, we �nd that the kernel of the natural
projection clT

′
L � clTL equals ker((oL/MT ′)× � (oL/MT )

×) = (oL/MT ′\T )
×. Now Proposition 1.1 (ii)

implies

Fittmax
ZpG−(A

T ′
L (p)) ⊃ Fittmax

ZpG−(A
T
L(p)) · Fittmax

ZpG−((o/MT ′\T )
×,−(p))

12



On non-abelian Stark-type conjectures

if p ̸= 2, and the latter contains θTS ·
∏

p∈T ′\T nr(1−N(p)ϕ−1
P ) = θT

′
S . A similar argument applies for

p = 2. Since tensoring with Λp is a right exact functor, we also obtain the desired implication in the
maximal order case.

Proposition 3.8. Let p be a prime and let S be a �nite set of places of K containing Sram ∪ S∞.

Then

StBS(L/K, S, p) =⇒ BS(L/K, S, p),

StBSw(L/K, S, p) =⇒ BSw(L/K, S, p).

Proof. Assume that StBS(L/K, S, p) holds and p ̸= 2. Let a be a fractional ideal of L whose class in
clL has p-power order. As before write |µL| = (1−N(p0)) · c, where p0 ̸∈ S is a totally decomposed
prime, coprime to a such that Hyp(S, {p0}) is satis�ed, and vp(c) = 0. Then Theorem 1.2 implies
that for any x ∈ H(G), there is an α ∈ L× such that

axωLθS = axnr(c)θ
{p0}
S = (α).

But also for any �nite set of places T such that Hyp(S ∪ Sα, T ) is satis�ed, there is an αT ∈ ET
Sα

such that

ax·θ
T
S = (αT ).

As on earlier occasions we may assume that α and αT are anti-units such that the equation of ideals

(α)zδT (0) = az·xωLθ
T
S = (αT )

z·ωL

for all z ∈ H(G) actually implies αzδT (0) = αz·ωL
T . For the modi�cations for the prime p = 2 compare

the proof of Theorem 3.4. For the implication of the weaker conjectures, everything remains the
same apart from some obvious modi�cations and the following fact: If M is a �nitely presented
ZpG-module, then (cf. [20], Prop. 5.1)

Fp(G) · FittΛp(Λp ⊗ZpG M) ⊂ AnnZpG(M)

and similarly on minus parts.

By a similar argument we can prove a partial converse of Lemma 2.9 which is a non-abelian
analogue of [17], Prop. 1.2.

Proposition 3.9. Let p be an odd prime and let S be a �nite set of places ofK containing Sram∪S∞.

Assume that µL(p) is c.t. and

Hp(G)FittZpG−(µL(p))θS ⊂ AnnZpG−(AL(p)). (16)

Then for each x ∈ H(G)2 and each fractional ideal a of L whose class in clL is of p-power order,

there is an anti-unit α ∈ L× such that

ax·ωL·θS = (α)

and for each �nite set T of primes of K such that Hyp(S ∪ Sα, T ) holds there is an αT ∈ ET
Sα

such

that

αz·δT (0) = αz·ωL
T

for each z ∈ H(G).

Proof. Since the p-part of the roots of unity is c.t. and µL(p) is cyclic as ZpG−-module, there is a
nonzerodivisor λ ∈ ZpG− such that ξ := nr(λ) generates FittZpG−(µL(p)). Let a be a fractional ideal
of L whose class [a] ∈ clL has p-power order and let x′ ∈ H(G). By assumption there is an α ∈ L×

such that

ax
′ξθS = (α).
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Let T be a �nite set of places such that Hyp(S ∪ Sα, T ) is satis�ed. Since p is odd, we may assume

that [a] ∈ AL(p) and we can lift [a] to the class [a]T ∈ AT
L(p). Then [a]x

′ξθS
T lies in the kernel D(p) of

the epimorphism AT
L(p) � AL(p). But D(p) is c.t. by means of the exact sequence

µL(p) � (oL/MT )
×,−(p) � D(p)

and the Fitting invariant FittZpG−(D(p)) is generated by δT (0)ξ
−1. Hence for any x′′ ∈ H(G), we

have

1 = [a]
x′′δT (0)ξ−1x′ξθS
T = [a]

x′x′′θTS
T .

Now we can proceed as in the proof of Proposition 3.8.

Remark 5. i) Since tensoring with the maximal order Λp is exact on sequences of �nite c.t. mod-
ules, we obtain a similar result by replacing FittZpG−(µL(p)) by Fitt(Λp)−(Λp ⊗ µL) and H by
F .

ii) If p - |G|, then µL(p) is c.t. and Hp(G)
2 = Hp(G) by Lemma 1.3. Then the above proof shows

that we may replace x ∈ H(G)2 by x ∈ H(G) such that (16) implies BS(L/K, S, p).

iii) If µL(p) = 1, then in fact

Fittmax
ZpG−(µL(p)) = [nr(ZpG−)]nr(ZpG−) = [AS(p)]nr(ZpG−).

In particular, BS(L/K, S, p) is equivalent to B(L/K, S, p) if in addition p - |G|.

4. The relation to the strong Stark conjecture

As before let L/K be a �nite Galois CM-extension of number �elds with Galois group G. We denote
the maximal real sub�eld of L by L+ and the normal closure of L by Lc. For n ∈ N let ζn be a
primitive complex nth root of unity. The aim of this section is to prove the following result.

Theorem 4.1. Let p be an odd prime and let S be a �nite set of places of K containing Sram ∪S∞.

If the strong Stark conjecture at p holds for all characters χ with rS(χ) = 0, then StBSw(L/K, S, p)
is true.

Corollary 4.2. Let p be an odd prime. Assume that no prime of L+ above p is split in L/L+

whenever Lc ⊂ (Lc)+(ζp). Then StBSw(L/K, S, p), BSw(L/K,S, p) and Bw(L/K,S, p) are true for

any set S of places of K containing Sram ∪ S∞.

Proof. Since the strong Stark conjecture at p holds in this case by [19], Cor. 2, this follows immedi-
ately from Theorem 4.1, Proposition 3.8 and Lemma 2.9.

Before we start with the proof of Theorem 4.1, we introduce some further notation. We de�ne
central idempotents of QpGP by

ε′p := |IP|−1NIP , ε
′′
p = 1− ε′p,

and a ZpGP-module Up by

Up := ⟨NIP , 1− ε′pϕ
−1
P ⟩ZpGP

⊂ QpGP.

Note that Up = ZpGP if p is unrami�ed in L/K. For each irreducible Cp-valued character χ we
de�ne a fractional ideal of oχ by setting

Uχ :=
∏

p∈Sram

nreχEχG(eχMUp)oχ,

where as before M is a maximal oχ-order in EχG containing oχG. For any �nite set S containing
S∞, there is a Tate sequence (cf. [23])

ES � AS → BS � ∇S , (17)

14
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where AS is G-c.t., BS is ZG-projective and ∇S �ts into an exact sequence

clS � ∇S � ∇S , (18)

where ∇S is a ZG-lattice. More precisely, ∇S �ts into a short exact sequence

∇S �
⊕

p∈Sram
p ̸∈S

(indG
GP

(W 0
P)) � Z,

where W 0
P can be described as the cokernel of the map (cf. [15], �5)

ZGP −→ ZGP/(NGP
)× ZGP

1 7→ (NIP , 1− ϕ−1
P ).

Sequence (17) has a uniquely determined extension class τS ∈ Ext2G(∇S , ES) which is Tate's canon-
ical class (cf. [27]) if S is su�ciently large. We set ∇ := ∇S∞ and ∇ := ∇S∞ .

Proof of Theorem 4.1. We seek to compute the Fitting invariant of AT
L(p) over the maximal order

(Λp)−. By [20], remark 7 this is equivalent to the computation of the Fitting ideals Fittoχ(A
T
L(p)χ)

for all Cp-valued irreducible odd characters χ. Thus we have to show that for any �nite set T of
places of K such that Hyp(S, T ) holds we have

θTS,χ ∈ Fittoχ(A
T
L(p)χ),

where θTS = (θTS,χ)χ∈Irrp (G) ∈ ζ(CpG). Let us �x an odd irreducible character χ; for any �nitely

generated ZG-module M and i ∈ Z we abbreviate the Tate-cohomology groups H i(G,M(p)[χ]) by
H i(M). For any �nite ZG-module M , the homomorphism t(M(p), χ) induces an equality

Fittoχ(M(p)χ)Fittoχ(H
0(M)) = Fittoχ(M(p)χ)Fittoχ(H

−1(M)). (19)

Consider the exact sequence of ZpG−-modules (cf. sequence (9))

µL(p) � (oL/MT )
×,−(p) → AT

L(p) � AL(p). (20)

If we denote the kernel of the epimorphism AT
L � AL byD, we get two exact sequences of oχ-modules

as follows:

µL(p)
χ � (oL/MT )

×,−(p)χ → D(p)χ � H1(µL), (21)

J−2 � D(p)χ → AT
L(p)χ � AL(p)χ, (22)

where J−2 denotes the image of the map H−2(AT
L) → H−2(AL). It follows from the proof of the

main result in [7] (cf. the end of �12 in loc.cit.) that

LS∞(0, χ̌)UχFittoχ(µL(p)
χ)Fittoχ(H

1(µL))
−1Fittoχ(H

2(µL)) ⊂ Fittoχ(AL(p)
χ) (23)

provided that the strong Stark conjecture at p holds for the character χ. From this one can actually
derive annihilation results in spirit of the non-abelian Brumer conjecture (cf. loc.cit. Th. 1.2), but
this inclusion is not su�cient for our purposes such that we have to take care of the di�erence of the
above oχ-ideals. The only inclusion of the proof of (23) derives from the two short exact sequences
of �nite Z[12 ]G−-modules

AL �
∇−

δ(C)−
�

∇−

δ(C)−
,

∇−

δ(C)−
�

x−1δ(C)−

δ(C)−
�
x−1δ(C)−

∇− , (24)

where C is a free ZG-module of rank |Sram | and the map δ : C → ∇ is injective. By abuse of notation
we also write δ for the induced map C → ∇ and note that this map is still injective. Moreover, x is
a natural number such that x∇− ⊂ δ(C)−. Following the notation of loc.cit. we put

M1 :=
∇−

δ(C)−
, M2 :=

x−1δ(C)−

δ(C)−
, M3 :=

x−1δ(C)−

∇−

15
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and in addition

M1 :=
∇−

δ(C)−
.

Since M2 is c.t. and H i(M3) ≃ H i+1(∇−
), we obtain from (24) the following exact sequences of

oχ-modules:

AL(p)
χ � M1(p)

χ →M1(p)
χ � J1, (25)

H−1(∇−
) � M1(p)χ →M2(p)χ � M3(p)χ, (26)

where J1 denotes the kernel of the map H1(AL) → H1(M1). Now we observe that we have isomor-
phisms

H i(M1) ≃ H i(∇−) ≃ H i+2(µL) ≃ H i+1(D),

where the second isomorphism derives from the Tate sequence (17) for the set S∞ whereas the last
isomorphism is induced by the exact sequence

Z[12 ]⊗ µL � (oL/MT )
×,− � D.

Now choose a �nite set S′ of totally decomposed primes which generate the ray class group clTL. The
two exact sequences (cf. sequence (8) and (9))

(ET
S′)− � (ZS′)− � AT

L, (ET
S′)− � E−

S′ � (oL/MT )
×,−

imply the �rst two isomorphisms of

H i+1(AT
L) ≃ H i+2(ET,−

S′ ) ≃ H i+2(E−
S′) ≃ H i(∇−

) ≃ H i(M1).

The last isomorphism is clear and the third is induced by a Tate sequence for S′, since∇S′ ≃ ∇⊕ZS′.
The natural behavior of Tate sequences yields a commutative diagram

EL
� � //

� _

ιS′

��

AS∞� _

��

// BS∞
// //

� _

��

∇

��

%% %%KKKKKKKKKK

∇kK
yyrrrrrrrrr

ES′
� � // AS′ // BS′ // // ∇S′

which implies that the squares

H i(M1)
∼ //

Hi(π1)

��

H i+2(µL)

Hi+2(ιS′ )

��
H i(M1)

∼ // H i+2(E−
S′)

commute for all i ∈ Z, where π1 denotes the surjection M1 � M1. Moreover, the commutative

16
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diagram

ET,−
S′

� � //
� _

��

(ZS′)− // // AT
L

����
Z[12 ]⊗ µL

� �
ι−
S′ // E−

S′
//

����

(ZS′)− // // AL

Z[12 ]⊗ µL
� � // (oL/MT )

×,− // // D
3�

FF�����������������������

implies that indeed the diagram

H i(M1)
∼ //

Hi(π1)

��

H i+2(µL)

Hi+2(ιS′ )

��

∼ // H i+1(D)

Hi+1(ιD)

��
H i(M1)

∼ // H i+2(E−
S′)

∼ // H i+1(AT
L)

commutes for all i ∈ Z, where ιD denotes the inclusion D � AT
L. In particular, we have J1 ≃

cok (H0(π1)) ≃ cok (H1(ιD)) and thus there is an exact sequence

J−2 � H−1(D) → H−1(AT
L) → H−1(AL) → H0(D)

→ H0(AT
L) → H0(AL) → H1(D) → H1(AT

L) � J1.

Taking this into account, we can use the sequences (21), (22), (25), (26) and the equality (19) to
calculate the desired Fitting ideal and end up with

Fittoχ(AL(p)χ) = Fittoχ((oL/MT )
×,−(p)χ)Fittoχ(M1(p)

χ)Fittoχ(M2(p)χ)
−1Fittoχ((M3(p)χ)) ·

·Fittoχ(µL(p)χ)−1Fittoχ(H
1(µL))Fittoχ(H

2(µL))
−1

Now it follows from the proof of loc.cit., Prop. 9.1 and Th. 1.2 that the left hand side of the inclusion
(23) equals Fittoχ(M1(p)

χ)Fittoχ(M2(p)χ)
−1Fittoχ((M3(p)χ)). Hence we obtain

Fittoχ(AL(p)χ) = LS∞(0, χ̌) · Fittoχ((oL/MT )
×,−(p)χ)Uχ

= LS∞(0, χ̌) · δT (0, χ)Uχ

which in particular contains (θTS )χ.

5. The relation to the equivariant Tamagawa number conjecture

In [2] the author de�nes the following element of K0(ZG,R):

TΩ(L/K, 0) := ψ∗
G(χG,R(τS , λ

−1
S ) + ∂̂G(L

∗
S(0)

♯)).

Here, ψ∗
G is a certain involution on K0(ZG,R) which is not important for our purposes, since we will

be only interested in the nullity of TΩ(L/K, 0). Furthermore, τS ∈ Ext2G(ES , XS) is Tate's canonical
class (cf. [27]). Finally, χG,R(τS , λ

−1
S ) is the re�ned Euler characteristic associated to the perfect 2-

extension AS → BS whose extension class is τS , metrised by λ−1
S . For more precise de�nitions we

refer the reader to [2]. By loc.cit., Th. 2.4.1 the ETNC for the motive h0(L) with coe�cients in
ZG in this context asserts that the element TΩ(L/K, 0) is zero. Note that this statement is also
equivalent to the Lifted Root Number Conjecture formulated by Gruenberg, Ritter and Weiss [18]
by [2], Th. 2.3.3.
It is also proven in [2] that TΩ(L/K, 0) lies in K0(ZG,Q) if and only if Stark's conjecture holds. In
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this case the ETNC decomposes into local conjectures at each prime p by means of the isomorphism

K0(ZG,Q) ≃
⊕
p-∞

K0(ZpG,Qp).

Since Stark's conjecture holds for odd characters, TΩ(L/K, 0) has a well de�ned image TΩ(L/K, 0)−p
in K0(ZpG−,Qp).

Theorem 5.1. Let p be an odd prime and assume that TΩ(L/K, 0)−p = 0. If µL(p) is a c.t.G-module,

then BS(L/K, S, p) holds for all �nite sets S of places of K containing Sram ∪ S∞.

Proof. If TΩ(L/K, 0)−p = 0 and µL(p) is c.t., Proposition 1.1 (iv) and [20], Th. 7.1 imply that

Fittmax
ZpG−(µL(p)) · [L(0)

♯
∏

p∈Sram

nr(Up)]nr(ZpG−) ⊂ Fittmax
ZpG−(AL(p)

∨)♯. (27)

As in the last section, we consider sequence (20), where the kernel D(p) of the surjection AT
L(p) �

AL(p) now is c.t. As the Pontryagin dual of µL(p) is again µL(p), we obtain the following dual
sequences:

D(p)∨ � ((oL/MT )
×,−(p))∨ � µL(p),

AL(p)
∨ � AT

L(p)
∨ � D(p)∨.

Since the Fitting invariant of ((oL/MT )
×,−(p))∨ is generated by δT (0)

♯, Proposition 1.1 implies that

[δT (0) · L(0)♯
∏

p∈Sram

nr(Up)]nr(ZpG−) ⊂ Fittmax
ZpG−(A

T
L(p)

∨)♯.

Since the left hand side contains θTS ifHyp(S, T ) is satis�ed, the group ring elements x·θTS , x ∈ Hp(G)
annihilate AT

L(p) by (4). Now we can proceed as in the proof of Proposition 3.8.

In particular, the inclusion (27) shows the following result (cf. [20], Cor. 7.2).

Corollary 5.2. Let p be an odd prime and assume that TΩ(L/K, 0)−p = 0. If µL(p) is a c.t. G-

module and S is a �nite set of places of K containing Sram ∪ S∞, then

Hp(G)Fitt
max
ZpG−(µL(p))θS ⊂ AnnZpG−(AL(p)).

We also can derive the strong Brumer-Stark property from the ETNC if the rami�cation above
p is (almost) tame:

Theorem 5.3. Let p be an odd prime and let S be a �nite set of places of K containing Sram ∪S∞.

Assume that TΩ(L/K, 0)−p = 0. Then StBS(L/K, S, p) holds, whenever all primes p of K above p
are at most tamely rami�ed in L/K or j ∈ GP. In particular, BS(L/K, S, p) and B(L/K,S, p) are
true in this case.

Remark 6. Assume that all primes p of K above p are at most tamely rami�ed in L/K or j ∈ GP.
In [21] the author was meanwhile able to deduce the vanishing of TΩ(L/K, 0)−p under some further
restrictions from the validity of the equivariant Iwasawa main conjecture which has been proven by
Ritter and Weiss [24] provided that Iwasawa's µ-invariant vanishes. For further connections of the
work of Ritter and Weiss to the ETNC we refer the reader to [5].

Proof of Theorem 5.3. Let S and T be �nite sets of places of K such that Hyp(S, T ) is satis�ed.
We denote the set of places of K above p by Sp and put

T ′ := T ∪ (Sram \ (Sram ∩ Sp)).

18
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If the set T consists of only one prime, then AT ′
L (p) is G-c.t. by [19], Th. 1. But if T ⊂ T0, the exact

sequence

(oL/MT0\T )
×,−(p) � A

T ′
0

L (p) � AT ′
L (p)

implies that we may add or remove primes without changing the cohomology of AT ′
L (p) and this

module is hence c.t. for all admissible sets T . Since the Fitting invariant of (oL/MT0\T )
×,−(p) is

generated by δT0\T (0), loc.cit., Th. 2 implies that

TΩ(L/K, 0)−p = 0 ⇐⇒ FittZpG−(A
T ′
L (p)) = [⟨θT ′

S1
⟩]nr(ZpG−), (28)

where S1 denotes the set of all primes of K which are wildly rami�ed in L/K. Moreover, we have
an exact sequence

(oL/MT ′\T )
×,−(p) � AT ′

L (p) � AT
L(p). (29)

Let p be a �nite prime of K and choose a prime P in L above p. We denote the kernel of the
augmentation map ZGP � Z which sends each g ∈ GP to 1 by ∆GP. Take an exact sequence

L×
P � VP � ∆GP

whose extension class in Ext1GP
(∆GP, L

×
P) ≃ H2(GP, L

×
P) is the local fundamental class of the

extension LP/Kp. By [29], Th. 4 the inertial lattice

WP :=
{
(x, y) ∈ ∆GP × ZGP|x = (ϕP − 1)y

}
is the push-out of this sequence along the normalized valuation vP : L×

P � Z. We have two exact
sequences

EP � VP � WP, E1
P � EP � (oL/P)×,

where EP is the group of local units and E1
P denotes the local units which are congruent 1 modulo

P. We de�ne TP to be the push-out of the �rst sequence along the projection of the second such
that we obtain an exact sequence

(oL/P)× � TP � WP. (30)

The following result is [19], Lemma 3 (i).

Lemma 5.4. The G-module (indG
GP
TP)(p) is c.t. for each �nite prime p - p of K and for each �nite

prime p of K which is at most tamely rami�ed in L/K.

We write ep and fp for the rami�cation index and the degree of the residue �eld extension at p,
respectively. We observe that there is an isomorphism Qp⊗WP ≃ QpGP and we specify a generator
c′P ∈WP(p) as follows:

c′P := (|GP| −NGP
, NGP

+ ep(ϕP − 1)−1(fp −NGP
)),

where we write (ϕP − 1)−1 = f−1
p

∑fp−1
i=0 iϕiP in an intuitive notation. Note that

(ϕP − 1)−1(fp −NGP
) =

fp−1∑
i=0

iϕiP − fp − 1

2
NGP

lies in ZpGP as p ̸= 2. We pick a preimage t′P ∈ TP(p) of c
′
P. The maps ZpGP → WP(p), 1 7→ c′P

and ZpGP → TP(p), 1 7→ t′P are injective and become isomorphisms after tensoring with Qp. Hence,
the direct sum

T :=
⊕

p∈T ′\T

indG
GP

(TP(p)/t
′
P)
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is �nite and c.t. by Lemma 5.4. LetW be the direct sum of the modules indG
GP

(WP(p)/c
′
P), p ∈ T ′\T .

Then the exact sequences (30) for these primes induce an exact sequence of G-modules

(oL/MT ′\T )
×,−(p) � T − � W−.

Now take any �nite c.t. ZpG−-module P which maps onto (oL/MT ′\T )
×,−(p) (for example, choose P

to be the direct sum of the modules (indG
GP

ZpGP/(N(P)− 1))−, p ∈ T ′ \ T ) and denote the kernel
by K. Then we obtain two exact sequences

K � P → T − � W−, K � P → AT ′
L (p) � AT

L(p),

where the second sequence derives from (29). Hence Proposition 1.1 (v) implies that

Fittmax
ZpG−(A

T
L(p)) = FittZpG−(A

T ′
L (p))FittZpG−(T −)−1Fittmax

ZpG−(W
−). (31)

The �rst Fitting invariant on the right hand side is given by the ETNC and we have to compute the
other two. In fact [19], Prop. 6 (4) gives

FittZpG−(T −) = [
∏

p∈T ′\T

nr(τp)]nr(ZpG−), where (32)

τp := e−1
p (1−N(p))NGP

+

(
N(p)− ϕP

1− ϕP

ε′p + ε′′p

)
(|GP| −NGP

).

For the last Fitting invariant we prove the following lemma which is the non-commutative analogue
of [19], Lemma 8:

Lemma 5.5. Let p ̸∈ Sp be a �nite prime of K. Then

Fittmax
ZpGP

(WP(p)/c
′
P) ⊃ [nr (Xp)]nr(ZpG−),

Xp := ⟨NGP
− |GP|, NGP

+ ep(fpNIP −NGP
)(ϕP − 1)−1⟩ZpGP

.

Before we prove the lemma, we observe that this lemma, (31), (32) and (28) imply the following
result:

Corollary 5.6. Let p be an odd prime and assume that TΩ(L/K, 0)−p = 0. Moreover, assume that

all primes p of K above p are at most tamely rami�ed in L/K or j ∈ GP. Then for any �nite set T
of primes of K such that Hyp(Sram , T ) is satis�ed, we have

Fittmax
ZpG−(A

T
L(p)) ⊃ [δT (0)L(0)

♯
∏

p∈Sram

nr(Up)]nr(ZpG−).

In particular, θTSram
and hence θTS is contained in Fittmax

ZpG−(A
T
L(p)). This �nishes the proof of the

theorem.

We are left with

Proof of Lemma 5.5. Let l be the rational prime below p and let RP denote the l-Sylow subgroup
of IP. Since RP is normal in GP and l ̸= p, the central idempotents

r′p := |RP|−1NRP
, r′′p := 1− r′p

belong to the group ring ZpGP and there is an isomorphism r′′p(WP(p)) ≃ r′′pZpGP which maps r′′pc
′
P

to r′′p(|GP| −NGP
). Hence we may assume that p is tamely rami�ed in L/K.

Let us drop the subscripts p from the notation and simply write e for ep, and f for fp. We keep
the notation of [10], Lemma 6.2. So choose a generator a of IP and let b−1 ∈ GP be a lift of the
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Frobenius automorphism which is of maximal order |b| among all such elements. Then b−f = ac for
a divisor c of e and b−1ab = aq, where q = N(p). De�ne a map

π : ZpGPe1 ⊕ ZpGPe2 →WP(p)

by π(e1) = (b−1 − 1, 1) and π(e2) = (a − 1, 0). Now let (x, y) ∈ WP(p) be arbitrary. Since ∆GP

is generated by a − 1 and b − 1, there is an y′ ∈ ZpGP such that (x, y′) ∈ im (π). Hence ϕP − 1
annihilates y − y′ and there is z ∈ Zp such that y − y′ = zNGP

. But

π(

f−1∑
i=0

b−ie1 −
c−1∑
i=0

aie2) = (b−f − 1− (ac − 1), NGP
)

= (0, NGP
)

such that π is an epimorphism. We claim that the kernel is generated by NIPe2 and (aq − 1)e1 +
(1− b−1)e2. For this, assume that

π(x1e1 + x2e2) = (x1(b
−1 − 1) + x2(a− 1), x1) = 0.

Since aq is also a generator of IP, we have x1 = x′1(a
q − 1) for an appropriate x′1 ∈ ZpGP by [10],

Lemma 6.6. By the same Lemma we get x′1(b
−1 − 1) + x2 = y · NIP with y ∈ ZpGP, since the

left-hand side is annihilated by (a− 1). Hence

x1e1 + x2e2 = x′1(a
q − 1)e1 + x′1(1− b−1)e2 + (x′1(b

−1 − 1) + x2)e2

= x′1((a
q − 1)e1 + (1− b−1)e2) + yNIPe2

which proves the claim. De�ne two group ring elements

δ1 :=

f−1∑
i=0

b−i + (fNIP −NGP
)(b−1 − 1)−1 ∈ ZpGP,

δ2 :=
c−1∑
i=0

ai + f ·
e−1∑
i=1

i−1∑
j=0

aj ∈ ZpGP.

Now we compute

δ1(b
−1 − 1)− δ2(a− 1) = b−f − 1 + fNIP −NGP

− (ac − 1 + f(NIP − e))

= |GP| −NGP

and thus π(δ1e1 − δ2e2) = c′P. Hence, the kernel of the epimorphism

ZpGPe1 ⊕ ZpGPe2 � WP(p)/c
′
P

induced by π is generated by the kernel of π and δ1e1 − δ2e2. The reduced norms of the following
three matrices generate a Fitting invariant of WP(p)/c

′
P:

A :=

(
0 aq − 1
NIP 1− b−1

)
, B :=

(
0 δ1
NIP −δ2

)
, C :=

(
aq − 1 δ1
1− b−1 −δ2

)
.

Since NIP(a
q − 1) = 0, we have nr(A) = 0. For the matrix B we have nr(B) = nr(−NIPδ1) and

NIPδ1 = NGP
+ e(fNIP −NGP

)(ϕP − 1)−1.

The reduced norm is de�ned component wise and we compute nr(C) in two steps. Recall that
ε′p = e−1NIP and ε′′p = 1− ε′p. Since ε

′
p(a

q − 1) = 0, we have on the one hand

nr(Cε′p) = nr((b−1 − 1)δ1ε
′
p)

= nr((b−f − 1)ε′p + (fe−NGP
)ε′p)

= nr((|GP| −NGP
)ε′p).
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On the other hand, (aq − 1)ε′′p and likewise (a− 1)ε′′p are invertible and we compute

nr(Cε′′p) = nr

((
aq − 1 δ1

0 δ1(a
q − 1)−1(b−1 − 1)− δ2

)
ε′′p

)
= nr((aq − 1)(δ1(b

−1 − 1)(a− 1)−1 − δ2)ε
′′
p)

= nr((aq − 1)((δ2(a− 1) + |GP| −NGP
)(a− 1)−1 − δ2)ε

′′
p)

= nr((aq − 1)(|GP| −NGP
)(a− 1)−1ε′′p)

= nr((|GP| −NGP
)ε′′p),

where the last equation holds, since b−1ab = aq and the reduced norm is invariant under conjugation.
We have shown that nr(C) = nr(|GP| −NGP

). Now let x1, x2 ∈ ZpGP be arbitrary. Then also

nr

(
x2(a

q − 1) δ1
x1NIP + x2(1− b−1) −δ2

)
= nr(−x1(NGP

+ e(fNIP −NGP
)(ϕP−1)−1)+x2(|GP|−NGP

))

belongs to Fittmax
ZpG(WP(p)/c

′
P).
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