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Abstract

Let L/K be a �nite Galois CM-extension of number �elds with Galois group G.
In an earlier paper, the author has de�ned a module SKu(L/K) over the center of
the group ring ZG which coincides with the Sinnott-Kurihara ideal if G is abelian
and, in particular, contains many Stickelberger elements. It was shown that a certain
conjecture on the integrality of SKu(L/K) implies the minus part of the equivariant
Tamagawa number conjecture at an odd prime p for an in�nite class of (non-abelian)
Galois CM-extensions of number �elds which are at most tamely rami�ed above p,
provided that Iwasawa's µ-invariant vanishes. Here, we prove a relevant part of this
integrality conjecture which enables us to deduce the minus-p-part of the equivariant
Tamagawa number conjecture from the vanishing of µ for the same class of extensions.
As an application we prove the non-abelian Brumer and Brumer-Stark conjecture
outside the 2-primary part for every monomial Galois extension of Q provided that
certain µ-invariants vanish.

Introduction

Let L/K be a �nite Galois extension of number �elds with Galois group G. Burns [Bu01]
used complexes arising from étale cohomology of the constant sheaf Z to de�ne a canonical
element TΩ(L/K) of the relative K-group K0(ZG,R). This element relates the leading
terms at zero of Artin L-functions attached to L/K to natural arithmetic invariants. It was
shown that the vanishing of TΩ(L/K) is equivalent to the equivariant Tamagawa number
conjecture (ETNC) for the pair (h0(Spec(L)),ZG) (cf. [Bu01, Theorem 2.4.1]).

The vanishing of TΩ(L/K) is known to be true if L is absolutely abelian as proved by
Burns and Greither [BG03] with the exclusion of the 2-primary part; Flach [Fl04, Fl11]
extended the argument to cover the 2-primary part as well. Slightly weaker results in this
cyclotomic case have been settled independently by Ritter and Weiss [RW02, RW03], Hu-
ber and Kings [HK03]. Some relatively abelian results are due to Bley [Bl06]; he showed
that if L/K is a �nite abelian extension, where K is an imaginary quadratic �eld which
has class number one, then the ETNC holds for all intermediate extensions L/E such that
[L : E] is odd and divisible only by primes which split completely in K/Q. Finally, if L/K
is a CM-extension and p is odd, the ETNC at p naturally decomposes into a plus and a
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minus part; it was shown by the author [Ni11a] that the minus part of the ETNC at p
holds if L/K is abelian and at most tamely rami�ed above p, and the Iwasawa µ-invariant
vanishes if p divides |G| (and some additional technical condition is ful�lled). Note that
the vanishing of µ is a long standing conjecture of Iwasawa theory; the most general result
is still due to Ferrero and Washington [FW79] and says that µ = 0 for absolutely abelian
extensions.

For non-abelian extensions, the results are rather sparse. Burns and Flach [BF03]
have given a proof for an in�nite class of quaternion extensions over the rationals and
Navilarekallu [Na06] has treated a speci�c A4-extension over Q. Further progress has
recently been made by Johnston and the author [JN].

If L/K is a CM extension, the author [Ni11b] has introduced a module SKu(L/K)
over the center of the group ring ZG which is a noncommutative analogue of the Sinnot-
Kurihara ideal (cf. [Si80, p. 193]) and was already implicitly used in [Ni11d] and [BJ11].
An integrality conjecture on SKu(L/K) has been formulated and it was shown that it
is implied by the ETNC in many cases and follows from the results in [Ba77], [Ca79],
[DR80] if G is abelian. Assuming the validity of this integrality conjecture, the minus part
of the ETNC at p was deduced from the conjectural vanishing of µ, provided that the
rami�cation above p is at most tame (and, as in the abelian case, some technical extra
assumption holds). Moreover, it follows from the results in [Ni11d] that for the case at
hand the non-abelian analogues of Brumer's conjecture, of the Brumer-Stark conjecture
and of the strong Brumer-Stark property (as formulated in [Ni11d]) hold, provided that
µ = 0 and the integrality conjecture holds.

Most of these results make heavily use of the validity of the equivariant Iwasawa main
conjecture (EIMC) attached to the extension L+

∞/K, where L+
∞ is the cyclotomic Zp-

extension of L+ which is the maximal real sub�eld of L. Note that the EIMC is known for
abelian extensions of totally real number �elds with Galois group G such that G is a p-adic
Lie group of dimension 1 (cf. [Wi90, RW02]). More recently, Ritter and Weiss [RW11]
have shown that the EIMC (up to its uniqueness statement) holds for arbitrary p-adic Lie
groups of dimension 1 provided that µ vanishes. In fact, this can be generalized to higher
dimensional p-adic Lie groups as shown by Kakde [Ka13] and, independently, by Burns
[Bu]. Note that Kakde in fact provides an independent proof also in the case of dimension 1.

In this paper, we de�ne a variant SKu′(L/K) of the Sinnott-Kurihara module which
is contained in SKu(L/K) and in fact equals SKu(L/K) for abelian G. Let M(G) be
a maximal order in QG containing ZG; for any ring Λ, we write ζ(Λ) for the subring of
all elements which are central in Λ. The �rst main result is the following theorem which
will be proved in �4. Recall that a character of a �nite group is called monomial if it is
induced by a linear character of a subgroup. A �nite group is called monomial if each of
its (complex) irreducible characters is monomial.

Theorem 0.1. Let L/K be a Galois extension of number �elds with Galois group G. If G
is monomial, then

SKu′(L/K) ⊆ ζ(M(G)).

Now let S and T be two �nite sets of places of K such that S and T are disjoint and
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S contains the set S∞ of all in�nite places of K. One can associate to S and T so-called
Stickelberger elements θTS which lie in the center of the group ring algebra QG. These
Stickelberger elements are de�ned via values of Artin L-functions at zero and are closely
related to the Sinnott-Kurihara ideal SKu(L/K); more precisely, they lie in SKu(L/K)
under suitable hypotheses on S and T . For instance, it su�ces to assume the following hy-
potheses to which we will refer as Hyp(S, T ): S contains the set Sram of all rami�ed primes
and no non-trivial root of unity in L is congruent to 1modulo all primes P ∈ T (L); here, for
any set T of places of K, we write T (L) for the set of places of L which lie above those in T .

Now assume that the Galois group G decomposes as G = H×C, where H is monomial
and C is abelian. As before, let M(H) be a maximal order in QH containing ZH. Then
we may view M(H)[C] as an order in QG and we have the following integrality statement
for Stickelberger elements.

Theorem 0.2. Let L/K be a Galois extension of number �elds with Galois group G =
H × C, where H is monomial and C is abelian. Then

θTS ∈ ζ(M(H)[C]) = ζ(M(H))[C]

whenever Hyp(S, T ) is satis�ed.

We will give a more precise statement and its proof in �4. In fact, we will prove a more
general result involving also Stickelberger elements which are de�ned via values of Artin
L-functions at negative integers.

Now let p be a prime and let L be either a totally real �eld or a CM-�eld. Let L
be the cyclotomic Zp-extension of L(ζp), where ζp denotes a primitive p-th root of unity.
Moreover, let Xstd be the `standard' Iwasawa module which is the projective limit of the
p-parts of the class groups in the cyclotomic tower of L(ζp). We will say that the Iwasawa
µ-invariant attached to L and p vanishes if the µ-invariant of Xstd vanishes. Now let L/K
be a Galois CM-extension of number �elds with arbitrary Galois group G. Then Theorem
0.2 is the key in proving our main result.

Theorem 0.3. Let L/K be a Galois CM-extension of number �elds with Galois group
G and let p be a non-exceptional prime. If the Iwasawa µ-invariant attached to L and p
vanishes, then the p-minus part of the ETNC for the pair (h0(Spec(L)),ZG) is true.

For a �xed extension L/K there is only a �nite number of exceptional primes; for a
precise de�nition see �5 (De�nition 5.5), where we will prove Theorem 0.3. Finally, we
obtain the following corollaries.

Corollary 0.4. Let L/K be a Galois CM-extension of number �elds with Galois group
G and let p be a non-exceptional prime. If the Iwasawa µ-invariant attached to L and p
vanishes, then the p-part of the integrality conjecture (Conjecture 2.2 below) holds.

Corollary 0.5. Let L/K be a Galois CM-extension of number �elds with Galois group
G and let p be a non-exceptional prime. If the Iwasawa µ-invariant attached to L and p
vanishes, then the p-parts of the following conjectures hold:
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(i) the non-abelian Brumer conjecture [Ni11d, Conjecture 2.1]

(ii) the non-abelian Brumer-Stark conjecture [Ni11d, Conjecture 2.6]

(iii) the minus part of the central conjecture (Conjecture 2.4.1) of Burns [Bu11]

(iv) the minus-part of the Lifted Root Number Conjecture of Gruenberg, Ritter and Weiss
[GRW99].

Moreover, L/K ful�lls the non-abelian strong Brumer-Stark property at p (cf. [Ni11d,
De�nition 3.5]).

We will recall the precise statement of the non-abelian Brumer and Brumer-Stark
conjecture in �6.

Corollary 0.6. Let L/K be a tamely rami�ed Galois CM-extension of number �elds with
Galois group G and let p be a non-exceptional prime. If the Iwasawa µ-invariant attached
to L and p vanishes, then the minus-p-parts of the central conjecture (Conjecture 3.3) of
Breuning and Burns [BB07] and of the ETNC for the pair (h0(Spec(L))(1),ZG) are valid.

Finally, a further nice consequence of our results is the following theorem.

Theorem 0.7. Let L be any monomial Galois CM-extension of Q. Assume that the
Iwasawa µ-invariant attached to L and p vanishes for every odd prime p which rami�es
in L or divides [L : Q]. Then the non-abelian Brumer conjecture and the non-abelian
Brumer-Stark conjecture are true outside the 2-primary parts.

If L is abelian over Q, we know the vanishing of the µ-invariants by the aforementioned
result of Ferrero and Washington [FW79] and the above theorem recovers Stickelberger's
classical theorem (cf. [Wa82, Theorem 6.10]). So the above result is a `non-abelian Stick-
elberger theorem' without the extra factors occurring in [BJ11].
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1 Preliminaries

1.1 K-theory

1.1.1 Localization Sequences

Let Λ be a left noetherian ring with 1 and PMod(Λ) the category of all �nitely generated
projective Λ-modules. We writeK0(Λ) for the Grothendieck group of PMod(Λ), andK1(Λ)
for the Whitehead group of Λ which is the abelianized in�nite general linear group. If S is
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a multiplicatively closed subset of the center of Λ which contains no zero divisors, 1 ∈ S,
0 ̸∈ S, we denote the Grothendieck group of the category of all �nitely generated S-torsion
Λ-modules of �nite projective dimension by K0S(Λ). Writing ΛS for the ring of quotients
of Λ with denominators in S, we have the following Localization Sequence (cf. [CR87,
p. 65])

K1(Λ) → K1(ΛS)
∂S−→ K0S(Λ) → K0(Λ) → K0(ΛS). (1)

In the special case where Λ is an o-order over a commutative ring o and S is the set of all
nonzerodivisors of o, we also write K0T (Λ) instead of K0S(Λ). Moreover, we denote the
relative K-group corresponding to a ring homomorphism Λ → Λ′ by K0(Λ,Λ

′) (cf. [Sw68]).
Then we have a Localization Sequence (cf. [CR87, p. 72])

K1(Λ) → K1(Λ
′)

∂Λ,Λ′
−→ K0(Λ,Λ

′) → K0(Λ) → K0(Λ
′). (2)

The maps ∂S and ∂Λ,Λ′ in (1) and (2) are called boundary homomorphisms. It is also shown
in [Sw68] that there is an isomorphism K0(Λ,ΛS) ≃ K0S(Λ).

Let G be a �nite group; in the case where Λ′ is the group ring RG, the reduced
norm map nrRG : K1(RG) → ζ(RG)× is injective, and there exists a canonical map
∂̂G : ζ(RG)× → K0(ZG,RG) such that the restriction of ∂̂G to the image of the reduced
norm equals ∂ZG,RG ◦ nr−1RG. This map is called the extended boundary homomorphism and
was introduced by Burns and Flach [BF01].

1.1.2 Re�ned Euler characteristics

For any ring Λ we write D(Λ) for the derived category of Λ-modules. Let Cb(PMod(Λ)) be
the category of bounded complexes of �nitely generated projective Λ-modules. A complex
of Λ-modules is called perfect if it is isomorphic in D(Λ) to an element of Cb(PMod(Λ)).
We denote the full triangulated subcategory of D(Λ) comprising perfect complexes by
Dperf(Λ). For any C• ∈ Cb(PMod(Λ)) we de�ne Λ-modules

Cev :=
⊕
i∈Z

C2i, Codd :=
⊕
i∈Z

C2i+1.

Similarly, we de�ne Hev(C•) and Hodd(C•) to be the direct sum over all even and odd
degree cohomology groups of C•, respectively.

For the following let R be a Dedekind domain of characteristic 0, F its �eld of fractions,
A a �nite dimensional F -algebra and Λ an R-order in A. LetK be a �eld containing F , and
write K0(Λ,K) for K0(Λ,K ⊗F A). A pair (C•, t) consisting of a complex C• ∈ Dperf(Λ)
and an isomorphism t : Hodd(C•K) → Hev(C•K) is called a trivialized complex, where
C•K := K ⊗L

R C• is the left derived tensor product of C• with K. We refer to t as a
trivialization of C•. One de�nes the re�ned Euler characteristic χΛ,K(C•, t) ∈ K0(Λ,K)
of a trivialized complex as follows: Choose a complex P • ∈ Cb(PMod(Λ)) which is quasi-
isomorphic to C•. Let Bi(P •K) and Zi(P •K) denote the ith cobounderies and ith cocycles
of P •K , respectively. We have the obvious exact sequences

Bi(P •K) � Zi(P •K) � H i(P •K) , Zi(P •K) � P i
K � Bi+1(P •K).
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If we choose splittings of the above sequences, we get an isomorphism

ϕt : P
odd
K ≃

⊕
i∈Z

Bi(P •K)⊕Hodd(P •K) ≃
⊕
i∈Z

Bi(P •K)⊕Hev(P •K) ≃ P ev
K ,

where the second map is induced by t. Then the re�ned Euler characteristic is de�ned to
be

χΛ,K(C•, t) := (P odd, ϕt, P
ev) ∈ K0(Λ,K)

which indeed is independent of all choices made in the construction. For further information
concerning re�ned Euler characteristics we refer the reader to [Bu03].

We de�ne DT (Λ) to be the torsion subgroup of K0(Λ, F ).

1.1.3 Hom-description

In this paper we use a formulation of the ETNC in terms of relative K-theory and reduced
norms. However, we will frequently refer to [Ni11a], where the Hom-description is used.
Here we summarize some basic facts of this equivalent theory for convenience of the reader.

Let G be a �nite group and let p be a prime. We denote the ring of virtual characters
of G with values in Cp by Rp(G). We choose a �nite Galois extension E of Qp such that all
representations of G can be realized over E, and put Γ := Gal(E/Qp). If χ is a character
of G, we let Vχ be an EG-module with character χ. Then by [GRW99, Appendix A] there
is an isomorphism

Det : K1(QpG)
≃−→ HomΓ(Rp(G), E

×)

x 7→ [χ 7→ det(X | HomEG(Vχ, (EG)
n))] ,

where X ∈ Gln(QpG) maps to x under the natural map Gln(QpG) → K1(QpG). We have
an exact sequence

K1(ZpG) → K1(QpG) → K0T (ZpG) → 0,

as the boundary homomorphism in the localization sequence (1) is surjective in this case
by a theorem of Swan [CR81, Theorem 32.1]. As ZpG

× surjects onto K1(ZpG) by [CR81,
Theorem 40.31], we obtain the local Hom-description

K0T (ZpG) ≃ HomΓ(Rp(G), E
×)/Det (ZpG

×).

When f ∈ HomΓ(Rp(G), E
×) corresponds to T ∈ K0T (ZpG) under this isomorphism, then

we say that f is a representing homomorphism for T . Similarly, by [CR87, Theorem 45.3]
the reduced norm induces isomorphisms

nr : K1(QpG)
≃−→ ζ(QpG)

×

K0T (ZpG) ≃ ζ(QpG)
×/nr(ZpG

×).

We therefore have a commutative triangle

K1(QpG)

nr

yyssssssssssssss
Det

''OOOOOOOOOOOOOOOOO

ζ(QpG)
× f // HomΓ(Rp(G), E

×)

(3)
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in which each map is an isomorphism. We now describe the isomorphism f in more detail.
For this let z ∈ ζ(QpG)

×. Let Irrp (G) be the set of absolutely irreducible Cp-valued

characters of G. For χ ∈ Irrp (G) we write eχ := χ(1)
|G|

∑
g∈G χ(g

−1)g for the associated
central idempotent in CpG. Note that eχ actually belongs to EG and each generates one
of the minimal ideals of ζ(EG); hence

ζ(EG) =
⊕

χ∈Irrp (G)

Eeχ.

Consider z as an element in ζ(EG)× and write z =
∑

χ zχeχ with each zχ ∈ E×. Then

f maps z to the unique homomorphism fz ∈ HomΓ(Rp(G), E
×) which on irreducible

characters is given by
fz : χ 7→ zχ, χ ∈ Irrp (G). (4)

1.2 Equivariant L-values

Let us �x a �nite Galois extension L/K of number �elds with Galois group G. For every
prime p of K we �x a prime P of L above p and write GP and IP for the decomposition
group and inertia subgroup of L/K at P, respectively. Moreover, we denote the residual
group at P by GP = GP/IP and choose a lift ϕP ∈ GP of the Frobenius automorphism at
P.

1.2.1 Complex L-series

If S is a �nite set of places of K containing the set S∞ of all in�nite places of K, and χ
is a (complex) character of G, we denote the S-truncated Artin L-function attached to χ
and S by LS(s, χ) and de�ne L∗S(r, χ) to be the leading coe�cient of the Taylor expansion
of LS(s, χ) at s = r, r ∈ Z≤0. Recall that there is a canonical isomorphism ζ(CG) =∏

χ∈Irr (G)C, where Irr (G) denotes the set of complex valued irreducible characters of G.
We de�ne the equivariant Artin L-function to be the meromorphic ζ(CG)-valued function

LS(s) := (LS(s, χ))χ∈Irr (G).

We put L∗S(r) = (L∗S(r, χ))χ∈Irr (G) and abbreviate LS∞(s) by L(s). If T is a second �nite
set of places of K such that S ∩ T = ∅, we de�ne δT (s) := (δT (s, χ))χ∈Irr (G), where

δT (s, χ) =
∏

p∈T det(1 − N(p)1−sϕ−1P |V IP
χ ) and Vχ is a G-module with character χ. We

put
ΘS,T (s) := δT (s) · LS(s)

♯,

where we denote by ♯ : CG→ CG the anti-involution induced by g 7→ g−1. These functions
are the so-called (S, T )-modi�ed G-equivariant L-functions, and for every integer r ≤ 0 we
de�ne Stickelberger elements

θTS (r) := ΘS,T (r) ∈ ζ(CG).

For convenience, we also put LT
S (s, χ) := δT (s, χ̌) · LS(s, χ), where we write χ̌ for the

character contragredient to χ. Thus

θTS (r)
♯ = (LT

S (r, χ))χ∈Irr (G).
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We will also write LT
S (L/K, s, χ) for L

T
S (s, χ) if the extension L/K is not clear from the

context, and similarly for θTS (r). If T is empty, we abbreviate θTS (r) by θS(r). Now a result
of Siegel [Si70] implies that

θTS (r) ∈ ζ(QG) (5)

for all r ≤ 0. Let us �x an embedding ι : C � Cp; then the image of θTS in ζ(QpG) via the
canonical embedding

ζ(QG) � ζ(QpG) =
⊕

χ∈Irrp (G)/∼

Qp(χ),

is given by
∑

χ L
T
S (r, χ̌

ι−1
)ι. Here, the sum runs over all Cp-valued irreducible charac-

ters of G modulo Galois action. Note that we will frequently drop ι and ι−1 from the
notation. Finally, for an irreducible character χ with values in either C or Cp we put

eχ = χ(1)
|G|

∑
g∈G χ(g

−1)g which is a central idempotent in either CG or CpG.

1.2.2 p-adic L-series

Now let L/K be a Galois CM-extension, i.e. L is a CM-�eld, K is totally real and complex
conjugation induces a unique automorphism j of L which lies in the center of G. Recall that
a character χ of G is called even when χ(j) = χ(1), and it is called odd when χ(j) = −χ(1).
Fix an odd prime p and suppose that S also contains all p-adic places of K. Let χ be an
even character of G and denote the S-truncated p-adic Artin L-series of χ by Lp,S(s, χ).
Then for every integer r ≥ 2 one has

Lp,S(1− r, χ) = LS(1− r, χω−r), (6)

where ω denotes the Teichmüller character. When χ is a linear character, then the inter-
polation property (6) for every r ≥ 1 follows from the work of Deligne and Ribet [DR80].
The general case for r ≥ 2 is then established by using Serre's variant of Brauer induction
(see [Ta84, Chapitre III, �1]). In the case r = 1, however, this argument fails due to the
potential presence of trivial zeros of the p-adic L-series of χ at zero. One nevertheless
expects that the identity

Lp,S(0, χ) = LS(0, χω
−1) (7)

holds in general. As both sides behave well under direct sum, in�ation and induction of
characters, we see that (7) at least holds when χ is a monomial character (see the discussion
in [Gro81, �2]).

Note that the identity (7) is implicitly assumed to hold in [Ni11b] and [Ni13, �4]. This
will not a�ect our main Theorem 0.3, as we will �rst reduce to monomial Galois groups.
However, such a reduction step is not possible for the Brumer-Stark conjecture. As a
consequence we have to restrict to monomial extensions in Theorem 0.7.

1.3 Ray class groups

Let T and S be �nite sets of places as in �1.2.1; so S contains all in�nite places and
S ∩ T = ∅. We write clTL for the ray class group of L to the ray MT :=

∏
P∈T (L) P and

OS for the ring of S(L)-integers of L. We denote the S(L)-units of L by ES and de�ne
ET

S := {x ∈ ES : x ≡ 1 mod MT }. If S = S∞, we also write E
T
L for ET

S∞
. All these modules
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are equipped with a natural G-action. Now suppose that L/K is a Galois CM-extension
and let j ∈ G denote complex conjugation. If R is a subring of either C or Cp for a prime p
such that 2 is invertible in R, we put RG+ := RG/(1− j) and RG− := RG/(1 + j) which
are rings, since the idempotents (1 ± j)/2 lie in RG. For any RG-module M we de�ne
M+ = RG+ ⊗RG M and M− = RG− ⊗RG M which are exact functors since 2 ∈ R×. We
de�ne

AT
L := (Z[12 ]⊗Z clTL)

−.

If M is a �nitely generated Z-module and p is a prime, we put M(p) := Zp⊗ZM . For odd
primes p, we will in particular consider AT

L(p), the minus p-part of the ray class group clTL.

1.4 Noncommutative Fitting invariants

For the following we refer the reader to [Ni10] and [JN13]. We denote the set of all m× n
matrices with entries in a ring R by Mm×n(R) and in the case m = n the group of all
invertible elements of Mn×n(R) by Gln(R).

1.4.1 nr(Λ)-equivalence

Let A be a separable K-algebra and Λ be an o-order in A, �nitely generated as o-module,
where o is an integrally closed complete commutative noetherian local domain with �eld
of quotients K. The group ring ZpG of a �nite group G will serve as a standard example.
Let N and M be two ζ(Λ)-submodules of an o-torsionfree ζ(Λ)-module. Then N and M
are called nr(Λ)-equivalent if there exists an integer n and a matrix U ∈ Gln(Λ) such that
N = nr(U) ·M , where nr : A → ζ(A) denotes the reduced norm map which extends to
matrix rings over A in the obvious way. We denote the corresponding equivalence class by
[N ]nr(Λ). We say that N is nr(Λ)-contained in M (and write [N ]nr(Λ) ⊆ [M ]nr(Λ)) if for all
N ′ ∈ [N ]nr(Λ) there exists M

′ ∈ [M ]nr(Λ) such that N ′ ⊆M ′. Note that it su�ces to check
this property for one N0 ∈ [N ]nr(Λ). We will say that x is contained in [N ]nr(Λ) (and write
x ∈ [N ]nr(Λ)) if there is N0 ∈ [N ]nr(Λ) such that x ∈ N0.

1.4.2 Noncommutative Fitting invariants

Now let M be a �nitely presented (left) Λ-module and let

Λa h−→ Λb � M (8)

be a �nite presentation of M . We identify the homomorphism h with the corresponding
matrix in Ma×b(Λ) and de�ne S(h) = Sb(h) to be the set of all b × b submatrices of h if
a ≥ b. In the case a = b we call (8) a quadratic presentation. The Fitting invariant of h
over Λ is de�ned to be

FittΛ(h) =

{
[0]nr(Λ) if a < b[
⟨nr(H)|H ∈ S(h)⟩ζ(Λ)

]
nr(Λ)

if a ≥ b.

We call FittΛ(h) a Fitting invariant ofM over Λ. One de�nes Fittmax
Λ (M) to be the unique

Fitting invariant of M over Λ which is maximal among all Fitting invariants of M with
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respect to the partial order �⊆�. If M admits a quadratic presentation h, one also puts
FittΛ(M) := FittΛ(h) which is independent of the chosen quadratic presentation.

Remark 1.1. Suppose that Λ = ZpG for a �nite group G and that M is a �nite ZpG-
module with projective dimension at most 1. Then M admits a quadratic presentation
h which must be injective. The corresponding matrix H then belongs to Gla(QpG) and
z := nr(H) is a generator of the Fitting invariant FittZpG(M). Using the Hom-description
of �1.1.3, the commutative triangle (3) shows that the homomorphism fz de�ned in (4)
is a representing homomorphism of the class of M in K0T (ZpG). Conversely, if f is
a representing homomorphism for the class of M , then there is z ∈ ζ(QpG)

× such that
f = fz, and z generates the Fitting invariant of M .

1.4.3 Denominator ideals and the integrality ring

Assume now that o is an integrally closed commutative noetherian domain, but not nec-
essarily complete or local. We denote by I(Λ) the ζ(Λ)-submodule of ζ(A) generated by
the elements nr(H), H ∈ Mb×b(Λ), b ∈ N. As the reduced norm is multiplicative, we see
that I(Λ) is in fact a commutative ring which we call the integrality ring of Λ.

We may decompose the separable K-algebra A into its simple components

A = A1 ⊕ · · · ⊕At,

i.e. each Ai is a simple K-algebra and Ai = Aei = eiA with central primitive idempotents
ei, 1 ≤ i ≤ t. Each Ai is isomorphic to an algebra of ni × ni matrices over a skew�eld Di

and Ki = ζ(Di) is a �nite �eld extension of K. We denote the Schur index of Di by si such
that [Di : Ki] = s2i . We choose a maximal order Λ′ containing Λ. Then also Λ′ decomposes
into Λ′ = ⊕t

i=1Λ
′
i, where Λ

′
i = Λ′ei. Now let H ∈Mb×b(Λ) and write H =

∑t
i=1Hi, where

each Hi is a b× b matrix with entries in Λ′i. Let mi = ni ·si · b and let fi(X) =
∑mi

j=0 αijX
j

be the reduced characteristic polynomial of Hi. We put

H∗i := (−1)mi+1 ·
mi∑
j=1

αijH
j−1
i , H∗ :=

t∑
i=1

H∗i .

Then by [JN13, Lemma 3.4], we have H∗ ∈ Mb×b(Λ
′) and H∗H = HH∗ = nr(H) · 1b×b;

note that the condition on o to be a complete local ring is not necessary for this result.
Moreover, we point out that this de�nition follows [JN13], but slightly di�ers from the
corresponding notion in [Ni10]. If H̃ ∈Mb×b(Λ) is a second matrix, then (HH̃)∗ = H̃∗H∗.
We de�ne

H(Λ) := {x ∈ ζ(Λ)|xH∗ ∈Mb×b(Λ)∀b ∈ N ∀H ∈Mb×b(Λ)} .

Since x · nr(H) = xH∗H, we have in particular

H(Λ) · I(Λ) = H(Λ) ⊆ ζ(Λ) (9)

and we call H(Λ) the denominator ideal of Λ. For convenience, we put Hp(G) := H(ZpG)
andH(G) := H(ZG), and similarly Ip(G) := I(ZpG) and I(G) := I(ZG). The importance
of the denominator ideal H(Λ) will become clear by means of the following result which is
[JN13, Theorem 3.6] (see also [Ni10, Theorem 4.2]).
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Theorem 1.2. If o is an integrally closed complete commutative noetherian local domain
and M is a �nitely presented Λ-module, then

H(Λ) · Fittmax
Λ (M) ⊆ AnnΛ(M).

We will need the following lemma whose last claim is [Ni11b, Lemma 6.6].

Lemma 1.3. Let G and C be �nite groups with C abelian. Let p be a prime and choose a
maximal order Mp(G) in QpG which contains ZpG. Then we have inclusions

Ip(G)[C] ⊆ Ip(G× C) ⊆ ζ(Mp(G))[C].

In particular we have |G| · Ip(G× C) ⊆ ζ(Zp[G× C]) for all primes p.

Proof. The ring Ip(G)[C] (resp. Ip(G×C)) is generated over ζ(Zp[G])[C] = ζ(Zp[G×C]) by
the elements nr(H), where H runs through Mn×n(ZpG) (resp. Mn×n(Zp[G×C])), n ∈ N.
So we have Ip(G)[C] ⊆ Ip(G × C). The proof of the second inclusion is essentially the
same as that of [Ni11b, Lemma 6.6]; we include it here for convenience. Up to conjugation
the maximal order Mp(G) is a direct sum of matrix rings of type Mn×n(OD), where OD

denotes the valuation ring of a skew �eld D. Note that conjugation does neither change
the center of the order nor the image of the reduced norm. We have

ζ(Mn×n(OD)) = ζ(OD) = OF ,

where OF is the ring of integers of the �eld F = ζ(D) which is �nite over Qp. Since the
reduced norm maps Mp(G) into its center and |G| · ζ(Mp(G)) ⊆ ζ(ZpG), it su�ces to
show that the reduced norm maps Mm×m(Mn×n(OD)[C]) into OF [C]. Let us �rst assume
that D = F . Then the map

σ :Mn×n(F )[C] −→ Mn×n(F [C])∑
c∈C

Mcc 7→ (
∑
c∈C

αij(c)c)i,j

is an isomorphism of rings, where Mc = (αij(c))i,j lies in Mn×n(F ). Likewise, σ induces
an isomorphism

σ :Mn×n(OF )[C] ≃Mn×n(OF [C]).

Therefore, we have

nr(Mm×m(Mn×n(OF )[C])) = nr(Mnm×nm(OF [C])) = nr(OF [C]) = OF [C].

For arbitrary D, there is a �eld E, Galois over F such that E ⊗F D ≃Ms×s(E) for some
integer s. We have just proven that the reduced norm maps Mm×m(Mn×n(OD)[C]) into
OE [C]. However, the image is invariant under the action of Gal(E/F ) and is therefore
contained in OF [C].

Corollary 1.4. Let p be a prime and let G and C be �nite groups with C abelian. If
Ip(G) = ζ(Mp(G)), then Ip(G× C) = Ip(G)[C] = ζ(Mp(G))[C].

The following result determines all primes p for which the denominator ideal Hp(G) is
best possible.
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Proposition 1.5. We have Hp(G) = ζ(ZpG) if and only if p does not divide the order of the
commutator subgroup G′ of G. Furthermore, when this is the case we have Ip(G) = ζ(ZpG).

Proof. The �rst assertion is a special case of [JN13, Proposition 4.8]. The second assertion
then follows from (9).

2 The integrality conjectures

Let L/K be a Galois extension with Galois group G. Let S and T be two �nite sets of
places of K such that

(i) S contains all the in�nite places of K and all the places which ramify in L/K,
i.e. S ⊇ Sram ∪ S∞.

(ii) S ∩ T = ∅.

(iii) ET
S is torsionfree.

We refer to the above hypotheses as Hyp(S, T ). For a �xed set S we de�ne AS to be
the ζ(ZG)-submodule of ζ(QG) generated by the elements δT (0), where T runs through
the �nite sets of places of K such that Hyp(S, T ) is satis�ed. Note that AS equals the
ZG-annihilator of the roots of unity of L if G is abelian by [Ta84, Lemma 1.1, p. 82].

2.1 The Sinnott-Kurihara ideal

For any �nite group H we put NH :=
∑

h∈H h. For a �nite prime p of K, we de�ne a
ZGP-module Up by

Up := ⟨NIP , 1− εpϕ
−1
P ⟩ZGP

⊂ QGP,

where εp = |IP|−1NIP . Note that Up = ZGP if p is unrami�ed in L/K such that the
de�nition of the following I(G)-module is indeed independent of the set S as long as S
contains the rami�ed primes:

U := ⟨
∏

p∈S\S∞

nr(up)|up ∈ Up⟩I(G) ⊂ ζ(QG).

De�nition 2.1. Let S be a �nite set of primes which contains Sram ∪ S∞. We de�ne an
I(G)-module by

SKu(L/K, S) := AS · U · L(0)♯ ⊂ ζ(QG).

We call SKu(L/K) := SKu(L/K, Sram ∪ S∞) the (fractional) Sinnott-Kurihara ideal.

For abelian G, this de�nition coincides with the Sinnott-Kurihara ideal SKu(L/K) in
[Gr07] (see also [Si80, p. 193]) and is closely related to the Fitting ideal of the Pontryagin
dual of the class group (see [Gr07, Theorem 8.8]).

Note that our de�nition slightly di�ers from the original de�nition in [Ni11b], where in
the de�nition of U the integrality ring I(G) is replaced with ζ(ZG). However, as observed
by the reviewer, it is then not clear whether the de�nition of U does not depend on S. We
assure the reader that this rede�nition does not a�ect any of the results in [Ni11b].

The integrality conjecture as formulated in [Ni11b] (where L/K is assumed to be a
CM-extension; but we will not assume this here) now asserts the following:
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Conjecture 2.2. The Sinnott-Kurihara ideal SKu(L/K) is contained in I(G).

Remark 2.3. (i) Since clearly SKu(L/K, S) ⊆ SKu(L/K, S′) whenever S′ ⊆ S, Con-
jecture 2.2 implies SKu(L/K, S) ⊆ I(G) for all admissible sets S.

(ii) If the sets S and T satisfy Hyp(S, T ), the Stickelberger element θTS (0) is contained
in SKu(L/K, S). Hence Conjecture 2.2 predicts that θTS (0) ∈ I(G) which is part of
[Ni11d, Conjecture 2.1].

(iii) In the above de�nitions, we may replace Z and Q by Zp and Qp, respectively. We
obtain a local Sinnott-Kurihara ideal SKup(L/K) contained in ζ(QpG). Since we
have an equality

I(G) =
∩
p

(Ip(G) ∩ ζ(QG)),

we have an equivalence

SKu(L/K) ⊆ I(G) ⇐⇒ SKup(L/K) ⊆ Ip(G) ∀p.

If G is abelian, we obviously have I(G) = ζ(ZG) = ZG and the results in [Ba77],
[Ca79], [DR80] each imply the following theorem (cf. [Gr07, �2]).

Theorem 2.4. Conjecture 2.2 holds if L/K is an abelian extension.

2.2 The modi�ed Sinnott-Kurihara ideal

We also de�ne a modi�ed version of the Sinnott-Kurihara ideal as follows. For a �nite
prime p of K, de�ne an I(G)-module U ′p by

U ′p := ⟨nr(NIP),nr(1− εpϕ
−1
P )⟩I(G) ⊂ ζ(QG).

If S contains Sram ∪ S∞, we de�ne

U ′ :=
∏

p∈S\S∞

U ′p,

SKu′(L/K,S) := AS · U ′ · L(0)♯ ⊆ SKu(L/K, S).

As before, the de�nition of U ′ does not depend on S and all the above remarks remain
true if we replace SKu(L/K, S) by SKu′(L/K,S) throughout. We put SKu′(L/K) :=
SKu′(L/K, Sram∪S∞). If G is abelian, the reduced norm is just the identity on QG. More-
over, AS is the whole ZG-annihilator of µL, the roots of unity in L, and hence independent
of S. This implies the following proposition.

Proposition 2.5. If L/K is an abelian extension, then

SKu(L/K) = SKu(L/K, S) = SKu′(L/K, S) ⊆ ZG

for all admissible sets S.
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2.3 Negative integers

We now discuss a (partial) analogue of Conjecture 2.2 in the case, where r < 0 is a
negative integer. We denote the absolute Galois group of L by GL and put µ1−r(L) :=
(Q/Z)(1− r)GL , where (Q/Z)(1− r) denotes the usual (1− r)-fold Tate twist of Q/Z.

Conjecture 2.6. Let L/K be a Galois extension of number �elds with Galois group G and
let r < 0 be an integer. Then for every x ∈ AnnZG(µ1−r(L)) one has

nr(x) · θS(r) ∈ I(G)

for all �nite sets S of primes of K containing Sram ∪ S∞.

Remark 2.7. (i) If S ⊆ S′, then we have an equality

θS′(r) = (
∏

p∈S′\S

nr(1−N(p)−rϕ−1P ))θS(r).

As nr(1−N(p)−rϕ−1P )) lies in I(G), it su�ces to consider the set S = Sram ∪ S∞ in
Conjecture 2.6.

(ii) Since the ZG-annihilator of µ1−r(L) is generated by the elements
∏

p∈T (1−ϕPN(p)1−r),
where T runs through all �nite sets of primes in K such that Hyp(S, T ) is satis�ed
(cf. [Co77]), Conjecture 2.6 in particular implies that θTS (r) ∈ I(G) for all �nite sets
of primes S and T such that Hyp(S, T ) holds.

(iii) Note that Conjecture 2.6 outside its 2-primary part implicitly is a part of [Ni11c, Con-
jecture 2.11] if either L/K is a CM-extension and r is even or L/K is an extension
of totally real �elds and r is odd.

Again, the results in [Ba77], [Ca79], [DR80] each imply the following theorem.

Theorem 2.8. Conjecture 2.6 holds if L/K is an abelian extension.

3 A reduction step

In order to prove one of the conjectures of the preceding paragraph, we may henceforth
assume that the �eld K is totally real, as otherwise θS∞(r) = L(r)♯ = 0; hence also
SKu(L/K) = 0 and θS(r) = 0 for all �nite sets S containing S∞. By the same reason, we
may assume that L is totally complex if r is even. Note that we actually have to exclude
the special case, where r = 0 and L/Q is a CM-extension of degree 2. In this case, however,
the occurring Galois group is abelian and everything is known by Theorem 2.4.

Let us denote the set of complex places of L by SC(L). For every w ∈ SC(L), the
decomposition group Gw is cyclic of order two and we denote its generator by jw. If r is
even we de�ne

H = H(r) := ⟨jw · jw′ | w,w′ ∈ SC(L)⟩.

If r is odd, we de�ne
H = H(r) := ⟨jw | w ∈ SC(L)⟩.
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In both cases, H is normal in G such that the �xed �eld LH is a Galois extension of K with
Galois group G := G/H. Note that LH/K is either a Galois CM-extension or a Galois
extension of totally real �elds.

Proposition 3.1. Let L/K be a Galois extension of number �elds with Galois group G
and let p be an odd prime. Assume that L is totally imaginary if we consider Conjecture
2.2 or Conjecture 2.6 for even r. Assume further that G has a unique 2-Sylow subgroup.
Then the p-part of Conjecture 2.2 (resp. Conjecture 2.6) is true for L/K if and only if the
p-part of Conjecture 2.2 (resp. Conjecture 2.6) is true for LH/K.

Proof. Since H is normal in G, the group ring element εH := |H|−1NH is a central idem-
potent in QpG. Let G2 be the unique 2-Sylow subgroup of G. Then jw lies in G2 for every
w ∈ SC(L) such that H is a �nite 2-group. Since p is odd, this implies that εH actually
lies in ZpG. Now ZpG decomposes into ZpG = εHZpG ⊕ (1 − εH)ZpG and the canonical
epimorphism π : ZpG � ZpG induces an isomorphism π : εHZpG ≃ ZpG. However, by the
de�nition of H, we have LS∞(r, χ) = 0 if H is not contained in the kernel of the irreducible
character χ. When r = 0 this means that SKu(L/K) = εH · SKu(L/K) which identi�es
with SKu(LH/K) via π. Using µ1−r(L)

H = µ1−r(L
H), a similar observation holds in the

case r < 0.

Remark 3.2. Note that Proposition 3.1 in particular applies when G is nilpotent.

4 Integrality of Stickelberger elements

The aim of this section is to prove Theorem 0.1 and Theorem 0.2.

4.1 Admissible sets of places

If p is a prime, we denote by Sp the set of p-adic places of K. We now introduce the
following terminology.

De�nition 4.1. If r = 0, we will say that S and T are (p, 0)-admissible if the following
conditions are satis�ed:

(i) The union of S and T contains all non-p-adic rami�ed primes, i.e. Sram\(Sram∩Sp) ⊆
S ∪ T ,

(ii) S contains all wildly rami�ed primes in Sp,

(iii) S contains the set S∞ of all archimedean primes,

(iv) S ∩ T = ∅,

(v) ETnr
S is torsionfree, where Tnr denotes the set of all unrami�ed primes in T .

If r < 0, we will say that S and T are (p, r)-admissible if Hyp(S, T ) is satis�ed.

Note that S and T are in fact (p, r)-admissible for all primes p and all r ≤ 0 ifHyp(S, T )
is satis�ed.



Stickelberger elements and the ETNC 16

4.2 Integrality of Stickelberger elements

Recall that a �nite group G is called monomial if every irreducible character of G is in-
duced by a linear character. Examples of monomial groups are nilpotent groups [CR81,
Theorem 11.3] and, more generally, supersolvable groups [We82, Chapter 2, Corollary 3.5].
For more information concerning monomial groups we refer the reader to [We82, Chapter 2].

Now assume that L/K is a �nite Galois extension of number �elds with Galois group
G, where G decomposes as G = H × C with H monomial and C abelian. As in the
introduction let M(H) (resp. Mp(H)) be a maximal order in QH (resp. QpH) containing
ZH (resp. ZpH). Then we may view M(H)[C] (resp. Mp(H)[C]) as an order in QG
(resp. QpG) and we have the following more general version of Theorem 0.2.

Theorem 4.2. Let L/K be a �nite Galois extension of number �elds with Galois group
G = H × C, where H is monomial and C is abelian. Let p be a prime and r ∈ Z≤0. If S
and T are two �nite sets of primes of K which are (p, r)-admissible, then

θTS (r) ∈ ζ(Mp(H)[C]) = ζ(Mp(H))[C].

In particular, if Hyp(S, T ) is satis�ed, we have

θTS (r) ∈ ζ(M(H)[C]) = ζ(M(H))[C].

Proof. We �rst assume that G = C is abelian. Then ζ(M(H))[C] = ZG and the assertion
follows easily from Theorem 2.4 if r = 0 and from Theorem 2.8 if r < 0 as long asHyp(S, T )
is satis�ed. We are left with the case, where r = 0 and S and T are (p, 0)-admissible. We
claim that θTS (0) lies in SKup(L/K) and hence Theorem 2.4 again implies the desired
result. To see this, we write θTS (0) as

θTS (0) = δTnr(0) ·
∏

p∈T\Tnr

δp(0)
∏

p∈S\S∞

(1− εpϕ
−1
P ) · L(0)♯.

The set Tnr satis�es Hyp(Tnr, Sram∪S∞) by condition (v) so that δTnr(0) lies in ASram∪S∞ .
Let p ∈ T \ Tnr and let q ∈ Z be the rational prime below p. By local class �eld theory
[Se79, Chapter XV, �2], the local units at p surject under the reciprocity map onto IP.
The subgroup of principal units is mapped onto the q-Sylow subgroup of IP. As the factor
group of the local units modulo the principal units has order N(p) − 1, the rami�cation
index ep := |IP| divides N(p)− 1 if q = p, and still up to a power of q if q ̸= p. Hence

δp(0) = 1− εpϕ
−1
P N(p) = 1− εpϕ

−1
P − ϕ−1P

N(p)− 1

ep
NIP ∈ Zp ⊗ Up.

For the tamely rami�ed primes above p the element

ep = (ep −NIP)(1− εpϕ
−1
P ) +NIP ∈ Up

lies in Z×p , since p - ep. Therefore, we get Zp ⊗ Up = ZpGP in this case. Finally, we

obviously have (1 − εpϕ
−1
P ) ∈ Up for the primes p ∈ S \ S∞. Putting all this together we

�nd that θTS (0) belongs to SKup(L/K) as desired.
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We now treat the general case, where G = H × C. Since we have to deal with Stickel-
berger elements corresponding to various subextensions of L/K, we will write θTS (L/K, r)
for θTS (r) for clarity. Each irreducible character of G may be written as χ · λ, where
χ ∈ Irr (H) and λ ∈ Irr (C). We have the following decomposition

ζ(Qp[H × C]) =
⊕

χ∈Irrp (H)/∼

Qp(χ)[C],

where the sum runs over all (Cp-valued) irreducible characters of H modulo Galois action
and Qp(χ) := Qp(χ(h)|h ∈ H). We �x an irreducible character χ of H. Then the image
of θTS (L/K, r)

♯ in the χ-component of the above decomposition is given by∑
λ∈Irrp (C)

LT
S (L/K,χ · λ, r)eλ ∈ Qp(χ)[C] (10)

and we wish to show that it actually lies in Zp(χ)[C], where Zp(χ) denotes the ring of
integers in Qp(χ). Since H is monomial, there is a subgroup U of H and a linear character
ψ of U such that χ is induced by ψ, i.e. χ = indH

U ψ. Let us denote the abelianization of U by
Uab; as ψ is linear, it is in�ated by a character ψab of Uab and hence χ = indH

U infl U
Uabψab.

Note that ψab is a linear character and thus irreducible. Moreover, if λ is an irreducible
character of C, we have

χ · λ = (indH
U ψ) · λ = indG

U×C(ψ · λ) = indG
U×C infl

U×C
Uab×C(ψ

ab · λ). (11)

We assure the reader that the usual behavior of S-truncated Artin L-series under direct
sum, induction and in�ation of characters holds for our T -modi�ed version just as well.
Thus (11) implies that∑

λ∈Irrp (C)

LT
S (L/K,χ · λ, r)eλ =

∑
λ∈Irrp (C)

LT ′
S′ (L[U,U ]/LU×C , ψab · λ, r)eλ,

where [U,U ] denotes the commutator subgroup of U and S′ = S(LU×C) and similarly for
T ′. However, the righthand side lies in Zp(ψ)[C], since it is the ψ

ab-component of the Stick-
elberger element θT

′
S′ (L[U,U ]/LU×C , r)♯ attached to the abelian subextension L[U,U ]/LU×C .

This and (10) imply that∑
λ∈Irrp (C)

LT
S (L/K,χ · λ, r)eλ ∈ Qp(χ)[C] ∩ Zp(ψ)[C] = Zp(χ)[C]

as desired. In particular, if Hyp(S, T ) is satis�ed, then the sets S and T are (p, r)-
admissible for all primes p, and hence

θTS (r) ∈
∩
p

(ζ(Mp(H))[C] ∩ ζ(QH)[C]) = ζ(M(H))[C].

Remark 4.3. In the case, where the abelian group C is trivial, Nomura [No] has shown
that the conditions on the �nite sets S and T can be further relaxed.
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Now let J be a subset of Sram and put SJ := (S∞ ∪Sram) \ J . Let K ⊆ LJ ⊆ L be the
maximal sub�eld of L such that LJ/K is unrami�ed outside SJ . Then LJ/K is a Galois
extension with Galois group GJ = G/HJ , where HJ = Gal(L/LJ). We have the following
stronger version of Theorem 0.1.

Theorem 4.4. Let L/K be a Galois extension of number �elds with Galois group G and
let J be a subset of Sram. If the Galois group GJ of the subextension LJ/K is monomial,
then ∏

p∈J
nr(NIP) · θTSJ

(r) ∈ ζ(M(G)),

whenever r ≤ 0 and Hyp(Sram ∪ S∞, T ) is satis�ed. In particular,

SKu′(L/K) ⊆ ζ(M(G))

if G is monomial.

Proof. Since HJ is normal in G, the idempotent |HJ |−1NHJ
is central in QG and lies in

M(G). If χ is an irreducible character of G, the χ-component of
∏

p∈J nr(NIP) is zero if
HJ is not contained in the kernel of χ. Hence we have an equality∏

p∈J
nr(NIP) · θTSJ

(L/K, r) =
∏
p∈J

nr(NIP) · |HJ |−1NHJ
· θ̃TSJ

(LJ/K, r), (12)

where θ̃TSJ
(LJ/K, r) denotes any lift of θ

T
SJ
(LJ/K, r) in ζ(M(G)); note that this is possible,

since θTSJ
(LJ/K, r) lies in ζ(M(GJ)) by Theorem 4.2 as Hyp(SJ , T ) is satis�ed for LJ/K.

Hence the righthand side of the above equation also lies in ζ(M(G)). The second part of
the theorem is clear by the de�nition of SKu′(L/K) and the fact that each quotient of a
monomial group is again monomial.

Corollary 4.5. Let L/K be an abelian Galois extension of number �elds with Galois group
G and let J be a subset of Sram. Then∏

p∈J
nr(NIP) · θTSJ

(r) ∈ ZG,

whenever r ≤ 0 and Hyp(Sram ∪ S∞, T ) is satis�ed.

Proof. If G is abelian, the righthand side of equation (12) equals∏
p∈J

NIP · |HJ |−1NHJ
· θ̃TSJ

(LJ/K, r) = z ·NHJ
· θ̃TSJ

(LJ/K, r),

where z = |HJ |−1 ·
∏

p∈J |IP| is an integer. The assertion follows, since θTSJ
(LJ/K, r) lies

in ZGJ by Theorem 2.4 and Theorem 2.8.

Remark 4.6. These results may tempt us to state a conjecture in complete analogy to
Conjecture 2.2 also in the case r < 0. We have not done so, since the author is not aware
of a convincing reason, why this should be true in general.
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4.3 An example: Frobenius groups

We recall the de�nition and some basic facts about Frobenius groups and then use them
to provide many examples, where we can show that Stickelberger elements indeed lie in
the integrality ring.

De�nition 4.7. A Frobenius group is a �nite group G with a proper nontrivial subgroup
H such that H ∩ gHg−1 = {1} for all g ∈ G−H, in which case H is called a Frobenius

complement.

Theorem 4.8. A Frobenius group G contains a unique normal subgroup N , known as the
Frobenius kernel, such that G is a semidirect product N oH. Furthermore:

(i) |N | and [G : N ] = |H| are relatively prime.

(ii) The Frobenius kernel N is nilpotent.

(iii) If χ ∈ Irr (G) such that N ̸≤ kerχ then χ = IndGN (ψ) for some 1 ̸= ψ ∈ Irr (N).

Proof. For (i) and (iii) see [CR81, �14A]. For (ii) see [Ro96, 10.5.6].

Corollary 4.9. Suppose that G ≃ N oH is a Frobenius group with monomial Frobenius
complement H. Then G is also monomial.

Proof. Let χ ∈ Irr (G). IfN ≤ kerχ then χ is in�ated from some φ ∈ Irr (G/N). Otherwise
N � kerχ and so χ is induced from some ψ ∈ Irr (N) by Theorem 4.8(iii). The Frobenius
complementH ≃ G/N is monomial by assumption, and the Frobenius kernelN is nilpotent
by Theorem 4.8(ii) and thus is monomial. However, induction is transitive and in�ation
commutes with induction, so in both cases χ is induced from a linear character.

The following terminology has been introduced in [JN].

De�nition 4.10. Let Mp(G) be a maximal Zp-order such that Zp[G] ⊆ Mp(G) ⊆ Qp[G]
and let N be a normal subgroup of G. De�ne the N -hybrid order of Zp[G] and Mp(G)
to be Mp(G,N) = Zp[G]εN ⊕Mp(G)(1− εN ). We say that Zp[G] is N -hybrid if Zp[G] =
Mp(G,N) for some choice of Mp(G).

Theorem 4.11. Let L/K be a �nite Galois extension of number �elds with Gal(L/K) ≃
G×A, where G ≃ NoH is a Frobenius group and A is abelian. Suppose that the Frobenius
complement H is abelian. Then for every prime p - |N | and for every (p, r)-admissible sets
S and T we have

θTS (r) ∈ Ip(G×A) = ζ(Zp[G×A]).

Proof. We �rst observe that (G×A)/N ≃ H×A is abelian. Thus N contains the commuta-
tor subgroup G′ of G×A and so |G′| is not divisible by p. Hence Ip(G×A) = ζ(Zp[G×A])
by Proposition 1.5. As H is abelian, it is monomial and hence G is also monomial by
Corollary 4.9. Thus Theorem 4.2 implies that

θTS (r) ∈ ζ(Mp(G))[A]. (13)
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The group ring Zp[G] is N -hybrid by [JN, Proposition 2.13] and so there is a ring isomor-
phism

ζ(Zp[G×A]) ≃ Zp[G/N ×A]⊕ (1− εN )ζ(Mp(G))[A]. (14)

If we compare (13) and (14), we see that it su�ces to show that θTS (r)εN belongs to ζ(Zp[G×
A])εN ≃ Zp[G/N×A]. However, G/N×A is abelian and θTS (r)εN naturally identi�es with
the corresponding Stickelberger element attached to the (abelian) subextension LN/K.
Hence the result now follows from Theorem 4.2 with C = G/N ×A and H = 1.

For an odd prime l we denote by D2l the dihedral group of order 2l. If q = ln is a prime
power, we let Aff(q) be the group of a�ne transformations on Fq, the �nite �eld with q
elements. Hence Aff(q) is isomorphic to a semidirect product Fq o F×q with the natural
action. In particular, we have Aff(3) ≃ D6 ≃ S3, the symmetric group on three letters.
Note that D2l and Aff(q) are Frobenius groups, and that in both cases the Frobenius kernel
coincides with the commutator subgroup.

Corollary 4.12. Let l be an odd prime. Let L/K be a �nite Galois extension of number
�elds with Gal(L/K) ≃ G × A, where A is abelian and G is isomorphic to either D2l or
Aff(q) where q = ln for some n. Then for every (p, r)-admissible sets S and T we have

θTS (r) ∈ I(G×A).

Proof. If p ̸= l is a prime, then θTS (r) ∈ Ip(G × A) follows from Theorem 4.11. If p = l,
then by [JN, Proposition 6.7] (if G ≃ Aff(q)) and [JN, Proposition 6.9] (if G ≃ D2l) we
have Ip(G) = ζ(Mp(G)). Then Corollary 1.4 implies that Ip(G×A) = ζ(Mp(G))[A] and
so the result follows from Theorem 4.2.

5 The ETNC in almost tame extensions

5.1 The conjecture

Let us �x a �nite Galois extension L/K of number �elds with Galois group G and a �nite
set S of places of K which contains Sram ∪ S∞. Let ∆S be the kernel of the augmentation
map ZS(L) � Z which maps each P ∈ S(L) to 1 and let

λS : R⊗ ES → R⊗∆S, u 7→ −
∑

P∈S(L)

log |u|PP

be the negative of the usual Dirichlet map. Note that λS is in fact an isomorphism of
RG-modules. Furthermore, let τS ∈ Ext2G(∆S,ES) be Tate's canonical class (cf. [Ta66]);
then τS is given by a 2-extension

ES � A→ B � ∆S,

where A and B are �nitely generated cohomologically trivial ZG-modules. Thus we may
view A→ B as a perfect complex with A placed in degree 0 and the pair (A→ B, λ−1S ) is
a trivialized complex. In [Bu01] the author de�nes the following element of K0(ZG,R):

TΩ(L/K, 0) := ψ∗G(χZG,R(A→ B, λ−1S ) + ∂̂G(L
∗
S(0)

♯)).
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Here, ψ∗G is a certain involution on K0(ZG,R) which is not important for our purposes,
since we will be only interested in the nullity of TΩ(L/K, 0). In fact, the ETNC for the
motive h0(Spec(L)) with coe�cients in ZG in this context simply asserts the following.

Conjecture 5.1. The element TΩ(L/K, 0) ∈ K0(ZG,R) is zero.

Note that this statement is also equivalent to the Lifted Root Number Conjecture
formulated by Gruenberg, Ritter and Weiss [GRW99] (cf. [Bu01, Theorem 2.3.3]). By
[Bu01, Theorem 2.2.4] one knows that TΩ(L/K, 0) lies in K0(ZG,Q) if and only if Stark's
conjecture holds for all irreducible characters of G. In this case the ETNC decomposes
into local conjectures at each prime p by means of the isomorphism

K0(ZG,Q) ≃
⊕
p-∞

K0(ZpG,Qp).

Let TΩ(L/K, 0)p be the image of TΩ(L/K, 0) in K0(ZpG,Qp). If we further assume
that TΩ(L/K, 0)p is torsion, then it is well known (see [GRW99, �8] for example) that
TΩ(L/K, 0)p vanishes if and only if TΩ(L′/K ′, 0)p vanishes for all intermediate Galois
extensions L′/K ′ whose Galois group is p-elementary, i.e. G is the direct product of a p-
group and a cyclic group of order prime to p. We will prove an analogous result on minus
parts in the next paragraph.

5.2 A reduction step on minus parts

Let L/K be a Galois CM-extension with Galois group G and let p be an odd prime. Let
j ∈ G denote complex conjugation. There are canonical isomorphisms

K0(ZpG,Qp) ≃ K0(ZpG+,Qp)⊕K0(ZpG−,Qp)

DT (ZpG) ≃ DT (ZpG+)⊕DT (ZpG−).

Moreover, we naturally have ZpG+ ≃ ZpG
+, where G+ := G/⟨j⟩ is the Galois group of

the extension L+/K of totally real �elds.
Since Stark's conjecture is known for odd characters [Ta84, Theorem 1.2, p. 70], the

element TΩ(L/K, 0) has a well de�ned image TΩ(L/K, 0)−p in K0(ZpG−,Qp). In the proof
of the following proposition we will also view TΩ(L/K, 0)−p as an element in K0(ZpG,Qp)
or rather DT (ZpG) by requiring that its plus part is trivial.

Proposition 5.2. Let L/K be a Galois CM-extension with Galois group G and let p be
an odd prime. Assume that TΩ(L/K, 0)−p belongs to DT (ZpG−). Then TΩ(L/K, 0)−p
vanishes if and only if TΩ(L′/K ′, 0)−p vanishes for all intermediate Galois CM-extensions
L′/K ′ whose Galois group is either p-elementary or a direct product of a p-elementary
group and a cyclic group of order 2 (generated by j).

Proof. Let L′/K ′ be an arbitrary intermediate Galois extension of L/K with Galois group
H. Then there are subgroups G1 and G2 of G with G2 normal in G1 such that H ≃ G1/G2.
There are canonical restriction and quotient maps

DT (ZpG)
resG

G1−→ DT (ZpG1)
quot

G1
H−→ DT (ZpH).
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We denote the image of TΩ(L/K, 0)−p in DT (ZpH) by wH . Functoriality of TΩ(L/K, 0)
[Bu01, Proposition 2.1.4] implies that wH = TΩ(L′/K ′, 0)−p whenever L′/K ′ is a CM-
extension. If wG = TΩ(L/K, 0)−p vanishes, then clearly wH = 0 for all subquotients H
of G. Conversely, [GRW99, Proposition 9] says that wG = 0 if wH = 0 whenever H is a
p-elementary group. Fix such a p-elementary subquotient H. If j lies in G2, then L′ is

totally real and wH = quot
G+

1
H (resG

+

G+
1

wG+), where G+
1 := G1/⟨j⟩. However, wG+ is trivial

and thus also wH = 0. Hence we may assume that j ̸∈ G2 so that L′ is a CM-�eld. If j
lies in G1, then K

′ is totally real and wH = 0 by assumption. If j ̸∈ G1, we let G̃1 be the
minimal subgroup of G that contains G1 and j. As j is central in G, we have G̃1 = G1×⟨j⟩
and G2 is still normal in G̃1. Then H̃ := G̃1/G2 ≃ H × ⟨j⟩ is a subquotient of G that
corresponds to an intermediate CM-extension. Moreover, we have wH̃ = 0 by assumption

and thus wH = res H̃H(wH̃) = 0 as desired.

5.3 A reformulation in terms of Fitting invariants

We will say that the CM-extension L/K is almost tame above p if j lies in GP for every
prime p of K above p which is wildly rami�ed in L/K.

We have the following relation to the integrality conjecture 2.2 (cf. [Ni11d, proof of
Theorem 5.1 and Corollary 5.6]):

Theorem 5.3. Let p be an odd prime and let L/K be a Galois CM-extension. Assume
that TΩ(L/K, 0)−p vanishes. If the p-part of the roots of unity of L is a cohomologically
trivial G-module or if L/K is almost tame above p, then the p-part of Conjecture 2.2 holds,
i.e. SKup(L/K) ⊆ Ip(G).

Thus the main result of this section (Theorem 5.8 below) may be seen as a partial
converse of Theorem 5.3.

Now let T consist of a prime p0 - p and all �nite places of K which ramify in L/K
and do not lie above p; we may choose p0 such that ETnr

S is torsionfree for every �nite set
S of places of K which contains S∞ and is disjoint to T . Of course, Tnr consists of the
single prime p0. We denote the set of all wildly rami�ed primes above p by Sp,w and put
S1 := Sp,w ∪ S∞. In particular, the sets S1 and T are (p, 0)-admissible.

Theorem 5.4. Let p be an odd prime and L/K a Galois CM-extension which is almost
tame above p. Then the following are equivalent:

(i) TΩ(L/K, 0)−p = 0;

(ii) FittZpG−(A
T
L(p)) = [⟨θTS1

(0)⟩]nr(ZpG−);

(iii) FittZpG−(A
T
L(p)) ⊆ [⟨θTS1

(0)⟩]nr(ZpG−).

Proof. First note that AT
L(p) is a cohomologically trivial G-module by [Ni11a, Theorem

1] such that the projective dimension of AT
L(p) as a ZpG−-module is at most 1. Thus

FittZpG−(A
T
L(p)) is well de�ned. That (i) and (ii) are equivalent is just a reformulation
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of [Ni11a, Theorem 2] in terms of Fitting invariants. To see this let E be a �nite Ga-
lois extension of Qp with Galois group Γ such that every odd representation of G has a
realization over E. Let Rp(G)

− denote the subring of Rp(G) generated by odd charac-
ters. Then remark 1.1 has an obvious analogue on minus parts, and in the notation of
�1.1.3 we see that θTS1

(0) ∈ ζ(QpG−)
× corresponds to the representing homomorphism

fθTS1
(0) ∈ HomΓ(Rp(G)

−, E×) which on irreducible odd characters χ is given by

fθTS1
(0) : χ 7→ LT

S1
(0, χ̌).

However, in the notation of [Ni11a] we have fθTS1
(0) = ΘT

S1
.

Clearly (ii) implies (iii) and we are left with showing the converse. Let z ∈ (QpG−)
×

be a generator of FittZpG−(A
T
L(p)) and let fz ∈ HomΓ(Rp(G)

−, E×) be the corresponding
representing homomorphism. Write

z =
∑
χ

zχeχ ∈ ζ(EG−) = ⊕χEeχ,

where the sum runs through all odd irreducible (Cp-valued) characters of G. Then fz(χ) =
zχ for all odd irreducible χ by (4), and by [Ni11a, Proposition 5] we have∏

χ

zχ(1)χ ∼p |AT
L(p)|,

where ∼p means �equality up to a p-adic unit�. By [Ni11a, Proposition 4] however, we also
have ∏

χ

(LT
S1
(0, χ̌))χ(1) ∼p |AT

L(p)|

so that z is also a generator of [⟨θTS1
(0)⟩]nr(ZpG−) by [Ni10, Proposition 5.4]. Hence (iii)

implies (ii) and we are done.

5.4 Exceptional primes

For a natural number n let ζn be a primitive nth root of unity and let us denote the normal
closure of L over Q by Lcl; note that Lcl is again a CM-�eld.

De�nition 5.5. We will call a prime p exceptional for L/K if at least one of the following
holds:

(i) p = 2,

(ii) there is a prime p in K above p which rami�es wildly in L and j ̸∈ GP, i.e. L/K is
not almost tame above p,

(iii) Lcl ⊆ (Lcl)+(ζp).

Remark 5.6. 1. Note that there are only �nitely many exceptional primes, since such
a prime has to ramify in Lcl/Q or equals 2.
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2. If p is non-exceptional, then the negation of (ii) ensures that the p-minus ray class
group AT

L(p) is a cohomologically trivial G-module. We have already used this in the
proof of Theorem 5.4. In fact, there is a second technical point, where (ii) is needed.
We will indicate this in the course of the proof.

3. The negation of (iii) will permit us to adjust a descent method introduced by Wiles
[Wi90b] and further developed by Greither [Gr00] to the non-abelian situation. In
particular, it is needed in the proof of Lemma 5.9.

Lemma 5.7. Let L/K be a Galois CM-extension and let p be a prime. If p is non-
exceptional for L/K, then it is non-exceptional for every intermediate Galois CM-extension
L′/K ′.

Proof. Let p be non-exceptional for L/K and let L′/K ′ be an intermediate Galois CM-
extension with Galois group H. Clearly p ̸= 2 and so (i) does not hold. Suppose that
there is a prime p′ in K ′ above p such that p′ is wildly rami�ed in L′. Then p := p′ ∩K
is a prime in K above p which is wildly rami�ed in L. Thus j ∈ GP for every prime P

in L above p as p is non-exceptional for L/K. We write H = G1/G2, where G1 and G2

are subgroups of G with G2 normal in G1. As K
′ is totally real, we have j ∈ G1 and thus

j ∈ G1,P = G1 ∩ GP. Let P′ be the prime in L′ below P. Then the natural surjection
G1 � H maps j ∈ G1 to j ∈ H and G1,P onto HP′ . So j ∈ HP′ and (ii) for L′/K ′ does
not hold either.

Now suppose that (iii) holds for p and L′/K ′. Then we have

(L′)cl ⊆ ((L′)cl)+(ζp) ⊆ (Lcl)+(ζp)

and thus also
(L′)cl(Lcl)+ ⊆ (Lcl)+(ζp).

However, the �eld (L′)cl is a CM-�eld and therefore not contained in (Lcl)+. Hence the
�rst inclusion in

(Lcl)+ ⊆ (Lcl)+(L′)cl ⊆ Lcl

is proper. We �nd that (Lcl)+(L′)cl = Lcl is contained in (Lcl)+(ζp), a contradiction.

5.5 The main theorem

We now prove the following theorem which is Theorem 0.3 of the introduction.

Theorem 5.8. Let L/K be a Galois CM-extension of number �elds with Galois group
G and let p be a non-exceptional prime. If the Iwasawa µ-invariant attached to L and p
vanishes, then the p-minus part of the ETNC for the pair (h0(Spec(L)),ZG) is true.

Proof. We �rst observe that we may assume that G is monomial. In fact, we already know
that TΩ(L/K, 0)−p is torsion, since the strong Stark conjecture holds by [Ni11a, Corollary
2]. Then Proposition 5.2 implies that we may assume that G is either p-elementary or a
direct product of a p-elementary group and a cyclic group of order 2. In both cases, the
group G is nilpotent and thus monomial. Note that p is still a non-exceptional prime by
Lemma 5.7. We will henceforth assume that G is monomial. In particular, we may use the
results of [Ni11b], where the identity (7) is implicitly assumed to hold.



Stickelberger elements and the ETNC 25

Let L∞ and K∞ be the cyclotomic Zp-extensions of L and K, respectively. We denote
the Galois group of K∞/K by ΓK . Hence ΓK is isomorphic to Zp, and we �x a topological
generator γK . Accordingly, we set ΓL = Gal(L∞/L) with a topological generator γL.
Furthermore, we denote the n-th layer in the cyclotomic extension L∞/L by Ln such that
Ln/L is cyclic of order pn. We put

X−T := lim
←
AT

Ln
(p).

We denote the Galois group of L∞/K by G; hence G = H oΓ, where H is a subgroup of G
and Γ is topologically generated by a preimage γ of γK under the canonical epimorphism
G � G/H = ΓK . We denote the Iwasawa algebra Zp[[G]] by Λ(G). Then X−T is a �nitely
generated R-torsion Λ(G)− := Λ(G)/(1+ j)-module, where R := Zp[[Γ

′]] with Γ′ ≃ Zp cen-
tral in G. Note that R is isomorphic to Zp[[T ]], the power series ring in one variable over Zp.

The vanishing of the Iwasawa µ-invariant implies that the µ-invariant of X−T also van-
ishes; hence the projective dimension of X−T over Λ(G)− is at most 1 by [Ni11b, Proposition
4.1]. Then by [Ni10, Lemma 6.2] the Λ(G)−-module X−T admits a quadratic presentation
and thus FittΛ(G)−(X

−
T ) is well de�ned. This Fitting invariant is computed via the equivari-

ant Iwasawa main conjecture (which is a theorem under our current hypotheses by Ritter
and Weiss [RW11] and Kakde [Ka13]) in [Ni11b, Theorem 4.4]. Since the precise statement
of this theorem would force us to introduce a lot of further notation, we only state the
following consequence [Ni11b, Lemma 6.3] of this theorem which will be su�cient for our
purposes:

FittZpG−((X−T )ΓL
) = [⟨θTSp

(0)⟩]nr(ZpG−), (15)

where (X−T )ΓL
denotes the ΓL-coinvariants of X−T .

We now adopt a method originally introduced by Wiles [Wi90b] and further developed
(in an equivariant way) by Greither [Gr00] and the author [Ni11a]. In fact, the following
is carried out in some detail in [Ni11b]; but there, the full integrality conjecture 2.2 is
assumed to hold for an in�nite class of �eld extensions. Since we only will use our results
established in �4, we have to take care if everything still works.

Lemma 5.9. Let N > 0 be a natural number. Then there are in�nitely many primes r ∈ Z
such that

(i) r ≡ 1 mod pN .

(ii) j ∈ GR for all primes R in L above r.

(iii) The Frobenius automorphism Frobp at p in Gal(Q(ζr)/Q) generates Gal(kr/Q), where
kr denotes the unique sub�eld of Q(ζr) of degree p

N over Q.

Proof. This is [Ni11b, Lemma 6.5], but the proof of [Gr00, Proposition 4.1] carries over
unchanged to the present situation.

Let N ∈ N be a positive integer and choose a prime r as in Lemma 5.9 which does
not ramify in Lcl/Q. We put L′ := Lkr, K

′ = Kkr and G′ = Gal(L′/K) = G × CN ,
where CN ≃ Gal(kr/Q) is cyclic of order pN , generated by Frobp. Note that p is still
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a non-exceptional prime for L′/K and that G′ is also monomial. Moreover, we de�ne
T ′ := T ∪Sr, where Sr denotes the set of places in K above r. We have an exact sequence

(Zp ⊗ (OL′/
∏
R|r

R)×)− � AT ′
L′ (p) � AT

L′(p).

Since j ∈ GR for all R | r, we may conclude as in [Ni11a, p. 28] to deduce that the leftmost
term is trivial. We obtain an isomorphism

AT ′
L′ (p) ≃ AT

L′(p) (16)

and hence AT
L′(p) is cohomologically trivial as G′-module by [Ni11a, Theorem 1]. As in

[Ni11a, p. 28] the restriction map induces an isomorphism

(AT
L′(p))CN

≃ AT
L(p). (17)

More precisely, the cokernel of the restriction map AT
L′(p) → AT

L(p) identi�es with a quo-
tient of CN by class �eld theory. However, j acts by conjugation and thus trivially on CN .
Hence the cokernel is trivial. The composite map

AT
L′(p)

res−→ AT
L(p) −→ AT

L′(p)

is given by the norm of the cyclic group CN . As AT
L′(p) is cohomologically trivial, the

kernel of the norm is precisely (Frobp−1)AT
L′(p). This gives the desired isomorphism (17).

The sets S1 and T
′ are (p, 0)-admissible and thus the Stickelberger element θT

′
S1
(L′/K, 0)

lies in ζ(Mp(G))[CN ] by Theorem 4.2. However, we have

θT
′

S1
(L′/K, 0) =

(
1− j

2
δSr(0)

)
θTS1

(L′/K, 0) (18)

and we claim that
1− j

2
δSr(0) ∈ nr((ZpG

′
−)
×). (19)

In fact, as mentioned above, we have

(Zp ⊗ (OL′/
∏
R|r

R)×)− = 0.

Hence 1−j
2 δSr(0) is a generator of Fitt(ZpG′)−(0) and therefore lies in nr((ZpG

′
−)
×). How-

ever, we have nr((ZpG
′
−)
×) ⊆ Ip(G′) ⊆ ζ(Mp(G))[CN ] by Lemma 1.3, and thus

θTS1
(L′/K, 0) ∈ ζ(Mp(G))[CN ] (20)

for all N . We de�ne an element αp ∈ Ip(G) by

αp =
∏

p∈Sp\S1

nr(1− εpϕ
−1
P )

such that we have an equality θTS1
(L/K, 0) · αp = θTSp

(L/K, 0). Similarly, we de�ne α′p ∈
Ip(G′) such that θTS1

(L′/K, 0) · α′p = θTSp
(L′/K, 0). Now choose a second natural number

M ≤ N and put

ν :=

pM−1∑
i=0

Frobip
N−M

p ∈ ZpCN ⊆ ζ(ZpG
′).

The following result is [Ni11b, Lemma 6.7].
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Lemma 5.10. Let f be the least common multiple of the residual degrees fp(K/Q) of all
p ∈ Sp. If N −M ≥ vp(|G| · f), then |G| · α′p is a nonzerodivisor in ζ(ZpG

′)/ν.

We now observe that enlarging L to L′ does not a�ect the vanishing of µ by [NSW00,
Theorem 11.3.8]. Choose natural numbers M ≤ N such that r = r(N) ful�lls all the
above conditions and N − M ≥ vp(|G| · f), where f was de�ned in Lemma 5.10. Let
G′ = Gal(L′∞/K) and let X−T ′ be the projective limit of the minus p-ray class groups

AT ′
L′
n
(p). Then X−T ′ has projective dimension at most one as before and the EIMC for the

extension (L′∞)+/K implies the following analogue of equation (15):

FittZpG′
−
((X−T ′)ΓL′ ) = [⟨θT ′

Sp
(L′/K, 0)⟩]nr(ZpG′

−). (21)

For each prime p of K let P′ ⊂ L′ be a prime above p. By [Ni11b, Proposition 4.7], we
have a right exact sequence

(
⊕
p∈Sp

indG′

G′
P′
Zp)
− → (X−T ′)ΓL′ � AT ′

L′ (p). (22)

Note that (indG′

G′
P′
Zp)
− = 0 whenever p ∈ Sp,w = Sp ∩S1, since j lies in the decomposition

group G′P′ in this case; it is here, where we use that (ii) of De�nition 5.5 does not hold for
p. Therefore the Fitting invariant of the leftmost term is generated by α′p. By (18) and (19)

the Stickelberger elements θT
′

Sp
(L′/K, 0) and θTSp

(L′/K, 0) only di�er by the norm of a unit.

Hence θTSp
(L′/K, 0) is also a generator of FittZpG′

−
((X−T ′)ΓL′ ) by (21). The above sequence

(22) gives rise to the following inclusion of Fitting invariants (cf. [Ni10, Proposition 3.5
(iii)]):

FittZpG′
−

(
⊕
p∈Sp

indG′

G′
P′
Zp)
−

 · FittZpG′
−
(AT ′

L′ (p)) ⊆ FittZpG′
−
((X−T ′)ΓL′ ).

If we choose a generator c′ of FittZpG′
−
(AT ′

L′ (p)), there exists x ∈ ζ(ZpG
′) such that

α′pc
′ = x · θTSp

(L′/K, 0) = x · α′pθTS1
(L′/K, 0).

It follows from Lemma 1.3 and (20) that multiplication by |G| yields an equality in ζ(ZpG
′)

such that Lemma 5.10 gives

|G| · c′ ≡ |G| · x · θTS1
(L′/K, 0) mod ν. (23)

Let aug : ZpG
′ → ZpG be the natural augmentation map. Since Fitting invariants behave

well under base change (cf. [Ni10, Lemma 5.5]), the element c := aug (c′) generates the
Fitting invariant of AT

L(p) by (16) and (17). Since aug (θTS1
(L′/K, 0)) = θTS1

(L/K, 0) and

aug (ν) = pM , the congruence (23) implies

c ≡ aug (x) · θTS1
(L/K, 0) mod pM−mIp(G),

where pm is the exact p-power dividing |G|. This gives an inclusion

FittZpG−(A
T
L(p)) ⊆ [⟨θTS1

(L/K, 0)⟩]nr(ZpG−),

as we may choose M arbitrarily large. Now we are done via Theorem 5.4.
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We end this section with giving the proofs of some of the corollaries mentioned in the
introduction.

Proof of Corollary 0.4. This is an immediate consequence of Theorem 5.8 and Theorem
5.3.

Proof of Corollary 0.6. The central conjecture (Conjecture 2.4.1) of [BB07] states that a
certain element TΩ(L/K, 1) ∈ K0(ZG,R) vanishes. By [BB07, Theorem 5.2] one has an
equality

ψ∗G(TΩ(L/K, 0))− TΩ(L/K, 1) = TΩloc(L/K, 1),

and the vanishing of the righthand side is equivalent to a conjecture of Bley and Burns
[BB03] by [BB07, Remark 5.4]. However, this conjecture is known if L/K is at most tamely
rami�ed by [BB03, Corollary 6.3 (i)]. Finally, if we suppose that Leopoldt's conjecture
holds, then [BB10, Theorem 1.1 and Corollary 1.2] imply the desired relation to the ETNC
for the pair (h0(Spec(L))(1),ZG). However, it is su�cient for our purposes that Leopoldt's
conjecture holds on minus parts and this is in fact true (see also [CJ13, Remark 1.4]):

Recall that by [NSW00, Theorem 10.3.6] Leopoldt's conjecture for odd p is equivalent
to the assertion that the canonical homomorphism

∆ : O×L ⊗ Zp −→
∏

P∈Sp(L)

Ô×P

is injective, where Ô×P denotes the pro-p-completion of the group of units of the local �eld

LP (hence Ô×P is canonically isomorphic to the group of principal units). By [NSW00,
Lemma 10.3.13 and Lemma 8.7.7] the kernel of ∆ is torsion-free. However, the minus part
of O×L ⊗ Zp are the p-power roots of unity in L. It follows that ∆ is injective on minus
parts as desired.

6 The non-abelian Brumer-Stark conjecture

As before, let L/K be a Galois CM-extension with Galois group G. The following con-
jecture has been formulated in [Ni11d] and is a non-abelian generalization of Brumer's
conjecture.

Conjecture 6.1. Let S be a �nite set of places of K containing Sram∪S∞. Then ASθS(0) ⊆
I(G) and for each x ∈ H(G) we have

x · ASθS(0) ⊆ AnnZG(clL).

Remark 6.2. � If G is abelian, the inclusion ASθS(0) ⊆ I(G) = ZG holds by Theorem
2.4 and, since H(G) = ZG in this case, Conjecture 6.1 recovers Brumer's conjecture.

� Replacing the class group clL by its p-parts clL(p) for each rational prime p, Conjec-
ture 6.1 naturally decomposes into local conjectures at each prime p. Note that it is
then possible to replace H(G) by Hp(G) by [Ni11d, Lemma 1.4].

� Burns [Bu11] has also formulated a conjecture which generalizes many re�ned Stark
conjectures to the non-abelian situation. In particular, it implies this generalization
of Brumer's conjecture (cf. [Bu11, Proposition 3.5.1]).
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For α ∈ L× we de�ne
Sα := {p ⊂ K : p|NL/K(α)}

and we call α an anti-unit if α1+j = 1. Let ωL := nr(|µL|). The following is a non-abelian
generalization of the Brumer-Stark conjecture (cf. [Ni11d, Conjecture 2.6]).

Conjecture 6.3. Let S be a �nite set of places of K containing Sram ∪ S∞. Then ωL ·
θS(0) ∈ I(G) and for each x ∈ H(G) and each fractional ideal a of L, there is an anti-unit
α = α(x, a, S) ∈ L× such that

ax·ωL·θS(0) = (α)

and for each �nite set T of primes of K such that Hyp(S ∪ Sα, T ) is satis�ed there is an
αT ∈ ET

Sα
such that

αz·δT (0) = αz·ωL
T (24)

for each z ∈ H(G).

Remark 6.4. � If G is abelian, we have I(G) = H(G) = ZG and ωL = |µL|. Hence
it su�ces to treat the case x = z = 1. Then [Ta84, Proposition 1.2, p. 83] states that
the condition (24) on the anti-unit α is equivalent to the assertion that the extension
L(α1/ωL)/K is abelian.

� As above, we obtain local conjectures for each prime p.

� The non-abelian Brumer-Stark conjecture (at p) implies the non-abelian Brumer con-
jecture (at p) by [Ni11d, Lemma 2.12].

We now prove the remaining results mentioned in the introduction which are mainly
concerned with the above two conjectures.

Proof of Corollary 0.5. Theorem 5.8 and [Ni11d, Theorem 5.3] imply that L/K ful�lls the
(non-abelian) strong Brumer-Stark property at p. This in turn implies (ii) by [Ni11d,
Proposition 3.8] and (i) by [Ni11d, Lemma 2.9]. Since the condition Lcl ̸⊆ (Lcl)+(ζp)
forces ζp ̸∈ L, the p-part of the roots of unity is trivial and thus cohomologically trivial
as G-module. Therefore Theorem 5.8 and [Bu11, Theorem 4.1.1] imply (iii). Finally, as
already mentioned above, the vanishing of TΩ(L/K, 0) is equivalent to the Lifted Root
Number Conjecture of Gruenberg, Ritter and Weiss as formulated in [GRW99] (cf. [Bu01,
Theorem 2.3.3]). Thus Theorem 5.8 also implies (iv).

Proof of Theorem 0.7. It su�ces to prove the Brumer-Stark conjecture at each odd prime
p. We �rst assume that p is unrami�ed. As L = Lcl in this case, the prime p is non-
exceptional by Remark 5.6. In particular, L/Q is almost tame above p and the result
follows from Corollary 0.5 if µ vanishes. If µ does not vanish (which conjecturally will
never be the case) then p - [L : Q] by assumption. Hence the p-minus part of the ETNC
is equivalent to the p-part of the strong Stark conjecture for odd characters which is a
theorem by [Ni11a, Corollary 2]. Hence the Brumer-Stark conjecture at p holds by [Ni11d,
Theorem 5.2]. Now assume that p rami�es in L. Since p is the only p-adic place of the
rationals, we have Sp ⊆ Sram, and the result follows from [Ni13, Corollary 4.6], where the
identity (7) is implicitly assumed to hold (it is only here, where we have to restrict to
monomial extensions).
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7 Negative integers

For completeness, we include the following result which is an easy consequence of [Ni11c,
Theorem 4.1] and [Bu, Corollary 2.10].

Theorem 7.1. Let L/K be a Galois extension of number �elds with Galois group G and
let r < 0. Assume that L is totally real if r is odd (resp. that L/K is CM if r is even).
If p is an odd prime such that the p-part (resp. minus p-part) of the ETNC for the pair
(h0(Spec(L))(r),ZG) holds, then the p-part of Conjecture 2.6 is true. In particular, this
applies if the Iwasawa µ-invariant attached to L and p vanishes.

Corollary 7.2. Let L/K be a Galois extension of number �elds with Galois group G and
let r < 0. Let p be an odd prime and assume that G has a unique 2-Sylow subgroup. Then
the p-part of Conjecture 2.6 holds provided that the Iwasawa µ-invariant attached to p and
the maximal real sub�eld of L vanishes.

Proof. This immediately follows from Theorem 7.1 and Proposition 3.1.
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