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ABSTRACT

We introduce non-abelian generalizations of Brumer’s conjecture, the Brumer-Stark
conjecture and the strong Brumer-Stark property attached to a Galois CM-extension of
number fields. Moreover, we discuss how they are related to the equivariant Tamagawa
number conjecture, the strong Stark conjecture and a non-abelian generalization of
Rubin’s conjecture due to D. Burns.

Let L/K be a finite Galois CM-extension of number fields with Galois group G. To each finite
set S of places of K which contains all the infinite places, one can associate a so-called “Stickelberger
element” Og(L/K) in the center of the group ring algebra CG. This Stickelberger element is defined
via L-values at zero of S-truncated Artin L-functions attached to the (complex) characters of G.
Let us denote the roots of unity of L by ur and the class group of L by cly. Assume that S contains
the set S, . of all finite primes of K which ramify in L/K. Then it was independently shown in [8],

ram

[13] and [1] that for abelian G one has
Anngg(ur)fs(L/K) C ZG. (1)

Now Brumer’s conjecture asserts that Anngzg(ur)0s(L/K) annihilates cly. There is a large body of
evidence in support of Brumer’s conjecture (cf. the expository article [14]); in particular, C. Greither
[15] has shown that the appropriate special case of the equivariant Tamagawa number conjecture
(ETNC) as formulated by Burns and Flach [6] implies the p-part of Brumer’s conjecture for an odd
prime p if the p-part of pz, is a c.t. (short for cohomologically trivial) G-module. A similar result for
arbitrary G was recently proven by the author [20], improving an unconditional annihilation result
due to D. Burns and H. Johnston [7]. Note that the assumptions made in loc.cit. are adapted to
ensure the validity of the strong Stark conjecture. These two results will provide some evidence for
our conjecture.

Moreover, we will introduce a non-abelian generalization of the Brumer-Stark conjecture and of the
strong Brumer-Stark property. The extension L/K fulfills the latter if certain Stickelberger elements
are contained in the (non-commutative) Fitting invariants of corresponding ray class groups; but it
does not hold in general, even if G is abelian, as follows from the results in [16]. But if this property
happens to be true, this also implies the validity of the (non-abelian) Brumer-Stark conjecture and
Brumer’s conjecture. We will show that the p-part of this property is implied by the ETNC if the
ramification above the odd prime p is at most tame.

D. Burns [3] has introduced a non-abelian analogue of a conjecture formulated by Rubin (|25],
Conj. B). It is shown in loc.cit. that this conjecture is implied by the strong Stark conjecture, and
we will show that Burns’ conjecture implies slightly weaker annihilation results as predicted by the
(non-abelian) Brumer-Stark resp. Brumer’s conjecture.
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1. Preliminaries

1.0.1 K-theory Let A be a left noetherian ring with 1 and PMod(A) the category of all finitely
generated projective A-modules. We write Ky(A) for the Grothendieck group of PMod(A), and
K1 (A) for the Whitehead group of A which is the abelianized infinite general linear group. If S is a
multiplicatively closed subset of the center of A which contains no zero divisors, 1 € S, 0 € S, we
denote the Grothendieck group of the category of all finitely generated S-torsion A-modules of finite
projective dimension by K¢S (A). Writing Ag for the ring of quotients of A with denominators in S,
we have the following Localization Sequence (cf. [12], p. 65)

Ki(A) = Ki(As) -5 KoS(A) — Ko(A) — Ko(Asg). (2)

In the special case where A is an o-order over a commutative ring o and S is the set of all nonzero-
divisors of o, we also write K¢T'(A) instead of KpS(A). Moreover, we denote the relative K-group
corresponding to a ring homomorphism A — A’ by Ky(A, A’) (cf. [26]). Then we have a Localization
Sequence (cf. [12], p. 72)

Ki(A) = Ki(N) 28 Ko(A, AY) — Ko(A) — Ko(A').

It is also shown in [26] that there is an isomorphism Ko(A, Ag) ~ K¢S(A). For any ring A we write
C(A) for the subring of all elements which are central in A. Let L be a subfield of either C or C, for
some prime p and let G be a finite group. In the case where A’ is the group ring LG the reduced norm
map nrzg : K1(LG) — ((LG)* is always injective. If in addition L = R, there exists a canonical
map Jg : C((RG)* — Ko(ZG,RG) such that the restriction of dg to the image of the reduced norm
equals 0za rG onr]}g(l;. This map is called the extended boundary homomorphism and was introduced
by Burns and Flach [6].

1.0.2 x-twists We largely adopt the treatment of [3], §1. Let G be a finite group and denote the
set of all irreducible characters with values in C resp. C, by Irr (G) resp. Irr ,(G). Fix an irreducible
character x € Irr (G) resp. x € Irr ,(G) and let E, be the minimal subfield of C resp. C, over which
X can be realized and which is both, Galois and of finite degree over Q resp. Q,. We put

_ x(1)
pryo =Y x(g g, eyxi= Gl P
geG

Hence ey is a central primitive idempotent of E\G and pr, is the associated projector. We write oy
for the ring of integers of F, and choose a maximal oy-order M in E, G which contains 0, G. We fix
an indecomposable idempotent f, of e, 9t and define an o,-torsionfree right o, G-module by setting
T, := f,m. Note that this slightly differs from the definition in [3], but follows the notation of |7] and
[20]. Ty is (locally) free of rank x(1) over o, and the associated right £, G-module Vy := E, ®, Ty
has character x. For any left G-module M we set M[x] := T\ ®z M resp. M[x] := Ty ®z, M, upon
which G acts on the left by t @ m +— tg~! ® g(m) for t € Ty, m € M and g € G. For any integer
i we write H'(G, M) for the Tate cohomology in degree i of M with respect to G. Moreover, we
write MC resp. Mg for the maximal submodule resp. the maximal quotient module of M upon
which G acts trivially. We obtain a left exact functor M +— MX and a right exact functor M — M,
from the category of left G-modules to the category of o,-modules by setting MX := M[X]G and
M, = M[x|g- The action of N¢ := 3~ . g induces a homomorphism (M, x) : My — MX with
kernel H~1(G, M|[x]) and cokernel H%(G, M|x]). Thus M, ~ MX whenever M and hence also M[x]
is a c.t. G-module.
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1.0.3 Non-commutative Fitting invariants For the following we refer the reader to [20]. We
denote the set of all m x n matrices with entries in a ring R by My,x»(R) and in the case m = n
the group of all invertible elements of M, x,(R) by Gl,(R). Let A be a separable K-algebra and A
be an o-order in A, finitely generated as o-module, where o is a complete commutative noetherian
local ring with field of quotients K. Moreover, we will assume that the integral closure of o in K is
finitely generated as o-module. The group ring Z,G will serve as a standard example. Let N and M
be two ((A)-submodules of an o-torsionfree ((A)-module. Then N and M are called nr(A)-equivalent
if there exists an integer n and a matrix U € Gl,(A) such that N = nr(U)- M, where nr : A — ((A)
denotes the reduced norm map which extends to matrix rings over A in the obvious way. We denote
the corresponding equivalence class by [N],(a). We say that N is nr(A)-contained in M (and write
[Nar(ay C [M]nr(ay) if for all N € [N],pa) there exists M’ € [M],,(a) such that N' C M’. Note that
it suffices to check this property for one Ny € [N]nr(A)- Moreover, we write [N]m.(A) CMifN cM
for all N' € [N]n,a). We will say that 2 is contained in [N],(a) (and write 2 € [N]y,(s)) if there is
No € [Nlyr(a) such that z € No.

Now let M be a finitely presented (left) A-module and let
Al A M (3)

be a finite presentation of M. We identify the homomorphism A with the corresponding matrix in
Myxp(A) and define S(h) = Sp(h) to be the set of all b x b submatrices of h if @ > b. In the case
a = b we call (3) a quadratic presentation. The Fitting invariant of h over A is defined to be

Fi B) — [O]HI'(A) if a<b
itta(h) = [(ne(H)|H € S()cn) yny a0

We call Fitty (h) a Fitting invariant of M over A. One defines Fitt}®* (M) to be the unique Fitting
invariant of M over A which is maximal among all Fitting invariants of M with respect to the partial
order “C”. If M admits a quadratic presentation h, one also puts Fitty (M) := Fitta(h) which is
independent of the chosen quadratic presentation (cf. also [22]). Finally, we denote by Z = Z(A) the
¢(A)-submodule of ((A) generated by the elements nr(H), H € Myxp(A), b € N.

For any Z,G-module M we denote the Pontryagin dual Hom(M,Q,/Z,) of M by M" which is
equipped with the natural G-action (gf)(m) = f(g~'m) for f € MV, g € G and m € M. If M is
finite, we have

Annng(MV) = Annng(M)ﬁ, (4)
where we denote by ¥ : Q,G — Q,G the involution induced by g — g~!. We will frequently make
use of the following proposition.

PROPOSITION 1.1. Let M, M’ and M" be finitely presented A-modules. Then it holds:
i) If M — M’ is an epimorphism, then Fitt{**(M) C Fitt}**(M’).
i) If M' — M — M" is an exact sequence of A-modules, then
Fitt Y (M’) - Fitt}>(M") C FittY®(M).
iii) If 0 € Fitty™ (M) and X € Z, then also X - 0 € Fitt{***(M).
iv) If M admits a quadratic presentation, then Fitt'**(M) =T - Fitta (M).

v) If A = Z,G and M — C — C" - M’ is an exact sequence of finite A-modules, where C' and
C' are c.t., then we have an equality

Fitt2(MV)? . Fitta (C') = FittR2 (M) - Fitt, (C).
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Proof. For (i), (ii) and (v) see [20], Prop. 3.5 (i), (iii) and Prop. 5.3 (ii). For (iii) let h be a finite
presentation of M such that Fitta(h) = Fitt{**(M). Then 6 = >, zgnr(H), zg € ((A), where
the sum runs through all the submatrices H € Sy(h). Hence it suffices to show that A - nr(H) €
Fitt{*(M) for any H € Sp(h). We may assume that A = nr(H’) with H' € Myyy(A), and by
adding an appropriate identity matrix on H’ resp. h we may also assume that b = b’. Consider the
diagram

HoH'’

Ab AP cok (H o H')
‘/H/ j
Ab—T s b cok (H).

Now (i) implies nr(H)nr(H') € Fitt*®(cok (H o H')) C Fitt{**(cok (H)), and since there is an
epimorphism cok (H) — M, also Fitt|'®*(cok (H)) C Fitti'**(M). This shows (iii) and the inclusion
7 - Fitta (M) C Fitt{*(M) of (iv). Now let 1) be a quadratic presentation and h be an arbitrary
presentation of M. Then it follows from [20], Th. 3.2 resp. its proof that we may assume that
h = (¥/|0) o X, where X € Gly(A) for some a € N. Since v is quadratic, each H € S(h) is the

product ¢ o X for some submatrix X of X and thus nr(H) = nr(X) - nr(¢) € Z - Fitty (M). O

Assume now that o is an integrally closed commutative noetherian ring, but not necessarily
complete or local. We choose a maximal order A’ containing A. We may decompose the separable
K-algebra A into its simple components

A=A - d A,

i.e. each A; is a simple K-algebra and A; = Ae; = e; A with central primitive idempotents e;,
1 < i < t. For any matrix H € Myyp(A) there is a unique matrix H* € Mpyp(A’) such that
H*H = HH* = nr(H) - 1pxp and H*e; = 0 whenever nr(H)e; = 0 (cf. [20], Lemma 4.1; the

additional assumption on o to be complete local is not necessary). If H € Myxp(A) is a second
matrix, then (HH)* = H*H*. We define

H=HA) :={x € ((A)|xH" € Mpxp(A)¥b € NVH € Mpyp(A)}.
Since z - nr(H) = H*H, we have in particular
H-T=McC((A), ()

where 7 is defined as before even if o is not complete and local. The importance of the {(A)-module
‘H will become clear by means of the following result which is [20], Th. 4.2.

THEOREM 1.2. If o is an integrally closed complete commutative noetherian local ring and M is a
finitely presented A-module, then

H - Fitti® (M) C Annp(M).
Now we specialize to A = oG, where o is either Z or Z,. As before, let A’ be a maximal order

containing A. The central conductor of A’ over A is defined to be F = F(A) := {z € ((A') : 2\’ C A}
and is explicitly given by (cf. [11], Th. 27.13)

7= )‘fl') DK ()/K), (6)

where D™!(K(x)/K) denotes the inverse different of the extension K(x) := K(x(g) : g € G) over
K = Quot(o) and the sum runs through all the irreducible characters with values in C resp. C,
modulo Galois action.
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LeEMMA 1.3. Let A = oG, where o is Z or Z;. Then it holds:

i) FCH.
ii) If G is abelian or if A = Z,G and pt |G|, then H = ((A).

Proof. (i) and the case p 1 |G| of (ii) are clear from the observations above. If G is abelian, we may
choose H* to be the adjoined matrix of H and we get (ii). O

In the sequel we will use the following notation: F(G) = F(ZG), Fp(G) = F(Z,G) and similarly
for H and Z. We denote the normalized valuation at a prime B by vy and for x = deG xg9 € LG
resp. « € Z,G we put vp(x) := mingeg vp(xy).

LEMMA 1.4. Let p be a prime and let G be a finite group. Then H(G) is dense in H,(G) with respect
to the p-adic topology.

Proof. Let x € Hp(G) and choose 2’ € ((ZG) close to x. Then for any H € M, x,(Z,G) we have
P’H* = xH" + (' — 2)H* € Myxn(Z,G)

if vp(2' — x) > n, where |G| = m - p™ with p { m. Thus 2/ € H,(G). Now let N € N be large;
since p does not divide m, we can choose a multiple m’ of m such that m’ = 1 mod p~. Then m'z’
is also close to z, since v,(x — m'z’) > min{v,(x — 2’),v,((1 — m')z’)}. But since m|m’, we have
m/z’ € Hqy(G) for all primes q. Now let H € M, xn(ZG). Then

m/a’H* € ﬂMan(ZqG) N Myxn(QG) = Myxn(A)
a
and hence m'z’ € H(G). O

1.0.4 Equivariant L-values Let us fix a finite Galois extension L/K of number fields with Galois

group G. For any prime p of K we fix a prime P of L above p and write Gy resp. Iy for the
decomposition group resp. inertia subgroup of L/K at 3. Moreover, we denote the residual group
at P by Gy = G /Iy and choose a lift ¢ € Gy of the Frobenius automorphism at 9.
If S is a finite set of places of K containing the set S of all infinite places of K, and y is a (complex)
character of G, we denote the S-truncated Artin L-function attached to x and S by Lg(s, x) and
define L§(0, x) to be the leading coefficient of the Taylor expansion of Lg(s, x) at s = 0. Recall that
there is a canonical isomorphism ((CG) = erlrr () C. We define the equivariant Artin L-function
to be the meromorphic ((CG)-valued function

LS(S) = (LS(Sa X))xelrr (G)-

We put L5(0) = (L5(0,X))yenr (@ and abbreviate Lg,(s)
of places of K sucht that SNT = 0, we define op(s) =

HpeT det(1 — N(p)1_8¢§31|VXIm), and put
Os.1(s) := d7(s) - Ls(s)".

These functions are the so-called (S,T)-modified G-equivariant L-functions and we define Stickel-
berger elements

by L(s). If T is a second finite set
(5T(57X))x61rr(G)a where 5T(87X) =

0L == ©57(0) € ¢(CG).
If T is empty, we abbreviate 05 by 6. Note that the y-part of 9? vanishes for a non-trivial character

x if there is an (infinite) prime p € S such that VXGq3 # 0. This is the main reason why we will
assume henceforth that L/K is a CM-extension, i.e. L is a CM-field, K is totally real and complex
conjugation induces an unique automorphism j of L which lies in the center of G. If R is a subring of
either C or C, for a prime p such that 2 is invertible over R, we put RG_ := RG/(1+ j) which is a

5



ANDREAS NICKEL

ring, since the idempotent 1%] liesin RG. For any RG-module M we define M~ = RG_®prgM which
is an exact functor since 2 € R*. If M is a ZG-module, we define M~ to be Z[3]G/(1 + j) ®zc M.
This notation is nonstandard, but practical, since taking minus parts is again an exact functor. Now
Stark’s conjecture (which is a theorem for odd characters, see [28|, Th. 1.2, p. 70) implies

0% € C(QG-). (7)

Note that we actually have to exclude the special case [Soo(L)| = 1 (cf. the proof of [19], Prop. 3,
where (7) is shown in the relevant case S = S and T = (}), but in this situation the extension L/K
is abelian. Let us fix an embedding ¢ : C — C,; then the image of 6% in ((Q,G-) via the canonical
embedding

(QG-) = ¢QG-)= B @),

Xx€Irrp (G)/~
X odd

is given by Zx(éT(O,xfl) - Ls(0,%* '))*. Here the sum runs over all C,-valued irreducible odd
characters of G modulo Galois action. Note that we will frequently drop ¢ and ¢~! from the notation.

1.0.5 Ray class groups For any set S of places of K, we write S(L) for the set of places of L
which lie above those in S. Now let T and S be as above. We write clg for the ray class group of
L to the ray Mr = HmeT(L) P and og for the ring of S(L)-integers of L. Let Sy be the set of all

finite primes in S(L); then there is a natural map ZSy — cll which sends each prime B € Sy to
the corresponding class [J] € clIZ. We denote the cokernel of this map by cl% (L) =: cl§. Further, we
denote the S(L)-units of L by Eg and define EL := {x € Eg : 2 =1 mod My}. All these modules
are equipped with a natural G-action and we have the following exact sequences of G-modules

E{_ — EY -5 7Sy —clf — clf, (8)
where v(z) = Zmesf vp(2)P for x € EL, and

EY — Eg — (og/M7)* = clk — clg, (9)

where the map v lifts an element Z € (05/M7)* to = € og and sends it to the ideal class [(z)] € clf
of the principal ideal (z). Note that the G-module (og/"M7)* is c.t. if no prime in 7 ramifies in
L/K. We define

AL = (b))~
If S =S4, we also write A% and Eg instead of Agoo and Eg:oo. Finally, we suppress the superscript

T from the notation if T is empty. If M is a finitely generated Z-module and p is a prime, we put
M (p) :=Z, ®z M. In particular, Ar(p) is the p-part of the minus class group if p is odd.

2. Statement of the conjectures

Let L/K be a Galois CM-extension with Galois group G. Let S and T be two finite sets of places
of K such that

— S contains all the infinite places of K and all the places which ramify in L/K,i.e. S D S, USw.
- SNT=0.

— Eg is torsionfree.

We refer to the above hypotheses as Hyp(S,T). We put A = ZG and choose a maximal order A’
containing A. For a fixed set S we define 2g to be the ((A)-submodule of ((A’) generated by the

6
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elements d7(0), where T' runs through the finite sets of places of K such that Hyp(S,T) is satisfied.
The following is a non-abelian generalization of Brumer’s conjecture.

CONJECTURE 2.1 B(L/K,S). Let S be a finite set of places of K containing S, U So. Then
As0s C Z(G) and for each x € H(G) we have

x - Aghs C Annp(cly).
Before we make some clarifying remarks, we state the following lemma.

LEMMA 2.2. Let S be a finite set of places of K containing S, USs. Then the elements ¢o — N (p),
where p runs through all the finite places of K such that the sets S and T, = {p} satisty Hyp(S,T,),
generate Anngq(pr). Moreover, if we restrict to the primes p such that ¢ = 1, the greatest common
divisor of the integers 1 — N(p) is |pur].

Proof. The proof of 28], Lemma 1.1, p. 82 (where G is assumed to be abelian) remains unchanged.
]

Remark 1. 1) Since g is generated by the elements d7(0) such that Hyp(S,T') holds, Conjecture
2.1 is equivalent to the assertion that for all these sets 1" the Stickelberger element 0£ lies in
Z(G) and z0% annihilates the class group for each x € H(G). Note that 0% € Z(G) implies
2% € C(A).

ii) Lemma 2.2 implies that in fact [As(p)|nr(z,q) is a Fitting invariant of yu1,(p) over Z,G. Moreover,
we have

Zy(G) - [As(p)lw(z,c) C Fittz G (1L (p))
by Proposition 1.1. So it is reasonable to ask if this inclusion might be an equality (at least if
S=5,., USx).
iii) If G is abelian, Lemma 2.2 implies that the module g equals Anngg(pz). In this case the
inclusion Agfs C Z(G) = A follows from (1), and since H(G) = A by Lemma 1.3, Conjecture
2.1 recovers Brumer’s conjecture.

Since ‘H(G) always contains the central conductor F(G), we can state the following weaker form
of Conjecture 2.1.

CONJECTURE 2.3 By (L/K,S). Let S be a finite set of places of K containing S, U Ss. Then
Asbs C ¢(A) and for each z € F(G) we have

x - Aghs C Annp(cly).
LEMMA 2.4. Let S be a finite set of places of K containing S, U Se. Then
B(L/K,S) = B,(L/K,S).
If S C S, then
B(L/K,S) = B(L/K,S"),
Bw(L/K,S) = By,(L/K,S").

Proof. The first assertion is obvious. Now assume that B(L/K,S) resp. B,,(L/K,S) holds. Since
0s = nr(A)fs, where A = [ cong(1 — ¢;31) € A, we see that also Ag/0sr C Agnr(\)fg lies in
Z(Q) resp. ¢(A"). Moreover & := x - nr(A) lies in H(G) resp. F(G) if = does. Hence we find that
20 C 2Ag0g annihilates cly,. L]

Replacing the class group cly, by its p-parts clz, (p) for each rational prime p, Conjecture B(L/K, S)
resp. Conjecture B,,(L/K, S) naturally decomposes into local conjectures B(L/K, S, p) resp. By, (L/ K, S, p).
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Note that it is possible to replace H(G) by H,(G) by means of Lemma 1.4. Taking Lemma 1.3 into
account, a similar proof shows the following lemma.

LEMMA 2.5. Let S be a finite set of places of K containing S,,, U Se and let p be a prime. Then
B(L/K,S,p) = By (L/K,S,p).
If pt |G| then
B(L/K,S,p) <= Bu(L/K,S,p).
If S cC S, then
B(L/K,S,p) = B(L/K,S,p),

By(L/K,S,p) = B,(L/K,S',p).

For o € L™ we define
Sq := {p finite prime of K : p|Np x(a)}

and we call « an anti-unit if '™ = 1. Let wy, := nr(|uz|). The following is a non-abelian general-
ization of the Brumer-Stark conjecture.

CONJECTURE 2.6 BS(L/K,S). Let S be a finite set of places of K containing S, U Ss. Then
wr, - 0s € I(G) and for each x € H(G) and each fractional ideal a of L, there is an anti-unit
a = az,a,S) € L* such that

aCE'o.)L~95 — (a)
and for each finite set T" of primes of K such that Hyp(S U S,,T) is satisfied there is an ap € Eg:a
such that

o 0r(0) — gk (10)

for each z € H(G).

Remark 2. If G is abelian, we have Z(G) = H(G) = ZG and wy, = |pup|- Hence it suffices to treat
the case x = z = 1. Then [28], Prop. 1.2, p. 83 states that the condition (10) on the anti-unit « is
equivalent to the assertion that the extension L(a'/“r)/K is abelian.

As above we can state the following weaker conjecture.

CONJECTURE 2.7 BS,(L/K,S). Let S be a finite set of places of K containing S, U Ss. Then
wr, - s € ((A) and for each z € F(G) and each fractional ideal a of L, there is an anti-unit
a = az,a,S) € L* such that

ame-HS — (a)
and for each finite set T of primes of K such that Hyp(S U Sy, T) holds there is an ap € Ega such
that

o?0r(0) — ark (11)

for each z € F(Q).

Remark 3. i) Since E{ is torsionfree, we may replace the equalities (10) and (11) by the equality
o’ = o% in Q® EY .

ii) If a and b are two fractional ideals of L for which Conjecture BS(L/K,S) resp. BS,(L/K,S)

holds, then it is easy to see that this conjecture is also true for the product a-b. Since it is also

true for principal ideals, it suffices to verify these conjectures for totally decomposed primes,
as these primes generate the class group.
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iii) If we restrict Conjecture BS(L/K,S) resp. BSy,(L/K,S) to ideals whose class in cly has p-
power order, we get local conjectures BS(L/K, S, p) resp. BS,(L/K,S,p).

iv) If the prime p is odd, we may omit the condition that the generator « is an anti-unit by the
following reason (cf. |17|, remark preceding Prop. 1.1): Let a be a fractional ideal whose class
in cly, has p-power order. Since squaring is invertible on clz(p) we find b such that a = (u)b?
for some u € L*. Now let z € H(G) resp. € F(G) and assume that 6“2 is generated
by 8 € L* such that (10) holds (with a replaced by /). But since (1 — j)f8s = 26g, we have
a?wrls — (yrwrls)prwr20s — (y#wibs . 31=7) and this generator is an appropriate anti-unit.

v) Burns [4| has meanwhile formulated a new conjecture which generalizes many refined Stark con-
jectures to the non-abelian situation. In particular, it implies our generalization of Brumer’s con-
jecture (cf. loc.cit., Prop. 3.5.1). Since it also implies the Brumer-Stark conjecture (cf. loc.cit.,
Remark 3.5.2) in the abelian case, the author expects that it also implies Conjecture BS(L/K, S).
If this is true, loc.cit., Th. 4.1.1 would give a different proof of Theorem 5.1 below.

We have the following implications which are either obvious or which are proved by a similar
argument as in Lemma 2.4.

LEMMA 2.8. Let S be a finite set of places of K containing S,,, U Sx and p be a prime. Then
BS(L/K,S) = BSw(L/K,S), BS(L/K,S,p) = BS,(L/K,S,p).

If pt |G|, then

BS(L/K,S,p) < BS,(L/K,S,p).

If S c S, then

BS(L/K,S) = BS(L/K,S"), BS(L/K,S,p) = BS(L/K,S',p),
BS,(L/K,S) = BS,(L/K,S’), BS,(L/K,S,p) = BS,(L/K,S', p),
We have the following relation to the non-abelian Brumer Conjectures:

LEMMA 2.9. Let S be a finite set of places of K containing S, U Se and p be a prime. Then
BS(L/K,S) = B(L/K,S), BS(L/K,S,p) = B(L/K,S,p),

BSy(L/K,S) = Bu(L/K,S), BSw(L/K,S,p) = Buw(L/K,S,p).

Proof. Let a be a fractional ideal of L whose class in cly, is assumed to have p-power order if we are
in the local case. Let z € H(G) resp. = € F(G). Then a®“L% = (a) and ()*970) = (ar)*“L for
all z € F(G). Hence

g zwr bt _ (a)z-§T(O) = (ag)?“r. (12)

Since wy, € ((QG)*, we find N € N such that N -w; ' € ((A). Moreover, |G| - ((A) C F(G) such
that we may choose z = |G|+ N - wzl. But the group of fractional ideals has no Z-torsion such that

equation (12) implies a®%5 = (ar). O

3. Burns’ Conjecture and the strong Brumer-Stark property

We first recall a non-abelian generalization of the Rubin-Stark conjecture due to D. Burns [3]. Note
that our slightly different definition of y-twist will lead to some minor changes. Let L/K be an
extension of number fields with Galois group G and fix a non-trivial irreducible complex character
x of G. For any finite non-empty set S of places of K we write Yg for the free abelian group on S(L)

9
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and Xg for the kernel of the augmentation map Ys — Z which sends each element of S(L) to 1. If
S contains S, the Dirichlet map

As :R®y Fs > R®yz Xg, €6~ — Z log |e|,B
pes(L)
is an isomorphism of RG-modules. The Noether-Deuring Theorem combines with the fact that Xg
is torsionfree to imply the existence of G-invariant embeddings ¢ : Xg — FEg. For any such ¢ we set

R (x) = det(As o ¢|C ®p, (Vi ®za Xs)) € C*,

where ¥ denotes the character contragredient to x. Then Stark’s conjecture (as interpreted in [28],
Conj. 5.1,p. 27, but see [3], §2) states that for each a € Aut(C) one has

Ly0.x*) _ [ L50.0)
RS (x) R3(x)
where x® := a o x. We put
rs =rs(x) = ZdimEX(VXG‘B).
peS
Then, since x is non-trivial, one has
rg = dimEX (VX Rzc Xs) = dimE’X (EX ®0X XSJ()
and the function Lg(s,x) vanishes to order rg at s = 0 by [28], Prop. 3.4, p. 24. Further, if we
denote by
MY Com, (N (Vg ®26 Bs) — C 05, (N5 (Vy @26 Xs))

the isomorphism of C-spaces induced by Ag, one finds that Stark’s conjecture implies
L5(0,x) - N (Vy @26 Xs)) = A (N (Vg @26 Es)). (13)

Let L 1(0, x) :== 07(0, X) - L5(0, x) if S and T satisfy Hyp(S, Tl For any G-module resp. o,-module
M we write M, for the Z-torsion submodule of M and set M := M /M, which we identify as a
submodule of Q ®z M resp. Ey ®, M in the natural way. Now Burns’ conjecture ([3], Conj. 2.1)

asserts the following refinement of (13):

CONJECTURE 3.1 RS(L/K,S,T,x) (Burns). Let S and T be two finite sets of places of K such
that Hyp(S,T) is satisfied and let x be a non-trivial irreducible complex character. Then Stark’s
conjecture holds for x and in C®g, (/\ESX (Vi ®za Xs)) one has

T

(G Ly (0,X) - Ni$ X C Fiitt, (H1(G, Xs[X) - A (NS ).

Moreover, we will say that RS(L/K, S, x) holds if RS(L/K,S,T,x) holds for all finite sets of
places T such that Hyp(S,T) is satisfied.

Remark 4. 1t is reasonable to expect that the inclusion in Conjecture 3.1 is an equality for sufficiently
large S (cf. [3], Prop. 4.8).

If Stark’s conjecture holds, the quotient L%(0, X)/Rg(x) belongs to E. The strong Stark con-
jecture as formulated by T. Chinburg (|9], Conj. 2.2) further predicts that

Ly(0,x) — _
At =™ (19)

where 1, denotes the composite homomorphism of o,-modules

¢X t(ES’X)

Xs,x

)

Es E¥,

10
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and for each irreducible character xy we use the following general notion: if f : M — N is a
homomorphism of finitely generated o,-modules with finite kernel and finite cokernel, then ¢(f)
denotes the frational o,-ideal Fitt, (cok (f)) - Fitt,, (ker(f))~!.

THEOREM 3.2 (]3], Th. 4.1). If the strong Stark conjecture (14) holds for the character x, then
RS(L/K, S, ) is valid for all admissible sets S.

We will need the following result which is [3], Prop. 3.2. We set cg(x) := Fitt,, (H (G, Xs[x])).

PROPOSITION 3.3. Assume that rg =1 and |S| > 1. Let p1 be the unique place in S with VXG“B1 # 0
and set S1 == Soo U{p1}. If RS(L/K, S, T,x) is valid, then for any element d of cs(x) 'D(E,/Q)~!
there exists an element u(d) € E:‘gpl which at each place B of L satisfies

~toglu@ln = { 5 s
¥ Y eGal(Ey /Q) 2oheGy, VDX (gh) L p(0,X7), P =3, g €G.
THEOREM 3.4. Let S be a finite set of places of K containing S, U Se. If RS(L/K,S U {q}, x)
is valid for all characters x such that rs = 0 and all primes q which are totally split in L/K, then
BSy,(L/K,S) and B,,(L/K, S) hold. In particular, if the strong Stark conjecture (14) holds for these
characters, then BS,,(L/K,S) and B, (L/K,S) hold for all admissible sets S.

Proof. By means of Lemma 2.9 and Theorem 3.2, it suffices to show that the relevant case of Burns’
conjecture implies BS,,(L/K,S). Since e, - 0L = 0 if rg > 0, we only have to treat characters y
with 7¢ = 0. Let T be a finite set of primes of K such that Hyp(S,T) is satisfied and let q be a
totally decomposed prime not in S UT. We claim that % € csu{q}(x)_l. Taking this for granted for
the moment, let z € F(G) and write

s 5= > AGr)Lir(0,X7) prys,
X 7€Gal(Q(x)/Q)
where the first sum runs over all irreducible characters with rg(x) = 0 modulo Galois action,
and where z, € D71(Q(x)/Q) according to the description (6) of the central conductor. Since
Lsr(0,x) = L*SU{q},T(O’ x) and the trace maps D~1(E, /Q) onto D~1(Q(x)/Q), we can apply Propo-
sition 3.3 to the set S U {q} and obtain

1
Q§x0§ _ (OéT),
where ar € Eg:oou{q} and £ is a prime in L above g. Since the ray class group clz is generated by
totally decomposed primes, we have for any fractional ideal a of L, coprime to the ideals in T" that

a2 = (ap(a)) (15)
with ap(a) € Eg(a), where S(a) contains all the primes of K below the primes dividing a. Now let p
be a prime and let a be a fractional ideal of L such that its class [a] € clf, has p-power order . Then
Lemma 2.2 implies that there is a totally decomposed prime pg such that |z = (1—N(pg))-¢, where
¢ € Q with vy(c) = 0. We may assume that pg is coprime to a and that Hyp(S, {p,}) is satisfied.
The observations above imply that for any € F(G) we have

(01 = (a)

for an appropriate o € L* and an anti-unit o = o/(!=9). Note that there is a natural number N
with v,(N) = 0 such that N - znr(c) € F(G) and raising to the N'* power is a bijection on cly (p).
Moreover, if T is a finite set of primes such that Hyp(S U Sy, T') holds, then (15) implies that for
any z € F(G) we have

1 1 .
azwLGS _ aime205 _ aéa:nr(c)(lfj)

(a)=1O) = c1(1_j)z'%”“wL9§ = (alp(a) =)=,

11
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where of(a) € ES and ar := o/p(a)19) is an anti-unit. Hence a7 = up - aZ*"
a unit and an anti-unit, thus a root of unity. But ur is also congruent 1 modulo My and therefore
ur = 1.
We are left with the proof of % € cSU{q}(X)*l (which was only needed for the case p = 2). Since

, where ur is

rs(x) = 0, we have VXGQ‘3 = 0 for any prime p € S. Let us fix an infinite p € S. Since there is no

unramified extension of the rational numbers, there are at least two primes in S such that cguq3(X)

is contained in Fitt,, ((Ty)a,) by [3], Rem. 2.3. But (Ty)qg,, = T /(1 — j)T = T\ /2T such that
Cgu{q}(x) C Fittﬂx((Tx)Gm) — 2X(1)0X C 20X

and we have proven the claim. O

Now we discuss a non-abelian generalization of the strong Brumer-Stark property.

DEFINITION 3.5 StBS(L/K,S,T,p). Let p be a prime and let S and T be two finite sets of places
of K such that Hyp(S,T) is satisfied. The CM-extension L/K satisfies the strong Brumer-Stark
property StBS(L/K,S,T,p) if

5 e Fupn (ALp) = PRl e) i pA2

205 € Fitty G (cli(p)) if p=2.

The above property does not hold in general as follows from the results in [16]. But it is reasonable
to state the following conjecture which is the above property over the maximal order.

CONJECTURE 3.6 StBS,,(L/K,S,T,p). Let p be a prime and let S and T be two finite sets of places
of K such that Hyp(S,T) is satisfied. Choose a maximal order A, containing Z,G. Then

0 € Fitt,) ((A)- ®z,0. AT(p) = Fitta, (Ay @50 df(p)~ i p#2
19T € Fitta, (Ay ®z,¢ oIl (p) if p=2.

Moreover, we will say that StBS(L/K, S, p) resp. StBS,(L/K,S,p) holds if StBS(L/K,S,T,p)
resp. StBS,,(L/K,S,T,p) holds for all finite sets of places T" such that Hyp(S,T) is satisfied.

LeEMMA 3.7. Let p be a prime and let S and T be two finite sets of places of K such that Hyp(S,T)
is satisfied.
i) If S C S, then
StBS(L/K,S,T,p) = StBS(L/K,S',T,p),
StBS,(L/K,S,T,p) = StBS,(L/K,S',T,p).
ii) If T C T', then
StBS(L/K,S,T,p) = StBS(L/K,S,T',p),
StBS,(L/K,S,T,p) = StBS,(L/K,S,T', p).
Proof. The first assertion follows from Proposition 1.1 (iv), as we observe that 6%, = [esngnr(l—
qﬁs;;l) - 9L For (ii) consider the following special case of sequence (9):
ET — Ep — (op/m7)* — o} - cly.

Since we have a similar sequence with T replaced by T”, we find that the kernel of the natural
projection clf — clf equals ker((or, /M7 )< — (o1 /M7r)*) = (or./Mpn7)*. Now Proposition 1.1 (ii)
implies
Fitty% (AL (p) D Fitty:& (AL (p)) - Fitth:s_ ((o/Mrnr) ™ (p))
12
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if p # 2, and the latter contains 6% - [,ernpnr(l— N(p)gf)il) = 0%, A similar argument applies for
p = 2. Since tensoring with A, is a right exact functor, we also obtain the desired implication in the
maximal order case. O

PROPOSITION 3.8. Let p be a prime and let S be a finite set of places of K containing S, U Sx.
Then

StBS(L/K,S,p) = BS(L/K, S, p),
StBS,(L/K, S, p) = BS.(L/K, S,p).

Proof. Assume that StBS(L/K, S, p) holds and p # 2. Let a be a fractional ideal of L whose class in
clz, has p-power order. As before write |ur| = (1 — N(po)) - ¢, where pg € S is a totally decomposed
prime, coprime to a such that Hyp(S, {po}) is satisfied, and v,(c) = 0. Then Theorem 1.2 implies
that for any x € H(G), there is an a € L™ such that

axwLHS _ axnr(c)@é.po} _ (Oé)
But also for any finite set of places T such that Hyp(S U S,,T) is satisfied, there is an ap € Ega
such that
a0 = ().
As on earlier occasions we may assume that o and a7 are anti-units such that the equation of ideals

(a)25T(0) — az-zwLeg — ( )z-wL

ar

for all z € H(G) actually implies a*7(®) = a5, For the modifications for the prime p = 2 compare
the proof of Theorem 3.4. For the implication of the weaker conjectures, everything remains the
same apart from some obvious modifications and the following fact: If M is a finitely presented
ZpG-module, then (cf. [20], Prop. 5.1)

}—p(G) . FittAp (Ap ®ZpG M) C Anang(M)
and similarly on minus parts. U

By a similar argument we can prove a partial converse of Lemma 2.9 which is a non-abelian
analogue of [17], Prop. 1.2.

PROPOSITION 3.9. Let p be an odd prime and let S be a finite set of places of K containing S, US«.
Assume that ur(p) is c.t. and

Hp(G)Fittz,c_(1L(p))fs C Anng,q_(AL(p)). (16)

Then for each x € H(G)? and each fractional ideal a of L whose class in cly, is of p-power order,
there is an anti-unit « € L™ such that

aCE'o.)L~95 — (a)

and for each finite set T of primes of K such that Hyp(S U Sy, T) holds there is an ap € E?;a such
that

az~5T 0) _ Oé%wL

for each z € H(G).

Proof. Since the p-part of the roots of unity is c.t. and pr(p) is cyclic as Z,G_-module, there is a
nonzerodivisor A € Z,G _ such that § := nr()) generates Fittz ¢_(ur(p)). Let a be a fractional ideal
of L whose class [a] € cly, has p-power order and let 2’ € H(G). By assumption there is an o € L*
such that

a€% = ().

13
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Let T be a finite set of places such that Hyp(S U Sy, T) is satisfied. Since p is odd, we may assume
that [a] € AL(p) and we can lift [a] to the class [a]r € AT (p). Then [a]?ws lies in the kernel D(p) of
the epimorphism A% (p) - AL(p). But D(p) is c.t. by means of the exact sequence

pur(p) = (or/Mr)*~(p) — D(p)

and the Fitting invariant Fittz,q_(D(p)) is generated by 67(0)¢~*. Hence for any 2" € H(G), we
have
| = [qff OO @05 _ [oa"0F

Now we can proceed as in the proof of Proposition 3.8. O

Remark 5. i) Since tensoring with the maximal order A, is exact on sequences of finite c.t. mod-
ules, we obtain a similar result by replacing Fittz,¢_(ur(p)) by Fitta,)_ (Ap ® pr) and H by
F.

i) If p 1 |G|, then ur(p) is c.t. and H,(G)? = H,p(G) by Lemma 1.3. Then the above proof shows
that we may replace x € H(G)? by € H(G) such that (16) implies BS(L/K, S, p).
iii) If pr(p) = 1, then in fact
Fitt%lpaé’f (,LLL(p)) = [nr(ZpG*)]nr(ZpG,) = [%S(p)]nr(ZpG,)'
In particular, BS(L/K, S, p) is equivalent to B(L/K, S, p) if in addition p { |G]|.

4. The relation to the strong Stark conjecture

As before let L/K be a finite Galois CM-extension of number fields with Galois group G. We denote
the maximal real subfield of L by LT and the normal closure of L by L. For n € N let ¢, be a
primitive complex n'* root of unity. The aim of this section is to prove the following result.

THEOREM 4.1. Let p be an odd prime and let S be a finite set of places of K containing S, U Sx.

ram

If the strong Stark conjecture at p holds for all characters x with rs(x) = 0, then StBS,,(L/K, S, p)
is true.

COROLLARY 4.2. Let p be an odd prime. Assume that no prime of L™ above p is split in L/L"
whenever L¢ C (L)% ((,). Then StBS,(L/K,S,p), BSw(L/K,S,p) and B, (L/K, S, p) are true for
any set S of places of K containing S, U Ss.

Proof. Since the strong Stark conjecture at p holds in this case by [19], Cor. 2, this follows immedi-
ately from Theorem 4.1, Proposition 3.8 and Lemma 2.9. O
Before we start with the proof of Theorem 4.1, we introduce some further notation. We define
central idempotents of Q,Gy by
el = |Ip| "Ny, el =1—¢,
and a Z,Gyp-module U, by
U, = <NI‘W 1-— €;¢;31>2me C QG-

Note that U, = ZpGy if p is unramified in L/K. For each irreducible Cp,-valued character x we
define a fractional ideal of o, by setting

Uy = H nre, g, q(exMU,)oy,
pESram

where as before 9 is a maximal oy-order in E,G containing o, G. For any finite set S containing
Seo, there is a Tate sequence (cf. [23])

ES)—)AS—>BS—>->VS, (17)
14
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where Ag is G-c.t., Bg is ZG-projective and Vg fits into an exact sequence
CIS — VS — vg, (18)

where Vg is a ZG-lattice. More precisely, Vg fits into a short exact sequence

Vs— @ (indg, (W) - Z,
pESram
pgZS

where W can be described as the cokernel of the map (cf. [15], §5)
ZGy — LGy /(Nay, ) X ZGq
1 — (Ng,,1—o5h).

Sequence (17) has a uniquely determined extension class 7g € Extavs, Es) which is Tate’s canon-
ical class (cf. [27]) if S is sufficiently large. We set V := Vg _ and V :=Vg_.

Proof of Theorem 4.1. We seek to compute the Fitting invariant of AT (p) over the maximal order
(Ap)—. By [20], remark 7 this is equivalent to the computation of the Fitting ideals Fitto, (A7 (p)y)
for all C,-valued irreducible odd characters x. Thus we have to show that for any finite set 7" of
places of K such that Hyp(S,T) holds we have

05, € Fitto, (AL(p)y),

where 0% = (Qg,x)xelrrp (@) € C(CpG). Let us fix an odd irreducible character x; for any finitely

generated ZG-module M and i € Z we abbreviate the Tate-cohomology groups H*(G, M (p)[x]) by
H'(M). For any finite ZG-module M, the homomorphism ¢(M (p), x) induces an equality

Fitt, (M (p)y)Fitto, (H°(M)) = Fitt, (M (p)*)Fitt, (H'(M)). (19)
Consider the exact sequence of Z,G _-modules (cf. sequence (9))

pur(p) — (op/Mr) ™ (p) = AL (p) - AL(p). (20)

If we denote the kernel of the epimorphism Af — A, by D, we get two exact sequences of 0,-modules
as follows:

1z (p)X — (op/Mp) ™~ (p)X = D(p)X — H'(ur,), (21)

J2 = D(p)x = AL(p)x — AL(p)x (22)
where J_5 denotes the image of the map H 2(AY) — H=2(AyL). It follows from the proof of the
main result in |7] (cf. the end of §12 in loc.cit.) that

L. (0, X)UyFitto, (1ur.(p)¥)Fitto, (H' (ur)) " Fitto, (H?(ur)) C Fitte, (AL (p)¥) (23)

provided that the strong Stark conjecture at p holds for the character . From this one can actually
derive annihilation results in spirit of the non-abelian Brumer conjecture (cf. loc.cit. Th. 1.2), but
this inclusion is not sufficient for our purposes such that we have to take care of the difference of the
above oy-ideals. The only inclusion of the proof of (23) derives from the two short exact sequences
of finite Z[3]G_-modules

A\ v v 7 15(0)"  271e(0)
5(C)~ 8(C)77 8(C)” 5(C)~ v
where C'is a free ZG-module of rank |S_, | and the map ¢ : C'— V is injective. By abuse of notation
we also write & for the induced map C — V and note that this map is still injective. Moreover, x is
a natural number such that zV~ C §(C)~. Following the notation of loc.cit. we put

— -1 _ -1 _
v () VA

Mo T o v
15
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and in addition
_ \va
M= ———.

Since M is c.t. and H'(M3) ~ H**}(V ), we obtain from (24) the following exact sequences of
oy -modules:

AL(p)X — Mi(p)X = M1(p)X — Ji, (25)

H=H (V") = Mi(p)y = Ma(p)y - Ms(p)x. (26)

where J; denotes the kernel of the map H'(Ay) — H'(M;). Now we observe that we have isomor-
phisms

HY(M)) ~ H(V™) ~ H"?(up) ~ H*(D),

where the second isomorphism derives from the Tate sequence (17) for the set So whereas the last
isomorphism is induced by the exact sequence

Z[5) @ pr — (op/Mp)*~ — D.

Now choose a finite set S of totally decomposed primes which generate the ray class group clz. The
two exact sequences (cf. sequence (8) and (9))

(E&)™ = (28")” — AL, (E&)™ — Eg — (or/Mr)*~
imply the first two isomorphisms of

HYY AT ~ HY2(ELT) ~ HY(Bg) ~ HY(V ) ~ H(M)).

The last isomorphism is clear and the third is induced by a Tate sequence for S’, since Vg ~ VBZS'.
The natural behavior of Tate sequences yields a commutative diagram

E;C As., Bg_, \Y \
- /V
ES'( AS/ BS/ VS/

which implies that the squares

~

H'(My) H™2(up)

km(m) lHH?(LS,)

HZ(Ml) _~ o Hi+2(E§,)

commute for all i € Z, where 7 denotes the surjection M; — Mj. Moreover, the commutative

16
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diagram

By —— (25')~

~

AL

Lgr

Zl3) ® p—— Eg (z8")~ AL

Z[3) @ pr—— (or/M1)*~ D
implies that indeed the diagram
H'(My) ——— H"™*?(uy) ———— H*Y(D)

H*(up)

‘/Hi(ﬂ‘l) ‘/Hi+2(bsl)

H'(M) — H"*(Eg) ——— H'"'(A])

commutes for all ¢ € Z, where ¢tp denotes the inclusion D — Af. In particular, we have J; =~
cok (HY(m1)) ~ cok (H'(vp)) and thus there is an exact sequence

Jo — HYD) - HYAL) — HY(AL) — HYD)
— HAT) — H%AL) — HYD) — HY AL - U
Taking this into account, we can use the sequences (21), (22), (25), (26) and the equality (19) to
calculate the desired Fitting ideal and end up with
Fitte, (AL (p)y) = Fitto, ((or./M7) ™™ (p)¥)Fitte, (Mi(p)*)Fitto, (Ma(p)y) ' Fitte, (Ms(p)y)) -

Fittoy (2(p)X) " Fitto, (H* (uz))Fitty, (> (uz)) ™
Now it follows from the proof of loc.cit., Prop. 9.1 and Th. 1.2 that the left hand side of the inclusion
(23) equals Fitt,, (M1 (p)X)Fitte, (Ma(p)y) ™~ 'Fitte, (Mz(p)y)). Hence we obtain

Fitto, (AL(P)y) = L5 (0,X) - Fitto, ((oL/M7) ™ (p)*)Uy
= Ls..(0,X) - 67(0, x)Uy

which in particular contains (6%),. O

5. The relation to the equivariant Tamagawa number conjecture
In [2] the author defines the following element of Ky(ZG,R):
TQ(L/K,0) = ¥&(xar(ts: Ag') + 0a(L5(0))).

Here, ¢, is a certain involution on Ko(ZG,R) which is not important for our purposes, since we will
be only interested in the nullity of TQ(L/K,0). Furthermore, 75 € Ext%;(ES, Xg) is Tate’s canonical
class (cf. [27]). Finally, xgr(7s, )\gl) is the refined Euler characteristic associated to the perfect 2-
extension Ag — Bg whose extension class is Tg, metrised by /\51. For more precise definitions we
refer the reader to [2]. By loc.cit., Th. 2.4.1 the ETNC for the motive h°(L) with coefficients in
ZG in this context asserts that the element TQ(L/K,0) is zero. Note that this statement is also
equivalent to the Lifted Root Number Conjecture formulated by Gruenberg, Ritter and Weiss [18§]

by [2], Th. 2.3.3.
It is also proven in [2] that TQ(L/K,0) lies in Ko(ZG, Q) if and only if Stark’s conjecture holds. In
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this case the ETNC decomposes into local conjectures at each prime p by means of the isomorphism

Ko(ZG,Q) ~ P Ko(Z,G, Qy).
ptoo
Since Stark’s conjecture holds for odd characters, T)(L/ K, 0) has a well defined image TQ(L/K,0),,
in Ko(Z,G-,Qp).

THEOREM 5.1. Let p be an odd prime and assume that TU(L/K,0),, = 0. If ur(p) is a c.t. G-module,
then BS(L/K, S, p) holds for all finite sets S of places of K containing S,, U Ss.

Proof. 1f TQU(L/K,0), =0 and ur(p) is c.t., Proposition 1.1 (iv) and [20], Th. 7.1 imply that

Fitthe_ (uz(®) - [LOF [ we(Up)lw,e ) C Fitthe_ (Anp)")*. (27)

pESram

As in the last section, we consider sequence (20), where the kernel D(p) of the surjection AT (p) —
Ar(p) now is c.t. As the Pontryagin dual of pur(p) is again ur(p), we obtain the following dual
sequences:

D(p)* = ((or/Mr) " (p))" — nr(p),
Ar(p)” — AL(p)” - D(p)".
Since the Fitting invariant of ((or,/97)* ™ (p))Y is generated by 67(0)*, Proposition 1.1 implies that

[67(0) - LO)F T nr(Uplwz,e ) C FittE:s_(AL(p)")".

pesranl

Since the left hand side contains 0% if Hyp(S, T') is satisfied, the group ring elements z-0%, z € H,(G)
annihilate AT (p) by (4). Now we can proceed as in the proof of Proposition 3.8. O

In particular, the inclusion (27) shows the following result (cf. |20], Cor. 7.2).

COROLLARY 5.2. Let p be an odd prime and assume that TQX(L/K,0), = 0. If ur(p) is a c.t. G-
module and S is a finite set of places of K containing S, U S, then

ram

Hp(G)Fittz G (nL(p))bs C Anng,c (AL(p)).

We also can derive the strong Brumer-Stark property from the ETNC if the ramification above
p is (almost) tame:

THEOREM 5.3. Let p be an odd prime and let S be a finite set of places of K containing S, U Sx.
Assume that TQ(L/K,0), = 0. Then StBS(L/K,S,p) holds, whenever all primes p of K above p
are at most tamely ramified in L/K or j € Gy. In particular, BS(L/K,S,p) and B(L/K, S,p) are

true in this case.

Remark 6. Assume that all primes p of K above p are at most tamely ramified in L/K or j € Ggp.
In [21] the author was meanwhile able to deduce the vanishing of TQ(L/K,0), under some further
restrictions from the validity of the equivariant Iwasawa main conjecture which has been proven by
Ritter and Weiss [24] provided that Iwasawa’s p-invariant vanishes. For further connections of the
work of Ritter and Weiss to the ETNC we refer the reader to [5].

Proof of Theorem 5.3. Let S and T be finite sets of places of K such that Hyp(S,T) is satisfied.
We denote the set of places of K above p by S, and put

T = TU(S,, \ (S

ram

n5y)).
18
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If the set T' consists of only one prime, then AT (p) is G-c.t. by [19], Th. 1. But if T' C Ty, the exact
sequence
_ T} /
(o./Mp\7) ™ (p) — A (p) - AL (p)

implies that we may add or remove primes without changing the cohomology of A%I (p) and this
module is hence c.t. for all admissible sets T'. Since the Fitting invariant of (or/M7p\7)* " (p) is
generated by d7;\7(0), loc.cit., Th. 2 implies that

TQ(L/K,0), =0 <= Fittz,a_(A] (p)) = [(05)mz, ) (28)

where S; denotes the set of all primes of K which are wildly ramified in L/K. Moreover, we have
an exact sequence

(o,/Mpn 7)™ (p) — AT (p) - AL (D). (29)
Let p be a finite prime of K and choose a prime 3 in L above p. We denote the kernel of the
augmentation map ZGy — Z which sends each g € Gy to 1 by AGy. Take an exact sequence

L — Vg — AGy

whose extension class in Ext};qB (AGyp, Ly) ~ H2(qu,LqX3) is the local fundamental class of the
extension Ly /K,. By [29], Th. 4 the inertial lattice

Wy = {(z,y) € AGy x ZGyl|z = (¢p — Dy}
is the push-out of this sequence along the normalized valuation vy : Lg — Z. We have two exact
sequences
Ey o Vg = Wy, Ey — By — (o1,/%)%,
where Eg is the group of local units and qug denotes the local units which are congruent 1 modulo

B. We define Ty to be the push-out of the first sequence along the projection of the second such
that we obtain an exact sequence

(o0/F)" — Ty — Wiy (30)
The following result is [19], Lemma 3 (i).

LEMMA 5.4. The G-module (ind ngqg)(p) is c.t. for each finite prime p { p of K and for each finite
prime p of K which is at most tamely ramified in L/ K.

We write e, and f, for the ramification index and the degree of the residue field extension at p,
respectively. We observe that there is an isomorphism Q, ® Wy ~ Q,Gy and we specify a generator
cy € Wy(p) as follows:

= (1G] = N, N+ €3 (b — 1)1y — Ne),
where we write (¢p — 1)~ = f; Z{;gl i¢k, in an intuitive notation. Note that

=1 £ 1
(6 = )7 (fo = Nog) = D ity — 25— Ny
=0

lies in Z,Gy as p # 2. We pick a preimage tg; € Ti(p) of ¢fy. The maps ZyGy — Wy(p), 1= ciy
and Z,Gy — Ts(p), 1 — tﬁp are injective and become isomorphisms after tensoring with Q,. Hence,
the direct sum

Ti= @ indf, (Tu(p)/th)

peT\T
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is finite and c.t. by Lemma 5.4. Let W be the direct sum of the modules ind gm (Wy(p)/cyp),p € T'\T.
Then the exact sequences (30) for these primes induce an exact sequence of G-modules
(or/Mpng) " (p) = T~ = W".

Now take any finite c.t. Z,G_-module P which maps onto (o, /M7 7)™ (p) (for example, choose P

to be the direct sum of the modules (ind gm ZpGy/(N(B) — 1)), p € 7"\ T) and denote the kernel
by K. Then we obtain two exact sequences

K—P—=T W, K—P— AL (p) > AL(p),
where the second sequence derives from (29). Hence Proposition 1.1 (v) implies that
Fittge_ (A7 (p) = Fittz,c_ (AL (p))Fittz,¢_(T7) ' Fittgg_ (V7). (31)

The first Fitting invariant on the right hand side is given by the ETNC and we have to compute the
other two. In fact [19], Prop. 6 (4) gives

Fittz,o_(T7) =] [[ nr(r)lanz,c_)» where (32)
peT\T
N —
Tp 1= ep_l(l — N(p))Ng,, + <m5; —i—gg) (|G| = Nay,)-

For the last Fitting invariant we prove the following lemma which is the non-commutative analogue
of [19], Lemma 8:

LEMMA 5.5. Let p € S, be a finite prime of K. Then
Fitty ¢, Wy(p)/cy) O [r (Xp)]ue(z,6_ ),
XP = <NG‘;3 - ‘G‘n‘?NGm + ep(fPNIqs - NGm)(é‘:ﬁ - 1)71>ZPG\13'

Before we prove the lemma, we observe that this lemma, (31), (32) and (28) imply the following
result:

COROLLARY 5.6. Let p be an odd prime and assume that TQ)(L/K,0), = 0. Moreover, assume that
all primes p of K above p are at most tamely ramified in L/K or j € Gy. Then for any finite set T
of primes of K such that Hyp(S.,,,,,T) is satisfied, we have

ram’

Fitt_(AL(p) 2 [6r(0)L(0)* [[ me(Up)]wmz,c -

pesram

In particular, 6% and hence 6% is contained in Fittz5_ (AT (p)). This finishes the proof of the
theorem. O

We are left with

Proof of Lemma 5.5. Let [ be the rational prime below p and let Ry denote the [-Sylow subgroup
of Iz. Since Ry is normal in Gy and [ # p, the central idempotents

I -1 "o, __ /
T, = |Ryp|” Npy, 1, :=1-71,

belong to the group ring Z,Gy and there is an isomorphism 7} (Wi (p)) =~ r} Z,Gy which maps 7} ¢l

to 7y (|G| — Nay, ). Hence we may assume that p is tamely ramified in L/K.
Let us drop the subscripts p from the notation and simply write e for e,, and f for f,. We keep
the notation of [10], Lemma 6.2. So choose a generator a of Iy and let b1 € Gy be a lift of the
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Frobenius automorphism which is of maximal order |b| among all such elements. Then b=/ = a¢ for
a divisor ¢ of e and b~'ab = a?, where ¢ = N(p). Define a map

7 LpGyer ® ZpGypea — Wy(p)

by m(e1) = (b= — 1,1) and 7(es) = (a — 1,0). Now let (z,y) € Wy(p) be arbitrary. Since AGyg
is generated by a — 1 and b — 1, there is an ¢’ € Z,Gy such that (z,y’) € im (7). Hence ¢y — 1
annihilates y — ¢’ and there is z € Z, such that y —y' = zNg, - But

f—1 c—1
W(Z b ey — Zaieg) =07/ -1-(a°—-1), NG—m)
i=0 i=0
such that 7 is an epimorphism. We claim that the kernel is generated by Ny, es and (a? — 1)e; +
(1 — b~ 1)ey. For this, assume that
m(zer + xeg) = (w1 (b7 — 1) + 22(a — 1),71) = 0.

Since a? is also a generator of Iy, we have 1 = 2/ (a? — 1) for an appropriate 2} € Z,Gy by [10],
Lemma 6.6. By the same Lemma we get 2} (b1 — 1) + 20 = y - Np, with y € ZyGy, since the
left-hand side is annihilated by (a — 1). Hence

x1e1 + xoes = 2y (a? — ey + 2 (1 — b_1)62 + (:Ell(b_l —1) 4 z2)es
=21 ((a?—1)er + (1 — b_l)ez) +yNy, ez

which proves the claim. Define two group ring elements

f—1
01:=> b7+ (fN1, — Nap) (0" = 1)7" € Z,Gy,
=0
c—1 ' e—111—1 '
do 1= Zaz—kf'ZZaJ € ZpGy.
i=0 i=1 j=0

Now we compute
(b7 1) =d(a—1)=b"T =1+ fNy, — Ng, — (a° =1+ f(Ng, —e))
= ’G‘B| - NG%
and thus 7(d1e1 — daeg) = C/‘l?' Hence, the kernel of the epimorphism
ZpGyer & LyGyea — Wy(p)/cy

induced by 7 is generated by the kernel of m and d1e; — d2e2. The reduced norms of the following
three matrices generate a Fitting invariant of Wi (p)/cgy:

L 0 a?—1 L 0 51 L a?—1 51
A'_<N[m 1—(7_1>7 B'_(N[m —52>’ C'_<1—b_1 —52>'

Since Ny, (a? — 1) = 0, we have nr(A4) = 0. For the matrix B we have nr(B) = nr(—Ny,d1) and
N1, 061 = Ny, + e(fNp, — Nay ) (dgp — 1)

The reduced norm is defined component wise and we compute nr(C) in two steps. Recall that
e, = e 'Np, and ) = 1 — &), Since ¢, (a? — 1) = 0, we have on the one hand

nr(Ce,) = nr((b~! — 1)d1e},)
— (67 — 1)e, + (fe — Ney)2h)
= nr((|Gy| — Nay )ey)-
21



ANDREAS NICKEL

On the other hand, (a? — 1)e; and likewise (a — 1)e; are invertible and we compute

" at—1 0 "
nr(C’sp) an(< 0 51((1‘1—1)_1(;7_1 —1)—4 )€p>
(af =)0~ D(a—1)7" ~d)e))

)

(a? = 1)((02(a = 1) + |G| = Ney)(a = 1)1 = 82)ey)
(a? = 1)(|Gp| = Ny )(a = 1)"'ey)

(G| = Nay)ey),

where the last equation holds, since b~ 'ab = a9 and the reduced norm is invariant under conjugation.
We have shown that nr(C) = nr(|Gy| — Ng,, ). Now let x1, 22 € Z,Gy be arbitrary. Then also

=nr

= nr

= nur

= nr

~—~ ~~ —~

.%‘Q(Gq — 1) (51 1
" ( o Npy b sl — oY) —g, ) = T WNay + (NI, =Ny (@ = 1)) +22(1Gp| = Na )
belongs to Fitty (W (p)/cy)- O
REFERENCES

1 Barsky, D.: Fonctions zéta p-adique d’une classe de rayon des corps de nombres totalement réels, Groupe
d’Etude d’Analyse Ultramétrique (1977/78), Exp. No. 16

2 Burns, D.: Equivariant Tamagawa numbers and Galois module theory I, Compos. Math. 129, No. 2
(2001), 203-237

3 Burns. D.: On refined Stark conjectures in the non-abelian case, Math. Res. Lett. 15 (2008), 841-856

4 Burns. D.: On derivatives of Artin L-series, to appear in Invent. Math. - see
http://www.mth.kel.ac.uk/staff/dj burns/newdbpublist.html

5 Burns. D.: On main conjectures in non-commutative Iwasawa theory and related conjectures, preprint -
see http://www.mth.kcl.ac.uk /staff/dj burns/newdbpublist.html

6 Burns, D., Flach, M.: Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math.
6 (2001), 501-570

7 Burns, D., Johnston, H.: A non-abelian Stickelberger Theorem, to appear in Compos. Math. (2010) DOI
10.1112/50010437X 10004859

8 Cassou-Nogués, P.: Valeurs aux entiers négatifs des fonctions zéta et fonctions zéta p-adiques, Invent.
Math. 51 (1979), 29-59

9 Chinburg, T.: On the Galois structure of algebraic integers and S-units, Invent. Math. 74 (1983), 321-349
10 Chinburg, T.: Exact sequences and Galois module structure, Ann. Math. 121 (1985), 351-376

11 Curtis, C. W., Reiner, I.: Methods of Representation Theory with applications to finite groups and orders,
Vol. 1, John Wiley & Sons, (1981)

12 Curtis, C. W., Reiner, 1.: Methods of Representation Theory with applications to finite groups and orders,
Vol. 2, John Wiley & Sons, (1987)

13 Deligne, P., Ribet, K.: Values of abelian L-functions at negative integers over totally real fields, Invent.
Math. 59 (1980), 227-286

14 Greither, C.: Arithmetic annihilators and Stark-type conjectures, in Burns, D., Popescu, C., Sands, J.,
Solomon, D. (eds.): Stark’s Conjectures: Recent work and new directions, Papers from the international
conference on Stark’s Conjectures and related topics, Johns Hopkins University, Baltimore, August 5-9,
2002, Contemporary Math. 358 (2004), 55-78

15 Greither, C.: Determining Fitting ideals of minus class groups via the Equivariant Tamagawa Number
Conjecture, Compos. Math. 143, No. 6 (2007), 1399-1426

16 Greither, C., Kurihara, M.: Stickelberger elements, Fitting ideals of class groups of CM fields, and dual-
isation, Math. Z. 260, No. 4 (2008), 905-930

22



17

18

19

20

21

22

23
24

25

26
27

28
29

ON NON-ABELIAN STARK-TYPE CONJECTURES

Greither, C., Roblot, X.-F., Tangedal, B.: The Brumer-Stark Conjecture in some families of extensions
of specified degree, Math. Comp. 73 (2004), 297-315

Gruenberg, K. W., Ritter, J., Weiss, A.: A Local Approach to Chinburg s Root Number Conjecture,
Proc. London Math. Soc. (3) 79 (1999), 47-80

Nickel, A.: On the Equivariant Tamagawa Number Conjecture in tame CM-extensions, to appear in
Math. Z. (2010) DOI 10.1007/s00209-009-0658-9

Nickel, A.: Non-commutative Fitting invariants and annihilation of class groups, J. Algebra 323 (10),
(2010), 2756-2778

Nickel, A.: On the Equivariant Tamagawa Number Conjecture in tame CM-extensions, II, to appear in
Compos. Math. - see http://www.mathematik.uni-regensburg.de/Nickel /english.htm]l

Parker, A.: Equivariant Tamagawa Numbers and non-commutative Fitting invariants, Ph.D. Thesis,
King’s College London (2007)

Ritter, J., Weiss, A.: A Tate sequence for global units, Compos. Math. 102 (1996), 147-178

Ritter, J., Weiss, A.: On the ’main conjecture’ of equivariant Iwasawa theory, preprint, see
arXiv:1004.2578v2

Rubin, K.: A Stark conjecture “over Z” for abelian L-functions with multiple zeros, Ann. Inst. Fourier
46 (1996), 33-62

Swan, R.G.: Algebraic K-theory, Springer Lecture Notes 76 (1968)

Tate, J.: The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J. 27
(1966), 709-719

Tate, J.: Les conjectures de Stark sur les fonctions L d’Artin en s = 0, Birkh&user, (1984)

Weiss, A.: Multiplicative Galois module structure, Fields Institute Monographs 5, American Mathematical
Society (1996)

Andreas Nickel andreas.nickel@math.uni-regensburg.de
Universitiat Regensburg, Fakultét fiir Mathematik, Universitétsstr. 31, 93053 Regensburg, Germany

23



