
ANNIHILATING WILD KERNELS

ANDREAS NICKEL

Abstract. Let L/K be a finite Galois extension of number fields with Galois group G.
Let p be an odd prime and r > 1 be an integer. Assuming a conjecture of Schneider, we
formulate a conjecture that relates special values of equivariant Artin L-series at s = r
to the compact support cohomology of the étale p-adic sheaf Zp(r). We show that our
conjecture is essentially equivalent to the p-part of the equivariant Tamagawa number
conjecture for the pair (h0(Spec(L))(r),Z[G]). We derive from this explicit constraints
on the Galois module structure of Banaszak’s p-adic wild kernels.

1. Introduction

Let L/K be a finite Galois extension of number fields with Galois group G. To each
finite set S of places of K containing all archimedean places, one can associate a so-
called ‘Stickelberger element’ θS in the center of the complex group algebra C[G]. This
Stickelberger element is defined via L-values at zero of S-truncated Artin L-functions
attached to the (complex) characters of G. Let us denote the roots of unity of L by µL
and the class group of L by clL. Assume that S contains all finite primes of K that ramify
in L/K. Then it was independently shown in [Bar78], [CN79] and [DR80] that when G
is abelian we have

(1.1) AnnZ[G](µL)θS ⊆ Z[G],

where we denote by AnnΛ(M) the annihilator ideal of M regarded as a module over the
ring Λ. Now a conjecture of Brumer asserts that AnnZ[G](µL)θS annihilates clL.

Using L-values at integers r < 0, one can define higher Stickelberger elements θS(r).
When G is abelian, Coates and Sinnott [CS74] conjectured that these elements can be
used to construct annihilators of the higher K-groups K−2r(OL,S), where we denote by
OL,S the ring of S(L)-integers in L for any finite set S of places of K; here, we write S(L)
for the set of places of L which lie above those in S. Coates and Sinnott essentially proved
a p-adic étale cohomological version of their conjecture in the case K = Q. First results
on the K-theoretic version are due to Banaszak [Ban92, Ban93] and Nguyen Quang Do
[NQD92]. However if, for example, L is totally real and r is even, these conjectures merely
predict that zero annihilates K−2r(OL,S) if r < 0 and clL if r = 0.

In the case r = 0, Burns [Bur11] presented a universal theory of refined Stark con-
jectures. In particular, the Galois group G may be non-abelian, and he uses leading
terms rather than values of Artin L-functions to construct conjectural nontrivial annihi-
lators of the class group. His conjecture thereby extends the aforementioned conjecture
of Brumer (we point out that there are different generalizations of Brumer’s conjec-
ture due to the author [Nic11b] and Dejou and Roblot [DR14]). Similarly, in the case
r < 0 the author [Nic11a] has formulated a conjecture on the annihilation of higher
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K-groups which generalises the Coates–Sinnott conjecture and a conjecture of Snaith
[Sna06]. More precisely, using leading terms at negative integers a certain ‘canonical
fractional Galois ideal’ J S

r is defined. It is then conjectured that for every odd prime p
and every x ∈ AnnZp[G](K1−2r(OL,S)tor ⊗Z Zp) one has

NrdQp[G](x) · Hp(G) · J S
r ⊆ AnnZp[G](K−2r(OL,S)⊗Z Zp).

Here, the subscript ‘tor’ refers to the torsion submodule of K1−2r(OL,S), we denote the
reduced norm of any x ∈ Qp[G] by NrdQp[G](x), andHp(G) denotes a certain ‘denominator
ideal’ (introduced in [Nic10]; see §7.2).

When G is abelian and r = 1, Solomon [Sol08] has defined a certain ideal which he
conjectures to annihilate the p-part of the class group. This has recently been generalized
to arbitrary (finite) Galois groups G by Castillo and Jones [CJ13]. All these annihilation
conjectures are implied by appropriate special cases of the equivariant Tamagawa number
conjecture (ETNC) formulated by Burns and Flach [BF01].

Now let r > 1 be a positive integer. When L/K is an abelian extension of totally
real fields and r is even, Barrett [Bar09] has defined a ‘Higher Solomon ideal’ which he
conjectures to annihilate the p-adic wild kernelKw

2r−2(OL,S)p of Banaszak [Ban93] (see also
[NQD92]). There is an analogue on ‘minus parts’ when L/K is an abelian CM-extension
and r is odd. Under the same conditions Barrett and Burns [BB13] have constructed
conjectural annihilators of the p-adic wild kernel via integer values of p-adic Artin L-
functions. This approach has been further generalized to the non-abelian situation by
Burns and Macias Castillo [BMC14].

In this paper we consider the most general case, where L/K is an arbitrary (not
necessarily abelian or totally real) Galois extension and r > 1 is an arbitrary integer.
Let GL be the absolute Galois group of L. Assuming conjectures of Gross [Gro05] and of
Schneider [Sch79], we define a canonical fractional Galois ideal J S

r and conjecture that
for every x ∈ AnnZp[G](Zp(r − 1)GL) we have that

NrdQp[G](x) · Hp(G) · J S
r ⊆ AnnZp[G](K

w
2r−2(OL,S)p).

Note that the conjectures of Gross and Schneider are known when L is totally real and r
is even (see Theorem 5.2 and Theorem 3.9 below, respectively). When in addition L/K
is abelian, we show that our conjecture is compatible with Barrett’s conjecture.

In order to show that our conjecture is implied by the appropriate special case of
the ETNC, we reformulate the ETNC for the pair h0(Spec(L)(r),Z[G]) in the spirit of
the ‘lifted root number conjecture’ of Gruenberg, Ritter and Weiss [GRW99] and the
‘leading term conjectures’ of Breuning and Burns [BB07]. Note that the leading term
conjecture at s = 1 is equivalent to the ETNC for the pair h0(Spec(L)(1),Z[G]) when
Leopoldt’s conjecture holds (see [BB10]), and that Schneider’s conjecture is a natural
analogue when r > 1. This reformulation is more explicit than the rather involved and
general formulation of Burns and Flach [BF01]. This will actually occupy a large part of
the paper and is interesting in its own right. Moreover, the relation to the ETNC will
lead to a proof of our annihilation conjecture in several important cases.

In a little more detail, we modify the compact support cohomology of the étale p-adic
sheaf Zp(r) such that we obtain a complex which is acyclic outside degrees 2 and 3. We
show that this complex is a perfect complex of Zp[G]-modules provided that Schneider’s
conjecture holds. Assuming Gross’ conjecture we define a trivialization of this complex
that involves Soulé’s p-adic Chern class maps [Sou79] and the Bloch–Kato exponential
map [BK90]. These data define a refined Euler characteristic which our conjecture relates
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to the special values of the equivariant Artin L-series at s = r and determinants of a
certain regulator map. This relation is expressed as an equality in a relative algebraic
K-group.

This article is organized as follows. In §2 we review the higher Quillen K-theory
of rings of integers in number fields. We discuss its relation to étale cohomology and
introduce Banaszak’s wild kernels. In §3 we prove basic properties of the compact sup-
port cohomology of the étale p-adic sheaf Zp(r), where r > 1 is an integer. We recall
Schneider’s conjecture and provide a reformulation in terms of Tate–Shafarevich groups
(which originates with Barrett [Bar09]). We then construct the aforementioned complex
of Zp[G]-modules which is perfect when Schneider’s conjecture holds. We recall some
background on relative algebraic K-theory and in particular on refined Euler character-
istics in §4. We state Gross’ conjecture on leading terms of Artin L-functions at negative
integers in §5 and give a reformulation at positive integers by means of the functional
equation. In §6 we construct a trivialization of our conjecturally perfect complex and
formulate a leading term conjecture at s = r for every integer r > 1. We show that our
conjecture is essentially equivalent to the ETNC for the pair h0(Spec(L)(r),Z[G]). Fi-
nally, in §7 we define the canonical fractional Galois ideal and give a precise formulation
of our conjecture on the annihilation of p-adic wild kernels. We show that this conjecture
is implied by the leading term conjecture of §6. The relation to the ETNC then implies
that our conjectures hold in several important cases. We also discuss the relation to a
recent conjecture of Burns, Kurihara and Sano [BKS].
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tsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center 701 ‘Spec-
tral Structures and Topological Methods in Mathematics’ and the Heisenberg programme
(No. NI 1230/3-1). The author is indebted to Grzegorz Banaszak for various stimulating
discussions concerning higher K-theory of rings of integers during a short stay at Adam
Mickiewicz University in Poznań, Poland. Finally, the author thanks the anonymous
referees for their valuable suggestions.

Notation and conventions. All rings are assumed to have an identity element and
all modules are assumed to be left modules unless otherwise stated. Unadorned tensor
products will always denote tensor products over Z. If K is a field, we denote its absolute
Galois group by GK . For a module M we write Mtor for its torsion submodule and set
Mtf := M/Mtor which we regard as embedded into Q ⊗ M . If R is a ring, we write
Mm×n(R) for the set of all m × n matrices with entries in R. We denote the group of
invertible matrices in Mn×n(R) by GLn(R).

2. Higher K-theory of rings of integers

2.1. The setup. Let L/K be a finite Galois extension of number fields with Galois group
G. We write S∞ for the set of archimedean places of K and let S be a finite set of places
of K containing S∞. We let OL,S be the ring of S(L)-integers in L, where S(L) denotes
the finite set of places of L that lie above a place in S; we will abbreviate OL,S∞ to OL.

For any place v of K we choose a place w of L above v and write Gw and Iw for the
decomposition group and inertia subgroup of L/K at w, respectively. We denote the
completions of L and K at w and v by Lw and Kv, respectively, and identify the Galois
group of the extension Lw/Kv with Gw. We put Gw := Gw/Iw which we identify with
the Galois group of the residue field extension which we denote by L(w)/K(v). Finally,
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we let φw ∈ Gw be the Frobenius automorphism, and we denote the cardinality of K(v)
by N(v).

2.2. Higher K-theory. For an integer n ≥ 0 and a ring R we write Kn(R) for the
Quillen K-theory of R. In the case R = OL,S or R = L the groups Kn(OL,S) and Kn(L)
are equipped with a natural G-action and for every integer r > 1 the inclusion OL,S ⊆ L
induces an isomorphism of Z[G]-modules

(2.1) K2r−1(OL,S) ' K2r−1(L).

Moreover, if S ′ is a second finite set of places of K containing S, then for every r > 1
there is a natural exact sequence of Z[G]-modules

(2.2) 0→ K2r(OL,S)→ K2r(OL,S′)→
⊕

w∈S′(L)\S(L)

K2r−1(L(w))→ 0.

Both results, (2.1) and (2.2), follow from work of Soulé [Sou79], see [Wei13, Chapter V,
Theorem 6.8]. We also note that sequence (2.2) remains left-exact in the case r = 1.
The structure of the finite Z[Gw]-modules K2r−1(L(w)) has been determined by Quillen
[Qui72] (see also [Wei13, Chapter IV, Theorem 1.12 and Corollary 1.13]) to be

(2.3) K2r−1(L(w)) ' Z[Gw]/(φw −N(v)r).

If S contains all places of K that ramify in L/K, we thus have an isomorphism of Z[G]-
modules

(2.4)
⊕

w∈S′(L)\S(L)

K2r−1(L(w)) '
⊕
v∈S′\S

IndGGwZ[Gw]/(φw −N(v)r),

where we write IndGUM := Z[G]⊗Z[U ] M for any subgroup U of G and any Z[U ]-module
M . We also note that the even K-groups K2r(F) of a finite field F all vanish.

2.3. The regulators of Borel and Beilinson. Let Σ(L) be the set of embeddings of
L into the complex numbers C; we then have |Σ(L)| = r1 + 2r2, where r1 and r2 are
the number of real embeddings and the number of pairs of complex embeddings of L,
respectively. For an integer k ∈ Z we define

Hk(L) :=
⊕
Σ(L)

(2πi)−kZ

which is endowed with a natural Gal(C/R)-action, diagonally on Σ(L) and on (2πi)−k.
The invariants of Hk(L) under this action will be denoted by H+

k (L), and it is easily seen
that

(2.5) dk := rankZ(H+
1−k(L)) =

{
r1 + r2 if 2 - k
r2 if 2 | k.

Let r > 1 be an integer. Borel [Bor74] has shown that the even K-groups K2r−2(OL)
(and thus K2r−2(OL,S) for any S as above by (2.2) and (2.3)) are finite, and that the odd
K-groups K2r−1(OL) are finitely generated abelian groups of rank dr. More precisely,
Borel constructed regulator maps

(2.6) ρr : K2r−1(OL)→ H+
1−r(L)⊗ R
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with finite kernel. Its image is a full lattice in H+
1−r(L)⊗R. The covolume of this lattice

is called the Borel regulator and will be denoted by Rr(L). Moreover, Borel showed that

(2.7)
ζ∗L(1− r)
Rr(L)

∈ Q×,

where ζ∗L(1− r) denotes the leading term at s = 1− r of the Dedeking zeta function ζL(s)
attached to L.

Remark 2.1. In the context of the ETNC it is often more natural to work with Beilinson’s
regulator map [Bĕı84]. However, by a result of Burgos Gil [BG02] Borel’s regulator map
is twice the regulator map of Beilinson. As we will eventually work prime by prime and
exclude the prime 2, there will be no essential difference which regulator map we use.

2.4. Derived categories and Galois cohomology. Let Λ be a noetherian ring and
PMod(Λ) be the category of all finitely generated projective Λ-modules. We write D(Λ)
for the derived category of Λ-modules and Cb(PMod(Λ)) for the category of bounded
complexes of finitely generated projective Λ-modules. Recall that a complex of Λ-modules
is called perfect if it is isomorphic in D(Λ) to an element of Cb(PMod(Λ)). We denote
the full triangulated subcategory of D(Λ) comprising perfect complexes by Dperf(Λ).

If M is a Λ-module and n is an integer, we write M [n] for the complex

· · · → 0→ 0→M → 0→ 0→ · · · ,

where M is placed in degree −n. We will also use the following convenient notation:
When t ≥ 1 and n1, . . . , nt are integers, we put

M{n1, . . . , nt} :=
t⊕
i=1

M [−ni].

In particular, we have M{n} = M [−n] and M{n1, . . . , nt}[n] = M{n1 − n, . . . , nt − n}.
Recall the notation of §2.1. In particular, L/K is a Galois extension of number fields

with Galois group G. For a finite set S of places of K containing S∞ we let GL,S be
the Galois group over L of the maximal extension of L that is unramified outside S(L).
For any topological GL,S-module M we write RΓ(OL,S,M) for the complex of continuous
cochains of GL,S with coefficients in M . If F is a field and M is a topological GF -
module, we likewise define RΓ(F,M) to be the complex of continuous cochains of GF

with coefficients in M .
If F is a global or a local field of characteristic zero, and M is a discrete or a compact

GF -module, then for r ∈ Z we denote the r-th Tate twist of M by M(r). Now let
p be a prime and suppose that S also contains all p-adic places of K. Then we will
particularly be interested in the complexes RΓ(OL,S,Zp(r)) in D(Zp[G]). Note that for
an integer i the cohomology group in degree i of RΓ(OL,S,Zp(r)) naturally identifies with
H i

ét(OL,S,Zp(r)), the i-th étale cohomology group of the affine scheme Spec(OL,S) with
coefficients in the étale p-adic sheaf Zp(r).

2.5. p-adic Chern class maps. Fix an odd prime p and assume that S contains S∞
and the set Sp of all p-adic places of K. Then for any integer r > 1 and i = 1, 2 Soulé
[Sou79] has constructed canonical G-equivariant p-adic Chern class maps

ch
(p)
r,i : K2r−i(OL,S)⊗ Zp → H i

ét(OL,S,Zp(r)).

We need the following deep result.
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Theorem 2.2 (Quillen–Lichtenbaum Conjecture). Let p be an odd prime. Then for any

integer r > 1 and i = 1, 2 the p-adic Chern class maps ch
(p)
r,i are isomorphisms.

Proof. Soulé [Sou79] proved surjectivity. Building on work of Rost and Voevodsky, Weibel
[Wei09] completed the proof of the Quillen–Lichtenbaum Conjecture. �

Corollary 2.3. Let r > 1 be an integer and let p be an odd prime. Then we have
isomorphisms of Zp[G]-modules

H iRΓ(OL,S,Zp(r)) ' H i
ét(OL,S,Zp(r)) '

 K2r−1(OL,S)⊗ Zp if i = 1
K2r−2(OL,S)⊗ Zp if i = 2
0 if i 6= 1, 2.

Proof. This follows from Theorem 2.2 and the fact that the Galois group GL,S has coho-
mological p-dimension 2 by [NSW08, Proposition 8.3.18]. �

2.6. K-theory of local fields. Let p be a prime. For an integer n ≥ 0 and a ring R we
write Kn(R;Zp) for the K-theory of R with coefficients in Zp. Now let p be odd and let
w be a finite place of L. We write Ow for the ring of integers in Lw. If w does not belong
to Sp(L), then for r > 1 and i = 1, 2 we have isomorphisms of Zp[Gw]-modules

K2r−i(Ow;Zp) ' K2r−i(L(w);Zp) ' (Qp/Zp(r − i+ 1))GLw .

Here, the first isomorphism is a special case of Gabber’s Rigidity Theorem [Wei13, Chap-
ter IV, Theorem 2.10]. As the even K-groups of a finite field vanish, the Universal
Coefficient Theorem [Wei13, Chapter IV, Theorem 2.5] identifies K2r−i(L(w);Zp) with
K2r−1(L(w))⊗Zp if i = 1 and with K2r−3(L(w))⊗Zp if i = 2. Now (2.3) gives the second
isomorphism. Note that in particular K2r−i(Ow;Zp) is a finite group. We likewise have

H1
ét(Lw,Zp(r)) ' H0

ét(Lw,Qp/Zp(r)) = (Qp/Zp(r))GLw ,
H2

ét(Lw,Zp(r)) ' H0
ét(Lw,Qp/Zp(1− r))∨ ' (Qp/Zp(r − 1))GLw ,

where (−)∨ := Hom(−,Qp/Zp) denotes the Pontryagin dual and we have used local Tate
duality (see also [NSW08, Proposition 7.3.10] and the subsequent remark). This shows
the case w 6∈ Sp(L) of the following well-known theorem. The case w ∈ Sp(L) is another
instance of the Quillen–Lichtenbaum Conjecture and has been proven by Hesselholt and
Madsen [HM03].

Theorem 2.4 (Gabber rigidity and Hesselholt-Madsen). Let p be an odd prime and let
w be a finite place of L. Then for any integer r > 1 and i = 1, 2 there are canonical
isomorphisms of Zp[Gw]-modules

K2r−i(Ow;Zp) ' H i
ét(Lw,Zp(r)).

2.7. Wild Kernels. Let p be an odd prime and let S be a finite set of places of K con-
taining all archimedean and all p-adic places. The following definition is due to Banaszak
[Ban93] (a variant has been defined slightly earlier by Nguyen Quang Do [NQD92]).

Definition 2.5. Let r > 1 be an integer. The kernel of the natural map

K2r−2(OL,S)⊗ Zp →
⊕

w∈S(L)

H2
ét(Lw,Zp(r))

is called the p-adic wild kernel and will be denoted by Kw
2r−2(OL,S)p.
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Remark 2.6. This can be described in purely K-theoretic terms as follows. As p is odd,
the cohomology groups H2

ét(Lw,Zp(r)) vanish for archimedean w. Thus Theorem 2.4
implies that Kw

2r−2(OL,S)p identifies with the kernel of the map

K2r−2(OL,S)⊗ Zp →
⊕

w∈S(L)\S∞(L)

K2r−2(Ow;Zp).

Remark 2.7. Let S ′ be a second finite set of places of K such that S ⊆ S ′. As we have
observed in §2.6, we have isomorphisms

K2r−2(Ow;Zp) ' K2r−2(L(w);Zp) ' K2r−3(L(w))⊗ Zp
for every w ∈ S ′(L) \ S(L). Taking sequence (2.2) into account, a diagram chase shows
that the p-adic wild kernel Kw

2r−2(OL,S)p does in fact not depend on the set S.

3. The conjectures of Leopoldt and Schneider

3.1. Local Galois cohomology. We keep the notation of §2.1. In particular, L/K
is a finite Galois extension of number fields with Galois group G. Let p be an odd
prime. We denote the (finite) set of places of K that ramify in L/K by Sram and let
S be a finite set of places of K containing Sram and all archimedean and p-adic places
(i.e. S∞ ∪ Sp ∪ Sram ⊆ S).

Let M be a topological GL,S-module. Then M becomes a topological GLw-module for
every w ∈ S(L) by restriction. For any i ∈ Z we put

P i(OL,S,M) :=
⊕

w∈S(L)

H i
ét(Lw,M).

We write Sf for the subset of S comprising all finite places in S.

Lemma 3.1. Let r > 1 be an integer. Then we have isomorphisms of Zp[G]-modules

P i(OL,S,Zp(r)) '


H+
−r(L)⊗ Zp if i = 0⊕
w∈Sf (L) K2r−1(Ow;Zp) if i = 1⊕
w∈Sf (L) K2r−2(Ow;Zp) if i = 2

0 otherwise.

Proof. We first observe that H0
ét(Lw,Zp(r)) vanishes unless w is a complex place or w is

a real place and r is even, whereas in these cases we have H0
ét(Lw,Zp(r)) = Zp(r). Thus

the isomorphism ⊕
Σ(L)

Zp(r) '

⊕
Σ(L)

(2πi)rZ

⊗ Zp

that maps a generator of Zp(r) to (2πi)r restricts to an isomorphism

P 0(OL,S,Zp(r)) =
⊕

w∈S∞(L)

H0
ét(Lw,Zp(r)) ' H+

−r(L)⊗ Zp.

Now let i > 0. As p is odd, it is clear that H i
ét(Lw,Zp(r)) vanishes for all archimedean w.

Now let w be a finite place of L. Since the cohomological dimension of GLw equals 2 by
[NSW08, Theorem 7.1.8(i)], we have H i

ét(Lw,Zp(r)) = 0 for i > 2. The remaining cases
now follow from Theorem 2.4. �
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Corollary 3.2. Let r > 1 be an integer. Then

rankZp
(
P i(OL,S,Zp(r))

)
=

 dr+1 if i = 0
[L : Q] if i = 1
0 otherwise.

Proof. In degree zero the result follows from Lemma 3.1 and the definition of dr+1. We
have already observed that the groups K2r−i(Ow;Zp) are finite for i = 1, 2 and all finite
places w of L which are not p-adic. If w belongs to Sp(L), then K2r−2(Ow;Zp) is finite,
whereas K2r−1(Ow;Zp) has Zp-rank [Lw : Qp] by [Wei13, Chapter VI, Theorem 7.4].
The result for i 6= 0 now follows again from Lemma 3.1 and the formula [L : Q] =∑

w∈Sp(L)[Lw : Qp]. �

For any integers r and i we define P i(OL,S,Qp(r)) to be P i(OL,S,Zp(r))⊗Zp Qp. The
following result is also proven in [Bar09, Lemma 5.2.4].

Lemma 3.3. Let r > 1 be an integer. Then we have isomorphisms of Qp[G]-modules

P i(OL,S,Qp(r)) '

 H+
−r(L)⊗Qp if i = 0

L⊗Q Qp if i = 1
0 otherwise.

Proof. This follows from Lemma 3.1 and Corollary 3.2 unless i = 1. To handle this case
we let w ∈ Sp(L) and put DLw

dR (Qp(r)) := H0(Lw, BdR ⊗Qp Qp(r)), where BdR denotes
Fontaine’s de Rham period ring. Then the Bloch–Kato exponential map

expBKr : Lw = DLw
dR (Qp(r))→ H1

ét(Lw,Qp(r))

is an isomorphism for every w ∈ Sp(L) as follows from [BK90, Corollary 3.8.4 and Ex-
ample 3.9]. Thus we have isomorphisms of Qp[G]-modules

P 1(OL,S,Qp(r)) '
⊕

w∈Sp(L)

H1
ét(Lw,Qp(r)) '

⊕
w∈Sp(L)

Lw ' L⊗Q Qp.

�

By abuse of notation we write expBKr for the isomomrphism L⊗QQp ' P 1(OL,S,Qp(r)).

3.2. Schneider’s conjecture. We recall the following conjecture of Schneider [Sch79,
p. 192].

Conjecture 3.4 (Schneider). Let r 6= 0 be an integer. Then the cohomology group
H2

ét(OL,S,Qp/Zp(1− r)) vanishes.

Remark 3.5. It can be shown that Schneider’s conjecture for r = 1 is equivalent to
Leopoldt’s conjecture (see [NSW08, Chapter X, §3]).

Remark 3.6. For a given number field L and a fixed prime p, Schneider’s conjecture holds
for almost all r. This follows from [Sch79, §5, Corollar 4] and [Sch79, §6, Satz 3].

Definition 3.7. Let M be a topological GL,S-module. For any integer i we denote the
kernel of the natural localization map

H i
ét(OL,S,M)→ P i(OL,S,M)

by Xi(OL,S,M). We call Xi(OL,S,M) the Tate–Shafarevich group of M in degree i.

The relation of Tate–Shafarevich groups to Schneider’s conjecture is explained by the
following result (see also [Bar09, Lemma 3.2.10]).
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Proposition 3.8. Let r 6= 0 be an integer and let p be an odd prime. Then the following
holds.

(i) The Tate–Shafarevich group X1(OL,S,Zp(r)) is torsion-free.
(ii) Schneider’s conjecture holds at r and p if and only if the Tate–Shafarevich group

X1(OL,S,Zp(r)) vanishes.

Proof. We first claim that for any place w of L the group H2
ét(Lw,Qp/Zp(1−r)) vanishes.

This is clear when w is archimedean. If w is a finite place, then the Pontryagin dual of
H2

ét(Lw,Qp/Zp(1− r)) naturally identifes with H0
ét(Lw,Zp(r)) = 0 by local Tate duality.

Now by Poitou–Tate duality [NSW08, Theorem 8.6.9] and the claim we have

X1(OL,S,Zp(r)) 'X2(OL,S,Qp/Zp(1− r))∨ = H2
ét(OL,S,Qp/Zp(1− r))∨.

This implies (ii) and also (i) as the groups H2
ét(OL,S,Qp/Zp(1− r)) are divisible [Sch79,

Lemma 2]. �

We record some cases, where Schneider’s conjecture is known.

Theorem 3.9. Let p be an odd prime.

(i) If r < 0 is an integer, then Schneider’s conjecture holds at r and p.
(ii) If r > 0 is even and L is a totally real field, then Schneider’s conjecture holds at

r and p.

Proof. Case (i) is due to Soulé [Sou79] (see also [NSW08, Theorem 10.3.27]). Now suppose
that r > 0 is even and that L is totally real. Then the K-groups K2r−1(OL,S) are finite
by work of Borel (see §2.3). The Quillen–Lichtenbaum Conjecture (Theorem 2.2) implies
that the groups H1

ét(OL,S,Zp(r)) are finite as well. It follows that the Tate–Shafarevich
group X1(OL,S,Zp(r)) is finite and thus vanishes by Proposition 3.8 (i). Now (ii) follows
from Proposition 3.8 (ii). �

3.3. Compact support cohomology. Let M be a topological GL,S-module. Following
Burns and Flach [BF01] we define the compact support cohomology complex to be

RΓc(OL,S,M) := cone

RΓ(OL,S,M)→
⊕

w∈S(L)

RΓ(Lw,M)

 [−1],

where the arrow is induced by the natural restriction maps. For any i ∈ Z we abbre-
viate H iRΓc(OL,S,M) to H i

c(OL,S,M). If r is an integer, we set H i
c(OL,S,Qp(r)) :=

H i
c(OL,S,Zp(r))⊗Zp Qp.

Lemma 3.10. For every topological GL,S-module M we have

H0
c (OL,S,M) = X0(OL,S,M) = 0.

Proof. This is [Bar09, Lemma 3.1.6]. We repeat the short argument for the reader’s
convenience.

By definition, the groups H0
c (OL,S,M) and X0(OL,S,M) both identify with the kernel

of the map
H0

ét(OL,S,M)→ P 0(OL,S,M)

which is just the diagonal embedding MGL,S ↪→
⊕

w∈S(L) M
GLw . �

Proposition 3.11. Let r be an integer. Then the complex RΓc(OL,S,Zp(r)) belongs to
Dperf(Zp[G]).

Proof. This is a special case of [BF96, Proposition 1.20], for example. �
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Proposition 3.12. Let r > 1 be an integer and let p be an odd prime. Then the following
holds.

(i) We have an exact sequence of Zp[G]-modules

0→ H+
−r(L)⊗ Zp → H1

c (OL,S,Zp(r))→X1(OL,S,Zp(r))→ 0.

In particular, we have H1
c (OL,S,Zp(r)) ' H+

−r(L)⊗Zp if and only if Schneider’s
conjecture 3.4 holds.

(ii) We have an isomorphism of Zp[G]-modules

H3
c (OL,S,Zp(r)) ' Zp(r − 1)GL

(iii) We have an exact sequence of Zp[G]-modules

0→X2(OL,S,Zp(r))→ H2
ét(OL,S,Zp(r))→

⊕
w∈S(L)

Zp(r − 1)GLw → Zp(r − 1)GL → 0.

(iv) We have an isomorphism of Zp[G]-modules

X2(OL,S,Zp(r)) ' Kw
2r−2(OL,S)p.

In particular, X2(OL,S,Zp(r)) is finite and does not depend on S.
(v) Schneider’s conjecture 3.4 holds if and only if the Zp-rank of H2

c (OL,S,Zp(r))
equals dr+1.

Proof. We first observe that Artin–Verdier duality implies

H3
c (OL,S,Zp(r)) ' H0

ét(OL,S,Qp/Zp(1− r))∨ = (Qp/Zp(1− r)GL)∨ = Zp(r − 1)GL

giving (ii). For any w ∈ S(L) local Tate duality likewise implies

H2
ét(Lw,Zp(r)) ' H0

ét(Lw,Qp/Zp(1− r))∨ = (Qp/Zp(1− r)GLw )∨ = Zp(r − 1)GLw .

As H0
c (OL,S,Zp(r)) vanishes by Lemma 3.10, the long exact sequence in cohomology

associated to the exact triangle

RΓc(OL,S,Zp(r))→ RΓ(OL,S,Zp(r))→
⊕

w∈S(L)

RΓ(Lw,Zp(r))

now gives the exact sequences in (i) and (iii) by Lemma 3.1 and the very definition of
Tate–Shafarevich groups (in view of (iv) the sequence in (iii) then actually coincides with
the sequence in [Sch79, Satz 8]). It is then also clear that Schneider’s conjecture implies
that we have an isomorphism H1

c (OL,S,Zp(r)) ' H+
−r(L) ⊗ Zp. Conversely, if these two

Zp[G]-modules are isomorphic, they are in particular finitely generated Zp-modules of the
same rank. The short exact sequence in (i) then implies that the Tate–Shafarevich group
X1(OL,S,Zp(r)) is torsion and thus vanishes by Proposition 3.8 (i). Hence Schneider’s
conjecture holds by Proposition 3.8 (ii). This completes the proof of (i). Claim (iv) is
an easy consequence of Theorem 2.2 and Remark 2.7. Alternatively, it can be derived
from [Ban13, Corollary 4.2 and Theorem 5.10(7)]. Finally, it follows from Theorem 2.2,
Corollary 3.2 and the exact sequence

0 → X1(OL,S,Zp(r)) → H1
ét(OL,S,Zp(r)) → P 1(OL,S,Zp(r))

→ H2
c (OL,S,Zp(r)) → X2(OL,S,Zp(r)) → 0

that the Zp-rank of H2
c (OL,S,Zp(r)) equals

[L : Q]− dr + rankZp(X
1(OL,S,Zp(r))) = dr+1 + rankZp(X

1(OL,S,Zp(r))).
Thus (v) is a consequence of Proposition 3.8. �
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3.4. A conjecturally perfect complex. We keep the notation of the last subsection
and also recall the notation of §2.4. Let CL,S(r) ∈ D(Zp[G]) be the cone of the map

H1
c (OL,S,Zp(r)){1, 4} → RΓc(OL,S,Zp(r))⊕ (H+

1−r(L)⊗ Zp){2, 3}
which on cohomology induces the identity map in degree 1 and the zero map in all other
degrees.

Proposition 3.13. Let r > 1 be an integer and let p be an odd prime. Then the following
holds.

(i) The complex CL,S(r) is acyclic outside degrees 2 and 3.
(ii) There is an isomorphism of Zp[G]-modules

H2(CL,S(r)) ' H2
c (OL,S,Zp(r))⊕H+

1−r(L)⊗ Zp.

In particular, there is a surjection H2(CL,S(r))→X2(OL,S,Zp(r)).
(iii) Assume that Schneider’s conjecture 3.4 holds. Then the complex CL,S(r) belongs

to Dperf(Zp[G]) and we have an isomorphism of Zp[G]-modules

H3(CL,S(r)) ' H3
c (OL,S,Zp(r))⊕

(
H+
−r(L)⊕H+

1−r(L)
)
⊗ Zp.

Proof. This follows easily from Propositions 3.12 and 3.11 once we have observed that the
Zp[G]-module H+

k (L) ⊗ Zp is projective for every k ∈ Z. Indeed, the Z[G × Gal(C/R)]-
module Hk(L) is free over Z[G] of rank [K : Q] and H+

k (L)⊗ Zp is a direct summand of
Hk(L)⊗ Zp as p is odd. �

4. Relative algebraic K-theory

For further details and background on algebraic K-theory used in this section, we refer
the reader to [CR87] and [Swa68].

4.1. Algebraic K-theory. Let R be a noetherian integral domain of characteristic 0
with field of fractions E. Let A be a finite-dimensional semisimple E-algebra and let
Λ be an R-order in A. Recall that PMod(Λ) denotes the category of finitely generated
projective left Λ-modules. Then K0(Λ) naturally identifies with the Grothendieck group
of PMod(Λ) (see [CR87, §38]) and K1(Λ) with the Whitehead group (see [CR87, §40]).
For any field extension F of E we set AF := F ⊗E A. Let K0(Λ, F ) denote the rela-
tive algebraic K-group associated to the ring homomorphism Λ ↪→ AF . We recall that
K0(Λ, F ) is an abelian group with generators [X, g, Y ] where X and Y are finitely gener-
ated projective Λ-modules and g : F ⊗RX → F ⊗R Y is an isomorphism of AF -modules;
for a full description in terms of generators and relations, we refer the reader to [Swa68,
p. 215]. Furthermore, there is a long exact sequence of relative K-theory

(4.1) K1(Λ) −→ K1(AF )
∂Λ,F−→ K0(Λ, F ) −→ K0(Λ) −→ K0(AF )

(see [Swa68, Chapter 15]). We write ζ(A) for the center of (any ring) A. The reduced
norm map

NrdA : A −→ ζ(A)

is defined componentwise (see [Rei03, §9]) and extends to matrix rings over A in the
obvious way; hence this induces a map K1(A)→ ζ(A)× which we also denote by NrdA.

Let P be a finitely generated projective A-module and let γ be an A-endomorphism
of P . Choose a finitely generated projective A-module Q such that P ⊕Q is free. Then
the reduced norm of γ ⊕ idQ with respect to a chosen basis yields a well-defined element
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NrdA(γ) ∈ ζ(A). In particular, if γ is invertible, then γ defines a class [γ] ∈ K1(A) and
we have NrdA(γ) = NrdA([γ]).

4.2. Refined Euler characteristics. For any C• ∈ Cb(PMod(Λ)) we define Λ-modules

Cev :=
⊕
i∈Z

C2i, Codd :=
⊕
i∈Z

C2i+1.

Similarly, we define Hev(C•) and Hodd(C•) to be the direct sum over all even and odd
degree cohomology groups of C•, respectively. A pair (C•, t) consisting of a complex
C• ∈ Dperf(Λ) and an isomorphism t : Hodd(C•F ) → Hev(C•F ) is called a trivialized
complex, where we write C•F for F ⊗L

R C
•. We refer to t as a trivialization of C•. One

defines the refined Euler characteristic χΛ,F (C•, t) ∈ K0(Λ, F ) of a trivialized complex
as follows: Choose a complex P • ∈ Cb(PMod(Λ)) which is quasi-isomorphic to C•. Let
Bi(P •F ) and Zi(P •F ) denote the i-th cobounderies and i-th cocycles of P •F , respectively.
For every i ∈ Z we have the obvious exact sequences

0→ Bi(P •F )→ Zi(P •F )→ H i(P •F )→ 0, 0→ Zi(P •F )→ P i
F → Bi+1(P •F )→ 0.

If we choose splittings of the above sequences, we get an isomorphism of AF -modules

φt : P odd
F '

⊕
i∈Z

Bi(P •F )⊕Hodd(P •F ) '
⊕
i∈Z

Bi(P •F )⊕Hev(P •F ) ' P ev
F ,

where the second map is induced by t. Then the refined Euler characteristic is defined
to be

χΛ,F (C•, t) := [P odd, φt, P
ev] ∈ K0(Λ, F )

which indeed is independent of all choices made in the construction. For further infor-
mation concerning refined Euler characteristics we refer the reader to [Bur04].

4.3. K-theory of group rings. Let p be a prime and let G be a finite group. By a well-
known theorem of Swan (see [CR81, Theorem (32.1)]) the map K0(Zp[G])→ K0(Qp[G])
induced by extension of scalars is injective. Thus from (4.1) we obtain an exact sequence

(4.2) K1(Zp[G]) −→ K1(Qp[G]) −→ K0(Zp[G],Qp) −→ 0.

The reduced norm map induces an isomorphism K1(Qp[G]) −→ ζ(Qp[G])× (use [CR87,
Theorem (45.3)]) and NrdQp[G](K1(Zp[G])) = NrdQp[G]((Zp[G])×) (this follows from [CR87,
Theorem (40.31)]). Hence from (4.2) we obtain an exact sequence

(4.3) (Zp[G])×
NrdQp[G]−→ ζ(Qp[G])×

∂p−→ K0(Zp[G],Qp) −→ 0,

where we write ∂p for ∂Zp[G],Qp . The canonical maps K0(Z[G],Q)→ K0(Zp[G],Qp) induce
an isomorphism

(4.4) K0(Z[G],Q) '
⊕
p

K0(Zp[G],Qp)

where the sum ranges over all primes (see the discussion following [CR87, (49.12)]). By
abuse of notation we let

∂p : ζ(Q[G])× → K0(Zp[G],Qp)

also denote the composite map of the inclusion ζ(Q[G])× → ζ(Qp[G])× and the surjection
∂p in sequence (4.3). Finally, the reduced norm NrdR[G] : K1(R[G]) → ζ(R[G])× is
injective and there is an extended boundary homomorphism

∂̂ : ζ(R[G])× −→ K0(Z[G],R)
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such that ∂̂◦NrdR[G] coincides with the usual boundary homomorphism ∂Z[G],R in sequence
(4.1) (see [BF01, §4.2]).

5. Rationality conjectures

5.1. Artin L-series. Let L/K be a finite Galois extension of number fields with Galois
group G and let S be a finite set of places of K containing all archimedean places. For any
irreducible complex-valued character χ of G we denote the S-truncated Artin L-series by
LS(s, χ), and the leading coefficient of LS(s, χ) at an integer r by L∗S(r, χ). We will use
this notion even if L∗S(r, χ) = LS(r, χ) (which will happen frequently in the following).

There is a canonical isomorphism ζ(C[G]) '
∏

χ∈IrrC(G) C, where IrrC(G) denotes the
set of irreducible complex characters of G. We define the equivariant S-truncated Artin
L-series to be the meromorphic ζ(C[G])-valued function

LS(s) := (LS(s, χ))χ∈IrrC(G).

For any r ∈ Z we also put

L∗S(r) := (L∗S(r, χ))χ∈IrrC(G) ∈ ζ(R[G])×.

Now let v ∈ S∞ be an archimedean place of K. Let χ be an irreducible complex character
of G and let Vχ be a C[G]-module with character χ. We set

nχ := dimC(Vχ) = χ(1), n+
χ,v := dimC(V Gw

χ ), n−χ,v := nχ − n+
χ,v.

We write SR and SC for the subsets of S∞ consisting of real and complex places, respec-
tively, and define ε-factors

εv(s, χ) :=

{
(2 · (2π)−sΓ(s))nχ if v ∈ SC,

LR(s)n
+
χ,v · LR(s+ 1)n

−
χ,v if v ∈ SR,

where LR(s) := π−s/2Γ(s/2) and Γ(s) denotes the usual Gamma function. The completed
Artin L-series is then defined to be

Λ(s, χ) :=

( ∏
v∈S∞

εv(s, χ)

)
LS∞(s, χ) =

∏
v

εv(s, χ),

where the second product runs over all places of K and for a finite place v of K we have

εv(s, χ) := det(1− φwN(v)−s | V Iw
χ )−1.

We denote the contragradient of χ by χ̌. Then the completed Artin L-series satisfies the
functional equation

(5.1) Λ(s, χ) = ε(s, χ)Λ(1− s, χ̌),

where the ε-factor ε(s, χ) is defined as follows. Let dK be the absolute discriminant of
K. We write W (χ) and f(χ) for the Artin root number and the Artin conductor of χ,
respectively. We then have

c(χ) := |dK |nχN(f(χ)),

ε(s, χ) := W (χ)c(χ)1/2−s.

We also define equivariant ε-factors and the completed equivariant Artin L-series by

εv(s) := (εv(s, χ))χ∈IrrC(G), ε(s) := (ε(s, χ̌))χ∈IrrC(G), Λ(s) := (Λ(s, χ))χ∈IrrC(G).
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The functional equations (5.1) for all irreducibe characters then combine to give an equal-
ity

(5.2) Λ(s)] = ε(s)Λ(1− s),
where x 7→ x] denotes the C-linear anti-involution of C[G] which sends each g ∈ G to its
inverse.

5.2. A conjecture of Gross. Let r > 1 be an integer. Since the Borel regulator map ρr
induces an isomorphism of R[G]-modules, the Noether–Deuring theorem (see [NSW08,
Lemma 8.7.1] for instance) implies the existence of Q[G]-isomorphisms

(5.3) φ1−r : H+
1−r(L)⊗Q '−→ K2r−1(OL)⊗Q.

Let χ be a complex character of G and let Vχ be a C[G]-module with character χ.
Composition with ρr ◦ φ1−r induces an automorphism of HomG(Vχ̌, H

+
1−r(L) ⊗ C). Let

Rφ1−r(χ) ∈ C× be its determinant. If χ′ is a second character, then clearly Rφ1−r(χ+χ′) =
Rφ1−r(χ) ·Rφ1−r(χ

′) so that we obtain a map

Rφ1−r : R(G) −→ C×

χ 7→ det(ρr ◦ φ1−r | HomG(Vχ̌, H
+
1−r(L)⊗ C)),

where R(G) denotes the ring of virtual complex characters of G. We likewise define

ASφ1−r : R(G) −→ C×

χ 7→ Rφ1−r(χ)/L∗S(1− r, χ).

Gross [Gro05, Conjecture 3.11] conjectured the following higher analogue of Stark’s con-
jecture.

Conjecture 5.1 (Gross). We have ASφ1−r
(χσ) = ASφ1−r

(χ)σ for all σ ∈ Aut(C).

It is straightforward to see that Gross’ conjecture does not depend on S and the choice
of φ1−r (see also [Nic11a, Remark 6]). We briefly collect what is known about Conjecture
5.1. When L/K is a CM-extension, recall that χ is odd when χ(j) = −χ(1), where j ∈ G
denotes complex conjugation.

Theorem 5.2. Conjecture 5.1 holds in each of the following cases:

(i) χ is the trivial character;
(ii) χ is absolutely abelian, i.e. Lker(χ)/Q is abelian;

(iii) Lker(χ) is totally real and r is even;
(iv) Lker(χ)/K is a CM-extension, χ is an odd character and r is odd.

Proof. (i) is Borel’s result (2.7) above. In cases (iii) and (iv) the regulator map disappears,
and Conjecture 5.1 boils down to the rationality of the L-values at negative integers which
is a classical result of Siegel [Sie70]. Finally, Gross’ conjecture for all characters χ of G is
equivalent to the rationality statement of the ETNC for the pair (h0(Spec(L))(1−r),Z[G])
by [Bur10, Lemma 6.1.1 and Lemma 11.1.2] (see also [Nic11a, Proposition 2.15]). In fact,
the full ETNC is known for absolutely abelian extensions by work of Burns and Greither
[BG03] and of Flach [Fla11] (see also Huber and Kings [HK03]) which implies (ii). �

Remark 5.3. Let f : R(G) → C× be a homomorphism. Then we may view f as an
element in ζ(C[G])× '

∏
χ∈IrrC(G) C× by declaring its χ-component to be f(χ), χ ∈

IrrC(G). Conversely, each f = (fχ)χ∈IrrC(G) in ζ(C[G])× defines a unique homomorphism
f : R(G) → C× such that f(χ) = fχ for each χ ∈ IrrC(G). Under this identification
Conjecture 5.1 asserts that ASφ1−r

∈ ζ(C[G])× actually belongs to ζ(Q[G])×.
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5.3. A reformulation of Gross’ conjecture. In this subsection we give a reformulation
of Gross’ conjecture using the functional equation of Artin L-series. For any integer k we
write

(5.4) ιk : L⊗Q C→
⊕
Σ(L)

C =
(
H+

1−k(L)⊕H+
−k(L)

)
⊗ C

for the canonical C[G×Gal(C/R)]-equivariant isomorphism which is induced by mapping
l ⊗ z to (σ(l)z)σ∈Σ(L) for l ∈ L and z ∈ C. Now fix an integer r > 1. We define an R[G]-
isomorphism

λr :
(
K2r−1(OL)⊕H+

−r(L)
)
⊗ R '

(
H+

1−r(L)⊕H+
−r(L)

)
⊗ R ' (L⊗Q C)+ = L⊗Q R.

Here, the first isomorphism is ρr ⊕ idH+
−r(L) and the second isomorphism is induced by

ι−1
r . As above, there exist Q[G]-isomorphisms

φr : L
'−→
(
K2r−1(OL)⊕H+

−r(L)
)
⊗Q.

We now define maps

Rφr : R(G) −→ C×

χ 7→ det (λr ◦ φr | HomG(Vχ̌, L⊗Q C))

and

ASφr : R(G) −→ C×

χ 7→ Rφr(χ)/L∗S(r, χ̌).

Conjecture 5.4. We have ASφr(χ
σ) = ASφr(χ)σ for all σ ∈ Aut(C).

It is again easily seen that this conjecture does not depend on S and the choice of φr.
In fact we have the following result.

Proposition 5.5. Fix an integer r > 1 and a character χ. Then Gross’ Conjecture 5.1
holds if and only if Conjecture 5.4 holds.

Proof. Let k be an integer. If k is even, multiplication by (2πi)k induces a Q[G]-
isomorphism H+

0 (L) ⊗ Q ' H+
−k(L) ⊗ Q. Similarly, multiplication by (2πi)k−1 induces

a Q[G]-isomorphism H−0 (L) ⊗ Q ' H+
1−k(L) ⊗ Q. When k is odd, we likewise have

Q[G]-isomorphisms H+
0 (L) ⊗ Q ' H+

1−k(L) ⊗ Q and H−0 (L) ⊗ Q ' H+
−k(L) ⊗ Q in-

duced by multiplication by (2πi)k−1 and (2πi)k, respectively. So for any k we obtain a
Q[G]-isomorphism

(5.5) µk : H0(L)⊗Q '
(
H+

1−k(L)⊕H+
−k(L)

)
⊗Q.

Moreover, we define an R[G]-isomorphism

πL : L⊗Q R '
(
H+

0 (L)⊕H+
−1(L)

)
⊗ R (1,−i)−→ H0(L)⊗ R,

where the first isomorphism is induced by ι1. It is clear that πL agrees with the map πL
in [BB03, p. 554]. Bley and Burns define an explicit Q[G]-isomorphism

(5.6) φ : L
'−→ H0(L)⊗Q.

Building on a result of Fröhlich [Frö89] on Galois Gauss sums, the authors [BB03, equation
(12) and (13)] then show that

(5.7) NrdR[G]((φ⊗ 1) ◦ π−1
L ) · ε(0) ∈ ζ(Q[G])×.
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Now choose a Q[G]-isomorphism φ1−r as in (5.3). We define φr to be the composite map

φr := (φ1−r ⊕ idH+
−r(L)⊗Q) ◦ µr ◦ φ.

Let a, b ∈ ζ(C[G])×. In the following we write a ∼ b if ab−1 ∈ ζ(Q[G])×. Under the
identification in Remark 5.3 we thus have to show that ASφr ∼ ASφ1−r

. We observe that

λr ◦ φr = ι−1
r ◦ (ρr ⊕ idH+

−r(L)) ◦ (φ1−r ⊕ idH+
−r(L)) ◦ µr ◦ φ,

where we view each map as a C[G]-isomorphism by extending scalars. This implies that

Rφr = Rφ1−r · NrdC[G](ι
−1
r ◦ µr ◦ φ)].

We now use (5.7), the fact that c(χσ) = c(χ)σ for all χ ∈ IrrC(G) and σ ∈ Aut(C), the
definition of ε and the functional equation (5.2) to compute

Rφr ∼ Rφ1−r ·
(
NrdC[G](ι

−1
r ◦ µr ◦ πL) · ε(0)−1

)]
∼ Rφ1−r ·

(
NrdC[G](ι

−1
r ◦ µr ◦ πL) · ε(1− r)−1

)]
∼ Rφ1−r · NrdC[G](ι

−1
r ◦ µr ◦ πL)] · Λ∗(r)]

Λ∗(1− r)

Now let v be an archimedean place of K. As Γ(k) is a non-zero rational number for every
positive integer k and Γ(s) has simple poles with rational residues at s = k for every
non-positive integer k, an easy computation shows that for v ∈ SC one has

(5.8)
εv(r)

]

ε∗v(1− r)
∼
(
π(1−2r)nχ

)
χ∈IrrC(G)

.

Moreover, using Γ(s+ 1) = sΓ(s) and Γ(1/2) =
√
π we find that Γ((2k+ 1)/2) ∈

√
π ·Q×

for every integer k. Then a computation shows that for v ∈ SR one has

(5.9)
εv(r)

]

ε∗v(1− r)
∼


(
π(1−r)n+

χ,v−rn−χ,v
)
χ∈IrrC(G)

if 2 - r(
π(1−r)n−χ,v−rn+

χ,v

)
χ∈IrrC(G)

if 2 | r.

The automorphism µr ◦ πL ◦ ι−1
r on (H+

1−r(L) ⊕ H+
−r(L)) ⊗ C is given up to sign by

multiplication by (2π)r−1 and (2π)r on the first and second direct summand, respectively.
It follows that

NrdC[G](ι
−1
r ◦ µr ◦ πL)] = NrdC[G](µr ◦ πL ◦ ι−1

r )]

∼


(
π(r−1)(|SC|nχ+

∑
v∈SR

n+
χ,v)+r(|SC|nχ+

∑
v∈SR

n−χ,v)
)
χ

if 2 - r(
π(r−1)(|SC|nχ+

∑
v∈SR

n−χ,v)+r(|SC|nχ+
∑
v∈SR

n+
χ,v)
)
χ

if 2 | r.

If we compare this to (5.8) and (5.9) we find that

NrdC[G](ι
−1
r ◦ µr ◦ πL)] ∼

( ∏
v∈S∞

εv(r)
]

ε∗v(1− r)

)−1

.
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Finally, by the very definition of Λ(s) we have Λ(s) =
(∏

v∈S∞ εv(s)
)
·LS∞(s). We obtain

Rφr ∼ Rφ1−r · NrdC[G](ι
−1
r ◦ µr ◦ πL)] ·

( ∏
v∈S∞

εv(r)
]

ε∗v(1− r)

)
·

L∗S∞(r)]

L∗S∞(1− r)

∼ Rφ1−r ·
L∗S∞(r)]

L∗S∞(1− r)

which exactly means that

AS∞φr =
Rφr

L∗S∞(r)]
∼

Rφ1−r

L∗S∞(1− r)
= AS∞φ1−r

.

As both conjectures do not depend on the choice of S we are done. �

6. Equivariant leading term conjectures

We fix a finite Galois extension L/K with Galois group G and an odd prime p. Let
r > 1 be an integer. In this section we assume throughout that Schneider’s conjecture
3.4 holds. In particular, if S is a sufficiently large finite set of places of K as in §3, then
the complex CL,S(r) ∈ D(Zp[G]) constructed in §3.4 is perfect by Proposition 3.13.

6.1. Choosing a trivialization. In this subsection we construct a trivialization of
CL,S(r). We first choose a Q[G]-isomorphism

(6.1) αr : L→
(
H+

1−r(L)⊕H+
−r(L)

)
⊗Q.

For instance, we may take αr = µr ◦ φ, where µr and φ are the isomorphisms (5.5) and
(5.6), respectively. Moreover, we choose a Q[G]-isomorphism

φ1−r : H+
1−r(L)⊗Q '−→ K2r−1(OL)⊗Q

as in (5.3). We let ψr := (φ1−r, αr) be the corresponding pair of Q[G]-isomorphisms. As
X1(OL,S,Zp(r)) vanishes by Proposition 3.8 and X2(OL,S,Zp(r)) is finite by Proposition
3.12 (iv), we have an exact sequence of Qp[G]-modules

(6.2) 0→ H1
ét(OL,S,Qp(r))→ P 1(OL,S,Qp(r))→ H2

c (OL,S,Qp(r))→ 0.

Since Qp[G] is semisimple, we may choose a Qp[G]-equivariant splitting σr of this se-
quence. We now define a trivialization t(ψr, σr, S) of CL,S(r) to be the composite of
the following Qp[G]-isomorphisms (note that we have Hev(CL,S(r)) = H2(CL,S(r)) and
Hodd(CL,S(r)) = H3(CL,S(r)) by Proposition 3.13):

H3(CL,S(r))⊗Zp Qp −→
(
H+

1−r(L)⊕H+
−r(L)

)
⊗Qp

α−1
r−→ L⊗Q Qp

expBKr−→ P 1(OL,S,Qp(r))
σr−→ H1

ét(OL,S,Qp(r))⊕H2
c (OL,S,Qp(r))

(ch
(p)
r,1)−1⊕id
−→ (K2r−1(OL,S)⊗Qp)⊕H2

c (OL,S,Qp(r))

−→ (K2r−1(OL)⊗Qp)⊕H2
c (OL,S,Qp(r))

φ−1
1−r⊕id
−→ (H+

1−r(L)⊗Qp)⊕H2
c (OL,S,Qp(r))

−→ H2(CL,S(r))⊗Zp Qp.
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Here, the unlabelled isomorphisms come from Propositions 3.13 and 3.12 (ii) and (2.1).
We now define

Ωψr,S := χZp[G],Qp(CL,S(r), t(ψr, σr, S)) ∈ K0(Zp[G],Qp)

which is easily seen to be independent of the splitting σr (see §4.1 and §4.2).

6.2. The leading term conjecture at s = r. We are now in a position to formulate
the central conjectures of this article. Recall the notation of the last subsection and in
particular the pair ψr = (φ1−r, αr). Define a Q[G]-isomorphism

φr : L
'−→
(
K2r−1(OL)⊕H+

−r(L)
)
⊗Q

by φr := (φ1−r ⊕ idH+
−r(L)) ◦ αr.

Conjecture 6.1. Let L/K be a finite Galois extension of number fields with Galois group
G and let r > 1 be an integer. Let p be an odd prime.

(i) The Tate–Shafarevich group X1(OL,S,Zp(r)) vanishes.
(ii) We have that ASφr belongs to ζ(Q[G])×.

(iii) We have an equality ∂p(A
S
φr

)] = −Ωψr,S.

Remark 6.2. Part (i) and (ii) of Conjecture 6.1 are equivalent to Schneider’s conjecture
3.4 and Gross’ conjecture 5.1 by Propositions 3.8 and 5.5, respectively.

Proposition 6.3. Suppose that part (i) and part (ii) of Conjecture 6.1 both hold. Then
part (iii) does not depend on any of the choices made in the construction.

Proof. Let S ′ be a second sufficiently large finite set of places of K. By embedding S
and S ′ into the union S ∪ S ′ we may and do assume that S ⊆ S ′. By induction we may
additionally assume that S ′ = S ∪{v}, where v is not in S. In particular, v is unramified
in L/K and v - p. We compute

(6.3) AS
′

φr(χ)/ASφr(χ) = L∗S(r, χ̌)/L∗S′(r, χ̌) = εv(r, χ̌).

On the other hand, by [BF01, (30)] we have an exact triangle

IndGGwRΓf (Lw,Zp(r))[−1] −→ RΓc(OL,S′ ,Zp(r)) −→ RΓc(OL,S,Zp(r)),

where RΓf (Lw,Zp(r)) is a perfect complex of Zp[Gw]-modules which is naturally quasi-
isomorphic to

Zp[Gw]
1−φwN(v)−r

// Zp[Gw]

with terms in degree 0 and 1. As Schneider’s conjecture holds by assumption, the coho-
mology group H1

c (OL,S,Zp(r)) does not depend on S by Proposition 3.12. Thus by the
definition of CL,S(r) we likewise have an exact triangle

IndGGwRΓf (Lw,Zp(r))[−1] −→ CL,S′(r) −→ CL,S(r).

We therefore may compute

Ωψr,S − Ωψr,S′ = χZp[G],Qp
(
IndGGwRΓf (Lw,Zp(r)), 0

)
= ∂p(εv(r))

= ∂p(A
S′

φr)
] − ∂p(ASφr)

],
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where the last equality follows from (6.3). This shows that Conjecture 6.1 (iii) does not
depend on S. Now suppose that α′r is a second choice of Q[G]-isomorphism as in (6.1).
Let φ′r := (φ1−r ⊕ idH+

−r(L)) ◦ α′r. Then we have(
ASφr ·

(
ASφ′r
)−1
)]

=
(
Rφr ·R−1

φ′r

)]
(6.4)

= NrdQ[G]((φ
′
r)
−1φr)

= NrdQ[G]((α
′
r)
−1αr).

Letting ψ′r := (φ1−r, α
′
r) we likewise compute

Ωψr,S − Ωψ′r,S = ∂p
(
NrdQ[G](α

′
rα
−1
r )
)

= −∂p
(
NrdQ[G]((α

′
r)
−1αr)

)
.

Finally, a similar computation shows that the conjecture does not depend on the choice
of φ1−r. �

It is therefore convenient to put

TΩ(L/K, r)p := −
(
∂p(A

S
φr)

] + Ωψr,S

)
∈ K0(Zp[G],Qp).

Then Conjecture 6.1 (iii) simply asserts that TΩ(L/K, r)p vanishes. The reason for the
minus sign will become apparent in the next subsection (see Theorem 6.5).

Now choose an isomorphism j : C ' Cp. By functoriality, this induces a map

j∗ : K0(Z[G],R)→ K0(Zp[G],Cp).

We define a trivialization t(r, S, j) of the complex CL,S(r) as in §6.1, but we tensor with
Cp and replace the isomorphisms αr and φ1−r by ιr ⊗j Cp and ρ−1

r ⊗j Cp (see (2.6) and
(5.4)). Thus we obtain an object

Ωj
r,S := χZp[G],Cp(CL,S(r), t(r, S, j)) ∈ K0(Zp[G],Cp).

Then the argument in the proof of Proposition 6.3 shows the following result.

Proposition 6.4. Let j : C ' Cp be an isomorphism. Suppose that part (i) and (ii) of
Conjecture 6.1 both hold. Then we have an equality

TΩ(L/K, r)p = j∗

(
∂̂(L∗S(r))

)
− Ωj

r,S

in K0(Zp[G],Cp).

6.3. The relation to the equivariant Tamagawa number conjecture. We now
compare our invariant TΩ(L/K, r)p to the equivariant Tamagawa number conjecture
(ETNC) as formulated by Burns and Flach [BF01].

For an arbitrary integer r we set Q(r)L := h0(Spec(L))(r) which we regard as a mo-
tive defined over K and with coefficients in the semisimple algebra Q[G]. The ETNC
[BF01, Conjecture 4(iv)] for the pair (Q(r)L,Z[G]) asserts that a certain canonical el-
ement TΩ(Q(r)L,Z[G]) in K0(Z[G],R) vanishes. Note that in this case the element
TΩ(Q(r)L,Z[G]) is indeed well-defined as observed in [BF03, §1]. If TΩ(Q(r)L,Z[G])
is rational, i.e. belongs to K0(Z[G],Q), then by means of (4.4) we obtain elements
TΩ(Q(r)L,Z[G])p in K0(Zp[G],Qp). We say that the ‘p-part’ of the ETNC for the pair
(Q(r)L,Z[G]) holds if TΩ(Q(r)L,Z[G])p vanishes.

Theorem 6.5. Let L/K be a finite Galois extension of number fields with Galois group
G and let r > 1 be an integer. Then the following holds.
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(i) Conjecture 6.1 (ii) holds if and only if TΩ(Q(r)L,Z[G]) belongs to K0(Z[G],Q).
(ii) Suppose that part (i) and (ii) of Conjecture 6.1 both hold. Then

TΩ(Q(r)L,Z[G])p = TΩ(L/K, r)p.

In particular, Conjecture 6.1 (iii) and the p-part of the ETNC for the pair
(Q(r)L,Z[G]) are equivalent.

Proof. Conjecture 6.1(ii) is equivalent to Gross’ conjecture 5.1 by Proposition 5.5. The
latter conjecture is equivalent to the rationality of TΩ(Q(1 − r)L,Z[G]) by [Bur10,
Lemma 6.1.1 and Lemma 11.1.2]. Finally, TΩ(Q(1− r)L,Z[G]) is rational if and only if
TΩ(Q(r)L,Z[G]) is rational by [BF01, Theorem 5.2]. This proves (i).

For (ii) we briefly recall some basic facts on virtual objects. If Λ is a noetherian
ring, we write V (Λ) for the Picard category of virtual objects associated to the category
PMod(Λ). We fix a unit object 1Λ and write � for the bifunctor in V (Λ). For each
object M there is an object M−1, unique up to unique isomorphism, with an isomorphism
τM : M �M−1 ∼→ 1Λ. If N is an object in PMod(Λ), we write [N ] for the associated
object in V (Λ). More generally, if C• belongs to Dperf(Λ), we write [C•] ∈ V (Λ) for
the associated object (see [BF01, Proposition 2.1]). We let V (Zp[G],Cp) be the Picard
category associated to the ring homomorphism Zp[G] ↪→ Cp[G] as defined in [BB05, §5].
We recall that objects in V (Zp[G],Cp) are pairs (M, t), where M is an object in V (Zp[G])
and t is an isomorphism Cp⊗ZpM ' 1Cp[G] in V (Cp[G]). By [BB05, Lemma 5.1] one has
an isomorphism

(6.5) π0(V (Zp[G],Cp)) ' K0(Zp[G],Cp),

where π0(P) denotes the group of isomorphism classes of objects of a Picard category P .
For any motive M which is defined over K and admits an action of a finite dimensional

Q-algebra A, Burns and Flach [BF01, (29)] define an element Ξ(M) of V (A). In the case
M = Q(r)L and A = Q[G] one has

Ξ(Q(r)L) = [K2r−1(OL)⊗Q]−1 � [H+
−r(L)⊗Q]−1 � [L] ∈ V (Q[G]).

The regulator map (2.6) and (5.4) then induce an isomorphism in V (R[G]):

ϑ∞ : R⊗Q Ξ(Q(r)L) ' 1R[G].

Moreover, Burns and Flach construct for each prime p an isomorphism

ϑp : Qp ⊗Q Ξ(Q(r)L) ' [RΓc(OL,S,Qp(r))]

in V (Qp[G]) (see [BF01, p. 526]). These data determine an element RΩ(Q(r)L,Z[G]) in

K0(Z[G],R) and one has TΩ(Q(r)L,Z[G]) = ∂̂(L∗S∞(r)) +RΩ(Q(r)L,Z[G]) by definition.
Now suppose that part (i) and (ii) of Conjecture 6.1 both hold. Recall the definition

of CL,S(r). The isomorphisms τ[N ], where N = H1
c (OL,S,Zp(r)) and N = H+

1−r(L)⊗ Zp,
yield an isomorphism

(6.6) [CL,S(r)] ' [RΓc(OL,S,Zp(r))]
in V (Zp[G]). Now let j : C ' Cp be an isomorphism. Then the trivialization t(r, S, j)
induces an isomorphism

ϑp,j : [Cp ⊗L
Zp CL,S(r)] ' 1Cp[G]

in V (Cp[G]). After extending scalars to Cp, the isomorphisms (6.6), ϑ−1
p and ϑ∞ likewise

induce an isomorphism

ϑ′p,j : [Cp ⊗L
Zp CL,S(r)] ' 1Cp[G]
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in V (Cp[G]). Taking [BF01, Remark 4] into account, we see that the class of the pair

([CL,S(r)], ϑp,j) in π0(V (Zp[G],Cp)) maps to −Ωj
r,S under the isomorphism (6.5), whereas

([CL,S(r)], ϑ′p,j) corresponds to j∗(RΩ(Q(r)L,Z[G])). Unwinding the definitions of ϑp,j
and ϑ′p,j one sees that both isomorphisms almost coincide. The only difference rests on
the following.

Let Λ be a noetherian ring and let φ : P → P be an automorphism of a finitely

generated projective Λ-module P . Consider the complex C : P
φ→ P , where P is placed

in degree 0 and 1. Then there a two isomorphisms [C] ' 1Λ induced by τ[P ] and the
acyclicity of C, respectively. Now for every finite place v ∈ S, there appears such an
acyclic complex of Qp[Gw]-modules in the construction of RΩ(Q(r)L,Z[G]). Namely, if
v - p this is the complex RΓf (Lw,Qp(r)) which is canonically quasi-isomorphic to

Qp[Gw]
1−φwN(v)−r

// Qp[Gw]

with terms in degree 0 and 1 (see [BF01, (19)]). If v divides p, this complex appears as
the rightmost complex in [BF01, (22)] and is given by

DLw
cris(Qp(r))

1−φcris // DLw
cris(Qp(r)),

where DLw
cris(Qp(r)) := H0(Lw, Bcris ⊗Qp Qp(r)) naturally identifies with the maximal

unramified subextension of Lw and φcris denotes the Frobenius on the crystalline period
ring Bcris. Burns and Flach choose the isomorphisms induced by the corresponding τ ’s,
whereas we have implicitly used the acyclicity of these complexes. For each such v this
gives rise to an Euler factor εv(r) (for more details we refer the reader to [BF98, §2];
though the authors consider a slightly different situation, the arguments naturally carry
over to the case at hand). This discussion gives an equality

j∗ (RΩ(Q(r)L,Z[G])) = −Ωj
r,S + j∗

(
∂̂

(∏
v∈S

εv(r)

))
.

Thus TΩ(Q(r)L,Z[G])p and TΩ(L/K, r)p have the same image under the injective map
K0(Zp[G],Qp)→ K0(Zp[G],Cp). �

7. Annihilating wild kernels

7.1. Generalised adjoint matrices. Let G be a finite group and let p be a prime. Let
Mp(G) be a maximal Zp-order such that Zp[G] ⊆Mp(G) ⊆ Qp[G]. Let e1, . . . , et be the
central primitive idempotents of Qp[G]. Then each Wedderburn component Qp[G]ei is
isomorphic to an algebra of mi ×mi matrices over a skewfield Di and Fi := ζ(Di) is a
finite field extension of Qp. We denote the Schur index of Di by si so that [Di : Fi] = s2

i

and put ni := mi · si. We let Oi be the ring of intgers in Fi.
Choose n ∈ N and let H ∈Mn×n(Mp[G]). Then we may decompose H into

H =
t∑
i=1

Hi ∈Mn×n(Mp(G)) =
t⊕
i=1

Mn×n(Mp(G)ei),

where Hi := Hei. The reduced characteristic polynomial fi(X) =
∑nin

j=0 αijX
j of Hi has

coefficients in Oi. Moreover, the constant term αi0 is equal to NrdQp[G](Hi) · (−1)nin. We
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put

H∗i := (−1)nin+1 ·
nin∑
j=1

αijH
j−1
i , H∗ :=

t∑
i=1

H∗i .

Note that this definition of H∗ differs slightly from the definition in [Nic10, §4], but
follows the conventions in [JN13]. Let 1n×n denote the n× n identity matrix.

Lemma 7.1. We have H∗ ∈Mn×n(Mp(G)) and H∗H = HH∗ = NrdQp[G](H) · 1n×n.

Proof. The first assertion is clear by the above considerations. Since fi(Hi) = 0, we find
that

H∗i ·Hi = Hi ·H∗i = (−1)nin+1(−αi0) = NrdQp[G](Hi),

as desired (see also [JN13, Lemma 3.4]). �

7.2. Denominator ideals. We define

Hp(G) := {x ∈ ζ(Zp[G]) | xH∗ ∈Mn×n(Zp[G])∀H ∈Mn×n(Zp[G])∀n ∈ N},
Ip(G) := 〈NrdQp[G](H) | H ∈Mn×n(Zp[G]), n ∈ N〉ζ(Zp[G]).

Since x · NrdQp[G](H) = xH∗H ∈ ζ(Zp[G]) by Lemma 7.1, in particular we have

(7.1) Hp(G) · Ip(G) = Hp(G) ⊆ ζ(Zp[G]).

Hence Hp(G) is an ideal in the commutative Zp-order Ip(G). We will refer to Hp(G)
as the denominator ideal of the group ring Zp[G]. The following result determines the
primes p for which the denominator ideal Hp(G) is best possible.

Proposition 7.2. We have Hp(G) = ζ(Zp[G]) if and only if p does not divide the order
of the commutator subgroup G′ of G. Furthermore, when this is the case we have that
Ip(G) = ζ(Zp[G]).

Proof. The first assertion is a special case of [JN13, Proposition 4.8]. The second assertion
follows from (7.1). �

7.3. A canonical fractional Galois ideal. Let L/K be a finite Galois extension of
number fields with Galois group G and let r > 1 be an integer. Let p 6= 2 be a prime
and let S be a finite set of places of K containing Sram ∪ S∞ ∪ Sp. Recall the notation of
§6.1. As p is odd, the Zp[G]-module

Yr :=
(
H+

1−r(L)⊕H+
−r(L)

)
⊗ Zp

is projective. We also observe that P 1(OL,S,Zp(r))tf does not depend on S by Lemma
3.1 and the fact that K2r−1(Ow;Zp) is finite for each w 6∈ Sp(L). We let

E(αr) :=
{
γ ∈ EndQp[G](Yr ⊗Zp Qp) | expBKr α−1

r γ(Yr) ⊆ P 1(OL,S,Zp(r))tf

}
,

E(αr) := 〈NrdQp[G](γ) | γ ∈ E(αr)〉ζ(Zp[G]) ⊆ ζ(Qp[G]).

Now suppose that Schneider’s conjecture 3.4 holds. Then we have the short exact se-
quence (6.2) and we may choose a Qp[G]-equivariant splitting σr of this sequence:

σr : P 1(OL,S,Qp(r))
'−→ H1

ét(OL,S,Qp(r))⊕H2
c (OL,S,Qp(r)).

We let

σ1
r : P 1(OL,S,Qp(r)) −→ H1

ét(OL,S,Qp(r))
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be the composite map of σr and the projection onto the first component. We put

F (φ1−r, σr) := {δ ∈ EndQp[G](H
+
1−r(L)⊗Qp) |

δφ−1
1−r(ch

(p)
r,1)−1σ1

r

(
P 1(OL,S,Zp(r))tf

)
⊆ H+

1−r(L)⊗ Zp},
F(φ1−r) := 〈NrdQp[G](δ) | δ ∈ F (φ1−r, σr) for some choice of σr〉ζ(Zp[G]) ⊆ ζ(Qp[G]).

Recall that φr = (φ1−r ⊕ idH+
−r(L)) ◦ αr.

Proposition 7.3. Let L/K be a finite Galois extension of number fields with Galois
group G and let r > 1 be an integer. Let p 6= 2 be a prime and let S be a finite set
of places of K containing Sram ∪ S∞ ∪ Sp. Suppose that Schneider’s Conjecture 3.4 and
Gross’ Conjecture (Conjecture 5.4) both hold. Then with the notation above

J S
r = J S

r (L/K, p) := E(αr)F(φ1−r) ·
(
(ASφr)

−1
)] ⊆ ζ(Qp[G])

only depends upon L/K, p, r and S. We call J S
r the canonical fractional Galois

ideal.

Proof. Suppose that α′r is a second choice of Q[G]-isomorphism as in (6.1). Let φ′r :=
(φ1−r ⊕ idH+

−r(L)) ◦ α′r. Then we have a bijection

E(αr) −→ E(α′r)

γ 7→ α′rα
−1
r γ

which implies E(αr) = NrdQp[G](αr(α
′
r)
−1)E(α′r). Now (6.4) implies that J S

r does not
depend on the choice of αr. The argument for φ1−r is similar. �

Example 7.4. Suppose that L/K is an extension of totally real fields and that r is even.
Then the conjectures of Schneider and Gross both hold by Theorem 3.9 and Theorem
5.2, respectively. We have that H+

1−r(L) vanishes by (2.5) and thus F(φ1−r) = ζ(Zp[G]).
Moreover, we have Yr = H+

−r(L)⊗ Zp and αr = φr. We conclude that we have

J S
r = E(φr) ·

(
(ASφr)

−1
)] ⊆ ζ(Qp[G])

unconditionally. We also have(
(ASφr)

−1
)]

= L∗S(r) · NrdC[G](ιrφ
−1
r ).

Put d := [K : Q] and fix an isomorphism j : C ' Cp. We observe that ιr = (2πi)−rµr ◦ ι0
and that µr(H0(L)⊗ Zp) = Yr. We let

E ′ :=
{
γ′ ∈ EndQp[G](H0(L)⊗Qp) | expBKr ι−1

0 γ′(H0(L)⊗ Zp) ⊆ P 1(OL,S,Zp(r))tf

}
and obtain (substitute γ′ by µ−1

r ιrφ
−1
r γµr)

J S
r = NrdCp[G](j(2πi)

−r)d · 〈NrdQp[G](γ
′) | γ′ ∈ E ′〉ζ(Zp[G]) · j(L∗S(r)).

Now suppose in addition that L/K is abelian. The inverse of the Bloch–Kato exponential
map and ι0 ⊗j Cp induce a map

P 1(OL,S,Qp(r)) −→ H0(L)⊗ Cp

which in turn induces a regulator map

s
(j)
S,r :

d∧
Zp[G]

P 1(OL,S,Zp(r)) −→
d∧

Cp[G]

(H0(L)⊗ Cp) ' Cp[G].
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It is then not hard to show that

J S
r = j(2πi)−rd · Im(s

(j)
S,r) · j(L

∗
S(r))

= j

(
i

π

)rd
· Im(s

(j)
S,r) · j(L

∗
S(r)),

where the second equality holds, since p is odd and r is even. This shows that in this
case the canonical fractional Galois ideal J S

r coincides with the ‘Higher Solomon ideal’
of Barrett [Bar09, Definition 5.3.1]. When L/K is a CM-extension and r is odd, similar
observations hold on minus parts.

Example 7.5. Let L/K be a Galois extension of totally real fields, but now we assume that
r is odd. Then (2.5) implies that H+

−r(L) vanishes and that we have Yr = H+
1−r(L)⊗ Zp.

We assume that Schneider’s conjecture holds so that the natural localization maps induce
an isomorphism of Qp[G]-modules

H1
ét(OL,S,Qp(r))

'−→ P 1(OL,S,Qp(r))

by Propositions 3.8 and 3.12(v). We let σr = σ1
r be the inverse of this isomorphism. We

set τr := (ch
(p)
r,1)−1σ1

r expBKr , which is an isomorphism L⊗Q Qp ' K2r−1(OL,S)⊗Qp, and
define

G(φ1−r, αr) := {γ ∈ EndQp[G](Yr ⊗Zp Qp) | φ−1
1−rτrα

−1
r γ (Yr) ⊆ Yr},

G(φ1−r, αr) := 〈NrdQp[G](γ) | γ ∈ G(φ1−r, αr)〉ζ(Zp[G]) ⊆ ζ(Qp[G])

= E(αr) · F(φ1−r),

where the last equality follows easily from the definitions. Clearly, the set G(φ1−r, αr)
contains γr := αrτ

−1
r φ1−r and hence NrdQp[G](γr) ∈ G(φ1−r, αr). Conversely, for every

γ ∈ G(φ1−r, αr) we have that NrdQp[G](γ
−1
r γ) ∈ Ip(G). In other words, we have an

equality

G(φ1−r, αr) · Ip(G) = NrdQp[G](γr) · Ip(G).

Define a Cp[G]-automorphism of H+
1−r(L)⊗Cp by ϑ

(j)
r := ρrτrι

−1
r , where we extend scalars

via the isomorphism j : C ' Cp on the right hand side. Noting that Hp(G) is an ideal in
Ip(G), we compute

Hp(G) · J S
r = Hp(G) · NrdQp[G](γr) ·

(
(ASφr)

−1
)]

= Hp(G) · NrdCp[G](ϑ
(j)
r ) · j(L∗S(r)).

If L/K is a CM-extension and r is even, similar observations again hold on minus parts.

7.4. The annihilation conjecture. Let L/K be a finite Galois extension of number
fields with Galois group G and let r > 1 be an integer. Let p 6= 2 be a prime and let S be
a finite set of places of K containing Sram∪S∞∪Sp. Suppose that Schneider’s Conjecture
3.4 and Gross’ Conjecture (Conjecture 5.4) both hold.

Conjecture 7.6. For every x ∈ AnnZp[G](Zp(r − 1)GL) we have that

NrdQp[G](x) · Hp(G) · J S
r ⊆ AnnZp[G](K

w
2r−2(OL,S)p).

Remark 7.7. The Zp[G]-annihilator of Zp(r − 1)GL ' (Qp/Zp(1− r)GL)∨ is generated by
the elements 1−φwN(v)1−r, where v runs through the finite places of K with v 6∈ Sram∪Sp
(cf. [Coa77]). Moreover, if L/K is totally real and r is even, then Zp(r − 1)GL vanishes.
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Remark 7.8. If p does not divide the order of the commutator subgroup of G, then we
have Hp(G) = ζ(Zp[G]) by Proposition 7.2. In particular, if G is abelian, then Conjecture
7.6 simplifies to the assertion

AnnZp[G](Zp(r − 1)GL) · J S
r ⊆ AnnZp[G](K

w
2r−2(OL,S)p).

Taking Example 7.4 and Remark 7.7 into account, we see that our conjecture is compatible
with [Bar09, Conjecture 5.3.4].

Remark 7.9. The author also expects that for every x ∈ AnnZp[G](Zp(r − 1)GL) we have
that

(7.2) NrdQp[G](x) · J S
r ⊆ Ip(G).

Then (7.1) implies that the left hand side in Conjecture 7.6 belongs to ζ(Zp[G]).

Lemma 7.10. Let S ′ be a second finite set of places of K such that S ⊆ S ′.

(i) If Conjecture 7.6 holds for S, then it holds for S ′ as well.
(ii) If (7.2) holds for S, then it holds for S ′ as well.

Proof. Recall from Remark 2.7 that the p-adic wild kernel does not depend on S. Thus
(i) follows once we have shown that

(7.3) Hp(G) · J S′

r ⊆ Hp(G) · J S
r .

By definition we have

J S′

r = J S
r ·

 ∏
v∈S′\S

εv(r)
−1

]

.

However, each εv(r)
−1 = NrdQp[G](1− φwN(v)−r) belongs to Ip(G) as for v 6∈ S we have

v - p and thus N(v) ∈ Z×p . This implies (ii) and also (7.3) by (7.1). �

7.5. Noncommutative Fitting invariants. We briefly recall the definition and some
basic properties of noncommutative Fitting invariants introduced in [Nic10] and further
developed in [JN13].

Let G be a finite group and let p be a prime. Let N and M be two ζ(Zp[G])-submodules
of a Zp-torsion-free ζ(Zp[G])-module. Then N and M are called Nrd-equivalent if there
exists an integer n and a matrix U ∈ GLn(Zp[G]) such that N = NrdQp[G](U) ·M . We
denote the corresponding equivalence class by [N ]. We say that N is Nrd-contained in M
(and write [N ] ⊆ [M ]) if for all N ′ ∈ [N ] there exists M ′ ∈ [M ] such that N ′ ⊆M ′. Note
that it suffices to check this property for one N0 ∈ [N ]. We will say that x is contained
in [N ] (and write x ∈ [N ]) if there is N0 ∈ [N ] such that x ∈ N0.

Now let M be a finitely presented Zp[G]-module and let

(7.4) Zp[G]a
h−→ Zp[G]b −→M −→ 0

be a finite presentation of M . We identify the homomorphism h with the corresponding
matrix in Ma×b(Zp[G]) and define S(h) = Sb(h) to be the set of all b × b submatrices of
h if a ≥ b. In the case a = b we call (7.4) a quadratic presentation. The Fitting invariant
of h over Zp[G] is defined to be

FittZp[G](h) =

{
[0] if a < b[
〈NrdQp[G](H)|H ∈ S(h)〉ζ(Zp[G])

]
if a ≥ b.

We call FittZp[G](h) a (noncommutative) Fitting invariant of M over Zp[G]. One defines
Fittmax

Zp[G](M) to be the unique Fitting invariant of M over Zp[G] which is maximal among
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all Fitting invariants of M with respect to the partial order “⊆”. If M admits a quadratic
presentation h, one also puts FittZp[G](M) := FittZp[G](h) which is independent of the
chosen quadratic presentation. The following result is [Nic10, Theorem 4.2].

Theorem 7.11. If M is a finitely presented Zp[G]-module, then

Hp(G) · Fittmax
Zp[G](M) ⊆ AnnZp[G](M).

Lemma 7.12. Let C• ∈ Dperf(Zp[G]) be a perfect complex such that H i(C•) is finite for all
i ∈ Z and vanishes if i 6= 2, 3. Choose L ∈ ζ(Qp[G])× such that ∂p(L) = χZp[G],Qp(C

•, 0).
Then we have an equality

Fittmax
Zp[G]((H

2(C•))∨)] = Fittmax
Zp[G](H

3(C•)) · L.

Proof. This is an obvious reformulation of [Nic11a, Lemma 4.4] (with a shift by 2). �

7.6. The relation to the leading term conjecture. The aim of this subsection is
to prove the following theorem which describes the relation of Conjecture 7.6 to the
leading term conjecture at s = r and thus also to the ETNC for the pair (Q(r)L,Z[G])
by Theorem 6.5.

Theorem 7.13. Let L/K be a finite Galois extension of number fields with Galois group
G. Let r > 1 be an integer and let p be an odd prime. Suppose that the leading term
conjecture at s = r (Conjecture 6.1) holds for L/K at p. Then Conjecture 7.6 is also
true.

Corollary 7.14. Fix an odd prime p and suppose that L is abelian over Q. Then the
leading term conjecture at s = r and Conjecture 7.6 both hold for almost all r > 1 (and
all even r if L is totally real).

Proof. As L/Q is abelian, the ETNC for the pair (Q(r)L,Z[G]) holds for all r ∈ Z by
work of Burns and Flach [BF06]. Now fix an odd prime p. Then Schneider’s conjecture
holds for almost all r by Remark 3.6 and for all even r > 1 if L is totally real by Theorem
3.9. Thus the result follows from Theorem 6.5 and Theorem 7.13. �

Proof of Theorem 7.13. Recall the notation from §7.3. Let γ ∈ E(αr), δ ∈ F (φ1−r, σr)
and x ∈ AnnZp[G](Zp(r − 1)GL). We have to show that

(7.5) Hp(G)·NrdQp[G](x)·NrdQp[G](γ)·NrdQp[G](δ)·
(
(ASφr)

−1
)] ⊆ AnnZp[G](K

w
2r−2(OL,S)p).

As the reduced norm is continuous for the p-adic topology, we may and do assume that
γ and δ are Qp[G]-automorphisms (and not just endomorphisms). By the definition of
E(αr) we therefore get an injection

(7.6) expBKr α−1
r γ : Yr −→ P 1(OL,S,Zp(r))tf

which we may lift to an injection

ηr : Yr −→ P 1(OL,S,Zp(r)),
since Yr is a projective Zp[G]-module. Likewise, by the definition of F (φ1−r, σr) we obtain
a map

(7.7) δφ−1
1−r(ch

(p)
r,1)−1σ1

r : P 1(OL,S,Zp(r))tf −→ H+
1−r(L)⊗ Zp.

We may therefore define a Zp[G]-homomorphism

ξr : Yr −→ (H+
1−r(L)⊗ Zp)⊕H2

c (OL,S,Zp(r))
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such that the projection onto H2
c (OL,S,Zp(r)) is the composition of ηr and the natural

map P 1(OL,S,Zp(r)) → H2
c (OL,S,Zp(r)), whereas the projection onto H+

1−r(L) ⊗ Zp is
given by the composite map of (7.6) and (7.7). We then have an equality

(7.8) ξr ⊗Zp Qp = (δ ⊕ idH2
c (OL,S ,Qp(r)))t(ψr, σr, S)γ

which implies that ξr is injective.
The perfect complex CL,S(r) is isomorphic in D(Zp[G]) to a complex A→ B of Zp[G]-

modules of finite projective dimension, where A is placed in degree 2. Choose n ∈ N
such that pnγ(Yr) ⊆ Yr. As Yr is projective, we may construct the following commutative
diagram of Zp[G]-modules with exact rows and columns.

Yr� _

ξr
��

Yr� _

��

0 // Yr� _

��

Yr� _

pnγ
��

(H+
1−r(L)⊗ Zp)⊕H2

c (OL,S,Zp(r)) �
� //

����

A //

����

B // //

����

H3
c (OL,S,Zp(r))⊕ Yr

����
cok(ξr)

� � // A′ // B′ // // H3
c (OL,S,Zp(r))⊕ cok(pnγ)

The arrow A′ → B′ defines a complex C ′ in Dperf(Zp[G]) (where we place A′ in degree
2; note that C ′ depends on a lot of choices which we suppress in the notation). The
cohomology groups of this complex are finite and vanish outside degrees 2 and 3. Thus

the zero map is the unique trivialization of this complex. Likewise the arrow Yr
0→ Yr

defines the complex Yr{2, 3} in Dperf(Zp[G]) and we choose tδ,n := pn(δ−1 ⊕ idH+
−r(L)⊗Qp)

as a trivialization. Using equation (7.8) we compute

−∂p(ASφr)
] = χZp[G],Qp(CL,S(r), t(ψr, σr, S))

= χZp[G],Qp(C
′, 0) + χZp[G],Qp(Yr{2, 3}, tδ,n)

= χZp[G],Qp(C
′, 0) + ∂p(NrdQp[G](tδ,n)),

where the first equality is Conjecture 6.1. Now Lemma 7.12 implies the first equality in
the following computation.

Fittmax
Zp[G](cok(ξr)

∨)] = Fittmax
Zp[G](H

3
c (OL,S,Zp(r))⊕ cok(pnγ)) ·

(
(ASφr)

]NrdQp[G](tδ,n)
)−1

⊇ Fittmax
Zp[G]

(
H3
c (OL,S,Zp(r))

)
· FittZp[G](cok(pnγ)) ·(

(ASφr)
]NrdQp[G](tδ,n)

)−1

= Fittmax
Zp[G]

(
H3
c (OL,S,Zp(r))

)
· NrdQp[G](p

nγ) ·(
(ASφr)

]NrdQp[G](tδ,n)
)−1

= Fittmax
Zp[G]

(
H3
c (OL,S,Zp(r))

)
· NrdQp[G](γ) · NrdQp[G](δ) ·(

(ASφr)
]
)−1

3 NrdQp[G](x) · NrdQp[G](γ) · NrdQp[G](δ) ·
(
(ASφr)

]
)−1

.

The inclusion follows from [Nic10, Proposition 3.5]. The second equality holds, since
pnγ : Yr → Yr is a quadratic presentation of cok(pnγ). The definition of tδ,n gives the
third equality. Finally, the Zp[G]-module H3

c (OL,S,Zp(r)) is cyclic by Proposition 3.12
(ii) and thus NrdQp[G](x) belongs to its maximal Fitting invariant by [JN13, Theorem



28 ANDREAS NICKEL

3.1(i) and Theorem 5.1(i)]. As AnnZp[G](cok(ξr)
∨)] equals AnnZp[G](cok(ξr)), Theorem

7.11 implies that

(7.9) Hp(G) · NrdQp[G](x) · NrdQp[G](γ) · NrdQp[G](δ) ·
(
(ASφr)

−1
)] ⊆ AnnZp[G](cok(ξr)).

However, the composition of ξr and the projection onto H2
c (OL,S,Zp(r)) factors through

P 1(OL,S,Zp(r)) via ηr and thus there is a surjection of cok(ξr) onto

(7.10) cok
(
P 1(OL,S,Zp(r))→ H2

c (OL,S,Zp(r))
)
'X2(OL,S,Zp(r)) ' Kw

2r−2(OL,S)p,

where the last isomorphism is Proposition 3.12 (iv). Now (7.9) and (7.10) imply (7.5). �

Remark 7.15. The proof also shows that Conjecture 6.1 implies the containment (7.2).

7.7. The relation to a conjecture of Burns, Kurihara and Sano. Let L/K be an
abelian extension of number fields with Galois group G and let r be an integer. In [BKS]
the authors define a certain ideal in terms of ‘generalized Stark elements of weight −2r’
(in particular, this involves the equivariant L-value L∗S(r)) and conjecture that this ideal
coincides with the initial Fitting ideal of H2

ét(OL,S,Zp(1 − r)). In this final subsection,
we will explain the relation of their conjecture to our Conjecture 7.6 if r > 1.

So let us henceforth assume that r > 1. Fix a second finite set T of places of K, which
is disjoint from S. Following [BKS, §3.2] we define RΓT (OL,S,Zp(1− r)) to be a complex
that lies in an exact triangle in the derived category D(Zp[G]) of the form

(7.11) RΓT (OL,S,Zp(1− r))→ RΓ(OL,S,Zp(1− r))→
⊕

w∈T (L)

RΓ(L(w),Zp(1− r)),

where the second arrow is induced by the natural morphism. For each i ∈ Z we abbreviate
H iRΓT (OL,S,Zp(1− r)) by H i

T (OL,S,Zp(1− r)).
The conjecture of Burns, Kurihara and Sano [BKS, Conjecture 3.5] concerns the ini-

tial Fitting ideal and thus also the annihilator ideal of the finite cohomology group
H2
T (OL,S,Zp(1− r)). In order to relate their conjecture to ours, we have to determine the

relation between this cohomolgy group and the wild kernel Kw
2r−2(OL,S)p. Artin-Verdier

duality and the triangle (7.11) give an exact triangle in D(Zp[G]) of the form

(7.12)
⊕

w∈T (L)

RΓ(L(w),Zp(1− r))→ C•S,T (r)→ D•S(r)

(see [BF03, (6)] or [BKS, §4.1]), where we have set

C•S,T (r) := RΓT (OL,S,Zp(1− r))[1]⊕ (H+
r (L)⊗ Zp)[−1];

D•S(r) := RHomZp(RΓc(OL,S,Zp(r)),Zp)[−2].

For any Zp-module M we write M∗ for its Zp-linear dual. We henceforth assume that
Schneider’s conjecture holds. Then Proposition 3.12 implies that H1

c (OL,S,Zp(r)) '
H+
−r(L) ⊗ Zp is Zp[G]-projective. Thus the complex D•S(r) is acyclic outside degrees 0

and 1 and we have canonical isomorphisms of Zp[G]-modules

H0(D•S(r))tor ' H3
c (OL,S,Zp(r))∨,

H0(D•S(r))tf ' H2
c (OL,S,Zp(r))∗,

H1(D•S(r)) ' (H2
c (OL,S,Zp(r))tor)

∨ ⊕ (H+
r (L)⊗ Zp).

In particular, the triangle (7.12) yields a right exact sequence of Zp[G]-modules⊕
w∈T (L)

Zp(r − 1)Gw → H2
T (OL,S,Zp(1− r))→ (H2

c (OL,S,Zp(r))tor)
∨ → 0.



ANNIHILATING WILD KERNELS 29

Moreover, we have a surjection

H2
c (OL,S,Zp(r)) � Kw

2r−2(OL,S)p

by Proposition 3.12(iv). Thus [BKS, Conjecture 3.5] and our conjecture predict annihi-
lators of the torsion subgroup and a finite quotient of H2

c (OL,S,Zp(r)), respectively. In
order to compare the two conjectures we will hence assume that H2

c (OL,S,Zp(r)) is finite
so that we have an inclusion

(7.13) AnnZp[G](H
2
T (OL,S,Zp(1− r)))] ⊆ AnnZp[G](K

w
2r−2(OL,S)p).

By Proposition 3.12(v) and (2.5) this implies that L is totally real and that r is odd.
Since H+

−r(L) vanishes in this case, the wedge product which occurs in [BKS, Conjecture
3.5] is empty (see [BKS, Hypothesis 2.2]) so that this conjecture predicts that the initial
Fitting ideal of H2

T (OL,S,Zp(1 − r)) is generated by an element ηL/K,S,T (r) as defined
in [BKS, §2.2]. By its very definition (and taking [BKS, Remark 2.5] into account) this
element is given by

ηL/K,S,T (r)] =

(∏
v∈T

(1− φwN(v)1−r)

)
· NrdCp[G](ϑ

(j)
r ) · j(L∗S(r)).

Now the inclusion (7.13), Remark 7.7 and Example 7.5 imply the following result.

Proposition 7.16. Let L/K be an abelian extension of totally real fields and let r > 1 be
an odd integer. Assume that Schneider’s Conjecture 3.4 and Gross’ Conjecture 5.1 both
hold. Then [BKS, Conjecture 3.5] for all T implies Conjecture 7.6.

Remark 7.17. The conjecture of Burns, Kurihara and Sano indeed involves the choice
of a certain idempotent ε of Zp[G]. Under the hypotheses of Proposition 7.16 it suffices
to consider their conjecture for ε = 1 (which implies their conjecture for all admissible
idempotents). However, we point out that in general 1 is not an admissible idempotent.
For instance, this happens if L/K is a CM-extension. If we further assume that r is even,
then e− := (1 − c)/2 is admissible, where c ∈ G denotes complex conjugation. In this
case e−H2

c (OL,S,Zp(r)) is finite and one can formulate an analogue of Proposition 7.16
on minus parts.
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(2) 4 (1992), no. 2, 263–271. MR 1208865

[NSW08] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, second ed.,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026 (2008m:11223)

[Qui72] D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field,
Ann. of Math. (2) 96 (1972), 552–586. MR 0315016 (47 #3565)

[Rei03] I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28,
The Clarendon Press Oxford University Press, Oxford, 2003, Corrected reprint of the 1975
original, With a foreword by M. J. Taylor. MR 1972204 (2004c:16026)

[Sch79] P. Schneider, Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979), no. 2, 181–205.
MR 544704 (81i:12010)
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