
On the Equivariant Tamagawa Number Conjecture in
tame CM-extensions

Andreas Nickel

Universität Augsburg, 86135 Augsburg, Germany
current address: Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
(e-mail: andreas.nickel@mathematik.uni-regensburg.de)

Abstract Let L/K be a finite Galois CM-extension with Galois group G. The Equivariant
Tamagawa Number Conjecture (ETNC) for the pair (h0(Spec(L))(0),ZG) naturally decom-
poses into p-parts, where p runs over all rational primes. If p is odd, these p-parts in turn
decompose into a plus and a minus part. Let L/K be tame above p. We show that a certain
ray class group of L defines an element in K0(ZpG−,Qp) which is determined by a corre-
sponding Stickelberger element if and only if the minus part of the ETNC at p holds. For
this we use the Lifted Root Number Conjecture for small sets of places which is equivalent
to the ETNC in the number field case. For abelian G, we show that the minus part of the
ETNC at p implies the Strong Brumer-Stark Conjecture at p. We prove the minus part of
the ETNC at p for almost all primes p.
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Introduction

Let L/K be a finite Galois extension of number fields with Galois group G. If r denotes the
vanishing order at s = 0 of the Dedekind zeta function ζL(s) attached to the number field
L, the integral Dirichlet class number formula states that

lim
s→0

1
sr

ζL(s) = −hLRL

wL
,

where hL denotes the class number of L, wL is the number of roots of unity in L and RL is
the regulator of L. Roughly speaking, the above equality connects an analytic object of L
to arithmetic invariants of L. The ETNC for the pair (h0(Spec(L))(0),ZG) is a conjectural
G-equivariant refinement of this formula, where the zeta function ζL is replaced by a Galois
equivariant L-function with values in the center of the group ring CG.
In the 1980s T. Chinburg [Ch1] defined an algebraic invariant Ω(L/K) of the extension L/K
which lies in the K-group K0(ZG). He conjectured that Ω(L/K) equals the root number
class W (L/K), an analytic invariant defined by Ph. Cassou-Noguès and A. Fröhlich in terms
of Artin root numbers. In [Ch2] he introduced two further algebraic invariants in K0(ZG),
called Ωi(L/K), i = 1, 2, 3, where Ω3(L/K) = Ω(L/K). These invariants are related by the
equation

Ω2(L/K) = Ω1(L/K) ·Ω3(L/K).
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Chinburg conjectured that Ω1(L/K) = 1, and hence that Ω2(L/K) also equals the root
number class. In addition, he proved his Ω2-conjecture for at most tamely ramified exten-
sions.
All these conjectures have meanwhile been lifted to corresponding conjectures in the relative
K-group K0(ZG,R); so D. Burns [B1] used complexes arising from étale cohomology of the
constant sheaf Z to define a canonical element TΩ(L/K, 0) of K0(ZG,R) which maps to zero
under the connecting homomorphism K0(ZG,R) → K0(ZG) of relative K-theory if and only
if Chinburg’s Ω3-conjecture holds. So the vanishing of TΩ(L/K, 0) is a refinement of Chin-
burg’s Ω3-conjecture in K0(ZG,R) rather than in K0(ZG), whereas the conjectures in [BB]
and [BrB] are the same concerning Chinburg’s Ω2 and Ω1-conjecture, respectively. It was
shown in [B1] that the Lifted Root Number Conjecture (LRNC) by K.W. Gruenberg, J. Rit-
ter and A. Weiss [GRW] for the extension L/K is equivalent to the vanishing of TΩ(L/K, 0)
and that this in turn is equivalent to the ETNC for the pair (h0(Spec(L))(0),ZG) (cf. loc.cit.,
Th. 2.3.3 and Th. 2.4.1). These conjectures make use of a finite G-invariant set S of places
of L which is supposed to be large in the sense that all ramified and all archimedean primes
lie in S and that the S-class group clS(L) vanishes. In [Ni2] a LRNC is formulated for small
sets of places S which only need to contain the set S∞ of all the archimedean primes. Since
we will use a set S which indeed contains only totally decomposed (and thus unramified)
primes, we decide for this variant of the conjecture.

Assume that L/K is a CM-extension which is tame above a fixed odd prime p (we actually
permit a slightly more general class of extensions explained later). We denote the unique
automorphism on L induced by complex conjugation by j and set RG− = RG/(1+j) for any
ring R. For any G-module M and any integer i we write Hi(G,M) for the Tate cohomology
in degree i of M with respect to G. We say that M is a c.t. (short for cohomologically
trivial) G-module if Hi(U,M) vanishes for all i ∈ Z and each subgroup U of G. After a
few preliminaries we prove in section two that the p-part of a certain ray class group of
L is c.t. on minus parts. We give a definition of non-abelian Stickelberger elements which
determine elements in the relative K-group K0(ZpG−,Qp). We show that the minus part of
the LRNC (resp. ETNC) at p holds if and only if these ray class groups are represented by
corresponding Stickelberger elements.
In section three we assume the Galois group G to be abelian. In this case one can translate
the minus part of the LRNC at p to the assertion that the Fitting ideal of the ray class
group is generated by the corresponding Stickelberger element. We pass to the limit and get
the respective statement at infinite level thanks to a result of C. Greither [Gr2] provided
that the Iwasawa µ-invariant vanishes. We will remove this hypothesis for a special class of
extensions (including the case p - |G|) in the appendix. Note that the vanishing of µ is a long
standing conjecture; the most general result is still due to B. Ferrero and L. Washington
[FW] and says that µ = 0 for absolutely abelian extensions.
For the descent we use a method which is due to A. Wiles [Wi2] in the extended version by
C. Greither [Gr1]. For this we have to assume a slightly more restrictive hypothesis on the
primes above p.
In the last section we prove that the minus part of the ETNC at p implies (for the case at
hand) the Strong Brumer-Stark Conjecture at p as formulated in [Po]; we thus verify this
conjecture for the same class of extensions. This conjecture states that the Fitting ideal of
a certain ray class group of L contains a particular Stickelberger element. These are not the
same ray class groups resp. Stickelberger elements as in the previous sections, but they are
related to them closely enough. Note that this conjecture does not hold in general, as one can
see from the results in [GK]. But all counterexamples in loc.cit. are wildly ramified. D. Burns
[B3] has shown that the ETNC implies the Rubin-Stark conjecture which is implied by the
Strong Brumer-Stark Conjecture, too ([Po], Th. 3.2.2.3). Thus, we reprove Burns’ result for
(almost) tame extensions.
We point out that this paper includes parts of the author’s dissertation [Ni1].
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1 Preliminaries

1.0.1 K-theory Let R be a left noetherian ring with 1 and PMod(R) the category of all
finitely generated projective R-modules. We write K0(R) for the Grothendieck group of
PMod(R), and K1(R) for the Whitehead group of R which is the abelianized infinite general
linear group. If S is a multiplicatively closed subset of the center Z(R) of R which contains
no zero divisors, 1 ∈ S, 0 6∈ S, we denote the Grothendieck group of the category of all
S-torsion R-modules of finite projective dimension by K0S(R). Writing RS for the ring of
quotients of R with denominators in S we have the Localization Sequence (cf. [CR2], p. 65)

K1(R) → K1(RS) ∂→ K0S(R) → K0(R) → K0(RS). (1)

If T is a ring that contains R and M is an R-module, we will often write TM instead of
T ⊗R M . Moreover, if G is a group and M = ∆G is the kernel of the augmentation map
RG ³ R, we set ∆T G := T ⊗R ∆G. In the case R = Z, T = Zp for a prime p, we write
∆pG instead of ∆ZpG.
Specializing to group rings ZG for finite groups G and S = Z \ {0} we write K0T (ZG)
instead of K0S(ZG). So (1) reads

K1(ZG) → K1(QG) ∂→ K0T (ZG) → K0(ZG) → K0(QG). (2)

Note that a finitely generated ZG-module has finite projective dimension if and only if it
is a G-c.t. module. Indeed, the projective dimension is lower or equal to 1 in this case.
Further, recall that the relative K-group K0(ZG,Q) is generated by elements of the form
(P1, φ, P2) with finitely generated projective modules P1 and P2 and a QG-isomorphism
φ : QP1 → QP2, and that there is an isomorphism

iG : K0T (ZG) ' K0(ZG,Q). (3)

If a c.t. torsion ZG-module T has projective resolution P1
ι½ P0 ³ T , this isomorphism

sends the corresponding element [T ] ∈ K0T (ZG) to (P1,Q⊗ ι, P0) ∈ K0(ZG,Q).
If p is a finite rational prime, the local analogue of sequence (2) is

K1(ZpG) → K1(QpG)
∂p−→ K0T (ZpG) → 0, (4)

and we have an isomorphism

K0T (ZG) '
⊕

p-∞
K0T (ZpG). (5)

Moreover, there is a well defined map ∂̂ : Z(QG)× → K0(ZG,Q) such that ∂̂ ◦nr = ∂, where
nr is the reduced norm map on K1(QG). We denote the local analogue of ∂̂ by ∂̂p.

Remark 1. If φ : QB → QA is a QG-isomorphism, where B is projective and A is c.t.,
then there is a well defined object (B, φ, A) ∈ K0(ZG,Q) (cf. [Ni2], Def. 1.1). Assume
that there is a projective module P such that φ can be written as the composition of two
QG-isomorphisms φ1 : QB → QP and φ2 : QP → QA, then we have an equality

(B, φ, A) = (B, φ1, P ) + (P, φ2, A) (6)

in K0(ZG,Q). We may replace K0(ZG,Q) by K0(ZpG,Qp); everything remains the same
except for the obvious modifications.
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1.0.2 Complexes and refined Euler Characteristics For any ring R we write D(R) for the
derived category of R-modules. Let Cb(PMod(R)) be the category of bounded complexes
of finitely generated projective R-modules. A complex of R-modules is called perfect if
it is isomorphic in D(R) to an element of Cb(PMod(R)). We denote the full triangulated
subcategory of D(R) consisting of perfect complexes by Dperf(R). For any C · ∈ Dperf(R) we
define R-modules

Ce :=
⊕

i∈Z
C2i, Co :=

⊕

i∈Z
C2i+1.

For the following let R be a Dedekind domain of characteristic 0, K its field of fractions, A
a finite dimensional K-algebra and Γ an R-order in A. A pair (C ·, t) consisting of a complex
C · ∈ Dperf(Γ ) and an isomorphism t : Ho(C ·K) → He(C ·K) is called a trivialised complex,
where C ·K is the complex obtained by tensoring C · with K. We refer to t as a trivialisation
of C ·.
One defines the refined Euler characteristic χΓ,A(C ·, t) ∈ K0(Γ, A) of a trivialised complex as
follows: Choose a complex P · ∈ Cb(PMod(R)) which is quasi-isomorphic to C ·. Let Bi(P ·K)
and Zi(P ·K) denote the ith cobounderies and ith cocycles of P ·K , respectively. We have the
obvious exact sequences

Bi(P ·K) ½ Zi(P ·K) ³ Hi(P ·K) , Zi(P ·K) ½ P i
K ³ Bi+1(P ·K).

If we choose splittings of the above sequences we get an isomorphism

φt : P o
K '

⊕

i∈Z
Bi(P ·K)⊕Ho(P ·K) '

⊕

i∈Z
Bi(P ·K)⊕He(P ·K) ' P e

K ,

where the second map is induced by t. Then the refined Euler characteristic is defined to be

χΓ,A(C ·, t) := (P o, φt, P
e) ∈ K0(Γ,A)

which indeed is independent of all choices made in the construction.
Now we specialize to group rings RG, where R is a finitely generated subring of Q. Let Hi,
i = 0, 1 be finitely generated RG-modules and

H0 ½ A → B ³ H1

an exact sequence representing an extension class τ ∈ Ext2RG(H1,H0). One obtains an
associated complex A → B, where A is placed in degree 0. If this complex is perfect, τ is
called a perfect 2-extension. If there exists a QG-isomorphism φ : QH1 → QH0, the element

χRG,QG(τ, φ) := χRG,QG(A → B,φ)

only depends upon the class τ and the isomorphism φ. For further information concerning
refined Euler characteristics we refer the reader to [B2].

1.0.3 Hom description Let G be a finite group, p a finite rational prime and R(G) (resp.
Rp(G)) the ring of virtual characters of G with values in Qc (resp. Qc

p), an algebraic closure
of Q (resp. Qp). Choose a number field F , Galois over Q with Galois group Γ , which is large
enough such that all representations of G can be realized over F . Let ℘ be a prime of F
above p. Then there is an isomorphism (for this and the following cf. [GRW], Appendix A)

Det : K1(QpG) '−→ HomΓ℘(Rp(G), F×℘ )
[X, g] 7→ [χ 7→ det(g|HomF℘G(Vχ, F℘ ⊗Qp X))],

where Vχ is a F℘G-module with character χ. Combined with the localization sequence (4)
this gives the local Hom description

K0T (ZpG) ' HomΓ℘(Rp(G), F×℘ )/Det (ZpG
×). (7)

One globally has
K0T (ZG) ' Hom+

Γ (R(G), JF )/Det U(ZG), (8)
where JF denotes the idèle group of F and U(ZG) the unit idèles of ZG. The + indicates
that a homomorphism in Hom+

Γ (R(G), JF ) takes values in R+ for symplectic characters.
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Remark 2. Define εχ := χ(1)
|G|

∑
g∈G χ(g−1)g for each χ ∈ Irr (G), where Irr (G) denotes the

set of irreducible characters of G. The εχ are orthogonal central idempotents of CG. Each
generates one of the minimal ideals of the center of CG, hence

Z(CG) =
⊕

χ∈Irr (G)

Cεχ.

If z =
∑

χ zχεχ ∈ Z(QG)× ⊂ Z(CG), then ∂̂(z) has representing homomorphism χ 7→ zχ.

1.0.4 The LRNC for small sets of places Let L/K be a Galois extension of number fields
with Galois group G. For a prime P of L we write p = P ∩ K for the prime below P,
GP for the decomposition group attached to P and IP for the inertia subgroup. We denote
the Frobenius generator of the Galois group GP = GP/IP of the corresponding residue
field extension by φP. The inertial lattice of the local extension LP/Kp is defined to be the
ZGP-lattice (cf. [GW] or [We] p. 42)

WP = {(x, y) ∈ ∆GP ⊕ ZGP : x = (φP − 1)y}. (9)

Note that WP ' ZGP if the local extension LP/Kp is unramified. Projecting onto the first
component yields an exact sequence of GP-modules

Z½ WP ³ ∆GP. (10)

Let Sram be the set of finite primes of L which ramify in L/K and M∗ = Hom(M,Z) for any
module M . The Z-dual of sequence (10) induces a surjection W ∗

P ³ Z∗ = Z. If we combine
these surjections and the augmentation map ZS ³ Z, we get an exact sequence

∇ ½ ZS ⊕
⊕

P∈S¦ram\(S∩Sram)¦
ind G

GP
(W ∗

P) ³ Z (11)

where the ¦ indicates that the sum runs over a fixed set of representatives, one for each orbit
of the action of G on the primes of L. Let NG =

∑
g∈G g for any finite group G. We can

describe W ∗
P as the cokernel of the map (cf. [Gr3], p. 20)

ZGP −→ ZGP/NGP
× ZGP

1 7→ (NIP
, 1− φ−1

P ).

Therefore, we have a canonical epimorphism κ : ZG2
P ³ W ∗

P which fits into

WP

q
½ ZG2

P

κ³ W ∗
P, (12)

where q maps (x, y) ∈ WP to (NIP
y, φ−1

P x) (cf. [GW], Lemma 4.1).
In [RW1] the authors derive an exact sequence of finitely generated ZG-modules

ES ½ A → B ³ ∇, (13)

which has a uniquely determined extension class τ ∈ Ext2G(∇, ES). Note that the sequence
itself is not unique. We will refer to a sequence (13) as a Tate-sequence for S. Here, ES is the
group of S-units of L, A is c.t., B projective and ∇ fits into an exact sequence of G-modules

clS(L) ½ ∇ ³ ∇,

where clS(L) is the S-class group of L. Hence τ is a perfect 2-extension. If S is sufficiently
large, the modules ∇ and ∇ coincide and are just the kernel ∆S of the augmentation map
ZS ³ Z. In this case, the extension class of (13) is Tate’s canonical class ([Ta1]).
We will use a set of places S which generates the ideal class group, but does not contain any
ramified prime. So let us assume this for simplicity. We obviously have ∇ = ∇ in this case.
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Let C be a free ZG-module of rank sram, the number of finite primes of K which ramify in
L/K. We add C to the left part of the Tate-sequence, namely

ES ⊕ C ½ A⊕ C → B ³ ∇,

which has a uniquely determined extension class τC ∈ Ext2G(∇, ES ⊕ C). There exist trivi-
alisations φ : Q∇ → Q(ES ⊕ C) and we may define

Ωφ := χZG,QG(τC , φ).

Let 1P, P ∈ S¦ram be a ZG-basis of C. We choose a positive multiple h of hL, the class
number of L. Thus Ph is principal generated by an element uP ∈ L. We define (cf. [Ni2])

λC : C −→ R⊗∇
1P 7→

(
h log N(P)

1
|GP|NGP

+ 1− 1
|GP|NGP

)
dP −

∑

Q|∞
log |uP|QQ,

where dP = |GP|−1κ(|GP|, NGP
) is a QGP-generator of QW ∗

P by loc.cit., Lemma 4.5.
Combined with the usual Dirichlet map

λS : ES −→ ∆RS
e 7→ −∑

P∈S log |e|PP
(14)

we get a modified Dirichlet map

λmod
S : ES ⊕ C −→ R∇

(e, c) 7→ λS(e) + λC(c). (15)

If χ is a character of G, we write χ̌ for the character contragredient to χ. We call the map
Rmod

φ : R(G) → C× defined by

Rmod
φ : χ 7→ det(λmod

S φ|HomG(Vχ̌,C∇))
∏

P∈S¦ram
(−h|GP|)dim V

GP
χ̌

the modified Stark-Tate regulator and set

Amod
φ : χ 7→ Rmod

φ (χ)
cS∪Sram(χ)

,

where we write cS(χ) for the leading coefficient of the Taylor expansion of the S-truncated
L-function LS(L/K, χ, s) at s = 0. By Theorem 4.8 (i) in [Ni2] Amod

φ commutes with Galois
action if and only if Stark’s conjecture holds. Now we fix an embedding F ½ C and denote
the corresponding infinite prime by ℘∞. Define W (L/K, ·) ∈ HomΓ (R(G), JF ) by

W (L/K,χ)℘ =
{

W (χγ−1
) if χ is symplectic and ℘ = ℘γ

∞
1 otherwise

The LRNC for small sets of places now states (assuming Stark’s conjecture)

Conjecture 1 (LRNC for small S). The element Ωφ ∈ K0(ZG,Q) has representing homo-
morphism χ 7→ Amod

φ (χ̌)W (L/K, χ̌).

The element Ωφ decomposes into p-parts Ω
(p)
φ via the isomorphism (5). If we choose a prime

℘ in F above p and an embedding jp : F ½ F℘ for each p, Stark’s conjecture asserts that
the map

(Amod
φ )(p) : χ 7→ jp(Amod

φ (j−1
p (χ)))

lies in HomΓ℘(Rp(G), F×℘ ). Conjecture 1 localizes to

Conjecture 2 (LRNC for small S at the prime p). The element Ω
(p)
φ ∈ K0(ZpG,Qp) has

representing homomorphism χ 7→ (Amod
φ )(p)(χ̌).
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2 CM-extensions

Let L/K be a CM-extension, i.e. K is totally real and L is a totally imaginary quadratic
extension of a totally real number field. Complex conjugation on C induces an automor-
phism on L which is independent of the embedding into C (cf. [Wa], p. 38). We denote this
automorphism by j and refer to it as complex conjugation as well. For any number field E
we write oE for the ring of integers in E; moreover, let o := oL.
For any G-module M we define submodules

M+ := {m ∈ M : jm = m} , M− := {m ∈ M : jm = −m} .

M+ is a module over the ring ZG+ := ZG/(1 − j) = Z[G/〈j〉], whereas M− has a ZG−
action, but ZG− is not a ring, since 1−j

2 6∈ ZG−. The minus functor is left exact on exact
sequences of RG-modules for any ring R, and even exact if 2 is invertible in R.
If a finitely generated G-module M decomposes into M = M+ ⊕M−, the natural maps

Hi(U,M+) → Hi(U,M)+,

Hi(U,M−) → Hi(U,M)−

are isomorphisms for all subgroups U of G of odd order, i ∈ Z. Indeed, the composite map

Hi(U,M) ' Hi(U,M+)⊕Hi(U,M−) → Hi(U,M)+ ⊕Hi(U,M)− ' Hi(U,M)

is the identity. Here, the rightmost isomorphism exists, because Hi(U,M) is finite of odd
order and hence also decomposes into a plus and a minus part.
If p 6= 2 and M is a ZpG-module, there is a natural decomposition M = M+ ⊕M− which
induces an isomorphism

K0T (ZpG) ' K0T (ZpG+)⊕K0T (ZpG−). (16)

A character χ is called even if χ(j) = χ(1), and it is called odd if χ(j) = −χ(1). Let us
define R+

p (G) and R−p (G) to be the subrings of Rp(G) generated by even and odd characters,
respectively. The Hom description and the above isomorphism now give

HomΓ℘(Rp(G), F×℘ )
Det (ZpG×)

' HomΓ℘(R+
p (G), F×℘ )

Det (ZpG
×
+)

⊕ HomΓ℘(R−p (G), F×℘ )

Det (ZpG
×
−)

,

induced by the canonical restriction maps.
We denote the image of Ω

(p)
φ in K0T (ZpG+) and K0T (ZpG−) by Ω

(p),+
φ and Ω

(p),−
φ , respec-

tively. Accordingly, the LRNC at p decomposes into a plus part and a minus part:

Proposition 1. Let p 6= 2 be a rational prime and L/K a Galois CM-extension with Galois
group G. The LRNC at p (Conjecture 2) is true if and only if the following two assertions
hold

(1) Ω
(p),+
φ has representing homomorphism [χ 7→ (Amod

φ )(p)(χ̌)] ∈ HomΓ℘(R+
p (G), F×℘ ).

(2) Ω
(p),−
φ has representing homomorphism [χ 7→ (Amod

φ )(p)(χ̌)] ∈ HomΓ℘(R−p (G), F×℘ ).

2.1 Ray class groups

If T is a finite G-invariant set of non-archimedean places of L we write clTL for the ray class
group to the ray MT :=

∏
P∈T P. Let S be a second finite G-invariant set of places of L which

contains all the archimedean primes and satisfies S ∩ T = ∅. We write Sf for the set of all
finite primes in S. There is a natural map ZSf → clTL which sends each prime P ∈ Sf to the
corresponding class [P] ∈ clTL. We denote the cokernel of this map by clTS (L) =: clTS . Further,
define ET

S := {x ∈ ES : x ≡ 1 mod MT }. Since the sets S and T are both G-invariant, all
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these modules are equipped with a natural G-action. We have the following exact sequences
of G-modules

ET
S∞ ½ ET

S
v−→ ZSf → clTL ³ clTS , (17)

where v(x) =
∑

P∈Sf
vP(x)P for x ∈ ET

S , and

ET
S ½ ES → (oS/MT )× ν−→ clTS ³ clS , (18)

where the map ν lifts an element x ∈ (oS/MT )× to x ∈ oS and sends it to the ideal class
[(x)] ∈ clTS of the principal ideal (x). We define

AT
S := (clTS )−.

If S = S∞, we also write AT
L and ET

L instead of AT
S∞ and ET

S∞ .

Since E−
L = µL, one can always find primes P of L such that (ET

L )− = 1 for all sets of
places T with P ∈ T . One only has to check that 1− ζ 6∈ ∏

g∈G/GP
Pg for all ζ ∈ µL, ζ 6= 1;

this is true for all but finitely many primes of L.

Theorem 1. Let L/K be a Galois CM-extension with Galois group G, p 6= 2 a rational
prime and Sp = {P ⊂ L : P | p}. Assume that for all P ∈ Sp∩Sram the ramification is tame
or j ∈ GP. Choose a prime P0 of L such that 1− ζ 6∈ ∏

g∈G/GP0
Pg

0 for all ζ ∈ µL, ζ 6= 1.
Then AT

L⊗Zp is a c.t. G-module for each finite G-invariant set T of places of L that contains
P0 and all the ramified primes which are not in Sp.

Remark 3. If L/K is tame above p and G is abelian, the above theorem follows from the
proof of Proposition 7 in [Gr2].

Proof. It suffices to show that Hi(P,AT
L ⊗Zp) = 1 for i ∈ Z and all q-Sylow subgroups P of

G. This is clear for q 6= p. So let P be a p-Sylow subgroup.
For any prime P of L we write U0

P for the group of local units of the completion LP of L
at P. Furthermore, we denote the group of local units congruent to 1 mod Pn by Un

P. Let
us define an idèle subgroup

JT
L :=

∏

P∈T

U1
P ×

∏

P 6∈T

U0
P.

Let CL be the idèle class group of L. The following exact sequences define CT
L :

ET
L ½ JT

L ³ CT
L , (19)

CT
L ½ CL ³ clTL. (20)

For both sequences we take the long exact sequence in cohomology with respect to P .
Thereafter, we apply the minus functor, which is exact in this case, since all the occurring
cohomology groups are finite of odd order. The fact that P0 ∈ T forces

Hi(P,ET
L )− = Hi(P, (ET

L )−) = Hi(P, 1) = 1,

and hence sequence (19) implies Hi(P, JT
L )− ' Hi(P, CT

L )−. Global class field theory admits
a similar argument for sequence (20):

Hi(P,CL)− ' Hi−2(P,Z)− = Hi−2(P,Z−) = Hi−2(P, 0) = 1

and we therefore get isomorphisms

Hi+1(P, CT
L )− ' Hi(P, clTL)− = Hi(P, clTL ⊗ Zp)− = Hi(P, AT

L ⊗ Zp).
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Hence, it suffices to show that Hi(P, JT
L )− = 1 for all i ∈ Z. The unit groups Un

P are c.t. PP-
modules if P does not ramify in L/K, where we recall that PP denotes the decomposition
subgroup of P at the prime P. Even before taking minus parts, we thus get an isomorphism

Hi(P, JT
L ) '

∏

p∈Sram(K)

Hi(P,
∏

P|p
U

nP

P ),

where nP is equal to 1 or 0 depending on wether P ∈ T or not. If p lies over a rational prime
q 6= p, we have nP = 1 for all P | p by assumption. But in this case the unit groups U1

P are
pro-q-groups and thus Hi(P,

∏
P|p U1

P) = 1.
We are left with the case P ∈ Sram ∩ Sp. For this let F be the fixed field of P , and indicate
the primes in F by a subscript F . We have

Hi(P,
∏

P|p
U

nP

P ) '
∏

pF |p
Hi(P,

∏

P|pF

U
nP

P ) =
∏

pF |p
Hi(PP, U

nP

P ).

If P is tamely ramified, it cannot ramify in L/F , since PP is a p-group. Hence, we get
Hi(PP, U

nP

P ) = 1 in this case. If otherwise j ∈ GP, the action of j commutes with the above
isomorphism, and we have to show that Hi(PP, U

nP

P )− = 1, nP ∈ {0, 1}. By local class field
theory

Hi(PP, L×P)− ' Hi−2(PP,Z)− = Hi−2(PP,Z−) = Hi−2(PP, 0) = 1

and hence the short exact sequence UP ½ L×P ³ Z implies Hi(PP, UP)− = 1. Finally, the
sequence U1

P ½ UP ³ (o/P)× forces Hi(PP, U1
P)− = Hi(PP, UP)− = 1, since the order of

(o/P)× is relatively prime to p, and hence Hi(PP, (o/P)×) = 1. 2

2.2 L-series and Stickelberger elements

In this section we fix, as before, a Galois CM-extension L/K of number fields with Galois
group G, and denote the maximal real subfield of L by L+. Let wL = |µL| be the number
of roots of unity in L and Q := [EL : µLEL+ ] which is equal to 1 or 2 by [Wa], Theorem
4.12. By loc.cit. Theorem 4.10 the class number of L+ divides the class number of L; the
quotient h−L is called the relative class number.
The completed Artin L-series is defined to be

Λ(L/K, χ, s) = c(L/K,χ)s/2L∞(L/K,χ, s)LS∞(L/K,χ, s),

where

c(L/K,χ) = |dK |χ(1)N(f(χ))

L∞(L/K, χ, s) =
{

LR(s)|S∞(K)|χ(1) if χ is even
LR(s + 1)|S∞(K)|χ(1) if χ is odd

LR(s) = π−s/2Γ (s/2).

Here, dK is the discriminant of the number field K, f(χ) the Artin conductor of the character
χ and Γ (s) the usual complex Gamma function. The completed Artin L-series satisfies the
functional equation

Λ(L/K,χ, s) = W (χ)Λ(L/K, χ̌, 1− s), (21)
where W (χ) is the Artin root number of the character χ. We now prove the following result:

Proposition 2. Let L/K be a Galois CM-extension of number fields with Galois group G.
Keeping the above notation we have

∏

χ∈Irr (G)

χ odd

LS∞(L/K, χ, 0)χ(1) = ±2|S∞| · h−L
Q · wL

,

where the product runs through all the odd irreducible characters of G.



10 Andreas Nickel

Proof. Let us denote the Dedekind zeta function of a number field F by ζF (s). We have
(cf. [Neu], Kap. VII, Korollar (10.5))

ζL(s) = ζK(s)
∏

1G 6=χ∈Irr (G)

LS∞(L/K, χ, s)χ(1),

where we denote the trivial character by 1G. Taking residues at s = 1 of both sides yields

(2π)|S∞| · hLRL

wL

√
|dL|

= res s=1ζK(s)
∏

1G 6=χ∈Irr (G)

LS∞(L/K,χ, 1)χ(1)

where RL denotes the regulator of L. If we divide this equation by the corresponding equation
for L+, we get by [Wa], Proposition 4.16

(2π)|S∞| · h−L
QwL

√
|dL/dL+ | =

∏

χ∈Irr (G)

χ odd

LS∞(L/K,χ, 1)χ(1).

Specializing the functional equation (21) at s = 1 for odd characters χ gives

(2π)|S∞|·h−L
QwL

√
|dL/dL+ |

=
∏

χ∈Irr (G)

χ odd

(
LS∞(L/K, χ̌, 0)W (χ)c(L/K, χ)−1/2π|S∞(K)|χ(1)

)χ(1)

(∗)
= ± π|S∞|√

|dK ||G|/2

∏
χ∈Irr (G)

χ odd

(
LS∞(L/K, χ, 0)N(f(χ))−1/2

)χ(1)
,

(22)

where (*) holds, since
∑

χ odd χ(1)2 = |G|/2 and
∏

χ odd W (χ) = ±1, as the product is real
and has absolute value 1 (cf. [Neu], Kap. VII, Theorem (12.6)).
Let us write δE/F for the relative discriminant of an extension E/F of number fields, in
particular δE/Q = (dE). We now compute

∏
χ∈Irr (G)

χ odd

N(f(χ))χ(1) =

∏
χ∈Irr (G)

N(f(χ))χ(1)

∏

χ∈Irr (G)

χ even

N(f(χ))χ(1)

(1)
= N(δL/K)

N(δL+/K)

(2)
= N(δL+/K)N(δL/L+)

(2)
= N(δL+/K) |dL|

|dL+ |2
(2)
= |dL|

|dL+ |·|dK ||G|/2 .

(23)

Equality (1) follows from the "Führerdiskriminantenproduktformel" (cf. [Neu], Kap. VII,
(11.9)). For the equalities (2) note that in any tower F ⊂ E ⊂ M of number fields we have
δM/F = δ

[M :E]
E/F NE/F (δM/E). If we put (23) in (22), we obtain the desired result. 2

We define the following variant of a Stickelberger element which is closely related to the
non-abelian Stickelberger-functions defined in [Ha]:

ω :=
∑

χ∈Irr (G)

LS∞(L/K, χ̌, 0)εχ ∈ Z(CG) (24)

Each C-valued function on G extends to a C-linear function on CG. In particular, this applies
to the irreducible characters of G, and obviously

χ(ω) = χ(1)LS∞(L/K, χ̌, 0).

This property uniquely defines ω. If G is abelian, this element coincides with the element ω
defined in [Gr3]. A priori, ω is an element of the group ring CG, but we actually have
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Proposition 3. ω ∈ Z(QG), and even ω ∈ Z(QG−)× if |S∞| > 1.

Proof. Note that the vanishing order of LS∞(L/K,χ, s) in s = 0 equals

rS∞(χ) =
∑

P∈S∞

dim V
GP
χ − dim V G

χ

by [Ta2], Proposition 3.4, p. 24. Hence, LS∞(L/K, χ, 0) 6= 0 if and only if χ is odd or χ is
the trivial character and |S∞| = 1. This shows ω ∈ Z(CG−)× if |S∞| > 1. The coefficient of
ω at g ∈ G equals ∑

χ∈Irr (G)

LS∞(L/K, χ̌, 0)
χ(1)
|G| χ(g−1)

which is invariant under Galois action by Stark’s conjecture, which is a theorem for odd
characters and the trivial character (cf. [Ta2] Th. 1.2, p. 70 and Prop. 1.1, p. 44). 2

Note that the proof also shows that in any case 1−j
2 ω ∈ Z(QG−)×.

Definition 1. Let L/K be a Galois CM-extension with Galois group G and S, T be G-
invariant sets of places of L. We define a Stickelberger element θT

S ∈ Z(CG) by declaring

χ(θT
S ) = χ(ω)

∏

P∈T¦
det(1− φ−1

P qp|V IP
χ )

∏

P∈S¦
det(1− φ−1

P |V IP
χ /V

GP
χ ),

on irreducible characters χ, where qp = N(p).

Since χ(θT
S ) differs from χ(ω) by a factor which commutes with Galois action for each

odd irreducible character χ, it follows from Proposition 3 that 1−j
2 θT

S ∈ Z(QG−)×. Let
R−(G) be the free Z-module generated by the odd irreducible characters of G. This enables
us to make the following

Definition 2. Let F/Q be a finite Galois extension with Galois group Γ such that each odd
character of G can be realized over F . Then we define ΘT

S ∈ HomΓ (R−(G), F×) by declaring

ΘT
S (χ) = χ(1)−1χ(θT

S )

on irreducible odd characters χ.

To afford an easier reading we will refer to the following setting as (∗):
– L/K is a Galois CM-extension with Galois group G.
– p 6= 2 is a rational prime.
– Sp = {P ⊂ L : P | p}
– Each P ∈ Sp ∩ Sram is at most tamely ramified or j ∈ GP.
– P0 is a prime of L, unramified in L/K such that 1 − ζ 6∈ ∏

g∈G/GP0
Pg

0 for all ζ ∈ µL,
ζ 6= 1.

– T is a finite G-invariant set of places of L that contains P0 and all the ramified primes
which are not in Sp; T ∩ Sp = ∅.

– S1 is the set of all wildly ramified primes above p.

There is the following correspondence between the Stickelberger elements and the ray class
groups AT

L ⊗ Zp.

Proposition 4. Fix a setting (∗). Then there exists an α ∈ Z×p such that

|AT
L ⊗ Zp| = α ·

∏

χ∈Irr (G)

χ odd

(ΘT
S1

(χ))χ(1).

Moreover, if G is abelian, we have 1−j
2 θT

S1
∈ ZpG− and

|AT
L ⊗ Zp| = |(ZpG)−/θT

S1
(ZpG)−|.
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Proof. For an integer m ∈ Z let mp := pvp(m). Then the minus part of sequence (18) for
S = S∞ tensored with Q implies the equality

|AT
L ⊗ Zp| = |AT

L|p =
h−L,p

wL,p
|(oL/MT )×,−|p. (25)

Let us write a ∼ b if ab−1 ∈ Z×p . Then

∏

χ∈Irr (G)

χ odd

(χ(1)−1χ(ω))χ(1) =
∏

χ∈Irr (G)

χ odd

LS∞(L/K,χ, 0)χ(1) ∼ h−L,p

wL,p

by Proposition 2. For P ∈ T we compute
∏

χ∈Irr (G)

χ odd

det(1− φ−1
P qp|V IP

χ ) = det(1− φ−1
P qp|

⊕

χ odd

χ(1)V IP
χ )

∼ |(ind G
GP

(ZpGP/qp − φP))−|
(1)
= |(ind G

GP
(oL/P)×)−|p.

Here, equation (1) derives from the exact sequence

ZpGP ½ ZpGP ³ (oL/P)× ⊗ Zp,

where the first map is 1 7→ qp−φP and the second sends 1 to a generator of (oL/P)×. Since
j ∈ GP for all primes P ∈ S1, we have

∏

χ∈Irr (G)

χ odd

det(1− φ−1
P |V IP

χ /V
GP
χ ) ∼ 1.

Indeed, if actually j ∈ IP, the determinant equals 1. Otherwise it is a product of some
1− ζ2m, where ζ2m are roots of unity of even order, and hence relatively prime to p. Thus,
we get by (25)

∏

χ∈Irr (G)

χ odd

(ΘT
S1

(χ))χ(1) ∼ h−L,p

wL,p

∏

P∈T¦
|(ind G

GP
(oL/P)×)−|p = |AT

L|p.

Now let G be abelian. If 1−j
2 θT

S1
∈ ZpG−, the left-hand side of the above equation equals

|(ZpG)−/θT
S1

(ZpG)−|. Finally, the integrality of 1−j
2 θT

S1
follows from [Ca] p. 49. More pre-

cisely, define for each prime P a local module MP by

MP = 〈NIP
, 1− |IP|−1NIP

φ−1
P 〉ZIP

⊂ QIP. (26)

Let A = AnnZG(µL) be the annihilator of the roots of unity in L. In [Gr3] the author defines
the Sinnott-Kurihara ideal to be

SKu(L/K) = A
∏

P∈S¦ram

MP · ωZG

which is actually contained in ZG (cf. loc.cit., end of §2). The proof of Proposition 4 gets
completed by means of the following
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Lemma 1. Fix a setting (∗) and let G be abelian. Then

1− j

2
θT

S1
∈ SKu(L/K)− · ZpG.

Proof. Evaluating at odd irreducible characters χ of G shows that

1− j

2
θT

S1
=

1− j

2
ω

∏

P∈T¦
(1− |IP|−1NIP

φ−1
P qp)

∏

P∈S¦1

(1− |IP|−1NIP
φ−1

P ).

The condition on the prime P0 ∈ T causes 1 − φ−1
P0

qp0 ∈ A. Let P ∈ S¦ram ∩ T ¦ and q ∈ Z
the rational prime below P. If we denote the q-Sylow subgroup of the inertia group IP by
RP, the intermediate extension corresponding to GP/RP is tame at P. Therefore, by [Ch2],
p.369 the ramification index eP = |IP| divides qp − 1 up to a power of q, since G is abelian.
Hence

1− |IP|−1NIP
φ−1

P qp = 1− |IP|−1NIP
φ−1

P − φ−1
P

qp − 1
eP

NIP
∈ MP · ZpG.

For the tamely ramified primes above p the element

eP = (eP −NIP
)(1− |IP|−1NIP

φ−1
P ) + NIP

∈ MP

lies in ZpG
×, since p - eP. Therefore, we get MP · ZpG = ZpG in this case. Finally, we

obviously have (1− |IP|−1NIP
φ−1

P ) ∈ MP for the primes P ∈ S1. 2

We are going to show that the minus part of the LRNC for L/K at p can be restated
in terms of a representing homomorphism for AT

L ⊗Zp. The homomorphism involved is just
the image of ΘT

S1
in HomΓ℘(R−p (G), F×℘ ). Hence, Proposition 4 will give some evidence of

the conjecture by means of the following

Proposition 5. Let G be a finite group, p a finite rational prime and Rp = ZpG (or Rp =
ZpG+, ZpG− if p 6= 2). If a finite c.t. Rp-module A has representing homomorphism χ 7→
f(χ), there exists an α ∈ Z×p such that

|A| = α ·
∏

χ∈Irr (G)

f(χ)χ(1),

where we set f(χ) = 1 if Rp = ZpG+ and χ is odd or if Rp = ZpG− and χ is even.

Proof. We only treat the case where Rp = ZpG; the others are similar. Since | · | is mul-
tiplicative on short exact sequences of finite modules, we get a well defined map | · | :
K0T (ZpG) → Z. Since a c.t. ZpG-module has projective dimension at most 1, there is an
injection φ : ZpG

n ½ ZpG
n such that A = cok φ. Hence A has representing homomorphism

χ 7→ det(φ|HomΓ℘(Vχ, F℘Gn)).

We compute
∏

χ∈Irr (G)

det(φ|HomΓ℘(Vχ, F℘Gn))χ(1) = det(φ|HomΓ℘(
⊕

χ∈Irr (G)

χ(1)Vχ, F℘Gn))

= det(φ|HomΓ℘(F℘G,F℘Gn))
= det(φ|F℘Gn)
= α · |cok φ|

with an appropriate element α ∈ Z×p . 2

Remark 4. If G is abelian, the elements in K0T (Rp) can be described in terms of Fit-
ting ideals. In this context Proposition 5 simply repeats the well known fact that |A| =
|Rp/FittRp(A)| for each finite c.t. Rp-module A.
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2.3 A restatement of the LRNC on minus parts

The aim of this section is to prove

Theorem 2. Fix a setting (∗), where T = (Sram \ (Sram ∩ Sp)) ∪ {Pg
0 : g ∈ G} . Then the

minus part of the LRNC at p holds for L/K if and only if ΘT
S1

is the representing homo-
morphism of the class of AT

L ⊗ Zp in K0T (ZpG−).

Remark 5. In the above theorem we view ΘT
S1

as an element of HomΓ℘(R−p (G), F×℘ ) via an
embedding F ½ F℘. Note that this homomorphism represents the class of AT

L ⊗ Zp in
K0T (ZpG−) if and only if ∂̂p(θT

S1
) = iG(AT

L ⊗ Zp).

Let us choose S = Sf ∪S∞, where Sf is a set of totally decomposed primes such that the
ray class group clTL is generated by these primes and Sf ∩ T = ∅. In particular, the S-class
group clS is trivial, and ∇ = ∇. Moreover, ZSf is ZG-free of rank sf = |S¦f |. Tensoring with
Zp and taking minus parts of sequence (17) yields

ET,−
S ⊗ Zp ½ ZpS

− ³ AT
L ⊗ Zp. (27)

Since ZpS
− = ZpS

−
f is ZpG−-free and AT

L ⊗ Zp is c.t. by Theorem 1, we have proven

Lemma 2. The ZpG−-module ET,−
S ⊗ Zp is cohomologically trivial.

Since the cokernel of the injection ιE : ET
S ½ ES is finite, we may choose an equivariant

injection φT
S : ∆S ½ ET

S with finite cokernel and we define φS := ιE ◦φT
S . Due to the choice

of the set S, we can fix an isomorphism

ρS : ∆S− '−→ (ZG−)sf .

In particular, the minus part of cokφT
S ⊗ Zp is c.t. We build the following commutative

diagram which defines a monomorphism ψ (note that we have invisibly tensored with Z[ 12 ]):

∆S−
ρS

'
//

Ä _

φT
S

²²

(ZG−)sf
Ä _

ψ

²²
ET,−

S

Â Ä //

²²²²

(ZG−)sf // //

²²²²

AT
L

cokφT
S

Â Ä // cokψ // // AT
L

Here, the middle row derives from sequence (17) and we obtain sequence (27) if we tensor
with Zp. We obviously have an equality

iG(cokφT
S ⊗ Zp) = iG(cok ψ ⊗ Zp)− iG(AT

L ⊗ Zp). (28)

Lemma 3. The element iG(cok ψ) ∈ K0(Z[ 12 ]G−,Q) has representing homomorphism

χ 7→ RφS (χ̌)∏
p∈S(K)(− log N(p))dim Vχ

,

where S(K) := {P ∩K|P ∈ S}.
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Proof. Let us denote the inclusion ET,−
S ⊗ Z[ 12 ] ½ (Z[ 12 ]G−)sf by µ. Define a map

Log : (Z[ 12 ]G−)sf −→ R⊗ (Z[ 12 ]G−)sf

(x1, . . . , xsf
) 7→ (− log N(p1)⊗ x1, . . . ,− log N(psf

)⊗ xsf
),

where we have numbered the primes in S(K) = {p1, . . . , psf
}. Then

ψ = µ ◦ φS ◦ ρ−1
S , λ−S = ρ−1

S ◦ Log ◦ µ,

where λ−S is the restriction of the Dirichlet map to minus parts. Hence, λ−S φS = ρ−1
S ◦ Log ◦

ψ ◦ ρS , and iG(cokψ) has representing homomorphism

χ 7→ det(ψ|HomCG(Vχ, (CG−)sf )) =
RφS

(χ̌)
det(Log|HomCG(Vχ, (CG−)sf ))

.

This completes the proof. 2

Note that the Stark-Tate regulator occurring in the representing homomorphism of
iG(cok ψ) is closely related to the modified Stark-Tate regulator; more precisely, we have

Rmod
φ (χ)

RφS (χ)
=

∏

P∈S¦ram

(
− log N(P)

|GP|
)dim V

GP
χ

(29)

if we define the QG-isomorphism φ in the following way: Recall that for each finite prime
P of L the element dP = |GP|−1κ(|GP|, NGP

) is a QGP-generator of QW ∗
P, where κ is the

epimorphism of sequence (12). Hence, we can define isomorphisms

δP : QW ∗
P −→ QGP, dP 7→ 1,

and set d :=
∑

P∈S¦ram
ind δP, where ind δP : ind G

GP
QW ∗

P → ind G
GP
QGP = QG denotes

the map which is induced by δP. Let C be a ZG-free module of rank sram with basis 1P,
P ∈ S¦ram, and define φ to be the QG-isomorphism

φ : Q∇ ' Q(∆S ⊕⊕
P∈S¦ram

ind G
GP

W ∗
P)

Q⊗φS ⊕ d //Q(ES ⊕ C).

Here, the first isomorphism is induced by the natural inclusion on minus parts, whereas we
have to choose a splitting of sequence (11) on plus parts (after tensoring with Q). But this
choice will play no decisive role, since we are going to deal with minus parts only.

Since Lemma 3 gives the exact relation between the class of AT
L ⊗ Zp and the class of

cokφT
S ⊗ Zp in K0T (ZpG−), and since the latter essentially determines Ω

(p),−
φ , it is now

relatively clear that Theorem 2 can be proved. The remaining part of this section deals with
the necessary explicit calculations and may be skipped while first reading.

Let P be a finite prime of L. Take an exact sequence

L×P ½ VP ³ ∆GP

whose extension class in Ext1GP
(∆GP, L×P) ' H2(GP, L×P) is the local fundamental class of

LP/Kp. By [We], Theorem 4 the inertial lattice WP is the push-out along the normalized
valuation vP : L×P ³ Z. We are going to repeat this process. We have exact sequences

UP ½ VP ³ WP, U1
P ½ UP ³ (oL/P)×
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and define TP to be the push-out of the first sequence along the projection of the second as
shown in the following commutative diagram

U1
PÄ _

²²

U1
PÄ _

²²
UP

Â Ä //

²²²²

VP
// //

²²²²

WP

(oL/P)× Â Ä // TP
// // WP

(30)

Lemma 4. (1) The G-module ind G
GP

TP⊗Zp is cohomologically trivial for each finite prime
P - p of L and for each finite prime P which is at most tamely ramified in L/K.

(2) The G-modules (ind G
GP

TP)−⊗Zp, (ind G
GP

WP)−⊗Zp and (ind G
GP

W ∗
P)−⊗Zp are ZpG−-

free of rank 1 for each finite prime P | p.
Proof. Let P be a p-Sylow subgroup of G. We denote the p-completion of any module M
by M̂ ; especially, if M is finitely generated as Z-module, we have M̂ = M ⊗ Zp.
We start with the case P - p. Then Û1

P vanishes, since U1
P is a pro-q-group for a prime q 6= p.

The exact sequence U1
P ½ VP ³ TP now implies that for all i ∈ Z we have

Hi(P, ind G
GP

TP ⊗ Zp) = Hi(PP, TP ⊗ Zp) ' Hi(PP, V̂P) = 1,

since V̂P is c.t. by [GW], p. 282.
Now let P be a prime above p. Then the bottom sequence of diagram (30) implies that
TP ⊗ Zp = WP ⊗ Zp. The canonical projection GP ³ GP induces an exact sequence

∆(GP, IP) ½ ZGP ³ ZGP.

The projection onto the second component of WP ⊂ ∆GP × ZGP yields a quite similar
exact sequence

∆(GP, IP) ½ WP ³ ZGP.

If P is at most tamely ramified in L/K, the GP-module ZpGP is projective, since the
corresponding idempotent lies in ZpGP. Therefore, the p-completed versions of the above two
sequences show that WP ⊗ Zp ' ZpGP which in particular has vanishing Tate cohomology.
We are left with the case P | p and j ∈ GP. Then j already acts on GP-modules, and the
two exact sequences

Z½ WP ³ ∆GP, ∆GP ½ ZGP ³ Z

imply that T−P ⊗ Zp = W−
P ⊗ Zp ' ZpG

−
P, since Z− and likewise Z−p are zero. As the dual

of a free module is free, we are done. 2

Now we put

∇T,− := (∆S ⊕
⊕

P∈(Sram∩T )¦
ind G

GP
ZG2

P ⊕
⊕

P∈(Sram∩Sp)¦
ind G

GP
W ∗

P)−

such that the sequences (12) for the primes P ∈ (Sram ∩ T )¦ give an exact sequence

W− ⊗ Z[ 12 ] ½ ∇T,− ⊗ Z[ 12 ] ³ ∇− ⊗ Z[ 12 ], (31)

where we have defined W to be

W =
⊕

P∈(Sram∩T )¦
ind G

GP
WP.
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Moreover we define

P0 = ind G
GP0

(oL/P0)×, T =
⊕

P∈(Sram∩T )¦
ind G

GP
TP,

such that the canonical surjections tP : TP ³ WP induce an exact sequence

(oL/MT )× ½ P0 ⊕ T ³ W. (32)

Let us denote the kernel of the epimorphism B ³ ∇ of the Tate sequence by R. Since
B is projective, we may build the following commutative diagram which we have invisibly
tensored with Z[ 12 ]:

(oL/MT )×,− Â Ä //
Ä _

²²

RT,−
Ä _

²²

πR // // R−Ä _

²²
P−0 ⊕ T − Â Ä //

²²²²

BT,−

²²²²

// // B−

²²²²
W− Â Ä // ∇T,− // // ∇−

(33)

Lemma 5. The G-modules BT,−⊗Zp, ∇T,−⊗Zp and RT,−⊗Zp are cohomologically trivial.

Proof. By Lemma 4 and the choice of the set S the modules ∇T,− ⊗ Zp and T − ⊗ Zp are
c.t. Now the middle row of the above diagram shows that also BT,− ⊗Zp is c.t. Finally, the
middle column implies the assertion for RT,− ⊗ Zp. 2

In analogy to the elements dP, we define QGP-generators cP of QWP by

cP := (1− 1
|GP|NGP

, NGP
+ (φP − 1)−1(1− 1

|GP|
NGP

)), (34)

where we write (φP − 1)−1 = |GP|−1
∑|GP|−1

i=0 iφi
P in an intuitive notation. We establish a

connection between the generators cP and dP by means of the commutative diagram

QpGP

1 7→cP

²²

Â Ä ι1 // QpG
2
P

gP

²²

π2 // // QpGP

1 7→dP

²²
QpWP

Â Ä q // QpG
2
P

κ // // QpW
∗
P

where the maps of the upper row are the natural inclusion into the first and the projection
onto the second component. The isomorphism gP is defined to be

gP : (1, 0) 7→ q(cP) = (NGP
+ (φP − 1)−1(NIP

− 1
|GP|

NGP
), φ−1

P (1− 1
|GP|NGP

))

(0, 1) 7→ (1,
1

|GP|NGP
)

Let us split the free ZG-module C into C = Cp′⊕Cp, where Cp is free of rank |(Sram∩Sp)¦|.
If we combine the above diagram for all primes P ∈ S¦ram which do not lie above p, we get
the following commutative diagram on minus parts which is invisibly tensored with Zp:

W−

c

²²

Â Ä // ∇T,−

²²

// // ∇−

φ

²²
C−p′

Â Ä // (ES ⊕ C2
p′ ⊕ Cp)− // // (ES ⊕ C)−

(35)
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Here, the dotted maps only exist after tensoring with Qp, and c is induced by mapping cP

to 1P. The map g :=
∑

P∈(Sram∩T )¦ ind gP is incorporated in the middle dotted arrow.

We have Ω
(p),−
φ = (B− ⊗Zp, φ̃, (A⊕C)− ⊗Zp), where we can write φ̃ in the following way:

φ̃ : QpB
− β̃

'
// Qp(R⊕∇)−

π−1
R ⊕id // Qp(RT ⊕∇)−

' // Qp(RT ⊕∆S ⊕⊕
P∈S¦ram

ind G
GP

W ∗
P)−

id⊕d // Qp(RT ⊕∆S ⊕ C)−
id⊕φT

S⊕id // Qp(RT ⊕ ET
S ⊕ C)−

πR⊕ιE⊕id // Qp(R⊕ ES ⊕ C)−
α̃⊕idC

'
// Qp(A⊕ C)−

Here, β̃ and α̃ are induced by sections of the exact sequences QpR ½ QpB ³ Qp∇ and
QpES ½ QpA ³ QpR, respectively. Since (RT ⊕∆S⊕C)−⊗Zp and (RT ⊕ET

S ⊕C)−⊗Zp

are c.t. G-modules by Lemma 2, Lemma 5 and the choice of the set S, applying (6) yields

Ω
(p),−
φ = (B− ⊗ Zp, (id⊕ d)(π−1

R ⊕ id)β̃, (RT ⊕∆S ⊕ C)− ⊗ Zp)
+ iG(cok φT

S ⊗ Zp) + ((RT ⊕ ET
S )− ⊗ Zp, α̃(πR ⊕ ιE), A− ⊗ Zp).

(36)

Note that the G-module cok φT
S ⊗ Zp is c.t. and finite such that

((RT ⊕∆S ⊕ C)− ⊗ Zp, id⊕ φT
S ⊕ id, (RT ⊕ ET

S ⊕ C)− ⊗ Zp) = iG(cok φT
S ⊗ Zp).

Since α̃(πR⊕ ιE) is a section of QpE
T
S ½ QpA ³ QpR

T , the last term in (36) vanishes. Now
let δ ∈ Ext2G(∇−⊗Zp, (∆S⊕C⊕ (o/MT )×)−⊗Zp) be the extension class whose associated
complex is

(∆S ⊕ C ⊕RT )− ⊗ Zp → B− ⊗ Zp,

where the map is induced by the epimorphism πR followed by the inclusion R− ½ B−

(cf. diagram (33)). Then the first term on the right hand side of equation (36) equals χ(δ, id⊕
d), where we drop the subscript ZpG−,QpG− of the refined Euler characteristic from the
notation. We have the following short exact sequence of complexes (where we have invisibly
taken minus parts and tensored with Zp):

Cp′
0 //

Ä _

²²

P0 ⊕ TÄ _

²²
∆S ⊕ C2

p′ ⊕ Cp ⊕RT //

²²²²

BT

²²²²
∆S ⊕ C ⊕RT // B

Here, the left column is the obvious exact sequence, whereas the right column is taken from
diagram (33). The extension class of the bottom complex is δ and the middle horizontal
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map is induced by the inclusion RT,− ⊗ Zp ½ BT,− ⊗ Zp. We denote the extension classes
corresponding to the upper and middle complex by τ and δT , respectively. Hence we have

τ ∈ Ext2G((P0 ⊕ T )− ⊗ Zp, C
−
p′ ⊗ Zp), δT ∈ Ext2G(∇T,− ⊗ Zp, (∆S ⊕ C2

p′ ⊕ Cp)− ⊗ Zp).

Now we endow these complexes with trivialisations. We have already trivialised δ by id⊕ d.
Now let t : Qp(P0 ⊕ T )− ' QpW− be the isomorphism induced by the epimorphism of
sequence (32). Then ct is a trivialisation of τ , where c was defined in diagram (35). If we
trivialise δT by id∆S⊕g−1⊕dp′ , where dp′ is the restriction of d to

⊕
P∈(Sram∩Sp)¦ indQW ∗

P

(tensored with Qp and on minus parts), then the above exact sequence of complexes is in
fact well metrised (in the terminology of [Gr3]) such that we have an equality (cf. loc.cit.,
Prop. 7.1)

χ(δ, id⊕ d) = χ(δT , id⊕ g−1 ⊕ dp′)− χ(τ, ct)
= (∇T,− ⊗ Zp, id⊕ g−1 ⊕ dp′ , (∆S ⊕ C2

p′ ⊕ Cp)− ⊗ Zp)

−((P0 ⊕ T )− ⊗ Zp, ct, C
−
p′ ⊗ Zp),

where the second equality holds, since Hi(τ) and Hi(δT ) are c.t. G-modules, i = 0, 1. Since
((P0⊕T )−⊗Zp, ct, C

−
p′⊗Zp) = −iG(P−0 ⊗Zp)+(T −⊗Zp, ct, C

−
p′⊗Zp), we get the following

description of Ω
(p),−
φ :

Ω
(p),−
φ = iG(cok φT

S ⊗ Zp) + iG(P−0 ⊗ Zp)
+

∑
P∈(Stram∩Sp)¦

((ind W ∗
P)− ⊗ Zp, ind δP, (indZpGP)−)

− ∑
P∈(Sram∩T )¦

∂[ind (QpG
2
P)−, ind gP]

− ∑
P∈(Sram∩T )¦

((ind TP)− ⊗ Zp, ind (cP 7→ 1P)tP, indZpG
−
P),

(37)

where we have defined Stram ⊂ Sram to be the set of all primes of L which are tamely ramified
in L/K. In fact ((ind W ∗

P)−⊗Zp, ind δP, (indZpGP)−) vanishes for all wildly ramified primes
above p for the following reason: Since by assumption j ∈ GP for these primes, [Ni2],
Prop. 4.4 implies that we have an isomorphism ZpG

−
P ' (W ∗

P)−⊗Zp, which maps (1− j)/2
to dP. Hence, the isomorphism δP derives, locally at p and on minus parts, from a ZpGP-
isomorphism.

Proposition 6. Keeping the notation of the current paragraph the following holds:

(1) iG(P−0 ⊗ Zp) has representing homomorphism

χ 7→ det(q0 − φP0 |Vχ),

where q0 = N(p0) and p0 = P0 ∩K.
(2) Let P ∈ (Sram ∩ Sp)¦ be at most tamely ramified in L/K.

Then ((ind W ∗
P)− ⊗ Zp, ind δP, (indZpGP)−) has representing homomorphism

χ 7→ (−eP)− dim V
GP

χ · det(1− φ−1
P |V IP

χ /V
GP
χ )−1,

where eP = |IP| is the ramification index of the prime P in L/K.
(3) Let P be any finite prime of L. Then ∂[ind (QpG

2
P)−, ind gP] has representing homomor-

phism
χ 7→ (−|GP|)dim V

GP
χ .

(4) Let P ∈ (Sram∩T )¦. Then ((ind TP)−⊗Zp, ind (cP 7→ 1P)tP, indZpG
−
P) has representing

homomorphism

χ 7→ (fP(1− qp))− dim V
GP

χ · det(
1− φP

qp − φP
|V IP

χ /V
GP
χ ),

where fP = |GP| is the degree of the corresponding residue field extension and qp = N(p).
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Proof. Recall that P0 = ind G
GP0

(oL/P0)×. Since P0 is unramified in L/K, the decomposi-
tion group GP0 is cyclic with generator φP0 , which acts as q0 on (oL/P0)×. So (1) is clear.
For (2) let P ∈ (Sram ∩ Sp)¦ be tamely ramified. Then the idempotent εP = e−1

P NIP
lies in

ZpGP, and we claim that we have an isomorphism

wP : ZpGP
'−→ W ∗

P ⊗ Zp, 1 7→ κ(1− εP, 1).

Indeed wP(εP) = κ(0, 1) and wP(1 − εP + e−1
P (φ−1

P − 1)εP) = κ(1, 0). Therefore, wP is
surjective and hence bijective, since both modules are torsion free of the same rank. We
have

((W ∗
P)− ⊗ Zp, δP, (ZpGP)−) = −((ZpGP)−, δ−1

P wP, (ZpGP)−).

Since wP(1 − εP + e−1
P (φ−1

P − 1)εP + |GP|−1NGP
) = dP, the representing homomorphism

in demand is
χ 7→ det(e−1

P (φ−1
P − 1)|V IP

χ /V
GP
χ )−1.

We have proved (2), since the desired homomorphism differs from this by

[χ 7→ det((−eP)εP + 1− εP|Vχ)] ∈ Det ((ZpG−)×).

(3) is an easy computation. Finally, let P ∈ (Sram∩T )¦, i.e. P is a ramified prime not above
p. It directly follows from the definition that TP is the push-out of the local fundamental
class along the canonical projection L×P ³ L×P/U1

P. Actually before taking minus parts,

−(TP ⊗ Zp, (cP 7→ 1P)tP,ZpGP) = χZpGP,QpGP
(ûP, v−1

P ),

where ûP ∈ Ext2GP
(Zp, L̂

×
P) derives from the local fundamental class. Hence (4) follows from

Theorem D in [RW3]. 2

If we now combine the equations (37) and (28) with Lemma 3, equation (29) and Propo-
sition 6, we get Theorem 2 by an easy computation. 2

3 Iwasawa theory

As an application of Theorem 2 we are going to prove the minus part of the LRNC at a
prime p 6= 2 if L/K is an abelian CM-extension fulfilling the assumptions of Theorem 2 ;
actually, we need to work under a slightly more restrictive hypothesis on the primes above
p. We additionally require the vanishing of the µ-invariant of the standard Iwasawa module
(all this will be made explicit below). The main ingredient of the proof turns out to be the
validity of the Iwasawa main conjecture for abelian extensions.

3.1 Passing to the limit

Let L/K be an abelian CM-extension with Galois group G and p 6= 2 a finite rational prime
such that all primes p ⊂ K above p are tamely ramified in L/K or j ∈ Gp. Here, we write
Gp instead of GP, since the decomposition group only depends on the prime p in K if G is
abelian. We will accordingly write Ip, φp etc. As it is required for the use of Theorem 2, we
choose a finite prime P0 of L such that 1− ζ 6∈ ∏

g∈G/Gp0
Pg

0 for all roots of unity ζ 6= 1 in
L. We may assume that P0 is unramified in L/K and does not divide p. Indeed, it would
suffice to ask for a corresponding condition on P0 for all p-power roots of unity in L, since
we tensor with Zp. Hence, any prime which lies not above p will do.
As before we define a finite set of places of L

T = (Sram \ (Sram ∩ Sp)) ∪ {Pg
0|g ∈ G} , (38)
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and set AT
L = clT,−

L . Then AT
L ⊗ Zp is c.t. by Theorem 1.

Let L∞ and K∞ be the cyclotomic Zp-extensions of L and K, respectively. We denote the
Galois group of K∞/K by ΓK . Hence ΓK is isomorphic to Zp, and we fix a topological
generator γK . Furthermore, we denote the n-th layer in the cyclotomic extension K∞/K
by Kn such that Kn/K is cyclic of order pn. Accordingly, we set ΓL = Gal(L∞/L) with a
topological generator γL whose restriction to K∞ is γa

K for an appropriate integer a. We
enumerate the intermediate fields starting with L = La such that Ln/L is cyclic of order
pn−a. This is because then Ln is the smallest intermediate field of L∞/L which lies above
Kn. It may also be convenient to define Ln = L if n ≤ a. Let Tn := {Pn ⊂ Ln|Pn ∩ L ∈ T} ,
so T0 = T and ATn

Ln
⊗ Zp is Gal(Ln/Kn)-c.t., since each of the extensions Ln/Kn inherits

the required properties from the extension L/K. We define

X−
T := lim

←
ATn

Ln
⊗ Zp.

We denote the Galois group of L∞/K by G, hence G = G̃ × ΓK , where G̃ is a subgroup of
G. The completed group ring Zp[[G]] is isomorphic to Λ[G̃], where Λ is the Iwasawa algebra
Zp[[T ]]. Since we are going to use some of the results in [Gr2], we set γK = 1 − T as in
loc.cit. We have an exact sequence (cf. [Gr2], Proposition 6)

Zp(1) ½
⊕

p∈T (K)

Zp(1)− → X−
T ³ X−

std (39)

if ζp ∈ L, and without the Zp(1) term if ζp 6∈ L. Here, Xstd is the standard Iwasawa module
which is the projective limit of the p-parts of the class groups in the cyclotomic tower over
L, and Zp(1) is the first Tate twist of

Zp = ind GGp
Zp = Zp[[ΓK × G̃/Ĩp]]/(1− φp),

where we now write φp for the Frobenius automorphism at p in the Galois group G. The
basic facts about the Iwasawa module X−

T are summarized in the following Proposition.

Proposition 7. The Iwasawa module X−
T is a finitely generated, torsion Zp[[G]]−-module,

which has no non-trivial finite submodules and

pdZp[[G]]−(X−
T ) ≤ 1.

Proof. This is Proposition 7 in [Gr2], where the ramification above p is assumed to be tame.
But what is needed is just the cohomological triviality of the ray class groups ATn

Ln
⊗ Zp. 2

The Fitting ideal of X−
T is described in terms of p-adic L-functions. To make this explicit

we have to introduce some further notation. Let κ : G → Z×p denote the cyclotomic character
and define u = κ(γK). Any character ψ of G with open kernel can be written as ψ = χ⊗ ρ,
where χ is a character of G̃ and ρ is trivial on G̃ (so χ is of type S and ρ is of type W in the
terminology of [Wi1]). If χ is an odd character and S a set of places of K containing all the
primes above p, there exists a well-defined element fχ,S(T ) ∈ Quot(Zp(χ)[[T ]]) determined
by

fχ,S(us − 1) = Lp,S(s, ωχ−1), s = 1, 2, 3, . . .

where ω is the Teichmüller character1 on L(ζp)/K. This definition of fχ,S follows the con-
vention of Washington’s book [Wa], and is used in [Gr2]. It is also common to replace the
argument s on the right-hand side by 1− s, but this makes no essential difference.
For all χ of type S and ρ of type W we have (cf. [Gr2], Lemma 7)

fχ⊗ρ,S(T ) = fχ,S(ρ(γK)(1 + T )− 1). (40)

1 Do not confuse with the group ring element ω occurring in Proposition 3. ω will always denote
the Teichmüller character in what follows.
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For this, note that in the notation of [Wi1] we have an equality

fχ⊗ρ,S(T ) =
Gωχ−1⊗ρ,S(u(1 + T )−1 − 1)
Hωχ−1⊗ρ,S(u(1 + T )−1 − 1)

and a similar formula holds for the right-hand side. The Iwasawa series fχ⊗ρ,S(T ) glue
together for varying characters, i.e. there exists a unique element ΦS ∈ Quot(Zp[[G]])− such
that for all odd characters ψ = χ⊗ ρ of G we have (cf. [Gr2], Proposition 11)

ψ(ΦS) = fχ,S(ρ(γK)− 1).

Let p - p be a finite prime of K. Put

ξp =
κ(φp)− φp

1− φp
εp + 1− εp ∈ Quot(Zp[[G]]), (41)

where εp = |Ip|−1NIp ∈ QpG̃ ⊂ Qp[[G]]. If T is a finite set of primes of L which contains no
prime above p, define

ΨT =


 ∏

p∈T (K)

ξp


 · ΦT (K)∪Sp

.

If T is the set of places defined in (38), we have 1−j
2 ΨT ∈ Zp[[G]]− (cf. [Gr2], Proposition 9).

The Iwasawa main conjecture is the main ingredient in proving

Theorem 3. Let T be the set of places of L defined in (38) and µ− the µ-invariant of the
standard Iwasawa module X−

std. Then it holds:

(1) The Fitting ideal of QpX
−
T is generated by ΨT .

(2) If µ− = 0, we actually have

FittZp[[G]]−(X−
T ) = (ΨT ).

Proof. If the ramification above p is almost tame, this is Proposition 8 and Theorem 6 in
[Gr2]. But once more the condition on the ramification is only needed to guarantee the
cohomological triviality of AT

L ⊗ Zp. 2

Lemma 6. Let ψ be a character of G with open kernel and S a set of places of K that
contains all the p-adic places. Put Sψ = {p ∈ S|Ip 6⊂ ker(ψ)} ∪ Sp and write the Frobenius
automorphism at a prime p as φp = σpγ

cp

K , where σp ∈ G̃ and cp ∈ Zp.

(1) Let χ be a character of G̃. Then

Lp,S(s, ωχ−1) = Lp,Sχ(s, ωχ−1)
∏

p∈S\Sχ

(1− χ−1(σp)u−s·cp).

(2) We have an equality

fψ,S(T ) = fψ,Sψ
(T )

∏

p∈S\Sψ

(1− ψ−1(φp)(1 + T )−cp).

Proof. (1) is well known and follows by evaluating both sides of the equation at s = 1− n,
where n ≡ 0 mod (p − 1). (2) is an easy consequence of (1) using formula (40) for the
character ψ = χ⊗ ρ with a G̃-character χ. 2

Corollary 1. Let T be the set of places of L defined in (38) and S1 be the set of places of
L which are wildly ramified in L/K. Each character χ of G can be viewed as a character of
G and, if χ is odd, we have

χ(ΨT ) = χ(θT
S1

) ·
∏

p∈Sp∩Stram

(1− χ(εpφ
−1
p )).
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Proof. Write χ = χ′ ⊗ ρ, where χ′ is a character of G̃ and ρ is of type W . Since only
p-adic primes ramify in the cyclotomic towers over K and L, we have Σχ = Σχ′ , where
Σ = T (K) ∪ Sp. At first, we determine χ′(ΨT ) ∈ Zp(χ′)[[T ]]. With the notation of Lemma
6 we have

χ′(ΨT ) = fχ′,Σ(−T )
∏

p∈T (K)

κ(φp)− χ′(σp)γ
cp

K

1− χ′(σp)γ
cp

K

(∗)
= fχ′,Σχ′ (−T )

∏

p∈T (K)

κ(φp)− χ′(σp)γ
cp

K

1− χ′(σp)γ
cp

K

(1− χ′(σp)−1γ
−cp

K )

= fχ′,Σχ′ (−T )
∏

p∈T (K)

(1− χ′(σp)−1γ
−cp

K κ(φp)),

where (*) holds by means of (2) of Lemma 6. Since ρ(fχ′,Σχ′ (−T )) = fχ′,Σχ′ (ρ(γK)− 1) =
fχ,Σχ(0) = LSχ(0, χ−1), we get

χ(ΨT ) = ρ(χ′(ΨT ))

= LSχ(0, χ−1)
∏

p∈T (K)

(1− χ(φp)−1κ(φp))

= LS∞(0, χ−1)


 ∏

p∈Sp

(1− χ(εpφ
−1
p ))





 ∏

p∈T (K)

(1− χ(φp)−1qp)




= χ(θT
S1

) ·
∏

p∈Sp∩Stram

(1− χ(εpφ
−1
p )),

where as before qp = N(p). 2

3.2 The descent

We are going to use an idea, which originates from [Wi2], in the extended version of [Gr1],
where the author proves Brumer’s conjecture for a special class of CM-extensions. Note that
the class of CM-extensions treated here includes the class of loc. cit. The same approach is
also used in [Ku] to compute the Fitting ideals of minus class groups of absolute abelian
CM-fields. But before we go for this, we look at a special case, where a rather restrictive
condition forces the Euler factors at p to become units in ZpG−.

Proposition 8. Let L/K be an abelian CM-extension with Galois group G and p 6= 2 a
rational prime. Let T be the set of places of L defined in (38) and S1 be the set of all wildly
ramified primes. Suppose that µ− = 0 and j ∈ Gp for all primes p of K above p.
Then θT

S1
generates the Fitting ideal FittZpG−(AT

L⊗Zp). In particular, the minus part of the
LRNC at p is true.

Proof. The canonical restriction map X−
T → AT

L ⊗Zp is an epimorphism, since the cokernel
is a quotient of ΓL which has trivial j-action. By general properties of Fitting ideals we have

FittZpG−(X−
T /γL − 1) ⊂ FittZpG−(AT

L ⊗ Zp),

and the Fitting ideal on the left-hand side is generated by ΨT mod (γL − 1) by Theorem 3.
Corollary 1 now implies that

ΨT mod (γL − 1) = θT
S1

∏

p∈Sp∩Stram

(1− εpφ
−1
p ).

But the product on the right-hand side is a unit in ZpG−, since j ∈ Gp for these primes.
Hence θT

S1
∈ FittZpG−(AT

L ⊗ Zp). Finally, Proposition 4 and 5 imply that θT
S1

has to be a
generator of the Fitting ideal. The minus part of the LRNC at p follows from Theorem 2. 2
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Now we use the method in [Gr1] to prove the minus part of the LRNC at p without
the additional assumption of Proposition 8. But this works only for primes p such that
Lcl 6⊂ (Lcl)+(ζp), where Lcl denotes the normal closure of L over Q, which is again a CM-
field. This condition particularly forces ζp 6∈ L. But note that this condition holds for almost
all primes p, since each prime for which it fails has to ramify in Lcl/Q. Our main result is

Theorem 4. Let L/K be an abelian CM-extension with Galois group G and p 6= 2 a rational
prime. Let T be the set of places of L defined in (38) and S1 be the set of all wildly ramified
primes. Suppose that µ− = 0 and that each prime p above p ramifies at most tame or j ∈ Gp.
Moreover, assume that j ∈ Gp for all primes p of K above p whenever Lcl ⊂ (Lcl)+(ζp).
Then θT

S1
generates the Fitting ideal FittZpG−(AT

L⊗Zp). In particular, the minus part of the
LRNC at p is true.

Remark 6. The vanishing of µ− is only required for computing the Fitting ideal of X−
T

(cf. Theorem 3). As already mentioned, we will show in the appendix that we can remove
this hypothesis for some special cases, including the case p - |G|.
Corollary 2. 2 Let L/K be any Galois CM-extension with group G and p 6= 2 a rational
prime such that j ∈ GP for all primes P of L above p whenever Lcl ⊂ (Lcl)+(ζp). Then the
Strong Stark Conjecture at p holds for each odd character χ of G.

Proof. By Artin’s induction theorem we may write χ =
∑

C aC ind G
C φ̃C , where the sum runs

over all cyclic subgroups of G, aC ∈ Q and the φ̃C are linear characters. Define UC := C
if C contains j, and UC := C × 〈j〉 if j 6∈ C. Moreover, let φC = ind UC

C φ̃C . Then χ =∑
C aC ind G

UC
φC , where each φC belongs to a CM-subextension of L/K. Since even resp. odd

characters remain even resp. odd after induction, we may assume the φC to be odd. Now we
adjust the proof of Proposition 11 in [RW2] to show that the Strong Stark Conjecture at p
for odd characters is implied by the respective statement for all CM-subextensions of L/K
which have a Galois group of type UC of degree prime to p. In this case, the Strong Stark
Conjecture at p is equivalent to the LRNC at p. 2

Proof (of Theorem 4). The assertion follows from Proposition 8 if Lcl ⊂ (Lcl)+(ζp). Hence,
we may assume that this is not the case in the following. We state the following result, which
is Proposition 4.1 in [Gr1].

Proposition 9. Let p be a prime such that Lcl 6⊂ (Lcl)+(ζp) and N ∈ N. Then there exist
infinitely many primes r such that

– r ≡ 1 mod pN

– j ∈ Gr for each prime r in K above r
– the Frobenius automorphism at p in the extension Q(ζr)/Q generates Gal(E/Q), where

E is the subfield of Q(ζr) such that [E : Q] = pN .

Let N be a large integer, and choose a prime r as in the Proposition which does not ramify
in Lcl/Q. The extension E/Q is cyclic of degree pN , and we denote the corresponding Galois
group by CN . It is generated by the Frobenius automorphism Frobp ∈ CN . Let L′ = LE
and K ′ = KE. Then L′/K is an abelian extension with Galois group G′ = G×CN , and the
only new ramification occurs above r. Moreover, the primes r above r satisfy both of our
standard conditions: They are tamely ramified and j ∈ Gr.
Set T ′ = {P′ ⊂ L′ : P′ ∩ L ∈ T} and T ′0 = T ′∪{R′ ∈ L′ : R′ | r}. There is an exact sequence


oL′/

∏

R′|r
R′



×,−

⊗ Zp ½ A
T ′0
L′ ⊗ Zp ³ AT ′

L′ ⊗ Zp.

We claim that the leftmost term is trivial, and hence AT ′
L′⊗Zp ' A

T ′0
L′ ⊗Zp is c.t. by Theorem

1. To see this let r be a prime in K above r, and R′ a prime in L′ above r. Since j ∈ Gr, it
2 added in proof - I would like to thank David Burns for his useful hint.
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acts on the corresponding residue field extension of degree fr, say. Therefore, (oL′/R′)×,−

has exactly q
fr/2
r + 1 elements, where qr = N(r) is a power of r. But thanks to the first

condition on r we have q
fr/2
r + 1 ≡ 2 6≡ 0 mod p. Hence, the leftmost term vanishes, since

we are only dealing with p-parts.
For the same reasons as in Proposition 8 the natural restriction map AT ′

L′ ⊗ Zp ³ AT
L ⊗ Zp

is surjective. The composite map

AT ′
L′ ⊗ Zp

res−→ AT
L ⊗ Zp → AT ′

L′ ⊗ Zp

is given by the norm NCN
, and the kernel of the norm is just ∆CN · AT ′

L′ ⊗ Zp. Therefore,
the restriction map induces an isomorphism

(AT ′
L′ ⊗ Zp)CN

'−→ AT
L ⊗ Zp.

Now we adjust the method in [Gr1] to show that (see [Ni1] for a complete proof)

FittZpG−(AT
L ⊗ Zp) ⊂ (θT

S1
).

As in the proof of Proposition 8, θT
S1

has to be a generator of the Fitting ideal by Proposition
4 and 5. The minus part of the LRNC at p again follows from Theorem 2. 2

4 On the Strong Brumer-Stark Conjecture

4.1 The conjecture

Let L/K be a finite abelian extension of number fields with Galois group G. Let S be a
finite G-invariant set of primes of L, containing all the infinite primes and all the primes
which ramify in L/K. If T is a second G-invariant, finite, nonempty set of primes of L,
disjoint from S, we define for each character χ of G a complex-analytic function δT (χ, s) =∏

p∈T (K)(1 − N(p)1−sχ̌(φp)). The (S, T )-modified L-function associated to χ is defined to
be

LS,T (L/K, χ, s) = δT (χ, s) · LS(L/K, χ, s).

Set δT (s) =
∑

χ∈Irr (G) δT (χ̌, s)εχ for all s ∈ C. The S-Stickelberger and respectively (S, T )-
Stickelberger functions3 are defined by

ΘS(s) = ΘS(L/K, s) :=
∑

χ∈Irr (G)

LS(L/K, χ̌, s)εχ,

ΘS,T (s) = ΘS,T (L/K, s) := δT (s) ·ΘS(s) =
∑

χ∈Irr (G)

LS,T (L/K, χ̌, s)εχ.

We now fix a set of data (L/K, S, T ) which satisfies the following hypotheses (H):

– S contains all the infinite primes of L and all primes of L which ramify in L/K.
– T 6= ∅, S ∩ T = ∅, ET

S ∩ µL = 1.

The Strong Brumer-Stark Conjecture ([Po], following Theorem 3.2.2.3) now states

Conjecture 3. The image of 1
2ΘS,T (0) in ZG− lies in FittZG−(AT

L).

We will refer to this conjecture as SBrSt(L/K,S, T ). Replacing ZG by ZpG and AT
L by AT

L⊗
Zp for a prime p one gets localized versions Z(p)SBrSt(L/K, S, T ) of the above conjecture.
Of course, we have

SBrSt(L/K,S, T ) ⇐⇒ Z(p)SBrSt(L/K, S, T ) ∀p.

Note that SBrSt(L/K, S, T ) for all sets S, T satisfying (H) implies the Rubin-Stark Con-
jecture (cf. [Po], Theorem 3.2.2.3).
3 Do not confuse with the representing homomorphism ΘT

S defined in 2.
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4.2 The tamely ramified case

Theorem 5. Let L/K be an abelian Galois CM-extension with Galois group G and p 6= 2
a prime. Assume that for each prime p above p the ramification is almost tame or j ∈
Gp. Then the minus part of the LRNC at p implies the Strong Brumer-Stark conjecture
Z(p)SBrSt(L/K, S, T ) for each sets of places S, T such that (L/K,S, T ) satisfies (H).

Corollary 3. (1) Assume that L/K additionally satisfies j ∈ Gp for all primes p above p,
whenever Lcl ⊂ (Lcl)+(ζp), and that µ− = 0. Then Z(p)SBrSt(L/K, S, T ) holds when-
ever (L/K, S, T ) satisfies (H).

(2) If L is abelian over Q, then Z(p)SBrSt(L/K, S, T ) holds whenever (L/K, S, T ) satisfies
(H) and all p above p are almost tamely ramified or j ∈ Gp.

Here, (1) immediately follows from Theorem 4. Since the ETNC is known to be true for ab-
solutely abelian extensions [BG1], we get (2). Note that we can again remove the condition
µ− = 0 if p - |G|.

Proof (of Theorem 5). It follows from the behavior of Fitting ideals that it suffices to verify
the conjecture for minimal sets S, T . Hence, let S = Sram and T0 = {Pg

0|g ∈ G} for
an unramified prime P0 such that ET0

Sram
∩ µL = 1. This is equivalent to the statement

on earlier occasions that 1 − ζ 6∈ ∏
g∈G/Gp0

Pg
0 for all 1 6= ζ ∈ µL. As before, set T =

T0 ∪ (Sram \ (Sram ∩ Sp)). By Theorem 2 the minus part of the LRNC at p implies (and is
indeed equivalent to)

FittZpG−(AT
L ⊗ Zp) = (θT

S1
) = (ΘS1,T (0)). (42)

We have two exact sequences

oL/

∏

P∈T\T0

P



×,−

⊗ Zp ½ AT
L ⊗ Zp ³ AT0

L ⊗ Zp, (43)


oL/

∏

P∈T\T0

P



×

⊗ Zp ½
⊕

P∈T¦\T¦0
ind G

Gp
TP ⊗ Zp ³

⊕

P∈T¦\T¦0
ind G

Gp
WP ⊗ Zp.

Here, the lower sequence derives from diagram (30). We want to apply the following Lemma,
which is a special case of Lemma 5 in [BG2].

Lemma 7. Let M1 ½ P1 → P2 ³ M2 be an exact sequence of finite ZpG−-modules, where
P1 and P2 are c.t. Then Fitt(Pi) is invertible for i = 1, 2 and

Fitt(M2) = Fitt(M∨
1 ) · Fitt(P1)−1 · Fitt(P2),

where M∨
1 = Hom(M1,Q/Z) denotes the Pontryagin dual of M1.

We have to modify the above two exact sequences slightly. For each prime P we have an
exact sequence

KP ½ (ind G
Gp
ZpGp/(N(P)− 1))− ³

(
ind G

Gp
(oL/P)

)×,−
⊗ Zp,

where the second map is induced by mapping 1 to a generator of (oL/P)×. These sequences
glue together and give

K ½ P ³


oL/

∏

P∈T\T0

P



×,−

⊗ Zp, (44)
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where K and P are the direct sums of the KP and the middle terms in the above sequence,
respectively. Note that K and P are finite, and P is c.t. Define

c′P := (|Gp|(1− 1
|Gp|NGp) +

1
|Gp|NGp) · cP ∈ WP,

where cP was defined in (34). Moreover, let t′P be a preimage of c′P in TP. The maps
ZpGp → WP ⊗ Zp, 1 7→ c′P and ZpGp → TP ⊗ Zp, 1 7→ t′P are injective and become
isomorphisms after tensoring with Qp. Hence, the direct sum

T :=
⊕

P∈T¦\T¦0
ind G

Gp
TP/t′P ⊗ Zp

is finite and c.t. by Lemma 4. Therefore, the sequences (43) and (44) give two exact sequences

K ½ P → AT
L ⊗ Zp ³ AT0

L ⊗ Zp,

K ½ P → T − ³ W−,

where W is the direct sum of the ind G
Gp

WP/c′P ⊗ Zp. We can apply Lemma 7 to these
sequences and get

Fitt(AT0
L ⊗ Zp) = Fitt(AT

L ⊗ Zp) · Fitt(T −)−1 · Fitt(W−). (45)

Proposition 6 (4) implies
Fitt(T −) =

∏

P∈T¦\T¦0
(τP), (46)

τP = fp(1− qp)
1
|Gp|NGp + (|Gp| −NGp)(

qp − φp

1− φp
εp + 1− εp),

where εp = |Ip|−1NIp and fp is the degree of the corresponding residue field extension.

Lemma 8. Let P 6∈ Sp be a finite prime of L. Then

FittZpGp(WP/c′P ⊗ Zp) = 〈NGp − |Gp|, NGp + ep(fpNIp −NGp)(φp − 1)−1〉ZpGp .

Proof. Since P lies not above p, we may assume that P is at most tamely ramified. We keep
the notation of [Ch2], Lemma 6.2. So choose a generator a of Ip and let b ∈ Gp be a lift of
φ−1

p which is of maximal order |b| among all such elements. Set ep = |Ip|; then b−fp = acp

for a divisor cp of ep. Define a map

π : ZGpe1 ⊕ ZGpe2 ³ WP

by π(e1) = (b−1 − 1, 1) and π(e2) = (a − 1, 0). We claim that the kernel is generated by
NIpe2 and (a− 1)e1 + (1− b−1)e2. For this, assume that

π(x1e1 + x2e2) = (x1(b−1 − 1) + x2(a− 1), x1) = 0 ∈ WP.

By Lemma 6.6 in [Ch2] x1 = (a−1)x′1 for an appropriate x′1 ∈ ZGp. By the same Lemma in
loc.cit. we get x′1(b

−1−1)+x2 = y ·NIp for a y ∈ ZGp, since the left-hand side is annihilated
by (a− 1). This proves the claim. Define two group ring elements

δ1 :=
fp−1∑

i=0

b−i + (fpNIp −NGp)(b−1 − 1)−1 ∈ ZpGp,

δ2 :=
cp−1∑

i=0

ai + fp ·
ep−1∑

i=1

i−1∑

j=0

aj ∈ ZpGp.

An easy computation shows that π(δ1e1− δ2e2) = c′P. Hence, the kernel of the epimorphism

ZpGpe1 ⊕ ZpGpe2 ³ WP/c′P ⊗ Zp

induced by π is generated by the kernel of π and δ1e1 − δ2e2. From this one can compute
the desired Fitting ideal. 2
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Recall the definitions (24) and (26) of ω and the modules MP. The above Lemma together
with (45), (42), (46) now yields

Corollary 4. Assume that the minus part of the LRNC at p holds. Then:

FittZpG−(AT0
L ⊗ Zp) = (qp0 − φp0)ω

∏

P∈S¦ram

MP ⊂ SKu(L/K)− · ZpG.

In particular, this implies

ΘSram,T0(0) = (qp0 − φp0) · ω
∏

P∈S¦ram

(1− εpφ
−1
p ) ∈ FittZpG−(AT0

L ⊗ Zp),

which proves Theorem 5. 2

A Removing µ− = 0

We combine methods used by J. Ritter and A. Weiss [RW5], A. Wiles [Wi1] and C. Greither
[Gr1] to remove the hypothesis µ− = 0 in Theorem 3 (2) for a special class of cases, including
the case p - |G|. More precisely, we prove

Theorem 6. Let T be the set of places of L defined in (38). Suppose that for each prime
p ∈ T (K) at least one of the following conditions is satisfied:

– j ∈ Ip

– j 6∈ Ip, but j ∈ Gp and N(p)fp/2 6≡ −1 mod p
– p - |Ip|

Then we have
FittZp[[G]]−(X−

T ) = (ΨT ).

Remark 7. In the proof of Theorem 4 we have enlarged the extension L/K to L′/K. But if
L/K satisfies the hypotheses of the above theorem, then so does L′/K.

Proof. Since the projective dimension of X−
T as a Zp[[G]]−-module is at most 1 by Proposition

7, the Fitting ideal in demand is principal, generated by Ψ̃T , say. The integral closure of
Zp[[G]]− is R :=

∑
χ Zp[χ][[T ]], where the sum runs over all odd irreducible characters of G̃.

Since Zp[[G]]− ∩R× = (Zp[[G]]−)×, it suffices to show

(1) RΨ̃T = RΨT

(2) (Ψ̃T ) ⊂ (ΨT ).

If χ is an odd irreducible character of G̃ and X is any Zp[[G]]−-module, we define Zp[χ][[T ]]-
modules

Xχ := X ⊗Zp[[G]]− Zp[χ][[T ]],

Xχ :=
{

x ∈ Zp[χ]⊗Zp X|gx = χ(g)x ∀g ∈ G̃
}

' HomZp[χ]G̃(Zp[χ],Zp[χ]⊗Zp X).

To prove (1) we have to show that FittZp[χ][[T ]]((X−
T )χ) is generated by χ(ΨT ). By (1)

of Theorem 3 this holds apart from the µ-invariants. By Lemma 3.3 in [Gr1] there is an
isomorphism (X−

T )χ ' Xχ
T , since X−

T is c.t. over G̃. Moreover, the epimorphism X−
T ³ X−

std

has a kernel C which is finitely generated as Zp-module (cf. (39)), and thus it induces an
exact sequence

Cχ ½ Xχ
T → Xχ

std ³ H1(G̃, HomZp[χ](Zp[χ],Zp[χ]⊗Zp C)),
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where the rightmost term is finite. Hence, µ(Xχ
T ) = µ(Xχ

std), and the latter equals the µ-
invariant of χ(ΨT ) by Theorem 1.4 in [Wi1] if χ is of order prime to p. For arbitrary χ
one has to adjust the (second part of the) proof of Theorem 16 in [RW5]. Note that one
should think of the claim of Theorem 6 as a reformulation of the equivariant Iwasawa main
conjecture; hence equation (1) states that the conjecture is true over the maximal order R,
which is Theorem 6 in [RW4].
It remains to prove (2). Write G̃ = G′ × G̃p, where G̃p is the p-Sylow subgroup of G̃, and
thus p - |G′|. We have a natural decomposition

Zp[[G]]− =
⊕

χ′∈Irr (G′)

χ′ odd

R(χ′),

where R(χ′) = Zp[χ′][[G̃p×ΓK ]] is a local ring. Its maximal ideal mχ′ is generated by p and
the augmentation ideal ∆[[G̃p × ΓK ]]. We define a prime ideal Pχ′ := (p,∆G̃p) ( mχ′ .

Lemma 9. For each p ∈ T (K) the element ξp defined in (41) becomes a unit in R(χ′)Pχ′ .

Proof. Recall the definition Zp = ind GGp
Zp. As one can learn from the proof of Proposition

8 in [Gr2], we have

(ξp) = FittQp[[G]]−(QpZp(1)−)FittQp[[G]]−(QpZ
−
p )−1.

But Z−p = 0 if j ∈ Gp. Moreover, Zp(1) = Zp[[G]]/〈qp−φp, τ −1, τ ∈ Ip〉. Hence, Zp(1)− = 0
if j ∈ Ip. Now assume that j 6∈ Ip, but j ∈ Gp and q

fp/2
p 6≡ −1 mod p. Then φ

fp/2
p − q

fp/2
p ≡

j−q
fp/2
p mod T , and j−q

fp/2
p becomes a unit on minus parts. This means that φ

fp/2
p −q

fp/2
p

is a unit in Zp[[G]]−, and hence Zp(1)− = 0 in this case, too. We have proven so far that ξp

is actually a unit in Zp[[G]]− if p satisfies the first or the second condition of the theorem.
We are left with the case p - |Ip|.
It suffices to show that (1− φ−1

p qp)εp + 1− εp and (1− φp)εp + 1− εp become units at Pχ′ .
We only treat the first element, the other case is similar.
For this we have to prove that χ′((1−φ−1

p qp)εp+1−εp) 6∈ Pχ′ . Assume that this is false. Since
1 6∈ Pχ′ , we must have χ′(εp) = 1. Let us write φ−1

p = σ′ · σp · γc
K , where σ′ ∈ G′, σp ∈ G̃p,

0 6= c ∈ Zp. Since σp − 1 ∈ Pχ′ , we have 1− χ′(σ′)γc
Kqp = 1− χ′(σ′)qp(1− T )c ∈ Pχ′ . Since

Pχ′ contains no unit, we must have p|(1−χ′(σ′)qp), and hence 1−(1−T )c ∈ Pχ′ . If we write
c = pn ·α, α ∈ Z×p , we find out that 1−(1−T pn

)α ∈ Pχ′ . Finally, 1−(1−T pn

)α = T pn ·g(T )
with a power series g(T ) with g(0) = −α, hence g(T ) is a unit. This implies T ∈ Pχ′ , a
contradiction. 2

We now return to the proof of Theorem 6. The epimorphism X−
T ³ X−

std implies the
first inclusion in

FittR(χ′)((X−
T )χ′) ⊂ FittR(χ′)((X−

std)χ′) ⊂ (G(χ′)−1ω,Sram∪Sp
(T )),

whereas the second inclusion is (10), p. 562 in [Wi2]. Localizing at Pχ′ gives

(χ′(Ψ̃T ))Pχ′ ⊂ (G(χ′)−1ω,Sram∪Sp
(T ))Pχ′ = (χ′(ΨT ))Pχ′ ,

since all the ξp become units at Pχ′ . Therefore, there is an element r′ ∈ R(χ′) \ Pχ′ such
that r′ · χ′(Ψ̃T ) ∈ (χ′(ΨT )). We already know from Theorem 3 that one can find a positive
integer i such that pi · χ′(Ψ̃T ) ∈ (χ′(ΨT )). Hence

(pi, r′)(χ′(Ψ̃T )) ⊂ (χ′(ΨT ))

and the ideal (pi, r′) has finite index in R(χ′).
Thus, (χ′(Ψ̃T )) + (χ′(ΨT ))/(χ′(ΨT )) is a submodule of R(χ′)/(χ′(ΨT )) of finite cardinality.
Now the proof following (10.5) in [Wi1] shows that the only such module is trivial. We obtain
(χ′(Ψ̃T )) ⊂ (χ′(ΨT )), and thus we get (2). This completes the proof of the theorem. 2
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