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Abstract

Let L/K be a finite Galois extension of number fields with Galois group G. The Lifted
Root Number Conjecture (LRNC) by K.W. Gruenberg, J. Ritter and A. Weiss relates
the leading terms at zero of Artin L-functions attached to L/K to natural arithmetic
invariants. D. Burns used complexes arising from étale cohomology of the constant sheaf
Z to define a canonical element TΩ(L/K) of the relative K-group K0(ZG,R). It was
shown that the LRNC for L/K is equivalent to the vanishing of TΩ(L/K) and that
this in turn is equivalent to the Equivariant Tamagawa Number Conjecture for the pair
(h0(Spec(L))(0),ZG). These conjectures make use of a finite G-invariant set S of places
of L which is supposed to be sufficiently large. We formulate a LRNC for small sets S
which only need to contain the archimedean primes and give an application to a special
class of CM-extensions.

Let L/K be a finite Galois extension of number fields with Galois group G and S a finite G-
invariant set of places of L which contains the set S∞ of all the archimedean primes. In [RW96] the
authors derive an exact sequence of finitely generated ZG-modules

ES ½ A → B ³ ∇, (1)

which has a uniquely determined extension class in Ext2G(∇, ES). Note that the sequence itself is not
unique. We will refer to a sequence (1) as a Tate-sequence for S. Here, ES is the group of S-units
of L, A is c.t. (short for cohomologically trivial), B projective and ∇ fits into an exact sequence of
G-modules

clS ½ ∇ ³ ∇.

Indeed, the S-class group of L is the torsion submodule of ∇, hence ∇ is a ZG-lattice. If S is large
in the sense that all ramified primes lie in S and clS = 1, the modules ∇ and ∇ coincide and are just
the kernel ∆S of the augmentation map ZS ³ Z. In this case, the extension class of (1) is Tate’s
canonical class ([Ta66]).
Starting with an equivariant injection φ : ∆S ½ ES for large S, an arithmetic invariant Ωφ ∈
K0T (ZG) is defined in [GRW99]; Ωφ essentially is the class of the cokernel of an injection φ̃ : B ½ A
constructed via φ. Assuming the validity of Stark’s conjecture the LRNC states that Ωφ is determined
by a homomorphism

χ 7→ W (L/K, χ̌)Rφ(χ̌)/cS(χ̌)

on the ring of virtual characters of G. Here, W (L/K, χ) is defined in terms of Artin root numbers,
Rφ is the Stark-Tate regulator and cS(χ) is the leading coefficient of the Taylor expansion of the
S-truncated L-function LS(L/K,χ, s) at s = 0. D. Burns [Bu01] proved that the LRNC is equivalent
to the Equivariant Tamagawa Number Conjecture for the pair (h0(Spec(L))(0),ZG) which is known
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to be true if L is absolutely abelian (cf. [BG03, Fl02]).

If S is small, one cannot copy the construction of Ωφ, since in general there do not exist injections
∇ ½ ES . But there always exist equivariant isomorphisms φ : Q∇ → Q(ES⊕C) with an appropriate
free ZG-module C. We transpose φ to an isomorphism φ̃ : QB → Q(A⊕C) and (essentially) define
Ωφ to be (B, φ̃, A⊕C) ∈ K0(ZG,Q) ' K0T (ZG). After this is done in section 2, we discuss variance
with φ and S in section 3. We define a modified version of the Stark-Tate regulator and state
a LRNC for small S in section 4. Finally, we give an application to “nice” CM-extensions which
were introduced by C. Greither [Gr00]. We point out that this paper includes parts of the author’s
dissertation [Ni08].

1. Preliminaries

1.0.1 Duals Let G be a finite group. For each left1 ZG-module M we write M0 for its Z-dual
HomZ(M,Z) with the G-action formula (gf)(m) = gf(g−1m) = f(g−1m) for g ∈ G, f ∈ M0

and m ∈ M . Note that there is a natural ZG-isomorphism ZG ' ZG0 that sends each g ∈ G
to the homomorphism h 7→ δgh. Of course, the δ on the righthand side is Kronecker’s. Under this
identification, the dual of the natural augmentation map ZG ³ Z is the map Z ½ ZG that sends 1
to NG =

∑
g∈G g. Thus, we get a ZG-isomorphism

∆G0 ' ZG/NG, (2)

where ∆G denotes the kernel of the augmentation map.

1.0.2 K-theory Let R be a left noetherian ring with 1 and PMod(R) the category of all finitely
generated projective R-modules. We write K0(R) for the Grothendieck group of PMod(R), and
K1(R) for the Whitehead group of R which is the abelianized infinite general linear group. If S is a
multiplicatively closed subset of the center of R which contains no zero divisors, 1 ∈ S, 0 6∈ S, we
denote the Grothendieck group of the category of all finitely generated S-torsion R-modules of finite
projective dimension by K0S(R). Writing RS for the ring of quotients of R with denominators in S
we have the Localization Sequence (cf. [CR87], p. 65)

K1(R) → K1(RS) ∂→ K0S(R) → K0(R) → K0(RS). (3)

If T is a ring that contains R and M is an R-module, we will often write TM instead of T ⊗R M .
Moreover, if G is a group and M = ∆G is the kernel of the augmentation map RG ³ R, we set
∆T G := T ⊗R ∆G.
Specializing to group rings ZG for finite groups G and S = Z \ {0} we write K0T (ZG) instead of
K0S(ZG). So (3) reads

K1(ZG) → K1(QG) ∂→ K0T (ZG) → K0(ZG) → K0(QG). (4)

Note that a finitely generated ZG-module has finite projective dimension if and only if it is a G-
c.t. module. Indeed, the projective dimension is less or equal to 1 in this case. Further, recall that the
relative K-group K0(ZG,Q) is generated by elements of the form (P1, φ, P2) with finitely generated
projective ZG- modules P1 and P2 and a QG-isomorphism φ : QP1 → QP2, and that there is an
isomorphism (cf. [Sw68])

iG : K0T (ZG) ' K0(ZG,Q). (5)

1all occurring modules in this paper are left modules
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If a c.t. torsion ZG-module T has projective resolution P1
ι

½ P0 ³ T , this isomorphism sends the
corresponding element [T ] ∈ K0T (ZG) to (P1,Q⊗ ι, P0) ∈ K0(ZG,Q).
If p is a finite rational prime, the local analogue of sequence (4) is

K1(ZpG) → K1(QpG)
∂p−→ K0T (ZpG) → 0, (6)

and we have an isomorphism

K0T (ZG) '
⊕

p-∞
K0T (ZpG). (7)

1.0.3 Complexes and refined Euler Characteristics For any ring R we write D(R) for the derived
category of R-modules. Let Cb(PMod(R)) be the category of bounded complexes of finitely generated
projective R-modules. A complex of R-modules is called perfect if it is isomorphic in D(R) to an
element of Cb(PMod(R)). We denote the full triangulated subcategory of D(R) consisting of perfect
complexes by Dperf(R). For any C · ∈ Dperf(R) we define R-modules

Ce :=
⊕

i∈Z
C2i, Co :=

⊕

i∈Z
C2i+1.

For the following let R be a Dedekind domain of characteristic 0, K its field of fractions, A a finite
dimensional K-algebra and Γ an R-order in A. A pair (C ·, t) consisting of a complex C · ∈ Dperf(Γ)
and an isomorphism t : Ho(C ·

K) → He(C ·
K) is called a trivialised complex, where C ·

K is the complex
obtained by tensoring C · with K. We refer to t as a trivialisation of C ·.
One defines the refined Euler characteristic χΓ,A(C ·, t) ∈ K0(Γ, A) of a trivialised complex as follows:
Choose a complex P · ∈ Cb(PMod(R)) which is quasi-isomorphic to C ·. Let Bi(P ·

K) and Zi(P ·
K)

denote the ith cobounderies and ith cocycles of P ·
K , respectively. We have the obvious exact sequences

Bi(P ·
K) ½ Zi(P ·

K) ³ H i(P ·
K) , Zi(P ·

K) ½ P i
K ³ Bi+1(P ·

K).

If we choose splittings of the above sequences we get an isomorphism

φt : P o
K ' ⊕

i∈ZBi(P ·
K)⊕Ho(P ·

K)
' ⊕

i∈ZBi(P ·
K)⊕He(P ·

K)
' P e

K ,

where the second map is induced by t. Then the refined Euler characteristic is defined to be

χΓ,A(C ·, t) := (P o, φt, P
e) ∈ K0(Γ, A)

which indeed is independent of all choices made in the construction.
Now we specialize to group rings RG, where R is a finitely generated subring of Q. Let H i, i = 0, 1
be finitely generated RG-modules and

H0 ½ A → B ³ H1

an exact sequence representing an extension class τ ∈ Ext2RG(H1,H0). One obtains an associated
complex A → B, where A is placed in degree 0. If this complex is perfect, τ is called a perfect
2-extension. Moreover, if there is a QG-isomorphism φ : QH1 → QH0, the element

χRG,QG(τ, φ) := χRG,QG(A → B, φ)

only depends upon the class τ and the isomorphism φ. For further information concerning refined
Euler characteristics we refer the reader to [Bu03].

Definition 1.1. Let A be a finitely generated c.t. ZG-module, B projective and φ : QA → QB a
QG-isomorphism.We define:

(A,φ, B) = −(B, φ−1, A) := χZG,QG(C ·, φ) ∈ K0(ZG,Q),
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where C · is the perfect complex . . . → 0 → A → B → 0 → . . ., and the position of A is in degree
−1 and all maps are zero.

Note that this coincides with the usual definition.

Remark 1. i) If A is a c.t. torsion ZG-module, then iG([A]) = −(A, 0, 0) = (0, 0, A) ∈ K0(ZG,Q).

ii) We can replace K0(ZG,Q) by K0(ZpG,Qp) for any prime p. Everything remains the same
except for the obvious modifications.

1.0.4 Hom description Let G be a finite group, p a finite rational prime and R(G) (resp. Rp(G))
the ring of virtual characters of G with values in Qc (resp. Qc

p), an algebraic closure of Q (resp. Qp).
Choose a number field F , Galois over Q with Galois group Γ, which is large enough such that all
representations of G can be realized over F . Let ℘ be a prime of F above p. Then there is an
isomorphism (for this and the following cf. [GRW99], Appendix A)

Det : K1(QpG) '−→ HomΓ℘(Rp(G), F×
℘ )

[X, g] 7→ [χ 7→ det(g|HomF℘G(Vχ, F℘ ⊗Qp X))],

where Vχ is a F℘G-module with character χ. Combined with the localization sequence (6) this gives
the local Hom description

K0T (ZpG) ' HomΓ℘(Rp(G), F×
℘ )/Det (ZpG

×). (8)

One globally has

K0T (ZG) ' Hom+
Γ (R(G), JF )/DetU(ZG), (9)

where JF denotes the idèle group of F and U(ZG) the unit idèles of ZG. The + indicates that a
homomorphism in Hom+

Γ (R(G), JF ) takes values in R+ for symplectic characters.

2. Outline of the construction

Let L/K be a Galois extension of number fields with Galois group G. For a prime P of L we write
p = P ∩K for the prime below P, GP for the decomposition group attached to P and IP for the
inertia subgroup. We denote the Frobenius generator of the Galois group GP = GP/IP of the cor-
responding residue field extension by φP.

The inertial lattice of the local extension LP/Kp is defined to be the ZGP-lattice (cf. [GW96] or
[We96] p. 42)

WP = {(x, y) ∈ ∆GP ⊕ ZGP : x = (φP − 1)y}. (10)

Note that WP ' ZGP if the local extension LP/Kp is unramified. Projecting on the first component
yields an exact sequence of GP-modules

Z ½ WP ³ ∆GP. (11)

The Z-dual of this sequence induces a surjection W 0
P ³ Z0 = Z. If we combine these surjections and

the augmentation map ZS ³ Z, we get an exact sequence

∇ ½ ZS ⊕
⊕

P∈S∗ram\(S∩Sram)∗
ind G

GP
(W 0

P) ³ Z (12)

where the ∗ indicates that the sum runs over a fixed set of representatives, one for each orbit of the
action of G on the primes of L. Due to this characterization of ∇ we have
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Lemma 2.1. Let L/K be a finite Galois extension of number fields with Galois group G and S a finite
G-invariant set of places of L which contains all the archimedean primes. Moreover, let C be a free
ZG-module of rank |S∗ram\(S∩Sram)∗|. Then there exist QG-isomorphisms Q∇ ' // Q(ES ⊕ C) .

Proof.

In order to get an element Ωφ ∈ K0(ZG,Q) analogously to the Ωφ of [GRW99], we split sequence
(1) into two parts:

ES ½ A ³ W and W ½ B ³ ∇ (13)
We will refer to it as the left and the right part of the Tate-sequence. From the construction of the
Tate-sequence for small sets S one gets the following diagram, which we can take for a definition of
the ZG-lattice R:

W
Â Ä //

Ä _

i

²²

B // // ∇

²²²²
R

Â Ä //

²²²²

B // // ∇

clS

(14)

We now choose QG-automorphisms α of QW and β of QR as well as QG-isomorphisms α̃ and
β̃ making the following diagrams commutative:

Q(ES ⊕ C) Â Ä // Q(ES ⊕ C ⊕W ) // //

α̃

²²Â
Â
Â
Â

QW

α

²²
Q(ES ⊕ C) Â Ä // Q(A⊕ C) // // QW

(15)

QR Â Ä //

β

²²

QB // //

β̃

²²Â
Â
Â
Â Q∇

QR Â Ä // Q(R⊕∇) // // Q∇

(16)

In diagram (15) C is a free ZG-module as in Lemma 2.1. The lower sequence derives from adding C
to the left part of the Tate-sequence. The upper sequence is the canonical one as well as the lower
sequence in (16). The upper sequence in (16) is extracted from (14).
Given a QG-isomorphism φ : Q∇ → Q(ES ⊕C) as in Lemma 2.1 we define a QG-isomorphism φ̃ to
be the composite map

φ̃ : QB
β̃ // Q(R⊕∇)

idR⊕φ // Q(R⊕ES ⊕ C)

i−1⊕idES⊕C // Q(W ⊕ ES ⊕ C) α̃ // Q(A⊕ C).

(17)
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We define

Ωφ := (B, φ̃, A⊕ C)− ∂[QW,α]− ∂[QR, β] ∈ K0(ZG,Q). (18)

Remark 2. i) One can choose the isomorphisms α and β to be the identity on QW and QR,
respectively. Sometimes, however, it may be useful to choose injections W ½ W and R ½ R,
homotopic to 0, since we can actually build ZG-diagrams corresponding to those in (15) and
(16) in this case. These injections automatically become isomorphisms after tensoring with Q.
If S is large, this also shows that our construction yields the Ωφ of [GRW99].

ii) The natural homomorphism K0(ZG,Q) → K0(ZG) induced by iG and the Localization se-
quence (4) sends Ωφ to Chinburg’s Ω3(L/K) (cf. [Ch85], p. 357 or [We96]).

We have defined an element Ωφ attached to the following data (D):

– a finite Galois extension L/K of number fields with Galois group G,
– a finite G-invariant set S of places of L which contains all the infinite primes,
– a QG-isomorphism φ : Q∇ → Q(ES ⊕ C), where ∇ is the leftmost term in sequence (12) and

C is a free ZG-module of rank |S∗ram \ (S ∩ Sram)∗| as in Lemma 2.1.

Theorem 2.2. The data (D) uniquely determine an element Ωφ ∈ K0(ZG,Q).

We divide the proof into two lemmas.

Lemma 2.3. The definition of Ωφ is independent of the choices of α, β, α̃ and β̃.

Proof.

Secondly, we have to check:

Lemma 2.4. The definition of Ωφ is independent of the choice of the Tate-sequence.

Proof.

3. Basic properties of Ωφ

In this section we discuss variance of the isomorphism φ and of the set of places S. The most
interesting (and most complicated) case is, how Ωφ varies if S is enlarged by ramified primes. The
following proposition describes variance with φ and is the analogue of Proposition 1 in [GRW99].

Proposition 3.1. Fix a set of data (D), and let φ′ : Q∇ → Q(ES⊕C) be another QG-isomorphism.
Then

Ωφ′ − Ωφ = ∂[Q∇, φ−1 ◦ φ′].
In particular, Ωφ′ − Ωφ has representing homomorphism

χ 7→ det(φ−1 ◦ φ′|HomCG(Vχ,C∇)),

where Vχ is a CG-module with character χ.

Proof.

Our next task is to enlarge S by a ramified prime P0, i.e. P0 ∈ Sram, but P0 6∈ S. We may
assume P0 ∈ S∗ram.

Note that some of the ideas in what follows are taken from [Gr07], where the author assumes
the validity of the LRNC for an abelian CM-extension L/K to compute the Fitting ideal of (cl−L )∨,
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the Pontryagin dual of the minus class group of L. For this, he connects a Tate-sequence for a large
set S of places of L to a Tate-sequence for S∞. In what follows here, some of the maps between
Tate-sequences are inspired by the corresponding maps in [Gr07]. But some of the diagrams in
loc. cit. only commute on minus parts owing to the purpose of this paper; so we have to modify the
construction in order to achieve commutative diagrams in general. Moreover, the author does not
introduce an element like Ωφ, nor does he give a definition of a modified Stark-Tate regulator, as we
intend to do in the next section.

We set S0 := S∪GP0 and we intend to indicate each module by a subscript S resp. S0 (or simply
a subscript 0) if it is not clear to which (construction of a) Tate-sequence it belongs.
The dual of sequence (11) for the prime P0 yields the following commutative diagram:

ind G
GP0

∆G0
P0Ä _

²²

ind G
GP0

∆G0
P0Ä _

²²

∇S
Â Ä //

²²²²

ZS ⊕⊕
P∈S∗ram\(S∩Sram)∗ ind G

GP
W 0

P
// //

²²²²

Z

∇S0

Â Ä // ZS0 ⊕
⊕

P∈S∗ram\(S0∩Sram)∗ ind G
GP

W 0
P

// // Z

We extract the left column and use (2) to get an exact sequence

ZG/NGP0

Â Ä //∇S

π∇ // //∇S0 . (19)

Let hL = |clL| be the class number of L and choose a positive integer h such that hL|h. Then
Ph

0 is principal generated by a S0-unit uP0 . Let us define a map (which is the map β in [Gr07])

u0 : ZG → ES0 , 1 7→ uP0 .

Then we have a left exact sequence

ZG ·∆GP0

Â Ä (−u0,id) //ES ⊕ ZG
(id,u0) //ES0 , (20)

since for x ∈ ZG we have x · uP0 ∈ ES if and only if x ∈ ZG · ∆GP0 . Moreover, we have a
QG-isomorphism

φ′ : QG/NGP0
→ QG ·∆GP0 ,

1 mod NGP0
7→ 1− 1

|GP0 |NGP0
.

(21)

Let C0 be a free ZG-module of rank |S∗ram \ (S0 ∩ Sram)∗|, and start with a QG-isomorphism
φ0 : Q∇S0 → Q(ES0 ⊕C0). Then one can always find a QG-isomorphism φ fitting in a commutative
diagram

QG/NGP0

φ′ //
Ä _

²²

QG ·∆GP0Ä _

(−u0,id,0)

²²
Q∇S

φ //

²²²²

Q(ES ⊕ ZG⊕ C0)

(id,u0,idC0
)

²²²²
Q∇S0

φ0 // Q(ES0 ⊕ C0)

(22)
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Here, the two columns derive from the sequences (19) and (20). Note that the second map in (20)
has finite cokernel. We are ready to prove

Theorem 3.2. Fix a set of data (D). Let P0 be a prime not in S which ramifies in L/K and h an
integral multiple of hL, the class number of L. Assume that there is a QG-isomorphism φ0 that fits
into diagram (22).Then we have an equality

Ωφ0 − Ωφ = ∂[ind G
GP0

Q,−h|GP0 |].
In particular, Ωφ0 − Ωφ has representing homomorphism

χ 7→ (−h|GP0 |)dim V
GP0
χ ,

where Vχ is a CG-module with character χ.

Proof.

To complete this paragraph, we have to discuss how Ωφ varies if S is enlarged by the orbit of a
non-ramified prime P0. As before let S0 := S ∪GP0. The exact sequence (12) for the sets S and S0

together with the natural exact sequence ZS ½ ZS0 ³ ind G
GP0

Z yield an exact sequence

∇S ½ ∇S0 ³ ind G
GP0

Z.

For each finite prime P of L let us write vP for the normalized valuation at P. The map

ES0 → Z[G/GP0 ] = ind G
GP0

Z, u 7→
∑

g∈G/GP0

vP0(g · u)g−1

has kernel ES and finite cokernel. Thus, for each isomorphism φ : Q∇S → Q(ES ⊕ C), where C is
ZG-free of rank |S∗ram \ (S ∩ Sram)∗|, there is an isomorphism φ0 fitting in a commutative diagram

Q∇S

φ //
Ä _

²²

Q(ES ⊕ C)Ä _

²²
Q∇S0

φ0 //

²²²²

Q(ES0 ⊕ C)

²²²²
ind G

GP0
Q ind G

GP0
Q

(23)

The result corresponding to Theorem 3.2 is exactly the same as for large sets S (cf. [GRW99], p.
60):

Theorem 3.3. Fix a set of data (D) and let P0 be a prime not in S which does not ramify in L/K.
Given a QG-isomorphism φ0 that fits in diagram (23) we have an equality

Ωφ0 − Ωφ = ∂[QG, η].

Here, η is the QG-automorphism given by

η(1) = |GP0 |ε0 +
1

|GP0 |
|GP0 |−1∑

i=0

iφi
P0

(1− ε0),

where ε0 = 1
|GP0 |NGP0

and φP0 is the Frobenius automorphism at P0.
In particular, Ωφ0 − Ωφ has representing homomorphism

χ 7→ (|GP0 |)dim V
GP0
χ · det(φP0 − 1|Vχ/V

GP0
χ )−1,
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where Vχ is a CG-module with character χ.

The proof is similar to (and indeed easier than) the proof of Theorem 3.2 and left to the reader.
But see [Ni08], Theorem 1.4.4.

4. The conjecture

Thanks to the results of the last paragraph we are now able to state a LRNC for small sets of places.
But before doing so we recall the basic ingredients of this conjecture apart from Ωφ.
So let us fix a finite Galois extension L/K of number fields with Galois group G and a finite
G-invariant set S of places of L, which contains all the archimedean primes. Then there are QG-
isomorphisms

φ : ∆QS
'−→ QES ,

and the Stark-Tate regulator is defined to be

Rφ : R(G) → C×
χ 7→ det(λSφ|HomG(Vχ̌, ∆CS)),

where λS is the Dirichlet map (??) and Vχ̌ is a CG-module whose character is contragredient to χ.
One defines

Aφ : R(G) → C×
χ 7→ Rφ(χ)/cS(χ).

Let Qc be the algebraic closure of Q in C. There is the following conjecture of Stark:

Conjecture 4.1 (Stark). Aφ(χ) ∈ Qc and Aφ(χσ) = Aφ(χ)σ for all σ ∈ Gal(Qc/Q).

Alternatively, one can choose a number field F ⊂ C, Galois over Q with Galois group Γ, which
is large enough such that all representations of G can be realized over F . Then conjecture 4.1 is
equivalent to Aφ(χ) ∈ F and Aφ(χσ) = Aφ(χ)σ for all σ ∈ Γ, i.e. Aφ ∈ HomΓ(R(G), F×).
Let us denote by W (χ) the Artin root number of the character χ. Then it holds (cf. [We96], Prop.
7(b), p.57):

Proposition 4.2. If χ is an irreducible symplectic character of G, then Aφ(χ)W (χ) ∈ R+.

Denote the infinite prime of the embedding F ⊂ C by ℘∞. Define W (L/K, ·) ∈ HomΓ(R(G), JF )
by

W (L/K, χ)℘ =
{

W (χγ−1
) if χ is symplectic and ℘ = ℘γ∞

1 otherwise

such that the homomorphism χ 7→ Aφ(χ)W (L/K, χ) lies in Hom+
Γ (R(G), JF ) if Stark’s conjecture

holds. For large S the LRNC states

Conjecture 4.3 (LRNC for large S). The element Ωφ ∈ K0T (ZG) has representing homo-
morphism χ 7→ Aφ(χ̌)W (L/K, χ̌).

In the construction of Ωφ for small sets S, the module ∆S has been replaced by ∇S . We aim to
define a modified Dirichlet map

λmod
S : ES ⊕ C −→ R⊗∇S ,

where C is a free ZG-module of rank |S∗ram \ (S ∩ Sram)∗|. For this, we have to take a closer look at
the modules W 0

P, especially for ramified primes P.

9
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Let us write φP for the Frobenius automorphism at P as well as for a fixed lift of it. The inertial
lattice WP is the kernel of the map

∆GP × ZGP −→ ZGP

(g − 1, h) 7→ g − 1 + (1− φP)h.

Hence, using the identifications concerning Z-duals explained in the preliminaries, we achieve a
description of W 0

P as the cokernel of the map (cf. [Gr07], §5)

ZGP −→ ZGP/NGP
× ZGP

1 7→ (NIP
, 1− φ−1

P ).

Proposition 4.4. Let κ denote the canonical epimorphism from (ZGP)2 onto W 0
P and define

q : WP −→ (ZGP)2

(x, y) 7→ (NIP
φP · y, x).

Then it holds:

i) The kernel of κ is generated by z = (NIP
, 1 − φ−1

P ) and 0 ×∆(GP, GP), where ∆(GP, GP) is
the kernel of the canonical projection ZGP ³ ZGP.

ii) The diagram

Z Â Ä
17→NGP //

Ä _

²²

ZGP
// //

Ä _

ι1

²²

ZGP/NGPÄ _

ι1

²²
WP

Â Ä q //

prx

²²²²

(ZGP)2 κ // //

pr2

²²²²

W 0
P

(0,aug
GP

)

²²²²
∆GP

Â Ä // ZGP
// // Z

commutes and has exact rows and columns.

Proof.

We now set

dP :=
1

|GP|κ(|GP|, NGP
) ∈ QW 0

P.

Observe that this definition differs from the corresponding element dp in [Gr07].

Lemma 4.5. dP is a QGP-generator of QW 0
P.

Proof.

Let 1P, P ∈ S∗ram \ (S ∩ Sram)∗ be a ZG-basis of the free ZG-module C. We choose a positive
multiple h of hL and uP ∈ L such that vP(uP) = h and vQ(uP) = 0 for all finite primes Q 6= P. We
define

λC : C −→ R⊗
⊕

P∈S∗ram\(S∩Sram)∗
ind G

GP
W 0

P ⊕ RS∞

1P 7→
(

h log N(P)
1

|GP|NGP
+ 1− 1

|GP|NGP

)
dP −

∑

Q|∞
log |uP|QQ.

10
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By the second part of Proposition 4.4 we have

(0, aug GP
)(dP) = aug (pr2(1,

1
|GP|NGP

)) = 1.

Hence, the projection in sequence (12) sends λC(1P) to

h log N(P)−
∑

Q|∞
log |uP|Q = −

∑

all Q

log |uP|Q = 0.

Thus, the image of λC lies in R∇, and we may define a modified Dirichlet map by

λmod
S : ES ⊕ C −→ R∇

(e, c) 7→ λS(e) + λC(c),
(24)

where λS is the usual Dirichlet map (??). Note that λmod
S depends on the choices of h and the uP.

Definition 4.6. We call the map

Rmod
φ : R(G) −→ C×

χ 7→ det(λmod
S φ|HomG(Vχ̌,C∇S))

∏
P∈S∗ram\(S∩Sram)∗(−h|GP|)dim V

GP
χ̌

the modified Stark-Tate regulator and set

Amod
φ : R(G) −→ C×

χ 7→ Rmod
φ (χ)

cS∪Sram(χ)
.

Remark 3. If the set S already contains all the ramified primes, we obviously have Rmod
φ = Rφ and

Amod
φ = Aφ.

Unfortunately, the above definition is not independent of the choices of h and the uP. Neverthe-
less, we have the following

Proposition 4.7. The maps Rmod
φ , Amod

φ ∈ Hom(R(G),C×) are well defined.

Proof.

The properties of the homomorphism Amod
φ are summarized in the following

Theorem 4.8. Fix a set of data (D). Let F ⊂ C be a number field, Galois over Q with Galois
group Γ, which is large enough such that all representations of G can be realized over F . Then the
following holds:

i) Amod
φ (χ) ∈ F and Amod

φ (χσ) = Amod
φ (χ)σ for all σ ∈ Γ if and only if Stark’s conjecture (4.1)

holds.
ii) If χ is an irreducible symplectic character of G, then Amod

φ (χ)W (χ) ∈ R+.

iii) If φ′ : Q∇ → Q(ES ⊕ C) is another QG-isomorphism, then

Amod
φ′ (χ)

Amod
φ (χ)

≡ det(φ−1φ′|HomG(Vχ̌,C∇)) mod Det (U(ZG)).

iv) Let P0 be a prime not in S which ramifies in L/K. Given an integral multiple h of hL, the
class number of L, and QG-isomorphisms φ and φ0 as in diagram (22) we have an equality

Amod
φ0

(χ)

Amod
φ (χ)

≡ (−h|GP0 |)dim V
GP0
χ̌ mod Det (U(ZG)).

11
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v) Let P0 be a prime not in S which does not ramify in L/K. Given QG-isomorphisms φ and φ0

as in diagram (23) we have an equality

Amod
φ0

(χ)

Amod
φ (χ)

≡ (|GP0 |)dim V
GP0
χ̌ · det(φP0 − 1|Vχ̌/V

GP0
χ̌ )−1 mod Det (U(ZG)).

Before proving the theorem, we now point out how to state a LRNC for small sets of places.
Assume that Stark’s conjecture holds. By (i), (ii) and Proposition 4.7 we can view the map

χ 7→ Amod
φ (χ̌)W (L/K, χ̌)

as a representing homomorphism of an element in K0(ZG,Q) via the isomorphisms (5) and (9).
Since Theorem 4.8 together with Proposition 3.1, Theorem 3.2 and Theorem 3.3 show that this
homomorphism exactly behaves like Ωφ, it is now evident to state the

Conjecture 4.9 (LRNC for small S). The element Ωφ ∈ K0(ZG,Q) has representing homo-
morphism χ 7→ Amod

φ (χ̌)W (L/K, χ̌).

Theorem 4.8 now implies the

Corollary 4.10. The Lifted Root Number Conjecture for small sets of places is equivalent to the
Lifted Root Number Conjecture for large sets of places.

For this reason we refer to conjecture 4.9 as well as to conjecture 4.3 as the LRNC.
The element Ωφ decomposes into p-parts Ω(p)

φ via the isomorphism (7). If we choose a prime ℘ in F
above p and an embedding jp : F ½ F℘ for each p, Stark’s conjecture asserts that the map

(Amod
φ )(p) : χ 7→ jp(Amod

φ (j−1
p (χ)))

lies in HomΓ℘(Rp(G), F×
℘ ). Conjecture 4.9 localizes to

Conjecture 4.11 (LRNC for small S at the prime p). The element Ω(p)
φ ∈ K0(ZpG,Qp) has

representing homomorphism χ 7→ (Amod
φ )(p)(χ̌).

We obviously have the

Corollary 4.12. The Lifted Root Number Conjecture is true for L/K if and only if Conjecture
4.11 is true for L/K and all primes p.

We conclude this section with the

Proof of Theorem 4.8.

5. An exercise: Nice extensions

The aim of this section is to lift a result of C. Greither [Gr00] on Chinburg’s Ω3-conjecture.
If L/K is an abelian CM-extension with Galois group G, we denote by j the unique automorphism
of L induced by complex conjugation. A character χ of G is called odd (resp. even) if χ(j) = −1
(resp. χ(j) = 1). Note that for odd primes p the LRNC naturally decomposes in a plus and a minus
part which corresponds to the even and odd characters, respectively. Let µL be the roots of unity in
L, and Lcl the Galois closure of L over Q; it is easy to see that Lcl is again a CM-field. In loc.cit. a
CM-extension L/K is called nice if the following holds:

i) L/K is an abelian CM-extension with Galois group G

12
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ii) The complex conjugation j ∈ G lies in the decomposition group GP for all primes P which
ramify in L/K

iii) If p is an odd prime such that Lcl ⊂ Lcl,+(ζp) then j ∈ GP for all primes P above p.
iv) µL ⊗ Zp is c.t. for all odd primes p.

Theorem 5.1. Let L/K be a nice CM-extension. Then the minus part of the LRNC at p holds for
all odd primes p.

Proof.

Remark 4. A wider application of the LRNC for small sets S is given in [Ni].

References

Bu01 Burns, D.: Equivariant Tamagawa numbers and Galois module theory I, Compos. Math. 129, No.
2 (2001), 203-237

Bu03 Burns, D. : Equivariant Whitehead Torsion and Refined Euler Characteristics, CRM Proceedings
and Lecture Notes 36 (2003), 35-59

BG03 Burns, D., Greither, C.: On the equivariant Tamagawa number conjecture for Tate motives, Invent.
Math. 153 (2003), 305-359

Ch85 Chinburg, T. : Exact sequences and Galois module structure, Annals of Mathematics 121 (1985),
351-376

CR87 Curtis, C. W., Reiner, I. : Methods of Representation Theory with applications to finite groups and
orders, Vol. 2, John Wiley & Sons, (1987)

Fl02 Flach, M.: The equivariant Tamagawa number conjecture: a survey. in Burns, D., Popescu, C.,
Sands, J., Solomon, D. (eds.): Stark’s Conjectures: Recent work and new directions, Papers from
the international conference on Stark’s Conjectures and related topics, Johns Hopkins University,
Baltimore, August 5-9, 2002, Contemporary Math. 358 (2002), 79-125

Gr00 Greither, C.: Some cases of Brumer’s conjecture for abelian CM extensions of totally real fields,
Math. Zeitschrift 233 (2000), 515-534

Gr07 Greither, C.: Determining Fitting ideals of minus class groups via the Equivariant Tamagawa Num-
ber Conjecture, Compos. Math. 143, No. 6 (2007), 1399-1426

GRW99 Gruenberg, K. W., Ritter, J., Weiss, A.: A Local Approach to Chinburg´s Root Number Conjecture,
Proc. London Math. Soc. (3) 79 (1999), 47-80

GW96 Gruenberg, K. W., Weiss, A.: Galois invariants of local units, Quart. J. Math. Oxford 47 (1996),
25-39

Ni08 Nickel, A.: The Lifted Root Number Conjecture for small sets of places and an application to CM-
extensions, Dissertation, Augsburger Schriften zur Mathematik, Physik und Informatik 12, Logos
Verlag Berlin (2008)

Ni Nickel, A.: On the Equivariant Tamagawa Number Conjecture in tame CM-extensions, preprint
RW96 Ritter, J., Weiss, A.: A Tate sequence for global units, Compos. Math. 102 (1996), 147-178
Sw68 Swan, R.G.: Algebraic K-theory, Springer Lecture Notes 76 (1968)
Ta66 Tate, J.: The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math.

J. 27 (1966), 709-719
We96 Weiss, A.: Multiplicative Galois module structure, Fields Institute Monographs 5, American Math-

ematical Society (1996)

Acknowledgements

I would like to thank J. Ritter and C. Greither for various helpful discussions.

13



Andreas Nickel

Andreas Nickel andreas.nickel@math.uni-augsburg.de
Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany

14


