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Abstract. Let p be a prime and let G be a finite group. By a celebrated theorem
of Swan, two finitely generated projective Zp[G]-modules P and P ′ are isomorphic if
and only if Qp ⊗Zp

P and Qp ⊗Zp
P ′ are isomorphic as Qp[G]-modules. We prove an

Iwasawa-theoretic analogue of this result and apply this to the Iwasawa theory of local
and global fields. We thereby determine the structure of natural Iwasawa modules up
to (pseudo-)isomorphism.

1. Introduction

Let p be a prime and let G be a profinite group. We denote the complete group algebra
of G over Zp by Λ(G). In classical Iwasawa theory one studies modules over Λ(Γ) with
Γ ' Zp up to pseudo-isomorphism. Jannsen [Jan89] has proposed a method for studying
Λ(G)-modules up to isomorphism, which in fact works for more general G.

In equivariant Iwasawa theory one is often concerned with the case where G is a one-
dimensional p-adic Lie group. Then G may be written as a semi-direct product H o Γ
with a finite normal subgroup H and Γ ' Zp. Jannsen’s theory works particularly nice if
G = H × Γ is a direct product and p does not divide the cardinality of H (see [NSW08,
Chapter XI, §2 and §3]).

As a concrete example, let L/K be a finite Galois extension of p-adic fields with Galois
group H, where a p-adic field shall always mean a finite extension of Qp in this article. Let
L∞ be the cyclotomic Zp-extension of L. We denote the n-th layer of the Zp-extension
L∞/L by Ln as usual. Assume that p does not divide |H| so that G := Gal(L∞/K)
decomposes into a direct product H × Γ with Γ ' Zp. Let us denote the group of
principal units in a local field F by U1(F ) and consider the inverse limit

U1(L∞) := lim←−
n

U1(Ln),

where the transition maps are given by the norm maps. Moreover, we let XL∞ be the
Galois group over L∞ of the maximal abelian pro-p-extension of L∞. Then both U1(L∞)
and XL∞ are finitely generated Λ(G)-modules. If L contains a primitive p-th root of unity,
then by [NSW08, Theorems 11.2.3 and 11.2.4] there are (non-canonical) isomorphisms of
Λ(G)-modules

(1.1) XL∞ ' U1(L∞) ' Zp(1)⊕ Λ(G)[K:Qp]

and without the Zp(1)-term otherwise. Similar statements in fact hold for more arbitrary
Zp-extensions of L. However, this does not remain true if G contains an element of order
p (this follows from the results recalled in §4.1 and in particular from sequence (4.1), since
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Zp then has infinite projective dimension as a Λ(G)-module). In this case, the structure
of these Λ(G)-modules has not yet been determined, although this is a very natural and
important question of Iwasawa theory.

Now let H be arbitrary, but assume for simplicity in the introduction that G = H × Γ
is a direct product. Recall that a homomorphism of finitely generated Λ(Γ)-modules is
a pseudo-isomorphism if and only if for every height 1 prime ideal p of Λ(Γ) it becomes
an isomorphism after localization at p. We will show that (1.1) remains true after local-
ization at such a prime ideal p. This is of independent interest, but we point out that
our motivation originates from the equivariant Iwasawa main conjecture for local fields
formulated by the author in [Nic]. The inverse limit of the principal units along the un-
ramified Zp-tower naturally appears as a cohomology group of a certain perfect complex
of Λ(G)-modules, which plays a key role in the formulation of this conjecture. It has
been shown [Nic, Corollary 6.7] that it suffices to prove the conjecture after localization
at the height 1 prime ideal (p). For this reason we are interested in the Λ(p)(G)-module
structure of the localization of U1(L∞) at (p), where for any height 1 prime ideal p we
denote the localization of Λ(G) at p by Λp(G).

Our method is not restricted to the local case. We also consider finite Galois extensions
L/K of number fields and the cyclotomic Zp-extension L∞ of L. Then G := Gal(L∞/K)
is again a one-dimensional p-adic Lie group. Let S be a finite set of places of K containing
all the archimedean places and all places that ramify in L∞/K. We then determine the
Λp(G)-module structure of the inverse limit of the (p-completion of the) S-units, localized
at p. We also consider the natural Iwasawa module XS, the Galois group over L∞ of the
maximal abelian pro-p-extension unramified outside S.

Our method has two main ingredients: The homotopy theory of Iwasawa modules
developed by Jannsen [Jan89] and, as a new ingredient, an Iwasawa-theoretic analogue
of a theorem of Swan [Swa60]. The latter states that for a finite group G two projective
Zp[G]-modules P and P ′ are isomorphic if and only if Qp ⊗Zp P and Qp ⊗Zp P

′ are
isomorphic as Qp[G]-modules. Accordingly, we prove that two finitely generated projective
Λp(G)-modules are isomorphic if and only if this is true after base change to Q(G), the
total ring of fractions of Λ(G) and thus also of Λp(G). This then allows us to compute
the projective summands of our Iwasawa modules.

If G = H × Γ is a direct product, then our result is an easy consequence of Swan’s
original theorem. This is because then Λ(G) is obtained from the group ring Zp[H] by
extension of scalars. However, the case of a semi-direct product is much harder, and in
fact our result cannot be directly deduced from Swan’s theorem or even from a more
general result due to Hattori [Hat65] (see Remark 2.13 for details).

One method of proving Swan’s theorem is via the Cartan–Brauer triangle, since the
Cartan map is injective in this case by a theorem of Brauer. This method may be found
in [CR81, §21] and we largely follow this approach. In fact, we construct a ‘Cartan–
Brauer square’ in a rather abstract situation and show that the injectivity of the Cartan
map always implies a result in the style of Swan’s theorem. The case of localized Iwa-
sawa algebras is then implied by a theorem of Ardakov and Wadsley [AW10] on the
Cartan map of crossed product algebras. As a by-product we deduce the surjectivity of
certain connecting homomorphisms that appear in relative K-theory of Iwasawa algebras.

This article is organized as follows. In §2 we first construct the Cartan–Brauer square, a
generalization of the Cartan–Brauer triangle in the case of group rings. We then propose
an abstract version of Swan’s theorem (Corollary 2.7). Viewing the localized Iwasawa
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algebras as crossed products allows us to deduce our Iwasawa-theoretic analogue of Swan’s
theorem from the aforementioned result of Ardakov and Wadsley (see Corollary 2.12).
In §3 we review the homotopy theory of Iwasawa modules and prove several auxiliary
results for later use. In §4 we study the Iwasawa theory of local fields. In particular,
our analogue of Swan’s theorem allows us to show that (1.1) remains true for arbitrary
one-dimensional p-adic Lie extensions of K after localization at an arbitrary height 1
prime ideal. Finally, we consider cyclotomic Zp-extensions of number fields in §5, where
we prove analogues of [NSW08, Theorem 11.3.11] for arbitrary one-dimensional p-adic
Lie extensions containing the cyclotomic Zp-extension.

Acknowledgements. The author acknowledges financial support provided by the Deut-
sche Forschungsgemeinschaft (DFG) within the Heisenberg programme (No. NI 1230/3-
1). I thank Henri Johnston for his valuable comments on an earlier version of this article
and the referee for his/her careful reading of this manuscript.

Notation and conventions. All rings are assumed to have an identity element and all
modules are assumed to be left modules unless otherwise stated. If K is a field, we denote
its absolute Galois group by GK . If R is a ring and M is an R-module, we let pdR(M)
be the projective dimension of M over R.

2. A generalization of Swan’s theorem

2.1. Grothendieck groups. For further details and background on Grothendieck groups
and algebraic K-theory used in this section, we refer the reader to [CR87] and [Swa68].
Let Λ be a noetherian ring and Mod(Λ) be the category of all Λ-modules. We denote
the full subcategories of all finitely generated and finitely generated projective Λ-modules
by Modfg(Λ) and PMod(Λ), respectively. We let G0(Λ) and K0(Λ) be the Grothendieck
groups of Modfg(Λ) and PMod(Λ), respectively (see [CR87, §38]). The natural inclusion
functor PMod(Λ)→ Modfg(Λ) induces a homomorphism

c : K0(Λ) −→ G0(Λ)

which is called the Cartan map or the Cartan homomorphism. We recall the following
result (see [CR87, Proposition 38.22]).

Lemma 2.1. Let P, P ′ ∈ PMod(Λ). Then we have [P ] = [P ′] in K0(Λ) if and only if
P ⊕Q ' P ′ ⊕Q for some Q ∈ PMod(Λ).

We write K1(Λ) for the Whitehead group of Λ, which is the abelianized infinite general
linear group (see [CR87, §40]). We denote the relative algebraic K-group corresponding to
a ring homomorphism Λ→ Λ′ by K0(Λ,Λ′). We recall that K0(Λ,Λ′) is an abelian group
with generators [X, g, Y ] where X and Y are finitely generated projective Λ-modules and
g : Λ′ ⊗Λ X → Λ′ ⊗Λ Y is an isomorphism of Λ′-modules; for a full description in terms
of generators and relations, we refer the reader to [Swa68, p. 215]. Furthermore, there is
a long exact sequence of relative K-theory (see [Swa68, Chapter 15])

(2.1) K1(Λ) −→ K1(Λ′)
∂Λ,Λ′−−−→ K0(Λ,Λ′) −→ K0(Λ) −→ K0(Λ′).

2.2. The decomposition map. Let R be a discrete valuation ring with maximal ideal
m and uniformizer π. We denote the field of fractions of R by K and let k := R/m be the
residue field. Let A be a finite dimensional K-algebra and let Λ be an R-order in A. We
put Ω := k⊗R Λ, which is a finite dimensional k-algebra. Note that A and Ω are artinian
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(and thus noetherian) rings so that every finitely generated module has a composition
series and satisfies the Jordan–Hölder theorem [CR81, Theorem 3.11].

We also observe that every finitely generated A-module V contains a full Λ-lattice.
Indeed, if v1, . . . , vm is a K-basis of V , then M :=

∑m
i=1 Λvi is a Λ-submodule of V such

that K ⊗RM = V . As R is a discrete valuation ring, every finitely generated torsionfree
R-module is in fact free, and soM is a full Λ-lattice in V . We putM := M/mM = k⊗RM ,
which is a finitely generated Ω-module.

Proposition 2.2. There is a unique homomorphism of abelian groups

d : G0(A) −→ G0(Ω)

such that for each finitely generated A-module V one has d([V ]) = [M ], where M is any
full Λ-lattice in V .

Definition 2.3. The homomorphism d : G0(A)→ G0(Ω) in Proposition 2.2 is called the
decomposition map.

Proof of Proposition 2.2. The proof is similar to that of [CR81, Proposition 16.17], where
the case of group rings is considered. We repeat the argument for convenience of the
reader.

Let V be a finitely generated A-module and choose a full Λ-lattice M in V . We first
show that the class [M ] in G0(Ω) does not depend on the choice of M . For this let N be
a second full Λ-lattice in V . By [CR81, Proposition 16.6] we have [M ] = [N ] in G0(Ω) if
and only if M and N have the same composition factors. As M +N is also a full lattice
in V , we may assume that N is properly contained in M . Since M is noetherian, we may
in addition assume that N is a maximal Λ-submodule of M . We claim that πM ⊆ N .
Otherwise, the chain of inclusions N ( N +πM ⊆M gives N +πM = M by maximality
of N . Then Nakayama’s Lemma implies N = M , contrary to our assumption. Now
consider the chain of inclusions

πN ⊆ πM ⊆ N ⊆M.

We see that M and N share the composition factors of N/πM . Thus it suffices to
show that M/N and πM/πN have the same composition factors; but this is clear as
multiplication by π induces an isomorphism M/N ' πM/πN .

Now define d by d([V ]) = [M ]. We have to show that d is additive on short exact
sequences. Given a short exact sequence of finitely generated A-modules

0 −→ V1 −→ V2
φ−→ V3 −→ 0,

choose a full Λ-lattice M2 in V2 and define M3 := φ(M2) and M1 := M2 ∩ V1. Then we
have a short exact sequence of Λ-modules

(2.2) 0 −→M1 −→M2
φ−→M3 −→ 0,

and it is not hard to see that M1 and M3 are full Λ-lattices in V1 and V3, respectively.
As M3 is a free R-module, tensoring sequence (2.2) with k preserves exactness so that we
obtain a short exact sequence of Ω-modules

0 −→M1 −→M2 −→M3 −→ 0.

Thus we get
d([V2]) = [M2] = [M1] + [M3] = d([V1]) + d([V3])

as desired. �
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2.3. The Cartan–Brauer square. We denote the radical of a ring S by rad(S). We put
Λ̃ := Λ/rad(Λ) = Ω/rad(Ω). Then Λ̃ is a semisimple artinian ring, and Λ is semiperfect
if and only if every idempotent in Λ̃ is the image of an idempotent in Λ. Note that Ω is
always semiperfect by [CR81, Propositions 6.5 and 6.7].

Remark 2.4. The ring Λ is semiperfect whenever R is complete [CR81, Propositions 6.5
and 6.7] or A is a split semisimple K-algebra [CR81, Exercise 16].

Let us consider the following commutative square

(2.3) K0(Λ)
b //

e

��

K0(Ω)

c

��
G0(A)

d // G0(Ω),

where for P ∈ PMod(Λ) we have b([P ]) = [P ] and e([P ]) = [K ⊗R P ]. We call (2.3) the
Cartan–Brauer square.

Proposition 2.5. The homomorphism b : K0(Λ)→ K0(Ω) is injective. If Λ is semiper-
fect, then b is an isomorphism.

Proof. Let P, P ′ ∈ PMod(Λ) and assume that [P ] = [P ′] in K0(Ω). By Lemma 2.1 there
exists an S ∈ PMod(Ω) such that P ⊕ S ' P ′ ⊕ S. We may assume that S is free and
thus in particular that S ' Q for some Q ∈ PMod(Λ). We claim that P ⊕Q ' P ′ ⊕Q.
Then clearly [P ] = [P ′] in K0(Λ) and thus b is injective. For the claim we may assume
that R is complete by [CR81, Proposition 30.17] in which case it follows from [CR81,
Proposition 6.17 (iv)].

Now suppose that Λ is semiperfect and let Q ∈ PMod(Ω). In order to show that
b is surjective, it suffices to find P ∈ PMod(Λ) such that P ' Q. Let us put Q̃ :=
Q/rad(Ω)Q ∈ PMod(Λ̃). Then there is a P ∈ PMod(Λ) such that P/rad(Λ)P ' Q̃ by
[CR81, Theorem 6.23]. Then both P and Q are finitely generated projective Ω-modules
and projective covers of Q̃ by [CR81, Corollary 6.22]. This implies P ' Q as projective
covers are unique up to isomorphism [CR81, Proposition 6.20]. �

Remark 2.6. If G is a finite group such that the group ring R[G] is semiperfect, diagram
(2.3) specializes to the Cartan–Brauer triangle (see [CR81, §18A])

K0(k[G])
eb−1

xx

c

&&
G0(K[G])

d // G0(k[G]).

The following result might be seen as an abstract version of Swan’s theorem [Swa60,
§6] (see also [CR81, Theorem 32.1]).

Corollary 2.7. Let P, P ′ ∈ PMod(Λ) and suppose that the Cartan map c is injective.
Then P ' P ′ as Λ-modules if and only if K ⊗R P ' K ⊗R P ′ as A-modules.

Proof. As the map b is injective by Proposition 2.5 and the Cartan map c is injective
by assumption, also the map e in diagram (2.3) has to be injective. Now assume that
K ⊗R P ' K ⊗R P ′ as A-modules. Then we have in particular that e([P ]) = e([P ′])
in G0(A) and thus [P ] = [P ′] in K0(Λ). By Lemma 2.1 there is a finitely generated
projective Λ-module Q such that P ⊕ Q ' P ′ ⊕ Q. In order to deduce P ' P ′ we may



6 ANDREAS NICKEL

assume that R is complete by [CR81, Proposition 30.17]. Now the result follows from
[CR81, Corollary 6.15]. �

Corollary 2.8 (Swan). Let G be a finite group and let P, P ′ ∈ PMod(R[G]). Then
P ' P ′ as R[G]-modules if and only if K ⊗R P ' K ⊗R P ′ as K[G]-modules.

Proof. It suffices to show that the Cartan map is injective. If k has positive characteristic,
this follows from a theorem of Brauer (see [CR81, Theorem 21.22] or [Ser77, Corollary 1
of Theorem 35]). If k has characteristic zero (or if the characteristic is positive and does
not divide the cardinality of G), then k[G] is a semisimple ring by Maschke’s theorem
[CR81, Theorem 3.14]. Thus every finitely generated k[G]-module is indeed projective
and the Cartan map becomes the identity morphism. �

In view of Corollary 2.7 it is an interesting question of study in which cases the Cartan
map is injective. For this the following observation will be very useful.

Lemma 2.9. Let s be the number of non-isomorphic simple (left) Ω-modules of an arbi-
trary (left) artinian ring Ω. Then the abelian groups K0(Ω) and G0(Ω) are free Z-modules
of rank s.

Proof. Let s′ be the number of non-isomorphic indecomposable left ideals in Ω. As Ω is an
artinian ring, the groups G0(Ω) and K0(Ω) are free Z-module of rank s and s′ by [CR81,
Propositions 16.6 and 16.7], respectively. However, if I is an indecomposable left ideal
in Ω, then Ĩ := I/rad(Ω)I is a simple left module by [CR81, Corollary 6.9], and I is the
projective cover of Ĩ by [CR81, Corollary 6.22]. This induces a one-to-one correspondence
between the indecomposable left ideals and the simple left modules (see [CR81, §6B] and
in particular [CR81, Proposition 6.17]). Thus we have s = s′ as desired. �

2.4. Crossed products. Let G be a finite group and let R be a ring. Recall from [MR01,
1.5.8] that a crossed product of R by G is an associative ring R ∗G which contains R as
a subring and a set of units UG = {ug | g ∈ G} of cardinality |G| such that

(i) R ∗G is a free R-module with basis UG;
(ii) for all g, h ∈ G one has ugR = Rug and ug · uhR = ughR.

We need the following result which immediately follows from Lemma 2.9 and a theorem
of Ardakov and Wadsley [AW10, §1.1] (where Brauer’s theorem again appears as a key
step in the proof).

Theorem 2.10. Let G be a finite group and let k be a field. Then for every crossed
product of k by G, the Cartan map

c : K0(k ∗G) −→ G0(k ∗G)

is injective with finite cokernel.

2.5. Iwasawa algebras. Let p be a prime and G be a profinite group. The complete
group algebra of G over Zp is

Λ(G) := ZpJGK = lim←−Zp[G/N ],

where the inverse limit is taken over all open normal subgroups N of G. Then Λ(G)
is a compact Zp-algebra and we denote the kernel of the natural augmentation map
Λ(G) � Zp by ∆(G). If M is a (left) Λ(G)-module we let MG := M/∆(G)M be the
module of coinvariants of M . This is the maximal quotient module of M with trivial
G-action. Similarly, we denote the maximal submodule of M upon which G acts trivially
by MG.
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Now suppose that G contains a finite normal subgroup H such that G/H ' Zp. Then
G may be written as a semi-direct product G = H o Γ where Γ ' Zp. In other words, G
is a one-dimensional p-adic Lie group.

If F is a finite field extension of Qp with ring of integers O = OF , we put ΛO(G) :=
O ⊗Zp Λ(G) = OJGK. We fix a topological generator γ of Γ. Since any homomorphism
Γ → Aut(H) must have open kernel, we may choose a natural number n such that γp

n

is central in G; we fix such an n. As Γ0 := Γp
n ' Zp, there is a ring isomorphism

ΛO(Γ0) ' OJT K induced by γp
n 7→ 1+T where OJT K denotes the power series ring in one

variable over O. If we view ΛO(G) as a ΛO(Γ0)-module (or indeed as a left ΛO(Γ0)[H]-
module), there is a decomposition

(2.4) ΛO(G) =

pn−1⊕
i=0

ΛO(Γ0)[H]γi.

Hence ΛO(G) is finitely generated as an ΛO(Γ0)-module and is an ΛO(Γ0)-order in the
separable QF (Γ0) := Quot(ΛO(Γ0))-algebra QF (G), the total ring of fractions of ΛO(G),
obtained from ΛO(G) by adjoining inverses of all central regular elements. It follows from
(2.4) that ΛO(G) is a crossed product of ΛO(Γ0) by G/Γ0 (see also [AB06, §2.3]):

ΛO(G) ' ΛO(Γ0) ∗ (G/Γ0).

The commutative ring ΛO(Γ0) is a regular local ring of dimension 2. If p is a prime
ideal in ΛO(Γ0) of height 1, we denote the localization of ΛO(Γ0) at p by ΛOp (Γ0). This is

a discrete valuation ring and we denote its residue field by ΩOp (Γ0). We also put

ΛOp (G) := ΛOp (Γ0)⊗ΛO(Γ0) ΛO(G) ' ΛOp (Γ0) ∗ (G/Γ0)

ΩOp (G) := ΩOp (Γ0)⊗ΛO(Γ0) ΛO(G) ' ΩOp (Γ0) ∗ (G/Γ0).

We therefore have the following special case of Theorem 2.10.

Proposition 2.11. Let p be a prime ideal in ΛO(Γ0) of height 1. Then the Cartan map

c : K0(ΩOp (G)) −→ G0(ΩOp (G))

is injective with finite cokernel.

The analogue of Swan’s theorem for Iwasawa algebras is now easily established:

Corollary 2.12. Let p be a prime ideal in ΛO(Γ0) of height 1 and let P, P ′ ∈ PMod(ΛOp (G)).

Then P ' P ′ as ΛOp (G)-modules if and only if QF (G) ⊗ΛOp (G) P ' QF (G) ⊗ΛOp (G) P
′ as

QF (G)-modules.

Proof. This immediately follows from Corollary 2.7 and Proposition 2.11. �

Remark 2.13. If G = H×Γ is a direct product, then Corollary 2.12 is a direct consequence
of Swan’s original theorem (Corollary 2.8). We now explain why even Hattori’s more
general approach [Hat65] (see [CR81, Theorem 32.5]) to Swan’s theorem does not imply
Corollary 2.12 if G = H o Γ is only a semi-direct product.

Assume for simplicity that G is a pro-p-group and that O = Zp. If G = H o Γ is
not a direct product, then any choice of Γ0 will be a proper subgroup of Γ. Let ∆(H)
be the (left) ideal of Ω(p)(G) generated by the elements h − 1, h ∈ H. Then ∆(H) is
nilpotent and thus contained in the radical r := rad(Ω(p)(G)) by [CR81, Proposition 5.15].
However, we have that

Ω(p)(G)/∆(H) ' Ω(p)(Γ0) ∗ Γ/Γ0 ' Ω(p)(Γ)
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is an inseparable field extension of Ω(p)(Γ0). Hence r = ∆(H) and Ω(p)(G)/r is not a
separable Ω(p)(Γ0)-algebra as it would be required for Hattori’s theorem.

Corollary 2.14. Let p be a prime ideal in ΛO(Γ0) of height 1. Then the connecting
homomorphism

∂ΛOp (G),QF (G) : K1(QF (G)) −→ K0(ΛOp (G),QF (G))

is surjective.

Proof. This follows from the long exact sequence (2.1) and Corollary 2.12. �

Corollary 2.15. Let p be a prime ideal in ΛO(Γ0) of height 1. Then the connecting
homomorphism

∂ΛO(G),ΛOp (G) : K1(ΛOp (G)) −→ K0(ΛO(G),ΛOp (G))

is surjective. Moreover, we have a short exact sequence of abelian groups

0 −→ K0(ΛO(G),ΛOp (G)) −→ K0(ΛO(G),QF (G)) −→ K0(ΛOp (G),QF (G)) −→ 0.

Proof. Consider the long exact sequences (2.1) for the three occurring pairs. The con-
necting homomorphism

∂ΛO(G),QF (G) : K1(QF (G)) −→ K0(ΛO(G),QF (G))

is surjective by [Wit13, Corollary 3.8]. The result follows from Corollary 2.14 by an easy
diagram chase. �

3. Homotopy theory

3.1. Homotopy of modules. We briefly recall basic material of homotopy theory of
modules. The reader may also consult Jannsen [Jan89, §1] and [NSW08, Chapter V, §4].

Let Λ be a ring. If a homomorphism f : M → N of Λ-modules factors through a
projective Λ-module, then we say that f is homotopic to zero and we write f ∼ 0. Two
homomorphisms f, g : M → N are homotopic (f ∼ g) if f − g is homotopic to zero. We
let Ho(Λ) be the homotopy category of Λ-modules. This category has the same objects
as Mod(Λ), but the homomorphism groups are given by HomΛ(M,N)/ {f ∼ 0}. A ho-
momorphism f : M → N of Λ-modules is a homotopy equivalence if it is an isomorphism
in Ho(Λ). In this case, we say that M and N are homotopy equivalent and write M ∼ N .

For any (left) Λ-module M and integer i ≥ 0 we define (right) Λ-modules M+ :=
HomΛ(M,Λ) and Ei(M) := ExtiΛ(M,Λ). In particular, we have M+ = E0(M). We
denote the full subcategory of Ho(Λ) whose objects are finitely presented Λ-modules by
Hofp(Λ). The transpose is a contravariant functor

D : Hofp(Λ) −→ Hofp(Λ)

that on objects is given as follows. Let M be a finitely presented Λ-module and choose
a presentation

P1 −→ P0 −→M −→ 0

by finitely generated projective Λ-modules. Then DM is defined by the exact sequence

0 −→M+ −→ P+
0 −→ P+

1 −→ DM −→ 0.

The transpose is a contravariant autoduality of Hofp(Λ), i.e. D ◦ D ' id, by [NSW08,
Proposition 5.4.9]. Moreover, for every finitely presented Λ-module M there is an exact
sequence of Λ-modules

(3.1) 0 −→ E1(DM) −→M
φM−−→M++ −→ E2(DM) −→ 0,
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where φM is the canonical map of M to its bidual.

3.2. Homotopy of Iwasawa modules. Let G be a one-dimensional p-adic Lie group.
As in subsection §2.5 we choose a central subgroup Γ0 ' Zp in G and view Λ(G) as a
Λ(Γ0)-order in Q(G). We denote the set of prime ideals in Λ(Γ0) of height 1 by P 0. We
let ] : Q(G) → Q(G) be the anti-involution that maps each group element g ∈ G to its
inverse. For every p ∈ P 0 we have p] :=

{
x] | x ∈ p

}
∈ P 0 and in particular an equality

(Λp(G))] = Λp](G).
The functors D and Ei interchange left and right Λ-action. If Λ = Λ(G) is the Iwasawa

algebra, then we have a natural equivalence between left and right modules, induced by
the anti-involution ]. We then endow DM and Ei(M) with this left module structure.
Namely, for λ ∈ Λ(G) and x ∈ DM or x ∈ Ei(M) we let λ · x := x · λ]. Similarly, if
Λ = Λp(G) for some p ∈ P 0, then for every finitely presented left Λp(G)-module M , the
transpose DM and Ei(M) are natural left Λp](G)-modules.

The functors D and Ei then commute with localization in the sense that for every
prime ideal p of Λ(Γ0) we have DMp = (DM)p] and Ei(Mp) = Ei(M)p] ; here and in the
following the notation DMp always means the transpose of Mp and not the localization
of DM at p. In particular, for every finitely generated Λ(G)-module M and every p ∈ P 0

we have E2(Mp) = E2(M)p] = 0 by [NSW08, Proposition 5.5.3]. In fact, we have the
following result which will often be used without reference.

Lemma 3.1. Let G be a one-dimensional p-adic Lie group and let p ∈ P 0. Then E2(M)
vanishes for every finitely generated Λp(G)-module M . In particular, there is an exact
sequence

0 −→ E1(DM) −→M −→M++ −→ 0.

Proof. The map M/E1(DM)→M++ induced by φM is an injective pseudo-isomorphism
by (the proof of) [NSW08, Proposition 5.1.8]. Then sequence (3.1) implies that E2(DM)
is pseudo-null as a Λp(Γ0)-module and thus vanishes, since Λp(Γ0) is a discrete valuation
ring. Applying this argument to DM , we obtain E2(M) ' E2(DDM) = 0. �

Lemma 3.2. Let G be a one-dimensional p-adic Lie group and let Λ be either the Iwasawa
algebra Λ(G) or Λp(G) for some prime ideal p ∈ P 0. Let M be a finitely generated Λ-
module such that M++ has finite projective dimension. Then the Λ]-module M+ and the
Λ-module M++ are indeed projective.

Proof. We assume that Λ = Λ(G); the other case can be treated similarly. We put
d := pdΛ(G)(M

++) and choose a projective resolution

0 −→ Pd −→ · · · −→ P1 −→ P0 −→M++ −→ 0.

As M+ and M++ are reflexive and thus free as a Λ(Γ0)-modules by [NSW08, Propositions
5.1.9 and 5.4.17], this induces an exact sequence of Λ(G)-modules

0 −→M+ −→ P+
0 −→ P+

1 −→ · · · −→ P+
d −→ 0.

As each P+
i , 0 ≤ i ≤ d is a projective Λ(G)]-module, so is M+. The result follows. �

The next result shows that Lemma 3.2 is only interesting if Λ = Λ(G) or Λ = Λ(p)(G).

Lemma 3.3. Let p ∈ P 0 be a prime ideal and assume that p 6= (p). Let M be a
finitely generated Λp(G)-module. Then M is a projective Λp(G)-module if and only if
M is (torsion-)free as a Λp(Γ0)-module. In particular, every reflexive Λp(G)-module is
projective.
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Proof. We first recall that every torsionfree (and in particular every projective) Λp(Γ0)-
module is in fact free, since Λp(Γ0) is a discrete valuation ring. Now suppose that M
is a projective Λp(G)-module. As Λp(G) is free as a Λp(Γ0)-module, the module M is
a submodule of a free Λp(Γ0)-module and thus free. For the converse we put G :=
G/Γ0. Then G is a finite group and |G| is invertible in Λp(Γ0) since p 6= (p). Thus
HomΛp(Γ0)(M,N) is a Qp[G]-module for any two Λp(G)-modules M and N . Since taking
G-invariants is an exact functor on Qp[G]-modules, the equality

HomΛp(G)(M,N) = HomΛp(Γ0)(M,N)G

implies isomorphisms
ExtiΛp(G)(M,N) ' ExtiΛp(Γ0)(M,N)G

for all i ≥ 0. This gives the converse implication. �

Remark 3.4. Suppose that G ' H × Γ and that p does not divide the cardinality of H.
Then we can take Γ0 = Γ and Lemma 3.3 remains true for p = (p) and the Iwasawa
algebra Λ(G) by [NSW08, Lemma 5.4.16].

Corollary 3.5. Let p ∈ P 0 be a prime ideal and assume that p 6= (p). Then every finitely
generated Λp(G)-module has projective dimension at most 1.

Corollary 3.6. Let p ∈ P 0 be a prime ideal and assume that p 6= (p). Let M be a finitely
generated Λp(G)-module. Then there is an isomorphism

M ' E1(DM)⊕M++.

Proof. This follows from Lemma 3.1 and Lemma 3.3. �

Corollary 3.7. For every p ∈ P 0 the Λp(G)-module ∆(G)p is free of rank 1.

Proof. We identify Λ(Γ0) with the power series ring ZpJT K as usual. If p 6= (T ) then (Zp)p
vanishes so that the exact sequence

0 −→ ∆(G) −→ Λ(G) −→ Zp −→ 0

induces an isomorphism ∆(G)p ' Λp(G). If p = (T ) or more generally if p 6= (p) then
∆(G)p is a projective Λp(G)-module by Lemma 3.3. Then Corollary 2.12 implies that
it is free of rank 1 (in fact, an isomorphism Λp(G) ' ∆(G)p is explicitly given by 1 7→
(1− γ)eH + (1− eH), where eH := |H|−1

∑
h∈H h). �

4. Iwasawa theory of local fields

4.1. Galois cohomology. If F is a field and M is a topological GF -module, we write
RΓ(F,M) for the complex of continuous cochains of GF with coefficients in M and
H i(F,M) for its cohomology in degree i. We likewise writeHi(F,M) for the i-th homology
group of GF with coefficients in M . If F is an algebraic extension of Qp or Q and M is a
discrete or compact GF -module, then for r ∈ Z we denote the r-th Tate twist of M by

M(r). For an abelian group A we write Â for its p-completion, that is Â = lim←−nA/p
nA.

Let L/K be a finite Galois extension of p-adic fields with Galois group G. Let L∞
be an arbitrary Zp-extension of L with Galois group ΓL and for each n ∈ N let Ln be
its n-th layer. We assume that L∞/K is again a Galois extension with Galois group
G := Gal(L∞/K). We let XL∞ denote the Galois group over L∞ of the maximal abelian
pro-p-extension of L∞. We put

YL∞ := ∆(GK)GL∞
= Zp⊗̂Λ(GL∞ )∆(GK)



A GENERALIZATION OF A THEOREM OF SWAN AND IWASAWA THEORY 11

and observe that pdΛ(G)(YL∞) ≤ 1 by [NSW08, Theorem 7.4.2]. As H1(L∞,Zp) canoni-
cally identifies with XL∞ , taking GL∞-coinvariants of the obvious short exact sequence

0 −→ ∆(GK) −→ Λ(GK) −→ Zp −→ 0

yields an exact sequence

(4.1) 0 −→ XL∞ −→ YL∞ −→ Λ(G) −→ Zp −→ 0

of Λ(G)-modules (this should be compared to the sequence constructed by Ritter and
Weiss [RW02, §1]; see also [NSW08, Proposition 5.6.7]). This sequence will be crucial in
the following.

Remark 4.1. The middle arrow in (4.1) defines a (perfect) complex of Λ(G)-modules

· · · −→ 0 −→ YL∞ −→ Λ(G) −→ 0 −→ · · ·
If we place YL∞ in degree 1, then this complex and RHom(RΓ(L∞,Qp/Zp),Qp/Zp)[−2]
become isomorphic in the derived category of Λ(G)-modules by [Nic, Proposition 4.1].
If L∞ is the unramified Zp-extension of L, then this complex plays a key role in the
equivariant Iwasawa main conjecture for local fields as formulated by the author [Nic,
Conjecture 5.1]. In order to verify this conjecture, one may localize at the height 1 prime
ideal (p) by [Nic, Corollary 6.7]. This has motivated our interest in the Λ(p)(G)-module
structure of (XL∞)(p).

For any p-adic field F , we denote the group of principal units in F by U1(F ). We
put U1(L∞) := lim←−n U

1(Ln) where the transition maps are given by the norm maps. We

note that lim←−n L̂
×
n ' XL∞ by local class field theory. For each n ≥ 0 the valuation map

L×n → Z induces an exact sequence

0 −→ U1(Ln) −→ L̂×n −→ Zp −→ 0.

Taking inverse limits over all n induces an exact sequence of Λ(G)-modules

(4.2) 0 −→ U1(L∞) −→ XL∞ −→ Zp −→ 0

if L∞/L is ramified and an isomorphism U1(L∞) ' XL∞ otherwise (also see the proof of
[NSW08, Theorem 11.2.4]).

4.2. Local Iwasawa modules. In this subsection we prove analogues of [NSW08, The-
orems 11.2.3 and 11.2.4] for arbitrary one-dimensional p-adic Lie extensions. As in sub-
section §2.5 we choose a central subgroup Γ0 ' Zp in G and view Λ(G) as a Λ(Γ0)-order
in Q(G).

Lemma 4.2. For every p ∈ P 0 the following hold.

(i) We have an isomorphism of Λp(G)-modules

(YL∞)p ' (XL∞)p ⊕ Λp(G);

(ii) we have pdΛp(G)((XL∞)p) = pdΛp(G)((YL∞)p) ≤ 1.

Proof. Sequence (4.1) and Corollary 3.7 imply (i). For (ii) we compute

pdΛp(G)((XL∞)p) = pdΛp(G)((YL∞)p) ≤ pdΛ(G)(YL∞) ≤ 1.

�

We denote the group of p-power roots of unity in L∞ by µp(L∞). If M is a Zp-module,
we let M∨ := HomZp(M,Qp/Zp) be its Pontryagin dual. If M is a G-module, we endow
M∨ with the contragredient G-action.
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Theorem 4.3. Put n := [K : Qp]. Then for every p ∈ P 0 the following hold.

(i) If µp(L∞) is finite, then we have isomorphisms of Λp(G)-modules

(YL∞)p ' Λp(G)n+1, (XL∞)p ' Λp(G)n.

(ii) If µp(L∞) is infinite (and thus L∞/L is the cyclotomic Zp-extension), then we
have isomorphisms of Λp(G)-modules

(YL∞)p ' (Zp(1))p ⊕ Λp(G)n+1, (XL∞)p ' (Zp(1))p ⊕ Λp(G)n.

Proof. We first note that it suffices to prove the result for (YL∞)p. As on earlier occasions,
we may then use [CR81, Proposition 30.17 and Corollary 6.15] to deduce the result for
(XL∞)p from Lemma 4.2(i).

As the p-dualizing module of GK naturally identifies with Qp/Zp(1) by [NSW08, The-
orem 7.2.4], we have a homotopy equivalence of Λ(G)-modules

(4.3) YL∞ ∼ D(µp(L∞)∨)

by [NSW08, Proposition 5.6.9]. We first assume that µp(L∞) is finite. Then (4.3) implies
that (YL∞)p ∼ 0. This means that (YL∞)p is a projective Λp(G)-module. As Q(G) is
semisimple, the Q(G)-module Q(G)⊗Λ(G) YL∞ is free of rank n+ 1 by [NSW08, Theorem
7.4.2]. Corollary 2.12 then gives the result.

Now assume that µp(L∞) is infinite. Then (4.3) gives

YL∞ ∼ D(Zp(−1)).

As the functor D induces an autoduality, we have E1(DYL∞) = E1(Zp(−1)) = Zp(1) and
likewise E2(DYL∞) = E2(Zp(−1)) = 0 by [NSW08, Proposition 5.5.3 (iv) and Corollary
5.5.7]. Thus sequence (3.1) specializes to

(4.4) 0 −→ Zp(1) −→ YL∞ −→ Y ++
L∞
−→ 0.

Since (Zp(1))(p) vanishes, we have pdΛp(G)((Zp(1))p) ≤ 1 for every p ∈ P 0 by Corollary

3.5. The projective dimension of (YL∞)p is at most 1 by Lemma 4.2(ii) and thus (Y ++
L∞

)p
also has finite projective dimension. Lemma 3.2 implies that the Λp(G)-module (Y ++

L∞
)p

is indeed projective. We now may deduce from Corollary 2.12 as above that (Y ++
L∞

)p is
free of rank n+ 1. By (4.4) we get an isomorphism

(YL∞)p ' (Zp(1))p ⊕ Λp(G)n+1

as desired. �

Corollary 4.4. For every p ∈ P 0 we have an isomorphism of Λp(G)-modules

U1(L∞)p ' (XL∞)p.

In particular, the following hold.

(i) If µp(L∞) is finite, then we have an isomorphism of Λp(G)-modules

U1(L∞)p ' Λp(G)n.

(ii) If µp(L∞) is infinite (and thus L∞/L is the cyclotomic Zp-extension), then we
have an isomorphism of Λp(G)-modules

U1(L∞)p ' (Zp(1))p ⊕ Λp(G)n.
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Proof. If L∞ is the unramified Zp-extension, then U1(L∞) ' XL∞ and the result im-
mediately follows from Theorem 4.3. Now suppose that L∞/L is ramified. Let us put
Zp] := E1((XL∞)p). Then Theorem 4.3 implies that Zp] vanishes unless µp(L∞) is infinite,
where we have an isomorphism of Λp](G)-modules Zp] ' Zp(−1)p] . In both cases we have
that

(4.5) HomΛ
p]

(G)((Zp)p] , Zp]) = 0.

The exact sequence (4.2) localized at p induces a long exact sequence of Λp](G)-modules

· · · −→ E1((Zp)p) −→ E1((XL∞)p) −→ E1(U1(L∞)p) −→ E2((Zp)p) −→ · · ·

As we have an isomorphism E1((Zp)p) ' (Zp)p] , the second arrow is the zero map by
(4.5). Since Ei((Zp)p) vanishes for i 6= 1, we obtain an isomorphism of Λp](G)-modules

E1(U1(L∞)p) ' E1((XL∞)p) = Zp] .

In particular E1(E1(U1(L∞)p)) ' E1(Zp]) vanishes unless µp(L∞) is infinite, where we
have E1(Zp]) ' Zp(1)p. Now [NSW08, Proposition 5.5.8] and (3.1) imply that

E1(DU1(L∞)p) ' E1(Zp])

which in particular has projective dimension at most 1. It follows that U1(L∞)p and
U1(L∞)++

p have finite projective dimension by (4.2), Lemma 4.2 and the exact sequence

(4.6) 0 −→ E1(Zp]) −→ U1(L∞)p −→ U1(L∞)++
p −→ 0.

Thus U1(L∞)++
p is indeed a projective Λp(G)-module by Lemma 3.2. We have

Q(G)⊗Λ(G) U
1(L∞)++ ' Q(G)⊗Λ(G) U

1(L∞) ' Q(G)⊗Λ(G) XL∞ ' Q(G)n

by Theorem 4.3. It now follows from Corollary 2.12 that U1(L∞)++
p is a free Λp(G)-module

of rank n. Sequence (4.6) splits, giving the claim. �

4.3. Iwasawa theory of `-adic fields. We briefly discuss the case where L/K is a
finite Galois extension of `-adic fields with p 6= `. Then L has a unique Zp-extension L∞,
namely the unramified Zp-extension. We again define G := Gal(L∞/K). For each n ≥ 0,
the valuation map induces an exact sequence

0 −→ µp(Ln) −→ L̂×n −→ Zp −→ 0.

Taking inverse limits over all n yields an isomorphism of Λ(G)-modules

lim←−
n

µp(Ln) ' lim←−
n

L̂×n =: XL∞ .

The following result is therefore clear (see also [NSW08, Theorem 11.2.3(ii)]). We let ζp
be a primitive p-th roof of unity.

Lemma 4.5. For ` 6= p we have XL∞ ' Zp(1) if ζp ∈ L and XL∞ = 0 otherwise.

5. Iwasawa theory of number fields

5.1. The relevant Galois groups. In this section we consider a finite Galois extension
L/K of number fields with Galois group G. Let p be a prime and let L∞ be the cyclotomic
Zp-extension of L with n-th layer Ln. We will assume throughout that

K is totally imaginary if p = 2.
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We put G := Gal(L∞/K) which is a one-dimensional p-adic Lie group. We may write
G ' H o Γ, where H naturally identifies with a subgroup of G and Γ ' Zp. For every
place v of K we choose a place w∞ of L∞ above v and let Gv be the decomposition group
at w∞. We denote the place of L below w∞ by w and the completion of L at w by Lw.

We choose a finite set S of places of K containing all archimedean places and all places
that ramify in L∞/K. In particular, all p-adic places lie in S. We denote the ring of
integers in L by OL and the ring of S(L)-integers by OL,S, where S(L) denotes the set
of places of L above those in S.

We let MS be the maximal pro-p-extension of L which is unramified outside S. We put
GS := Gal(MS/K) and HS := Gal(MS/L∞). Since K is totally imaginary if p = 2, the
cohomological p-dimension of GS equals 2 by [NSW08, Proposition 10.11.3] (note that
our definition of GS follows [NSW08, Chapter XI, §3, p.739], but slightly differs from the
profinite group GS considered in [NSW08, Chapter X, §11]; however, the proof of [Jan89,
Lemma 5.3] shows that both groups have the same cohomological p-dimension). Choose
a presentation Fd � GS of GS by a free profinite group Fd of finite rank d. Then we
obtain a commutative diagram (compare [NSW08, p. 740])

1

��

1

��
N

��

N

��
1 // R //

��

Fd //

��

G // 1

1 // HS
//

��

GS
//

��

G // 1

1 1

with exact rows and columns, where R and N are the kernels of Fd � G and Fd � GS,
respectively. Then GS acts on Nab(p), the maximal abelian pro-p-quotient of N . The
module Nab

HS
(p) of HS-coinvariants of Nab(p) is a projective Λ(G)-module by [NSW08,

Proposition 5.6.7]. We let r1 and r2 be the number of real and complex places of K,
respectively. We let S ′∞ be the set of real places of K becoming complex in L∞ and
put r′1 := |S ′∞|. If we choose d greater than or equal to r2 + r′1 + 1, then we have an
isomorphism of Λ(G)-modules

(5.1) Nab
HS

(p) ' Λ(G)d−r2−r
′
1−1 ⊕

⊕
v∈S′∞

IndGGvZp

by [Jan89, Theorem 5.4] (see also [NSW08, Theorem 11.3.10(iii)]; the assumption that p
does not divide [L : K] is not needed for this part of the theorem). Here, for a closed
subgroup H of G and a compact Λ(H)-module M we let

IndGHM := Λ(G)⊗̂Λ(H)M

denote compact induction of M from H to G.

5.2. Global and semi-local Iwasawa modules. Let XS := Hab
S be the abelianization

of HS. Then XS is a finitely generated Λ(G)-module by [NSW08, Proposition 11.3.1]. We
also consider the ‘standard’ Iwasawa module Xnr, which is the Galois group over L∞ of
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the maximal unramified abelian pro-p-extension of L∞, and the quotient XS
cs of Xnr that

corresponds to the maximal subextension which is completely decomposed at all primes
above S. For a finite place v of K we define

Av := lim←−
n

∏
wn|v

L̂×n,wn
' IndGGvXLw,∞ ,

Uv := lim←−
n

∏
wn|v

Ô×Ln,wn
'
{

IndGGvXLw,∞ if v - p
IndGGvU

1(Lw,∞) if v | p.

Here, Lw,∞ always denotes the cyclotomic Zp-extension of Lw. We let Sf be the subset
of S comprising all finite places in S. We then define Λ(G)-modules

AS :=
∏
v∈Sf

Av, US :=
∏
v∈Sf

Uv.

Finally, we let

ES := lim←−
n

(O×Ln,S
⊗Z Zp), E := lim←−

n

(O×Ln
⊗Z Zp).

Since the weak Leopoldt conjecture holds for the cyclotomic Zp-extension by [NSW08,
Theorem 10.3.25], we obtain from [Jan89, Theorem 5.4] the following commutative di-
agram of Λ(G)-modules with exact rows (see also [NSW08, Theorem 11.3.10(i)]; the
assumption p - [L : K] is irrelevant, since all maps are certainly G-equivariant)

(5.2) 0 // E //
� _

��

US //
� _

��

XS
// Xnr

//

����

0

0 // ES // AS // XS
// XS

cs
// 0.

As in the local case, there is an exact sequence of Λ(G)-modules (see [NSW08, Propo-
sition 5.6.7])

(5.3) 0 −→ XS −→ YS −→ ∆(G) −→ 0,

where YS := ∆(GS)HS
is a finitely generated Λ(G)-module of projective dimension at

most 1.

5.3. Structure of global Iwasawa modules. We now determine the structure of the
above Iwasawa modules after localization at a prime ideal p ∈ P 0. We begin with the
semi-local Iwasawa modules.

Proposition 5.1. Let Sf (ζp) be the set of all finite places v in S such that ζp ∈ Lw and
put n := [K : Q]. Then for every p ∈ P 0 we have isomorphisms of Λp(G)-modules

(AS)p ' (US)p ' Λp(G)n ⊕
⊕

v∈Sf (ζp)

(
IndGGvZp(1)

)
p
.

In particular, we have pdΛp(G)((AS)p) = pdΛp(G)((US)p) ≤ 1.

Proof. This follows from Theorem 4.3, Corollary 4.4, Lemma 4.5 and the well known
formula [K : Q] =

∑
v|p[Kv : Qp]. �

We let D
(p)
2 (GS) be the p-dualizing module of GS and put ZS := (D

(p)
2 (GS)HS)∨.

Lemma 5.2. For every p ∈ P 0 the following hold.
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(i) We have an isomorphism of Λp(G)-modules

(YS)p ' (XS)p ⊕ Λp(G);

(ii) we have pdΛp(G)((XS)p) = pdΛp(G)((YS)p) ≤ 1;
(iii) we have a homotopy equivalence (XS)p ∼ (DZS)p and an isomorphism of Λp](G)-

modules

E1((XS)p) ' (ZS)p] .

Proof. Sequence (5.3) and Corollary 3.7 imply (i). As YS is a Λ(G)-module of projective
dimension at most 1, (i) implies (ii). By (i) we have (XS)p ∼ (YS)p and in particular
E1((XS)p) ' E1((YS)p). Hence (iii) is a consequence of [NSW08, Proposition 5.6.9]. �

We let µL be the Iwasawa µ-invariant of the standard Iwasawa module Xnr. We recall
the following conjecture of Iwasawa.

Conjecture 5.3 (Iwasawa). For every number field L the µ-invariant µL vanishes.

The following two results are analogues of [NSW08, Theorem 11.3.11] for arbitrary
one-dimensional p-adic Lie extensions (containing the cyclotomic Zp-extension).

Theorem 5.4. Let p ∈ P 0 and assume that µL(ζp) = 0 if p = (p). Then the following
hold.

(i) We have an isomorphism of Λp(G)-modules

(XS)p ' E1(ZS)p ⊕ (XS)++
p ;

moreover, we have (ZS)(p) = 0 so that in particular (XS)(p) ' (XS)++
(p) ;

(ii) we have isomorphisms of Λp(G)-modules

((XS)p])
+ ' (XS)++

p ' Λp(G)r2 ⊕
⊕
v∈S′∞

(
IndGGvZ

−
p

)
p
,

where Z−p is the Gv-module Zp upon which the generator of Gv ' Z/2Z acts by
multiplication by −1.

Proof. By Lemma 5.2(iii) we have E1(DXS)p ' E1(ZS)p so that (i) follows from Corollary
3.6 if p 6= (p). We claim that (ZS)(p) vanishes. Then Lemma 3.1 implies (i) in the case
p = (p). We first assume that ζp ∈ L. Then by [Jan89, Theorem 5.4 (d)] there is an exact
sequence of Λ(Γ0)-modules

0 −→ XS
cs(−1) −→ ZS −→ T −→ 0,

where T is finitely generated and free as Zp-module. As µL vanishes by assumption and
Xnr surjects onto XS

cs, the latter module is also finitely generated over Zp. Hence the
same is true for ZS and so (ZS)(p) = 0 as desired. If ζp is not in L, we put L′ := L(ζp) and
∆ := Gal(L′/L) ' Gal(L′∞/L∞). Let Z ′S be the Iwasawa module ZS that corresponds to
L′. We have shown that Z ′S is a finitely generated Zp-module. However, there is a natural
isomorphism (Z ′S)∆ ' ZS so that the µ-invariant of ZS also vanishes. This proves the
claim and thus (i). Lemmas 3.2, 3.3 and 5.2(ii) imply that both ((XS)p])

+ and (XS)++
p are

projective Λp(G)-modules. By Corollary 2.12 it now suffices to compute Q(G)⊗Λ(G)X
++
S .

By [NSW08, Proposition 5.6.7] we have

Q(G)⊗Λ(G) (X++
S ⊕Nab

HS
(p)) = Q(G)⊗Λ(G) (XS ⊕Nab

HS
(p)) ' Q(G)d−1.

Since Q(G) is semisimple, (ii) now follows from (5.1). �
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Theorem 5.5. Let p ∈ P 0 and assume that µL(ζp) = 0 if p = (p). Then the following
hold.

(i) We have pdΛp(G)(Ep) = pdΛp(G)((ES)p) ≤ 1;
(ii) if ζp ∈ L we have isomorphisms of Λp(G)-modules

Ep ' (ES)p ' Zp(1)p ⊕ Λp(G)r2+r1−r′1 ⊕
⊕
v∈S′∞

(
IndGGvZp

)
p
;

(iii) if ζp 6∈ L we have isomorphisms of Λp(G)-modules

Ep ' (ES)p ' Λp(G)r2+r1−r′1 ⊕
⊕
v∈S′∞

(
IndGGvZp

)
p
.

Proof. We first show that the projective dimension of Ep and (ES)p is at most 1. For
this we only have to treat the case p = (p). Otherwise we apply Corollary 3.5. As
the µ-invariant of Xnr vanishes by assumption, we obtain from diagram (5.2) two exact
sequences of Λ(p)(G)-modules

0 −→ E(p) −→ (US)(p) −→ (XS)(p) −→ 0,

0 −→ (ES)(p) −→ (AS)(p) −→ (XS)(p) −→ 0.

Since the projective dimension of (US)(p), (AS)(p) and (XS)(p) is at most 1 by Proposition
5.1 and Lemma 5.2(ii), the same is true for E(p) and (ES)(p).

Now let p ∈ P 0 be arbitrary. It follows as in the proof of [NSW08, Theorem 11.3.11(ii)]
that E1(D(ES)p) ' Zp(1)p if ζp ∈ L and that E1(D(ES)p) vanishes otherwise. In both
cases we have pdΛp(G)(E

1(D(ES)p)) ≤ 1 and thus (ES)++
p is projective by Lemma 3.2. It

follows that (ES)p decomposes into a direct sum

(ES)p ' E1(D(ES)p)⊕ (ES)++
p .

The inclusions E1(DEp) ⊆ E1(D(ES)p) ⊆ Ep imply that in fact E1(DEp) = E1(D(ES)p).
It follows as above that the module E++

p is projective and that we have an isomorphism

Ep ' E1(DEp)⊕ E++
p .

In particular, we obtain (i). By Corollary 2.12 it now suffices to compute

Q(G)⊗Λ(G) E
++
S = Q(G)⊗Λ(G) ES = Q(G)⊗Λ(G) E = Q(G)⊗Λ(G) E

++.

We deduce from diagram (5.2) and Proposition 5.1 that we have isomorphisms of Q(G)-
modules

Q(G)⊗Λ(G) (ES ⊕XS) ' Q(G)⊗Λ(G) AS ' Q(G)n.

As Q(G) is semisimple, the result follows from Theorem 5.4. �

Remark 5.6. Let L∞ be an arbitrary Zp-extension of L such that L∞/K is again a Galois
extension. Assuming the validity of the weak Leopoldt conjecture, it seems to be likely
that one can prove analogues of Theorems 5.4 and 5.5. The main obstacle occurs in the
case p = (p) because the relevant µ-invariant does not vanish in general.
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