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Abstract. We introduce a new probabilistic public-key cryptosystem which combines the
main ingredients of the well-known RSA and Rabin cryptosystems. We investigate the security
and performance of our new scheme in comparison to the other two.

Introduction

The RSA and Rabin cryptosystems (see [RSA78, Rab79]) certainly are among the best-known
public-key cryptosystems. In both schemes, the computations are done in the unit group of the
ring of integers modulo n, a composite number with two large prime factors p and q. The integer
n forms (part of) the public key of each user, and the prime factors p and q are kept secret.

Whereas the RSA scheme is a widely used public-key cryptosystem, the scheme of Rabin is
well-known mainly for theoretical reasons: in contrast to RSA, it is known that an attacker who
is able to break the Rabin cryptosystem can factor the public modulus n. Therefore the safety of
the Rabin cryptosystem relies on the very-well studied hard mathematical problem of factoring
a composite number with two large prime factors (the same security level is conjectured to hold
true also for RSA, but this has not yet been proven). On the other hand, the Rabin cryptosystem
has certain disadvantages from the practical point of view: The decryption function in the Rabin
cryptosystem always returns four possible clear texts, and therefore the user is faced with the
additional task to decide which clear text is the correct message (but see Section 4 below).

The motivation for the present note was to somehow combine the RSA and Rabin schemes
in order to create, by using elements from the RSA scheme, a new cryptosystem which on the
one hand is more practical than Rabin’s cryptosystem and at the same time has a security level
which is as close as possible to the security level of the Rabin cryptosystem. A related reason
for pursuing RSA+ is that some attacks on RSA use knowledge of the public exponent e to
derive d, the decryption exponent, and this protocol helps obfuscate the encryption exponent.
We begin by describing our scheme and then investigate the pros and cons of our new approach.
More precisely, we study the runtime of our scheme and compare it with plain RSA and Rabin
implementations in Section 2. The third section is devoted to a security analysis of the cryp-
tosystem, and in Section 4 we describe an advantage of our scheme over the classical Rabin
cryptosystem.

1. The cryptosystems

We begin by briefly recapitulating the (textbook) RSA and Rabin schemes. Afterwards we
introduce our newly proposed cryptosystem.

1.1. (Textbook) RSA. Let p and q be two large distinct prime numbers of size at least 1500
bits each and let n = p · q. We assume that 2p ≤ q ≤ 8p.1 Bob’s public key is (n, e) where e is
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1It is recommended to choose p and q of the same size in RSA, but to keep one of them, say q, at least one

or two bits longer than p (otherwise the product N = p · q can be factored easily by using an old method which
is due to Fermat). One can find different concrete suggestions for the sizes of p and q in the literature. For this
paper we consider primes with about 1500− 3000 bits, and we have chosen the condition 2p ≤ q ≤ 8p.
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coprime with φ(n) = (p− 1)(q − 1). His private key is (p, q, d), where d has been chosen such
that de ≡ 1 (mod φ(n)).

Note that d is efficiently computable via Euclid’s algorithm if p and q are known. In fact,
the knowledge of the inverse d of e modulo φ(n) is equivalent to the knowledge of the prime
factors p and q of n.

Encryption. In order to send a message m ∈ (Z/nZ)× to Bob, Alice computes

c ≡ me (mod n).

Decryption. Bob can decrypt the message via m ≡ cd (mod n).

Remark 1.1. In practical implementations of the RSA scheme one often chooses first the en-
cryption exponent e = 65537 (this is a prime number), and then one chooses prime numbers p
and q such that e does not divide p− 1 or q − 1. This choice for e is made because encryption
with this exponent e = 216 + 1 is particularly efficient (see [Sch15, p. 469]).

1.2. Rabin. The public key is just n = p · q, where p and q are as above.
Encryption. A message m ∈ (Z/nZ)× is encrypted by computing c ≡ m2 (mod n).
Decryption. First the square-roots of a given ciphertext c (lifted from (Z/nZ)×) modulo p

and q are computed. Then the Chinese Remainder Theorem (CRT) is used in order to obtain
four different square-roots of c modulo n. It remains to decide which of them corresponds to
the original message m (see also Section 4 below).

1.3. RSA+. As above n = p · q is the product of two large prime numbers. The public key of
Bob is just n, as in the Rabin scheme.

Encryption. If Alice wants to encrypt a message m ∈ (Z/nZ)×, she first finds a random
number x coprime with φ(n) (for example, one can choose x >

√
n which has passed a strong

pseudo-primality test). Then she computes

c ≡ mx (mod n)

and
y ≡ x2 (mod n)

and transmits the pair (c, y) to Bob.
Decryption. Using his knowledge of p and q Bob computes the four square roots x1, . . . , x4

of y modulo n. For each such square root he tries to compute the inverse

ui ≡ x−1
i (mod φ(n))

and in case this is possible he computes

cui (mod n).

The original message m is among the cui .
We provide an implementation of the encryption and decryption algorithms in PARI and

Python on GitHub.2

Remark 1.2. If x was chosen smaller than
√
n, then y = x2 as integers and it would be easy to

find the square-root x of y modulo n. Therefore it is important to choose x >
√
n. There is

also another reason for this restriction: The parameter x chosen in the encryption step has to
be coprime with φ(n) in order to be invertible modulo φ(n), i.e. otherwise decryption would
not work. However, the person who encrypts a message m, using the public key of Bob, does
not know φ(n) = (p− 1)(q − 1). It is obvious that x has to be odd. However, depending on the
choice of p and q, the integer φ(n) is likely to be divisible also by other small prime factors. One
could avoid this by restricting to safe primes p and q (i.e. by insisting that both (p− 1)/2 and
(q − 1)/2 are also prime numbers, which are then so-called Sophie-Germain primes). We don’t
want to pursue this approach in this note because it considerably restricts the set of possible
candidates for p and q.

2see https://github.com/soeren-kleine/RSA_plus-an-RSA-variant.
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Instead we use the fact that any prime number x >
√
n is automatically coprime with φ(n)

for sufficiently large n (this is okay if p and q have been chosen to the order of magnitude
as described above). Since a primality proof of a large integer is very expensive we instead
suggest to use a strong pseudo-prime x. If the pseudo-primality test used in this step of the
algorithm is good enough then the probability of x being not coprime with φ(n) is negligibly
small. Note that we will suggest a much more efficient way for choosing an appropriate value
for x in Section 2.1 below.

Remark 1.3. In the decryption algorithm of RSA+ the Chinese Remainder theorem gives four
different square-roots of y modulo n. However, since n is odd, exactly two of them will be even
(more precisely, if

xi ∈ {1, . . . , n− 1}
is odd, then n− xi will be even). Therefore the corresponding xi cannot be inverted modulo
φ(n). This shows a first difference with the Rabin cryptosystem: We obtain at most two possible
decryptions for each ciphertext c, whereas Rabin’s decryption algorithm yields 4 different plain
texts which have to be checked.

It is also possible that in fact only one of the four square-roots x1, . . . , x4 of y modulo n is
coprime with φ(n) (note that at least one of the four xi will be the original choice of x, and
therefore will be coprime to φ(n) if x was chosen properly (see also Remark 1.2)). We will
investigate the number of valid solutions of the decryption algorithm further in Section 4 below.

In the remainder of this section we prove two auxiliary results on the efficient computation
of square roots modulo some prime number p. These results are well-known, but we include
them for the convenience of the reader.

Lemma 1.4. Let p ≡ 3 (mod 4) be a prime, and let y ∈ (Z/pZ)× be a quadratic residue. Then
the two square roots of y modulo p are

x ≡ ±y(p+1)/4 (mod p).

Proof. This can be verified by a direct computation, using the fact that

y(p−1)/2 ≡ 1 (mod p)

because y is a quadratic residue modulo p. □

Lemma 1.5. Suppose that p ≡ 5 (mod 8), and let y ∈ (Z/pZ)× be a quadratic residue.

Let ε = y(p−1)/4. Then ε is either congruent to 1 or −1 modulo p, and the two square roots
of y modulo p are

x = ±

{
y(p+3)/8 if ε ≡ 1 (mod p)

2(p−1)/2 · y(p+3)/8 if ε ≡ −1 (mod p).

Proof. The statement on ε follows as in the proof of the previous lemma. If ε ≡ 1 (mod p),

then we let x = y(p+3)/8 and we compute

x2 ≡ y(p+3)/4 = ε · y ≡ y (mod p).

If ε ≡ −1 (mod p), then the assertion can be proved similarly by using that

2(p−1)/2 ≡ −1 (mod p)

because 2 is a quadratic non-residue modulo p as p ≡ 5 (mod 8). □

If p ≡ 1 (mod 8) one can use the Tonelli-Shanks algorithm [Ton91, Sha73] to compute a
square root, but this is significantly more costly. In view of these facts, we will restrict to
primes which are not congruent to 1 modulo 8 in all what follows.



4 S. KLEINE, A. NICKEL, T. RITTER, AND K. SHANKAR

2. Runtime analysis

In this section we first analyse the efficiency of our scheme from a theoretical point of view
and compare it with the classical RSA and Rabin cryptosystems.

The public and secret keys in the RSA+ cryptosystem are exactly as in the Rabin cryptosys-
tem (and therefore the key generation is less costly as in the RSA scheme if the encryption
exponent e is chosen as in textbook RSA (see Remark 1.1)). An RSA+ ciphertext consists of
two integers modulo N , i.e. it it twice as long as an RSA or Rabin ciphertext.

For encryption of a plain text via RSA+, we first have to find a suitable integer x which is
coprime with φ(n) (this step in theory is as expensive as the choice of the encryption exponent
in the public key of the RSA scheme, but in practice it is more difficult because φ(n) is not
known at this point. Moreover, this step has to be re-done for each encryption). Then we have
one RSA encryption step, and one Rabin encryption.

For the decryption of an RSA+ ciphertext, we first have a Rabin decryption step. Then we
have to do one or two modular inversions modulo N , followed by one or two RSA decryptions.

It turns out that the most expensive step is the random choice of x in the RSA+ encryption
function. We have made some runtime tests with 2000 bit primes p and q, and it turned out
that the rather slow search for the random exponent x (including pseudo-primality tests for
large integers) makes RSA+ very much slower than textbook RSA (in our tests, it needed more
than 40 times more time than RSA). In order to derive a competitive variant of RSA+, we
propose the following improved version of our scheme.

2.1. A practical implementation. We describe a more efficient implementation of our RSA+
scheme. The main change will concern the choice of x, since it is very expensive to find a large
number in the range [

√
n, n] which is a strong pseudoprime. In fact, what we really want is that

x is coprime with

φ(n) = (p− 1)(q − 1).

The main idea is as follows: We choose a random pseudoprime ℓ0 which is considerably smaller
than n, but still large enough to ensure that it is very unlikely that ℓ0 divides the unknown
integer φ(n). Then this base prime ℓ0 is multiplied by a power ℓk1 of a very small random prime
ℓ1. Here k is chosen such that the product

x = ℓ0 · ℓk1
lies in the interval [

√
n, n] (recall that we want x to be greater than

√
n since otherwise it

could be easily obtained from the congruence y ≡ x2 (mod n)). We recommend to choose ℓ0
to be a random prime in the range [2150, 2190]. There are enough primes in this interval to
make an exhaustive search for x very expensive. On the other hand, for integers of this size a
probabilistic test for pseudo-primality is still quite fast, so that the choice of ℓ0 does not slow
down the encryption function of RSA+ too much. Moreover, in our tests we chose ℓ1 to be a
very small prime (say, up to 100) which is coprime with φ(n). Since φ(n) is not publicly known,
we added ℓ1 to the public key, i.e. it is chosen in the key generation phase of the cryptosystem.
Note that the security of the scheme is not weakened by making ℓ1 publicly available, since a
possible attacker only learns that p − 1 and q − 1 are not divisible by ℓ1. In the ‘worst case’
ℓ1 = 3 the attacker can exclude half of the prime numbers, but there are enough choices left for
p and q.

We give a schematic overview of this improved encryption function in Algorithm 1. Note
that the exponent k in this algorithm is chosen such that x lies between

√
n and n.

How can we ensure that x as chosen above is coprime with φ(n)? The very small prime
number ℓ1 is chosen coprime with φ(n) by construction. The moderately small prime ℓ0 might
be a divisor of φ(n), since the person who encrypts a message does not know φ(n). However,
since ℓ0 has at least 150 bits, the probability of being a divisor of φ(n) is negligibly small (in
our tests, we did never encounter this exceptional case).
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Algorithm 1: Efficient implementation of RSA+ encryption

Input : n = pq is the product of two primes satisfying 4p ≤ q ≤ 8p;
a small random prime l1 coprime with (p− 1)(q − 1);
and a message m ∈ (Z/pqZ)×

Output: (c, y) ∈ (Z/pqZ)× × (Z/pqZ)×, an RSA+-encryption of m

b = BitLength(p)

k = Random([⌊(((b− 148)/log2(x1)) + 1)⌋, ⌊((3/2 ∗ b− 188)/log2(x1))⌋])

l0 = RandomPrime([2150, 2190])

x = l0 · lk1
c = Mod(m,n)x

y = Mod(x, n)2

return (c, y)

It turned out that this way of choosing x speeds up the RSA+ functions by more than a
factor of ten (for 2000 bit primes p and q; the effect is even larger for larger bit sizes). We also
implemented an improvement on the decryption function: There are at most two square roots
x1 and x2 of y modulo n which are coprime with φ(n). We do not consider further the remaining
two square roots, i.e. we return only two possible messages instead of four (and in many cases
one can indeed sort out one of the two remaining messages). Moreover, we use the Chinese
Remainder Theorem and our knowledge of the prime factors p and q of n in order to efficiently

compute the powers cx
−1
1 and cx

−1
2 modulo n. This speeds up the decryption moderately.

2.2. Runtime comparison. In our final runtime tests we generated 1000 keys and for each
such key we chose 100 messages which we encrypted and afterwards re-decrypted using our
RSA+ - functions, and also via textbook RSA and textbook Rabin. For RSA we used the
speed-up from Remark 1.1.

The computations were done on a customary laptop with the python programs which we
published in our github repository3. The results are depicted in the following table. Here bit
length means the approximate bit length of p and q. More precisely, if the bitlength is b, then
p lies between 2b and 2b+1, and q lies between 2b+2 and 2b+3. For example, if b = 2000, then
n = p · q will have between 4002 and 4004 bits. Moreover, we considered only prime numbers
p and q which are not congruent to 1 modulo 8, since for such primes p and q particularly
efficient routines for computing square roots modulo p and q exist (see Lemmas 1.4 and 1.5
above). In the following table we depict times in milli seconds on average (for one encryption
and immediate decryption).

bit length RSA+ RSA Rabin
2000 33.688 12.740 9.653
1500 17.173 6.678 5.100

We also did a smaller test with 3000 bit primes (here we considered only 40 pairs of keys, each
used for the encryption and decryption of 50 messages). Here are the results:

bit length RSA+ RSA Rabin
3000 91.875 35.637 26.937

We have used many PARI functions in our python code, since typically the PARI routines
performed much faster than similar algorithms from other libraries (for example, we compared
runtimes with the routines from the sympy library). Therefore we also did runtime tests directly
in PARI (the corresponding PARI source code is also available through the github repository).
The results from the PARI runtime tests were in accordance with the above results.

3https://github.com/soeren-kleine/RSA_plus-an-RSA-variant
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Summarising, we can conclude that the fast variant of our RSA+ scheme is slower than
textbook RSA by a factor of only 2 to 3.

Remark 2.1. In our tests we compared the textbook versions of the three cryptographic proce-
dures. For a real-world application each of the three schemes would have to be enhanced by,
for example, some padding routine (one must not encrypt plaintexts directly in order to pre-
vent dictionary attacks). Since these enhancements are more or less the same for all the three
schemes, a comparison of the running times of the real-world versions of the three cryptosystems
would yield even closer results.

3. On the security of the RSA+ cryptosystem

In the last section we have seen that RSA+ is slower than both the RSA and Rabin cryp-
tosystems. In the next two sections we describe advantages of RSA+ over these two schemes.
The current section focusses on security issues. We will prove that RSA+ is at least as secure
as RSA (see Theorem 3.5 below). The ultimate goal would be to prove that the security of
RSA+ depends only on the problem of factoring n. We argue that in some sense RSA+ seems
to be closer to this goal than RSA (we will make this more precise below). First we introduce
some terminology.

3.1. Security definitions. In this subsection we recall, for the convenience of the reader,
several notions of different kinds of attacks on a cryptosystem. We start with the notion of
a semantically secure cryptosystem (see [GM84, Section 5.2] and [Sho98, Section 5.1]). This
security model typically is defined in terms of a game between a ‘good guy’ (let’s call him Bob)
and an adversary (let’s call him Oscar).
(1) Oscar chooses two messages m0 and m1 and gives them to Bob.
(2) Bob randomly chooses a bit i ∈ {0, 1} and encrypts the message mi. He sends the corre-

sponding ciphertext c back to Oscar.
(3) Oscar has to decide whether c is the encryption of m0 or m1.
The cryptosystem is called semantically secure if Oscar cannot efficiently guess the correct
value of i in Step (3) with a probability which is significantly larger than 1/2. Here efficiently
usually means that Oscar has to make a decision within a time which depends on the size of the
parameters of the cryptosystem in a polynomial way (the space needed for his computations
usually is also limited). The property of being semantically secure is sometimes also called
ciphertext indistinguishability, see e.g. [KL08, Section 3.2].

Semantic security describes a notion of security against passive attacks. In order to deal with
an active adversary, one has to modify the above game. This leads to stronger attacks as a
chosen-plaintext attack (CPA) or an (adaptive) chosen-ciphertext attack (CCA).

Remark 3.1. As textbook RSA (see [Hin10, §1.3.5]), the RSA+ cryptosystem in its pure form is
not semantically secure. Though it is probabilistic in nature (unlike textbook RSA!), the Jacobi
symbol

(
m
n

)
of a plain text m is revealed by the cyphertext (c, y). It is indeed straightforward

to see that one has
(
m
n

)
=

(
c
n

)
, since the encryption exponents x used in RSA+ are all odd

integers. As explained in [FS03, §12.5], a solution to avoid this problem is to use only squares
as plain texts.

3.2. On the security of RSA, Rabin and RSA+. In this subsection, we let n = p · q be
as in Section 1. We first formulate a bunch of problems and then prove relations between these
problems.

Definition 3.2. Let n be as above, and let c, y ∈ (Z/nZ)×.
(Fact(n)) Construct a black box which can compute the two prime factors p and q of n.
(RSA(n)) Construct a black box that can decrypt any RSA encrypted message modulo n.
(RSA(c, n)) Construct a black box that can decrypt the given RSA encrypted message c ∈ (Z/nZ)×.
(Rabin(n)) Construct a black box which can decrypt any Rabin encrypted message modulo n.
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(Rabin(c, n)) Construct a black box which can decrypt the given Rabin encrypted message
c ∈ (Z/nZ)×.

(RSA+(n)) Construct a black box that can decrypt any RSA+ encrypted message modulo n.
(RSA+(c, y, n)) Construct a black box that can decrypt the given RSA+ encrypted message

(c, y).

For example, by a black box for problem (RSA + (n)), we mean that there is some kind of
unknown method or algorithm that takes as input any given tuple (c, y), where c = mx (mod n)
and y = x2 (mod n) as above, and returns m and potentially a second unintelligible message.
Note that it is unreasonable to expect that the black box always returns only m as this would
mean that it can distinguish between intelligible and unintelligible messages. Similary, a black
box for (Rabin(n)) will output, for any given c ∈ (Z/nZ)×, the four square roots of c modulo n
(but it cannot decide which of the square roots corresponds to the original message m).

First note that there are some obvious relations between the above problems. For example, if
one can solve (RSA(n)) for n, then the corresponding black box can of course solve (RSA(c, n))
for any c ∈ (Z/nZ)×. In the following we will write such a relation as

(RSA(n)) =⇒ (RSA(c, n)) ∀c ∈ (Z/nZ)×.
Similarly, (Rabin(n)) =⇒ (Rabin(c, n)) and (RSA+(n)) =⇒ (RSA+(c, y, n)) for all
c, y ∈ (Z/nZ)×.

More importantly, we have the following well-known

Theorem 3.3. (Rabin(n)) ⇐⇒ (Rabin(c, n)) ⇐⇒ (Fact(n)) =⇒ (RSA(n)) for each c, n as
above. In other words, breaking Rabin is equivalent to factoring n, and factoring n is enough
for breaking RSA.

Proof. It is obvious that a black box which can compute the prime factors p and q of n can
solve both problems (RSA(n)) and (Rabin(n)). On the other hand, it is well-known that any
black box which can solve (Rabin(c, n)) for some c can factor n. For the convenience of the
reader we briefly recapitulate the argument. Suppose that we input (c, n) into the black box
and receive the four square roots x1, x2, x3, x4 of c modulo n. These square roots come in pairs;
without loss of generality we can assume that

x2 ≡ −x1 (mod n), x4 ≡ −x3 (mod n) and x1 ̸≡ ±x3 (mod n).

Since these are all square roots of the same number we have

(x1 + x3) · (x1 − x3) = x21 − x23

≡ c− c = 0 (mod n),

so it follows that n | (x1 + x3)(x1 − x3), but n ∤ (x1 + x3) nor n ∤ (x1 − x3). But the primes p, q
both divide n, so p, q both divide the product (x1 + x3)(x1 − x3) and hence they each divide
one of the factors. If they were to both divide the same factor, say x1−x3, then it would follow
that n = pq | (x1 − x3) which is not allowed. Thus p | (x1 + x3) and q | (x1 − x3), or vice versa.
Since the xi can be computed by the black box algorithm, we have factored n.

Finally, the chain of implications

(Rabin(c, n)) =⇒ (Fact(n)) =⇒ (Rabin(n))

shows that the two problems (Rabin(n)) and (Rabin(c, n)) are in fact equivalent for any choice
of c ∈ (Z/nZ)×. □

Corollary 3.4. (Rabin(n)) =⇒ (RSA(n)), i.e. the Rabin cryptosystem is at least as secure
as RSA.

It is conjectured, but not known, that in fact

RSA(n) ⇐⇒ (Fact(n)),

which would also imply that breaking (RSA(n)) and (Rabin(n)) is equivalent.
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Now we turn to RSA+. In the following result we assume that there is a black box that can
decrypt RSA+ messages. We prove that the same black box also solves the problem (RSA(n)).
This means that breaking RSA+ is at least as difficult as breaking the RSA cryptosystem, i.e.
in some sense RSA+ is at least as secure as RSA.

Theorem 3.5. For any n we have (RSA+(n)) =⇒ (RSA(n)).

Proof. Suppose we have a black box that is able to decrypt RSA+ messages as described above.
Now, if (n, e) is an RSA public key and c ≡ me (mod n) is a given RSA ciphertext, the in-
put (c, e2) into the black box returns m and potentially a second possible message m′. Even
if m′ were a meaningful message, we could single out m by checking if c ≡ me (mod n) or
c ≡ (m′)e (mod n). □

Remark 3.6. The above represents the worst case scenario i.e., we are assuming that the black
box can decipher all RSA+ ciphertexts and then it follows that any RSA ciphertext can also
be deciphered. We will show – under reasonable hypotheses – that also the average complexity
of RSA+ is at least as good as that of RSA. See Remark 4.1 below.

Remark 3.7. If RSA(n) is equivalent to factoring n, then the same holds true for RSA+(n).
Though we cannot prove the equivalence of RSA+(n) and Fact(n), Theorem 3.5 suggests that
RSA+(n) is somewhat ‘closer’ to Fact(n) than RSA(n). Note that most (if not all) known
attacks on RSA make use of the public exponent e. If one tries to apply such an attack to
RSA+, however, one would have to compute the exponent x first, for which one would have to
break Rabin’s cryptosystem; but the latter is known to be equivalent to Fact(n). The same is
true if the attacker manages to find an inverse x̃ to x modulo φ(n), by which he could easily
compute the clear text m from a ciphertext c. But then x̃2 was the inverse of y = x2 modulo
φ(n), and it is well-known that the knowledge of both y and its inverse modulo φ(n) allows for
efficient factorization of n.

Remark 3.8. Let (c, y) be an RSA+ ciphertext. It is quite common that the decryption proce-
dure yields two possible plaintext messages (see also the next section for more details on how
likely this result will happen). If an attacker is given two tuples (m1, x1) and (m2, x2) such that
mx1

1 ≡ c ≡ mx2
2 (mod n) and such that both x1 and x2 are square roots of y modulo n, then he

could easily factor n. This is because the two square-roots of y must satisfy x1 ̸≡ −x2 (mod n)
since −x1 will be even and thus will not be coprime with φ(n).

It is not clear to us whether the knowledge of two potential plaintext messages m1 and m2

without knowing the corresponding encryption exponents x1 and x2 would suffice for factoring
n. If this was true, then breaking RSA+ was equivalent to factoring n, since receiving two
possible plaintext messages can always (see the next section) be ensured via suitable choice of
the parameters.

4. On the number of possible clear texts output by the decryption function

A major drawback of Rabin’s cryptosystem is the fact that decryption leads to four possible
messages. If the original message was text, it is usually easy to make the right choice. However,
if the message was a number, this is much more difficult. So it is an advantage of RSA+ over
Rabin that it only leads to at most two possible messages. Of course, this can also be achieved
for Rabin’s cryptosystem by simply adding the parity of the message to the cyphertext. This
then always leads to two possible messages.

If both primes dividing n are congruent to 3 (mod 4), then a workaround for Rabin has been
suggested by Williams [Wil80]. The same method works for RSA+: If Bob chooses x to be a
square mod n, then only one of the four square roots of y = x2 (mod n), namely x itself, is a
square mod n. This follows from the fact that −1 is not a quadratic residue mod p nor mod
q. The RSA+ decryption procedure can be modified to ignore the second odd square root of
y (mod n) and proceed with u ≡ x−1 (mod n). Note that breaking this modified Rabin scheme
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is no longer equivalent to factoring n; an analogous remark can be made for RSA+ (see also
Remark 3.8).

However, even if one of the primes dividing n is congruent to 1 (mod 4) or if x is not chosen
to be a square mod n, the RSA+ decryption scheme sometimes only produces one possible
message. This happens whenever the second odd square root of y (mod n) is not coprime with
φ(n). The probability of a randomly chosen integer to be divisible by a prime ℓ is 1/ℓ. Let
us denote the set of odd primes dividing φ(n) by Ln. Then heuristically, the possibility that
decryption only produces one possible message is given by the formula

(4.1) 1−
∏
ℓ∈Ln

(
1− 1

ℓ

)
.

For instance, if φ(n) is divisible by 3, 5 and 7, then this probability is at least

1− 2

3
· 4
5
· 6
7
=

57

105
>

1

2
.

So we expect that there is only one possible message at least in every second case. In a series of
tests we observed an accuracy of formula (4.1) of roughly 99%. We used pairs (p, q) of primes
of bit length 1500 and for each of a few hundred pairs of such primes we RSA+-encrypted and
decrypted 104 messages. Then we checked whether decryption yields one or two possible results.

In other words, by choosing n appropriately one can enlarge the possibility that decryption
returns only one message. In particular small prime factors of φ(n) have relatively large impact.
Of course, if all prime factors of either p − 1 or q − 1 are small, this makes the cryptosystem
vulnerable to factoring methods such as Pollard’s p− 1 method [Pol74].

On the other hand, there do always exist choices for x which result in two possible plaintext
messages returned by the decryption procedure. Indeed, it suffices to exclude two possible
residue classes modulo each prime divisor ℓ ∈ Ln (more precisely, we want x and n − x to be
not divisible by ℓ, i.e. we exclude the residue classes of 0 and n modulo ℓ). This means that by
choosing random values for x we have a good chance to find exponents which are not contained
in any of the ‘forbidden’ residue classes (recall that the person who encrypts a message does
not know the prime factors p and q). Note that two possible plaintext decryptions of the same
ciphertext might be used for factorization of n; see Remark 3.8.

Remark 4.1. We discuss the average complexity of RSA+ compared to that of RSA. Fix a
modulus n. Let C be the set of all pairs (c, e) where e is a valid RSA exponent and c = me is
a corresponding RSA ciphertext. Similarly, we let C+ be the set of all valid RSA+ ciphertexts
(c, y), that is c = me as before and y = e2. Then we have a surjective map

plus : C → C+

(c, e) 7→ (c, e2).

As explained above, for a given (c, y) ∈ C+ there are one or two preimages under this map. If
a ∈ [0, 1] denotes the probability that there are two preimages, then one has |C| = (1 + a)|C+|.
Now suppose that there is a black box that can decipher b% of all RSA+ ciphertexts. Let
U+ ⊆ C+ be the set of all ciphertexts that the black box can decipher, and let U = plus−1(U+)
be its preimage. It follows as in the proof of Theorem 3.5 that the black box can decipher an
RSA ciphertext c whenever (c, e) ∈ U . If we assume that U+ is uniformly distributed in C+,
then the probability of having two preimages for a random (c, y) ∈ U+ is still a. Then

|U |
|C|

=
(1 + a)|U+|
(1 + a)|C+|

=
|U+|
|C+|

=
b

100
,

i.e. the black box can also decipher b% of all possible RSA messages for the given modulus n.
Of course, there are also two extreme scenarios: (i) the black box can only decipher (c, y) ∈ C+

that possess only one preimage, and (ii) it can only decipher (c, y) that possess two preimages.
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In case (i) the black box can only decipher (1 + a)−1b% of all possible RSA messages, whereas
in case (ii) it can decipher 2(1+ a)−1b%. Note that the latter is strictly greater than b% unless
a = 1 (in which case both p and q must be Fermat primes).

5. Conclusion

In this article we proposed a novel public-key crypto system which somehow combines the
encryption methods of the well-known RSA and Rabin cryptosystems. We have seen that the
runtime of our algorithm, if implemented efficiently, is not much more than twice the runtime of
the RSA cryptosystem. On the other hand, breaking our cryptosystem is at least as difficult as
breaking the RSA scheme, and it seems reasonable to expect that breaking our new algorithm
is equivalent to factoring the large modulus n, which is widely believed to be a very hard
mathematical problem. When compared to the original Rabin scheme, our algorithm has the
benefit of producing at most two (compared to four) possible decrypted messages from a fixed
ciphertext – in many situations we obtain in fact a unique decrypted plaintext.
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