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Introduction

This habilitation thesis consists of six related articles [1, 2, 3, 4, 5, 6]. Two of them
[2, 6] are joint work with Henri Johnston. The general motivation originates from
Stark-type conjectures which predict a deep relationship between certain analytic
and arithmetic objects attached to (�nite Galois extensions of) number �elds.

More precisely, Stark-type conjectures give conjectural information about the
leading term in the Taylor expansion of Artin L-series at integer values r. These
conjectures have been introduced (in the cases r = 0, 1) by Stark [St71, St75, St76,
St80] in the 1970s and later extended by Tate [Ta84]. An analogue at negative
integers has been formulated by Gross in 1979, but published much later [Gr05].
Further re�nements for abelian extensions are, amongst others, due to Brumer [Ta84,
Chapitre IV], Rubin [Ru96], Popescu [Po02], Coates and Sinnott [CS74] and Snaith
[Sn06].

It is often known and in general expected that all these conjectures are implied by
the equivariant Tamagawa number conjecture (ETNC) as formulated by Burns and
Flach [BF01] (in the case of so-called Tate motives). Hence this conjecture might
be seen as the central conjecture in the �eld. The ETNC can also be related to
classical Galois module theory, and in particular to the much studied `Ω-conjectures'
of Chinburg [Ch83, Ch85]. Note that the ETNC is a re�nement of the Tamagawa
number conjecture of Bloch and Kato [BK90], and so certain cases of the ETNC are
also known as the Bloch-Kato conjecture.

The main focus in this thesis is on non-abelian Galois extensions. The articles
[1, 2] provide the necessary tools of noncommutative algebra which are frequently
used in the other four articles. The articles [3, 4] generalize conjectures attached
to abelian extensions of number �elds (as Brumer's conjecture, the Brumer-Stark
conjecture, the Coates-Sinnott conjecture and Snaith's conjecture) to arbitrary �nite
Galois extensions of number �elds. We also study the interplay with other conjectures
and in particular with the ETNC, thereby giving new insights in the abelian case as
well. Finally, in [5, 6] we prove re�ned non-abelian Stark-type conjectures in many
cases. This includes conjectures of the author [3, 4] and of Burns [Bu11] as well
as new cases of the ETNC for Tate motives. This will also lead to new results for
abelian extensions.

The analytic class number formula

Let L be a number �eld. The Dedekind zeta function of L is �rst de�ned for complex
numbers s with real part ℜ(s) > 1 by the absolutely convergent series

ζL(s) =
∑

A⊂OL

N(A)−s,
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4 INTRODUCTION

where the sum runs through all non-zero ideals A of the ring of integers OL of L, and
N(A) = [OL : A] denotes the absolute norm of the ideal A. In the case L = Q this
de�nition reduces to that of the famous Riemann zeta function. Erich Hecke �rst
proved that ζL(s) extends to a meromorphic function de�ned for all s ∈ C with only
one simple pole at s = 1. The residue is given by the analytic class number formula
which we now recall.

Let r1 and r2 be the number of real embeddings and the number of pairs of com-
plex embeddings of L, respectively. We consider the following arithmetic invariants
of the number �eld L:

� the class number hL which is the order of the class group clL of L;

� the regulator RL of L, a positive real number related to units;

� the number wL of roots of unity in L;

� the discriminant dL of the extension L/Q.

The analytic class number formula then states that

lim
s→1

(s− 1)ζL(s) =
2r1 · (2π)r2 · hL ·RL

wL ·
√

|dL|

This formula might be seen as the prototype of the results and conjectures which we
treat in this thesis: The left hand side is of an analytic nature, whereas the right
hand side is made up of arithmetic invariants of L.

The Dedekind zeta function satis�es a functional equation relating its values at
s and 1− s. More precisely, let us de�ne

ΓR(s) := π−s/2Γ(s/2)

ΓC(s) := 2(2π)−sΓ(s),

where Γ(s) denotes the usual Gamma function. Then the function

ΛL(s) := |dL|s/2ΓR(s)
r1ΓC(s)

r2ζL(s)

satis�es the functional equation

ΛL(s) = ΛL(1− s).

Unwinding some familiar properties of the Gamma function one �nds that ζL(s) has
a zero of order r := r1 + r2 − 1 at s = 0, and the leading term ζ∗L(0) of the Taylor
expansion at s = 0 equals

ζ∗L(0) = lim
s→0

s−rζL(s) = −hL ·RL

wL
.

Note that by Dirichlet's unit theorem the integer r is equal to the rank of the unit
group O×

L of OL. Another interesting observation is that

wL

RL
ζ∗L(0) ∈ Z

and annihilates the class group.
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Artin L-series

Now let L/K be a �nite Galois extension of number �elds with Galois group G.
Then G acts on the class group clL of L and we wish to consider the Galois module
structure of clL. For instance, one may ask if we can use Artin L-series rather than
just the Dedekind zeta function to construct non-trivial annihilators of the class
group.

For this let S be a �nite set of places ofK containing the set S∞ of all archimedean
places. We recall the de�nition of the S-truncated Artin L-series attached to a
complex valued character χ of G. For every (�nite) place v of K we choose a
place w of L above v and write Gw and Iw for the decomposition group at w and
inertia subgroup at w, respectively. We choose a lift ϕw ∈ Gw of the Frobenius
automorphism at w. Let Vχ be a C[G]-module with character χ. Then ϕw acts on
V Iw
χ , the submodule of Vχ that is invariant under the action of Iw. For complex s

with ℜ(s) > 1 the S-truncated Artin L-series is given by the Euler product

LS(s, χ) =
∏
v ̸∈S

det(1−N(v)−sϕw | V Iw
χ )−1.

Note that a �nite place v corresponds to a prime ideal pv in the ring of integers OK

of K, and N(v) := N(pv). In particular, if S = S∞ and L = K (and χ is the trivial
character), this recovers the Euler product of the Dedekind zeta function ζL(s).

An example

As an example suppose thatK is totally real and that L is a totally complex quadratic
extension of K. Then G is a cyclic group of order two and we let j ∈ G be its
generator (complex conjugation). There is only one non-trivial irreducible complex
character χ, and χ maps j to −1. Let us denote the roots of unity in L by µL and
put Q := [O×

L : O×
KµL]. Then Q equals 1 or 2 by [Wa82, Theorem 4.12] and

RL

RK
=

2r2−1

Q

by [Wa82, Proposition 4.16]. It now follows easily from the class number formulae
for L and K and some basic properties of Artin L-series that the value of LS∞(χ, s)
at s = 0 is given by

LS∞(χ, 0) =
2r2 · h−L
wL ·Q

, (1)

where h−L := hL/hK denotes the relative class number. Ignoring 2-parts, the class
group of L decomposes into a `plus' and a `minus' part (denoted by cl±L ) upon which
j acts as 1 and −1, respectively. Then h−L = |cl−L | (up to powers of 2) and formula
(1) tells us that

1− j

2
· wL · LS∞(χ, 0) ∈ Z[12 ][G]

and annihilates the class group (away from its 2-part). Note that on plus parts we
merely say that zero is an annihilator.
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Equivariant L-values

We now return to the more general situation, where L/K is an arbitrary �nite Galois
extension of number �elds with Galois group G. Let us denote the center of a ring
Λ by ζ(Λ). There is a canonical isomorphism ζ(C[G]) ≃

∏
χC, where the sum

runs through all absolutely irreducible characters of G. We de�ne the S-truncated
equivariant Artin L-series to be the meromorphic ζ(C[G])-valued function

LS(s) := (LS(χ, s))χ.

The value LS(0) is non-zero only when K is totally real and L is totally complex.
For simplicity, we will also assume that L is a CM-�eld. This means that L is a
quadratic extension of a totally real �eld L+. Then L+ is the unique maximal real
sub�eld of L and complex conjugation induces an automorphism j on L that is
central in G. If T is a second �nite set of places of K such that S ∩T = ∅, we de�ne
δT (s) := (δT (s, χ))χ, where δT (s, χ) =

∏
v∈T det(1−N(v)1−sϕ−1

w |V Iw
χ ). We put

θTS := δT (0) · LS(0)
♯ ∈ ζ(C[G]),

where ♯ : C[G] → C[G] denotes the anti-involution that sends each g ∈ G to its
inverse. If T is empty, we will drop it from the notation. By a result of Siegel [Si70]
one knows that

θTS ∈ ζ(Q[G]), (2)

and this is equivalent to Stark's conjecture for those irreducible characters χ of G
for which LS(χ, 0) does not vanish.

Brumer's conjecture

Now suppose that S contains all places of K that ramify in L. Then it was indepen-
dently shown in [Ba77, Ca79, DR80] that for abelian G one has

AnnZ[G](µL)θS ⊆ Z[G], (3)

where AnnR(M) denotes the R-annihilator ideal of an R-module M . Now we are
ready to state Brumer's conjecture.

Conjecture (Brumer). Let L/K be an abelian CM-extension of number �elds and

let S be a �nite set of places of K containing all archimedean places and all places

that ramify in L. Then one has an inclusion

AnnZ[G](µL)θS ⊆ AnnZ[G](clL).

A few remarks are in order:

(1) It is not hard to see that Brumer's conjecture is equivalent to the assertion
that θTS annihilates the class group for all �nite sets T of places of K for which
the following hypothesis Hyp(S, T ) is satis�ed: We have that S ∩ T = ∅ and
no non-trivial root of unity in L is congruent to 1 modulo all primes of L lying
above those in T .

(2) In the case K = Q and a cyclotomic extension L of Q Brumer's conjecture is
just Stickelberger's theorem from the late 19th century.
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(3) As an abelian group, the class group decomposes into its p-Sylow subgroups
clL(p). Therefore Brumer's conjecture naturally decomposes into `p-parts'.

(4) There is a large body of evidence in support of Brumer's conjecture; see for
instance the work of Wiles [Wi90b] and of Greither [Gr00]. In particular,
Greither [Gr07] has shown that the appropriate special case of the ETNC
implies the p-part of Brumer's conjecture whenever the p-part of the roots of
unity is a cohomologically trivial G-module. For instance, this holds whenever
p does not divide the order of the Galois group G or if L contains no primitive
p-th root of unity.

(5) Note that the ETNC naturally decomposes into p-parts whenever its `ratio-
nality part' is known. We will exclusively deal with the ETNC for the pair
(h0(Spec(L))(r),Z[G]), where r is a non-positive integer. Then the rationality
part is equivalent to Stark's conjecture for L/K if r = 0, and to Gross' conjec-
ture if r < 0. The rationality part of the ETNC that is needed for Brumer's
conjecture is known by the above result (2) of Siegel.

One may ask if an analogue of Brumer's conjecture can be formulated for arbi-
trary, not necessarily abelian Galois extensions. We formulate such a conjecture (and
also an analogue of the stronger Brumer-Stark conjecture) in [3]. The statement of
this conjecture must be more involved than in the abelian case because the inclusion
(3) does not hold in general. Thus an element in AnnZ[G](µL)θS in general does not
even act on the class group!

Fitting ideals

The ETNC is formulated for arbitrary, not necessarily abelian Galois extensions
L/K. One might expect, and this turns out to be the case, that the ETNC predicts
annihilators of the class group in the non-abelian situation as well. However, Grei-
ther's approach does not generalize directly because it makes heavily use of Fitting
ideals, and the latter are only de�ned over commutative rings. We request such a
notion for rings like the group ring Zp[G] of an arbitrary �nite group G.

We recall the classical notion of Fitting ideals over commutative rings due to
Hans Fitting [Fi36]. Let R be a commutative ring with identity and let M be a
�nitely presented R-module. If we choose a �nite presentation

Ra h−→ Rb � M, (4)

we may identify the homomorphism h with an a × b matrix with entries in R. If
a ≥ b, the (zeroth) Fitting ideal of M over R, denoted by FittR(M), is de�ned to be
the R-ideal generated by all b × b minors of the matrix corresponding to h. In the
case a < b one puts FittR(M) = 0. A key observation is that FittR(M) only depends
on M , and not on the particular choice of �nite presentation h. This notion is now a
very important tool in commutative algebra owing to several useful properties. For
instance, one always has an inclusion

FittR(M) ⊆ AnnR(M), (5)

and the Fitting ideal is often much easier to compute than the annihilator ideal. For
example, it has good behavior with respect to quotients of R, as well as epimorphisms
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and direct sums of R-modules. For a full account of the theory we refer the reader
to [No76].

Noncommutative Fitting invariants

The notion of noncommutative Fitting invariants is introduced in [1] and further
developed in [2]. The class of rings we consider are o-orders in �nite dimensional
separable algebras, where o is a commutative noetherian complete local domain.
The group ring Zp[G] may serve as a standard example (in this case, and assuming
the restrictive hypothesis that a = b in (4) noncommutative Fitting invariants have
already been introduced by Parker [Pa07]). A second interesting example naturally
arises in Iwasawa theory: If G = H o Γ is the semi-direct product of a �nite group
H and a pro-�nite group Γ isomorphic to Zp, then we may view the Iwasawa algebra
(i.e. the completed group ring) Zp[[G]] as an order over the power series ring Zp[[T ]]
as follows. Let γ be a topological generator of Γ. Choose an integer N > 0 such that
ΓpN is central in G. Then there is an isomorphism Zp[[Γ

pN ]] ≃ Zp[[T ]] induced by
γp

N 7→ 1 + T , and Zp[[G]] becomes a Zp[[T ]]-order via the embedding

Zp[[T ]] ≃ Zp[[Γ
pN ]] � Zp[[G]].

Now let Λ be an o-order in a �nite dimensional separable F -algebra A, where o

is a commutative noetherian complete local domain with �eld of fractions F . The
idea is to replace determinants by reduced norms. We give two examples, why this
is not straightforward. The reduced norm is a map nr : A → ζ(A) and extends to
matrix rings over A. As it takes values in the center of A, it seems to be natural to
de�ne the Fitting invariant of a �nitely presented (left) Λ-module M to be an ideal
in ζ(Λ) generated by reduced norms.

(1) Let Λ = M2(Zp) be the ring of 2× 2 matrices with entries in Zp and consider
the �nitely presented module M = 0. There is a natural �nite presentation

Λ
id−→ Λ � 0.

Using this presentation we obtain FittΛ(id) = ζ(Λ) = Zp. However, if we
consider the presentation

Λe1 ⊕ Λe2
h−→ Λ � 0

e1 7→
(

4 1
1 4

)
e2 7→

(
5 1
1 5

)
then FittΛ(h) = ⟨15, 24⟩Zp = 3Zp. We see that FittΛ(id) ̸= FittΛ(h) if p = 3,
and thus the naive generalization is not well de�ned.

(2) Let p be an odd prime and let D2p = ⟨x, y | xp = 1 = y2, yx = x−1y⟩ be the
dihedral group of order 2p. Consider the group ring Λ = Zp[D2p]. Then a
computation shows that

nr(x+ y) =
1

p

∑
g∈D2p

g ̸∈ ζ(Zp[D2p]).

So the image of the reduced norm does not even lie in the center of Λ in general.
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We de�ne in [1] the Fitting invariant of a �nite presentation h to be a certain
equivalence class of ζ(Λ)-modules generated by reduced norms. We de�ne a partial
order on this equivalence classes and show that for a �nitely presented Λ-module M
there is a unique maximal Fitting invariant which we denote Fittmax

Λ (M). We show
that this notion enjoys many (but not all) of the useful properties of the commutative
case. To obtain annihilators from Fittmax

Λ (M), one has to multiply by a certain ideal
H(Λ) of ζ(Λ). If Λ is maximal or commutative, then H(Λ) = ζ(Λ), but in general
H(Λ) is a proper ideal of ζ(Λ). We call H(Λ) the denominator ideal of Λ.

In [2] we determine all p-adic group rings Zp[G] for which H(Zp[G]) = ζ(Zp[G]);
namely, this is the case if and only if p does not divide the order of the commutator
subgroup of G. A similar result holds for Iwasawa algebras. We also develop general
lower bounds for denominator ideals in certain cases. Even in the group ring case,
however, it remains an open problem to determine H(Λ) explicitly.

We denote by I(Λ) the ζ(Λ)-submodule of ζ(A) generated by the elements nr(H),
H ∈ Mn(Λ), n ∈ N. Then I(Λ) is in fact a commutative ring andH(Λ)·I(Λ) ⊆ ζ(Λ).

A non-abelian generalization of Brumer's conjecture

We now give the non-abelian analogue of Brumer's conjecture. For this we note that
(in contrast to Fitting invariants) one can de�neH(Λ) and I(Λ) in greater generality;
in particular, one can de�ne H(Z[G]) and I(Z[G]) for every �nite group G.

Conjecture (Non-abelian Brumer). Let L/K be a Galois CM-extension of number

�elds with Galois group G and let S be a �nite set of places of K containing all

archimedean places and all places that ramify in L. Then for all sets T such that

Hyp(S, T ) is satis�ed we have θTS ∈ I(Z[G]) and

H(Z[G]) · θTS ⊆ AnnZ[G](clL).

We show that this conjecture is implied by the ETNC (in many cases) following
Greither's approach, but using our more general notion of Fitting invariant.

Choose a maximal Z-order M(G) in Q[G] containing Z[G]. Then ζ(M(G)) and
the central conductor

F(Z[G]) := {x ∈ ζ(M(G)) | xM(G) ⊆ Z[G]}

do not depend on the choice of maximal order. We have inclusions

I(Z[G]) ⊆ ζ(M(G)), F(Z[G]) ⊆ H(Z[G]).

Replacing I(Z[G]) by ζ(M(G)) and replacing H(Z[G]) by F(Z[G]) we therefore ob-
tain a weak version of the (non-abelian) Brumer conjecture. This weak version has
meanwhile been studied in some detail by Nomura [No].

We point out that Burns [Bu11] has recently presented a universal theory of
re�ned Stark conjectures. In particular, the Galois group G may be non-abelian, and
he uses leading terms rather than values of Artin L-functions to construct conjectural
nontrivial annihilators of the class group. His conjecture thereby further extends our
non-abelian generalization of Brumer's conjecture. He also shows that his conjecture
is implied by the ETNC.
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Negative integers

Using L-values at integers r < 0, one can de�ne higher Stickelberger elements θTS (r).
Coates and Sinnott [CS74] conjectured that these elements can be used to construct
annihilators of the higher K-groups K−2r(OL). As Burns has done in the case r = 0,
we use leading terms rather than values at negative integers to formulate in [4] a
conjecture on the annihilation of higher K-groups. This simultaneously generalizes
the Coates-Sinnott conjecture and a conjecture of Snaith [Sn06].

The Quillen-Lichtenbaum conjecture relates K-groups to étale cohomology, pre-
dicting that for all odd primes p, integers r < 0 and i = 0, 1 the canonical p-adic
Chern class maps

Ki−2r(OL)⊗Z Zp −→ H2−i
ét (OL[1/p],Zp(1− r))

constructed by Soulé [So79] are isomorphisms. Following fundamental work of Voe-
vodsky and Rost, Weibel [We09] has completed the proof of the Milnor-Bloch-
Kato conjecture which relates Milnor K-theory to étale cohomology and implies the
Quillen-Lichtenbaum conjecture. In this way, one obtains a cohomological version of
the conjecture on the annihilation of higher K-groups.

We show in [4] that the cohomological version of the conjecture is implied by
the ETNC for the pair (h0(Spec(L))(r),Z[G]). For instance, this leads to an uncon-
ditional proof of a maximal order variant of (a non-abelian generalization of) the
Coates-Sinnott conjecture.

Iwasawa theory

Fix an odd prime p. In [5] we generalize and further extend work of Greither and
Popescu [GP] to the non-abelian setting. More precisely, we use Iwasawa theory to
show that the p-parts of our non-abelian generalizations of the Brumer, the Brumer-
Stark and the Coates-Sinnott conjecture hold whenever the set S contains all p-adic
places and Iwasawa's µ-invariant vanishes. The latter condition is conjecturally
always true and holds, for instance, when L is an arbitrary Galois p-extension of
an absolutely abelian number �eld. In the case of the Coates-Sinnott conjecture
we in fact show a stronger statement which turns out to be a reformulation of the
appropriate special case of the ETNC.

The main ingredient of the proof is the equivariant Iwasawa main conjecture
for totally real �elds. Building on the fundamental results of Wiles [Wi90a], this is
now a theorem if µ = 0 thanks to recent work of Ritter and Weiss [RW11] and of
Kakde [Ka13]. However, the formulations of the main conjecture used by Greither
and Popescu, by Ritter and Weiss and by Kakde are quite di�erent. In fact, the
formulation of Greither and Popescu is restricted to abelian extensions. We give a
non-abelian analogue and then show that all three formulations are equivalent. This
�lls an annoying gap in the literature. Note that the comparison between Kakde's
approach and the approach of Ritter and Weiss has independently been studied in
detail by Venjakob [Ve13].

Unconditional results

Finally, in [6] we (unconditionally!) prove many new cases of the ETNC, of Burns'
conjecture and further Stark-type conjectures. The main tool in this paper is relative
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K-theory and a subtle analysis of the structure of p-adic group rings. Our results
build on work of Burns and Greither [BG03] (see also Huber and Kings [HK03],
Benois and Nguyen Quang Do [BN02]), Flach [Fl11], Burns and Flach [BF06], Ritter
and Weiss [RW97], Bley [Bl06] and others.

We list some of the results that we achieve in [6].

(1) Let L/Q be a Galois extension with G = Gal(L/Q) ≃ Aff(q), where q = ln

is a prime power and Aff(q) denotes the group of a�ne transformations on
Fq, the �nite �eld with q elements. Then Burns' conjecture holds for L/Q
(up to a factor 2 if l = 2). In fact, the p-part of the ETNC for the pair
(h0(Spec(L))(r),Z[G]) holds for all p ̸= l if r = 0 and for all odd p if r < 0 is
odd and L is totally real.

(2) Fix a natural number n. Then there is an in�nite family of Galois extensions
L/K with Galois group G cyclic of order n and K/Q non-abelian (in fact non-
Galois) such that the ETNC for the pair (h0(Spec(L)),Z[G]) holds. Note that
the only known examples L/K with K/Q non-abelian for which the ETNC for
the pair (h0(Spec(L)),Z[G]) is known to hold have been either trivial, quadratic
or biquadratic.

(3) We give an explicit in�nite family of �nite non-abelian groups (dihedral groups
of order 2p, where p ≡ 1 (mod 4) is a prime) with the property that for
each member G there are in�nitely many extensions L/Q with Gal(L/Q) ≃ G
such that the ETNC for the pair (h0(Spec(L)),Z[G]) holds. Up until now, the
only known family of �nite non-abelian groups with this property has been
that containing the single group Q8, the quaternion group of order 8 (this is a
result of Burns and Flach [BF03]).

(4) Burns' conjecture holds for an arbitrary Galois extension L/K with Galois
group isomorphic to S3, the symmetric group on 3 letters.

(5) Let L/Q be a Galois extension with Gal(L/Q) ≃ D12, the dihedral group of
order 12. Then Burns' conjecture holds.

We �nally like to point out that noncommutative Fitting invariants have even
more applications to the ETNC. In particular, we refer the interested reader to the
author's article [Ni11]. The author decided not to include this article in this thesis
as it is the second part (non-abelian analogue) of his dissertation thesis.
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