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Abstract

One can associate to each finitely presented module M over a commutative ring R an
R-ideal FittR(M) which is called the (zeroth) Fitting ideal of M over R and which is
an important natural invariant of M . We generalize this notion to o-orders in separable
algebras, where o is a complete commutative noetherian local ring. As an application we
construct annihilators of class groups assuming the validity of the Equivariant Tamagawa
Number Conjecture for a certain motive attached to a Galois CM-extension of number
fields.

Let R be a commutative ring with identity and M a finitely presented R-module. If we choose a
presentation

Ra h−→ Rb ³ M,

we can identify the homomorphism h with an a× b matrix with entries in R. If a > b, the (zeroth)
Fitting ideal of M over R, denoted by FittR(M), is defined to be the R-ideal generated by all b× b
minors of the matrix corresponding to h. If a < b, one puts FittR(M) = 0. This notion was introduced
by H. Fitting [Fi36] and became a very important tool in commutative algebra. For example, it can
be used to detect annihilators, since FittR(M) is always contained in the R-annihilator of M . We
refer the reader to [No76] for a self-contained account of the theory.
Let A be a separable algebra over a field K and Λ an o-order in A, where o is a complete commutative
noetherian local ring with field of quotients K. We will assume once and for all that Λ is finitely
generated as an o-module. We denote by ζ(A) resp. ζ(Λ) the center of A resp. Λ. Given a Λ-left1

module M which admits a finite presentation

Λa h−→ Λb ³ M

we will define the Fitting invariant FittΛ(h) of h over Λ to be an equivalence class of a certain
ζ(Λ)-submodule of ζ(A) using reduced norms. We will call FittΛ(h) a Fitting invariant of M over
Λ. In general, this notion depends on the chosen presentation h, but the assumption on o being a
complete commutative noetherian local ring allows us to obtain a relationship between two Fitting
invariants of M ; for this, we will make use of the fact that each finitely generated Λ-module has a
projective cover.
As in the commutative case, Fitting invariants have interesting properties, especially concerning
annihilation. We will see that there is a natural choice among all Fitting invariants of M if M
admits a finite presentation such that a = b. Thus we obtain a well defined object FittΛ(M) in
this case. We define a partial order on Fitting invariants and, if the integral closure of o in K is
finitely generated as an o-module, we obtain a distinguished Fitting invariant Fittmax

Λ (M) of M
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over Λ which is maximal with respect to this order. A first attempt to Fitting invariants over not
necessarily commutative group rings of a finite group was given by A. Parker in his Ph.D. Thesis
[Pa] essentially assuming that a = b. Note that this is the case which arises most often in arithmetic
contexts. We will see that our definition is compatible with Parker’s.
Now let L/K be a Galois CM-extension of number fields with Galois group G and p an odd prime such
that the p-power roots of unity of L are cohomologically trivial as a G-module. Assuming the validity
of the Equivariant Tamagawa Number Conjecture (ETNC) for the corresponding motive attached to
L/K, we will construct elements of ζ(ZpG) which annihilate the p-part of the ideal class group clL of
L. On the one hand, this generalizes a result of Greither [Gr07], where G is assumed to be abelian.
On the other hand, the ETNC predicts more annihilators than the (unconditional) annihilators
constructed by Burns and Johnston [BJ]. But that is what one expects, since the assumptions made
in loc.cit. are adapted to ensure the validity of the Strong Stark Conjecture which is considerably
weaker than the ETNC.

1. Preliminaries

1.0.1 K-theory Let Λ be a left noetherian ring with 1 and PMod(Λ) the category of all finitely
generated projective Λ-modules. We write K0(Λ) for the Grothendieck group of PMod(Λ), and
K1(Λ) for the Whitehead group of Λ which is the abelianized infinite general linear group. If S is a
multiplicatively closed subset of the center of Λ which contains no zero divisors, 1 ∈ S, 0 6∈ S, we
denote the Grothendieck group of the category of all finitely generated S-torsion Λ-modules of finite
projective dimension by K0S(Λ). Writing ΛS for the ring of quotients of Λ with denominators in S,
we have the following Localization Sequence (cf. [CR87], p. 65)

K1(Λ) → K1(ΛS) ∂−→ K0S(Λ)
ρ−→ K0(Λ) → K0(ΛS). (1)

In the special case where Λ is an o-order and S is the set of all nonzerodivisors of o, we also
write K0T (Λ) instead of K0S(Λ). Moreover, we denote the relative K-group corresponding to a ring
homomorphism Λ → Λ′ by K0(Λ,Λ′) (cf. [Sw68]). Then we have a Localization Sequence (cf. [CR87],
p. 72)

K1(Λ) → K1(Λ′)
∂Λ,Λ′−→ K0(Λ,Λ′) → K0(Λ) → K0(Λ′).

It is also shown in [Sw68] that we have an isomorphism K0(Λ, ΛS) ' K0S(Λ).

1.0.2 Reduced norms Let A be a semi-simple K-algebra and Λ an o-order in A, where o is a
noetherian domain with field of quotients K. We decompose A into its simple components

A = A1 ⊕ . . .⊕At,

i.e. each Ai is a simple K-algebra and Ai = Aei = eiA with central primitive idempotents ei,
1 6 i 6 t. Each Ai is isomorphic to an algebra of ni × ni matrices over a skewfield Di, and
Ki := ζ(Ai) = ζ(Di) is a finite field extension of K. Moreover, we denote the Schur index of Di by
si, i.e. [Di : Ki] = s2

i . The reduced norm map

nrA : A −→ ζ(A) = K1 ⊕ . . .⊕Kt

is defined componentwise (cf. [Re75], Ch. 9b) and extends to matrix rings over A in the obvious
way and hence induces a map K1(A) −→ ζ(A)× which we also denote by nrA. If K is a global field,
the image nrA(K1(A)) is described explicitly by the Hasse-Schilling-Maass Theorem (cf. [Re75],
Th. 33.15) and we will denote nrA(K1(A)) for any A by ζ(A)×+.
Let L be a subfield of either C or Cp for some prime p and let G be a finite group. In the case where
A is the group ring LG the reduced norm map is always injective. If in addition L = R, there exists
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a canonical map ∂̂G : ζ(RG)× → K0(ZG,RG) such that the restriction of ∂̂G to ζ(RG)×+ equals
∂ZG,RG ◦ nr−1

RG. This map is called the extended boundary homomorphism and was introduced by
Burns and Flach [BF01].
We return to the more general case above, but we assume in addition that o is integrally closed.
We can choose a maximal o-order Λ′ in A which contains Λ; the reduced norm maps Λ in general
not into ζ(Λ), but into ζ(Λ′) = o1 ⊕ . . . ⊕ ot, where oi denotes the integral closure of o in Ki. This
turns out to be the reason that we can not expect to define a Fitting invariant contained in ζ(Λ).
Moreover, it leads us to the following definition. We denote the set of all m×n matrices with entries
in a ring R by Mm×n(R) and in the case m = n the group of all invertible elements of Mn×n(R) by
Gln(R).

Definition 1.1. Let o be a noetherian domain and let N and M be two ζ(Λ)-submodules of an
o-torsionfree ζ(Λ)-module. Then N and M are called nr(Λ)-equivalent if there exists an integer n
and an invertible matrix U ∈ Gln(Λ) such that N = nrA(U) · M . We denote the corresponding
equivalence class by [N ]nr(Λ).

Remark 1. i) Of course, we can replace U ∈ Gln(Λ) by U ∈ K1(Λ) in the above definition.
ii) If A is commutative or if o is integrally closed and Λ is maximal, nr(Λ)-equivalence is just

equality.

Example. Let p be a prime and K be a finite extension of Qp. We denote by oK the ring of integers
of K and choose a proper subring o of oK of finite index m. Let A (resp. Λ′) be the algebra of all
2× 2-matrices with entries in K (resp. oK) such that Λ′ is a maximal oK-order as well as a maximal
o-order in A. We define an oK-submodule of oK by

Γ := {x ∈ oK |x · oK ⊂ o} .

Since Γ contains m · oK , it is of finite index in oK , and hence

Λ :=
{(

r γ
γ′ x

)
| r ∈ o, γ, γ′ ∈ Γ, x ∈ oK

}

is an o-order in A contained in Λ′. For any x ∈ oK , x 6∈ o the element λx =
(

1 0
0 x

)
∈ Λ has

reduced norm x 6∈ ζ(Λ) = o. Finally, λx is invertible in Λ if and only if x is a unit of K. In this case,
the o-submodule of oK generated by x is nr(Λ)-equivalent to o. To give an explicit example, choose
p = 2, K = Q2(

√
2) and o = Z2[2

√
2]. Then x = 1 +

√
2 is a unit of K which does not lie in o.

We can define a partial order on nr(Λ)-equivalence classes:

Definition 1.2. Let N and M be two finitely generated o-torsionfree ζ(Λ)-modules. Then we say
that N is nr(Λ)-contained in M (and write [N ]nr(Λ) ⊂ [M ]nr(Λ)) if for all N ′ ∈ [N ]nr(Λ) there exists
M ′ ∈ [M ]nr(Λ) such that N ′ ⊂ M ′.

To check antisymmetry, let [N ]nr(Λ) ⊂ [M ]nr(Λ) ⊂ [N ]nr(Λ). Then there is an U ∈ K1(Λ) and
M ′ ∈ [M ]nr(Λ) such that N ⊂ M ′ ⊂ nr(U) · N . Assume that one of the inclusions is proper and
hence nr(U)i ·N ( nr(U)i+1 ·N for all i ∈ N. But since nr(U) is integral over o, there is a natural
number n such that nr(U)n ·N ⊂ ⋃n−1

i=0 nr(U)i ·N , a contradiction. Hence [N ]nr(Λ) = [M ]nr(Λ).

Remark 2. It suffices to check the above property for one N0 ∈ [N ]nr(Λ). To see this assume that
N0 ⊂ M0 for some M0 ∈ [M ]nr(Λ) and let N ′ ∈ [N ]nr(Λ) be arbitrary. Then N ′ = nrA(U) · N0 for
some U ∈ K1(Λ) and hence N ′ ⊂ nrA(U) ·M0 ∈ [M ]nr(Λ).
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Remark 3. Let e ∈ A be a central idempotent. Suppose that N and M are two o-torsionfree ζ(Λ)-
modules which are nr(Λ)-equivalent. Then eN and eM are nr(Λe)-equivalent ζ(Λe)-modules, since
for U ∈ K1(Λ) we have Ue ∈ K1(Λe) and nrA(U)e = nrAe(Ue). Hence e[N ]nr(Λ) := [eN ]nr(Λe) is well
defined.

We will say that x is contained in [N ]nr(Λ) if there is a N0 ∈ [N ]nr(Λ) such that x ∈ N0.
Accordingly, we say that x1, . . . , xn generate [N ]nr(Λ) if they generate N0 for some N0 ∈ [N ]nr(Λ).

2. Projective resolutions

Let Λ be a semiperfect ring with radical r := rad(Λ), i.e. Λ/r is a semi-simple artinian ring and every
idempotent in Λ/r is the image of an idempotent in Λ. Let M be a finitely generated Λ-module; then
M has a projective cover, say f0 : P0 ³ M (cf. [CR81], Ch. 6C for basic facts on projective covers)
and we will assume that the kernel of f0 is again finitely generated. For instance, this happens if
Λ is left artinian or if Λ is an o-algebra, finitely generated as an o-module, where o is a complete
commutative noetherian local ring. Now we can choose a projective cover f1 : P1 ³ ker(f0) and
proceeding in this way yields a projective covering PM of M :

PM : . . . → Pi
fi−→ Pi−1

fi−1−→ . . .
f1−→ P0

f0³ M. (2)

Note that this covering is unique up to isomorphism and that each fi maps into rPi−1. We call a
complex trivial if it is the direct sum of complexes of the form

. . . → 0 → 0 → P
idP−→ P → 0 → 0 → . . .

with projective P . We now prove the following result which is a generalization of [Ei95], Th. 20.2.

Proposition 2.1. Let Λ be a semiperfect ring and M a finitely generated Λ-module which admits
a projective covering PM . Then any projective resolution of M is isomorphic to the direct sum of
PM and a trivial complex.

Proof. Let FM : . . . → Qn → . . .
h1−→ Q0

h0³ M be a projective resolution of M . Since P0 and Q0

are projective, there are homomorphisms g0 : Q0 → P0 and s0 : P0 → Q0 such that f0g0 = h0 and
h0s0 = f0. We observe that

f0(1− g0s0) = f0 − h0s0 = 0.

Hence 1 − g0s0 maps P0 into ker(f0) ⊂ rP0; thus Nakayama’s Lemma implies g0s0(P0) = P0 and
hence we find a map t0 : P0 → P0 such that g0s0t0 = idP0 . We see that g0 is surjective (which was
clear from the outset by definition of a projective cover) and replacing s0 by s0t0 we may assume
that s0 is a section of g0. Proceeding inductively we obtain epimorphisms gi : Qi ³ Pi and sections
si of gi such that hisi = si−1fi. Therefore FM is isomorphic to the direct sum of PM and a complex
with trivial homology which consists only of projective modules. But such a complex is isomorphic
to a trivial complex, as can be seen by adjusting the proof of [Ei95], Lemma 20.1. One only has to
replace ‘free’ by ‘projective’.

3. Non-commutative Fitting invariants

Let A be a separable K-algebra and Λ an o-order in A, where o is a complete commutative noetherian
local ring with field of quotients K. Let M be a finitely presented Λ-module and choose a presentation

Λa h−→ Λb π
³ M. (3)
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We identify the homomorphism h with the corresponding matrix in Ma×b(Λ) and define S(h) = Sb(h)
to be the set of all b×b submatrices of h if a > b. In the case a = b we call (3) a quadratic presentation.

Definition 3.1. We define the Fitting invariant of h over Λ to be

FittΛ(h) =

{
[0]nr(Λ) if a < b[〈nrA(H)|H ∈ S(h)〉ζ(Λ)

]
nr(Λ)

if a > b.

We call FittΛ(h) a Fitting invariant of M over Λ. If M is a Λ-module which admits a quadratic
presentation h we put FittΛ(M) := FittΛ(h).

Hence if a > b, the Fitting invariant of h over Λ is the nr(Λ)-equivalence class of the ζ(Λ)-
submodule of ζ(A) generated by the reduced norms of all b× b submatrices of h. Even if the above
definition does in general not only depend on the isomorphism class of M , we often suppress the
dependency on the presentation h and write FΛ(M) (or simply F(M) if Λ is clear from the context)
instead of FittΛ(h).
Now let En(Λ) denote the subgroup of Gln(Λ) of all matrices which have reduced norm equal to 1.
We have the following

Theorem 3.2. i) If h1 and h2 are two finite presentations of M , then there exist n ∈ N, a matrix
X ∈ Gln(Λ) and finite presentations h′1 and h′2 of M such that FittΛ(hi) = FittΛ(h′i) for i = 1, 2
and h′1 ◦X = h′2. If o has finite Krull dimension, we can choose X ∈ En(Λ).

ii) If h1 and h2 are quadratic presentations, we have FittΛ(h1) = FittΛ(h2). In particular, FittΛ(M)
is well defined.

iii) If o is integrally closed and Λ is a maximal order, then FittΛ(M) is maximal among all Fitting
invariants of M over Λ.

Proof. Since o is a complete commutative noetherian local ring, Λ is semiperfect and each finitely
generated Λ-module M has a projective covering (2). Given a finite presentation h1 : Λa → Λb

of M , Proposition 2.1 implies that there are projective Λ-modules Q0 and Q1 and isomorphisms
ψ1 : Λa ' P1 ⊕Q0 ⊕Q1 and φ1 : Λb ' P0 ⊕Q0 such that h1 = φ−1

1 (f1 ⊕ idQ0 |0)ψ1.
Now let h2 : Λa2 → Λb2 be a second finite presentation of M . If b2 < b, we may replace h2 by
h2 ⊕ id : Λa2 ⊕Λb−b2 → Λb2 ⊕Λb−b2 without changing the Fitting invariant of h2. Note that h2 ⊕ id
is quadratic if h2 is. So we may assume b2 = b. If likewise a2 < a (which can not happen if h1 and
h2 are quadratic), we replace h2 by (h2|0) : Λa2 ⊕ Λa−a2 → Λb2 such that we may also assume that
a1 = a. As above, there exist isomorphisms ψ2 : Λa ' P1 ⊕ Q0 ⊕ Q1 and φ2 : Λb ' P0 ⊕ Q0 such
that h2 = φ−1

2 (f1 ⊕ idQ0 |0)ψ2. We finally get h1 ◦ X = U ◦ h2, where X := ψ−1
1 ψ2 ∈ Gla(Λ) and

U := φ−1
1 φ2 ∈ Glb(Λ). By nr(Λ)-equivalence we have FittΛ(U ◦ h2) = FittΛ(h2) and if h1 and h2

are quadratic, also FittΛ(h1 ◦ X) = FittΛ(h1). For arbitrary h1 and h2 we have to show that we
may assume nr(X) = 1 if o has finite Krull dimension. Since Λ has finite stable range by a Theorem
of Bass (cf. [CR87], Th. 41.25) in this case, we may write X = E · X̃, where E is a product of
elementary matrices and X̃ is of shape

(
Y1 ∗
0 Y2

)
.

Here, Y1 is a upper triangular matrix whose diagonal consists of ones and Y2 ∈ Gld(Λ) for some
d ∈ N. Enlarging a if necessary we may assume that there are at least d columns of zeros on the

righthand side of the matrix corresponding to h2. Since the inverse of X̃ is of shape
(

Y −1
1 ∗
0 Y −1

2

)
,

the equation h1 ◦E = h2 ◦ X̃−1 shows that we may replace Y2 by the d× d identity matrix and end
up with nrX = nrX̃ = nrY1 = 1 as desired.
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Now suppose that o is integrally closed, Λ is maximal and FittΛ(M) = FittΛ(ψ) for some quadratic
presentation ψ of M . Let h be an arbitrary finite presentation of M as in (3). We have to show
that FittΛ(h) ⊂ FittΛ(ψ). We have proven that we may assume that h = (ψ|0) ◦ X for some
X ∈ Gla(Λ). Hence each H ∈ Sb(h) is the product ψ ◦ X̃ for some b × b submatrix X̃ of X. Thus
nrA(H) = nrA(ψ) · nrA(X̃) ∈ FittΛ(ψ), since nrA(X̃) ∈ ζ(Λ).

Examples.

i) Consider the algebra A of 2 × 2 matrices with entries in Qp and the maximal order Λ =
M2×2(Zp). The Fitting invariant of the trivial module is clearly FittΛ(0) = ζ(Λ) = Zp. The
map ψ : Λ2 → Λ given by

(
1
0

)
7→ λ1 :=

(
4 1
1 4

)
,

(
0
1

)
7→ λ2 :=

(
5 1
1 5

)

is also surjective and thus a finite presentation of 0. But

FittΛ(ψ) = 〈nr(λ1), nr(λ2)〉Zp = 〈15, 24〉Zp = 3Zp

which differs from FittΛ(0) if p = 3. We choose X =
(

1 0
−1 1

)
∈ E2(Λ) to see that ψ̃ = ψ◦X

has Fitting invariant FittΛ(ψ̃) = Zp.
ii) In general, the Fitting invariant FittΛ(M) is not maximal. Choose an order Λ and λ ∈ Λ such

that nr(λ) 6∈ ζ(Λ) (compare the example following remark 1). Then the map ψ : Λ2 → Λ
given by (1

0) 7→ 1, (0
1) 7→ λ is a finite presentation of 0, and FittΛ(0) is properly contained in

FittΛ(ψ). Otherwise both invariants would be nr(Λ)-equivalent and hence FittΛ(ψ) generated
by one single x, say. But since nr(1) = 1, the generator x has to be a unit of ζ(Λ) and hence
〈x〉 = ζ(Λ) which does not contain nr(λ).

Now let M be a finitely presented Λ-module and h1 : Λa1 → Λb1 and h2 : Λa2 → Λb2 two
finite presentations of M . By the above theorem we may assume a1 = a2 =: a and b1 = b2 =: b
without changing the Fitting invariants of h1 and h2. Moreover, there is an X ∈ Gla(Λ) such that
h1 ◦X = h2. Hence

Λa ⊕ Λa (h1|h2)−→ Λb ³ M

is also a finite presentation of M such that FittΛ((h1|h2)) contains both FittΛ(h1) and FittΛ(h2).
Now assume that the integral closure o′ of o in K is finitely generated as an o-module and choose
a maximal o′-order Λ′ in A containing Λ. Since o is noetherian and ζ(Λ′) is finitely generated as an
o-module, the following definition is well defined:

Definition 3.3. Assume that the integral closure of o in K is finitely generated as o-module and
let M be a finitely presented Λ-module. Then we define Fittmax

Λ (M) to be the Fitting invariant of
M over Λ which is maximal among all Fitting invariants of M over Λ.

Remark 4. i) Now Theorem 3.2 (iii) states that if o is integrally closed and Λ is maximal, we have
FittΛ(M) = Fittmax

Λ (M) for any M which admits a quadratic presentation.
ii) If M admits a quadratic presentation, it is often more natural to work with FittΛ(M) rather

than with Fittmax
Λ (M). Compare for example Proposition 5.3 and 6.3 below.

We set MK := K ⊗o M and define

Υ(M) := {i ∈ {1, . . . , t}|eiMK = 0} ,

e = e(M) :=
∑

i∈Υ(M)

ei.
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By remark 3 above, multiplication on FittΛ(h) by an idempotent e′ of A is well defined and it is
easy to see that e′FittΛ(h) = FittΛe′(Λe′ ⊗Λ h).

Lemma 3.4. Let M be a finitely presented Λ-module and let e = e(M). If h is a finite presentation
of M , we have

FittΛ(h) = eFittΛ(h) = FittΛe(Λe⊗Λ h).

Proof. Put e′ = 1−e such that we have a decomposition A = Ae⊕Ae′. We show that e′FittΛ(h) = 0.
Ae′ decomposes into simple components Ai = Aei with center Ki such that e′FittΛ(h) can be
computed via

(Ai)a 1⊗hei−→ (Ai)b ³ eiMK .

Since eiMK 6= 0 for each i 6∈ Υ(M), 1 ⊗ hei is not surjective for any simple component Ai and so
does 1 ⊗ Hi for each Hi ∈ Sb(hei). But this means that left multiplication on Mb×b(Ai) by Hi is
also not surjective and hence nrAi(Hi) vanishes, since the Ki-determinant of this multiplication is a
power of nrAi(Hi).

Remark 5. In the case Λ = oG, where o is the localization or the completion of Z at a prime p and
G is a finite group, Parker [Pa] defines FittΛ(M) ∈ ζ(Λe)× to be the reduced norm of h assuming
the existence of an exact sequence

(Λe)n h
½ (Λe)n ³ Λe⊗Λ M

for some n. This definition is well defined modulo nrA(K1(Λe)) (cf. loc.cit., Lemma 3.2.1). Hence
our definition is compatible with Parker’s. Moreover, Lemma 3.4 generalizes loc.cit., Lemma 3.3.2.

We summarize some first properties of Fitting invariants in the following Proposition whose third
item generalizes [Pa], Prop. 3.3.3.

Proposition 3.5. Let M1, M2, M3 be finitely presented Λ-modules and let FittΛ(h1) resp. FittΛ(h3)
be Fitting invariants of M1 resp. M3 over Λ.

i) If M1 ³ M2 is an epimorphism, then there exists a finite presentation h2 of M2 such that
FittΛ(h1) ⊂ FittΛ(h2).

ii) If M2 = M1 ×M3, then FittΛ(h1 ⊕ h3) = FittΛ(h1) · FittΛ(h3) is a Fitting invariant of M2. If
in addition M1 and M3 admit quadratic presentations, so does M2 and we have FittΛ(M2) =
FittΛ(M1) · FittΛ(M3).

iii) If M1
ι−→ M2 ³ M3 is an exact sequence of Λ-modules, then there is a Fitting invariant

FittΛ(h2) for M2 over Λ such that

FittΛ(h1) · FittΛ(h3) ⊂ FittΛ(h2).

If ι is injective and h3 is a quadratic presentation, we can force the above inclusion to be an
equality. If in addition M1 and M3 admit quadratic presentations, so does M2 and we have

FittΛ(M1) · FittΛ(M3) = FittΛ(M2).

Proof. Let Λa h1−→ Λb π1³ M1 be a finite presentation of M1. Denote the epimorphism M1 ³ M2 by
µ and define π2 = µ ◦ π1 : Λb ³ M2. Let C be the cokernel of the inclusion ker(π1) ½ ker(π2) and
choose an epimorphism Λc ³ C for some c ∈ N. This map factors through ker(π2) and we denote
the corresponding map by g : Λc → ker(π2). This yields a finite presentation of M2:

Λa ⊕ Λc (h1|g)−→ Λb π2³ M2
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We conclude that Sb(h1) ⊂ Sb((h1|g)) and get (i). (ii) is clear once we observe that the reduced
norm of a matrix H vanishes if H is of shape

H =
(

H1 0
0 H3

)
,

where Hi ∈ Mai×bi(Λ) for i = 1, 3 and either a1 > b1 or a3 > b3. To see this, let E be a splitting field
of A and write 1⊗H ∈ AE as a direct sum of matrices with entries in E. Then each of these matrices
is of the same shape as H with ai, bi replaced by some multiple of it. The column vectors are linearly
dependent such that the determinant of each of these matrices vanishes and hence also nr(H) = 0.
Now we pass to (iii). By (i) we may assume that ι is injective. We choose finite presentations
Λai

hi−→ Λbi
πi³ Mi for i = 1, 3 and construct a finite presentation of M2 in the following way. The

epimorphism π3 factors through M2 via a map f1 and we define π2 = (ι ◦ π1|f1) : Λb1 ⊕ Λb3 ³ M2.
In a similar manner we construct h2 = (h1|f2), where f2 realizes the factorization of h3 through
ker(π2). Then h2 corresponds to a matrix of shape

(
h1 ∗
0 h3

)
.

From this we get the desired inclusion. Moreover, if we can choose a3 = b3, the matrix corresponding
to h3 is quadratic. Hence each H2 ∈ Sb2(h2) has either reduced norm equal to zero or is of shape

(
H1 ∗
0 h3

)

for some H1 ∈ Sb1(h1). This completes the proof.

Now let C be a finitely generated o-torsion Λ-module of projective dimension at most 1 and
denote by [C] the corresponding class in K0T (Λ). Then C admits a quadratic presentation if and
only if ρ([C]) = 0. To see the non-trivial implication choose an epimorphism π : Λn ³ C. The kernel
of π is projective, and it is stably isomorphic to Λn if and only if ρ([C]) = 0. Now replace π by
π′ = (π|0) : Λn ⊕ Λm ³ C for suitable m ∈ N such that ker(π′) = P ⊕ Λm is free.
Now assume that C admits a quadratic presentation ψ : Λn ½ Λn. Then the class [1⊗ψ]of 1⊗ψ ∈
Gln(A) in K1(A) is a preimage of [C] and FittΛ(C) is generated by nrA([1 ⊗ ψ]). Proposition 3.5
(iii) implies that the relative Fitting invariant introduced just below is well defined.

Definition 3.6. Assume that C and C ′ are two finitely generated o-torsion Λ-modules of projective
dimension at most 1. If ρ([C] − [C ′]) = 0, we choose x ∈ K1(A) such that ∂(x) = [C] − [C ′] and
define

FittΛ(C : C ′) :=
[〈nrA(x)〉ζ(Λ)

]
nr(Λ)

.

Remark 6. If Λ is a group ring oG of a finite group G, where o is a complete discrete valuation
ring, then Swan’s Theorem implies that ρ([C]) = 0 for any finitely generated o-torsion Λ-module C
of projective dimension at most 1 (cf. [CR81] Th. 32.1). There is also a more general result due to
A. Hattori [Ha65], see [CR81], Th. 32.5. A similar statement holds if Λ is the complete group algebra
Zp[[G]] of a profinite group G which has a p-Sylow subgroup of finite index, see Lemma 6.2 below.

We immediately get

Proposition 3.7. Let C ′ ½ C ³ C ′′ be an exact sequence of finitely generated o-torsion Λ-modules
of projective dimension at most 1. If C ′ (resp. C ′′) admits a quadratic presentation, we have

FittΛ(C ′) = FittΛ(C : C ′′) (resp. FittΛ(C ′′) = FittΛ(C : C ′)).

If C admits a quadratic presentation, then so does C ′ ⊕ C ′′ and we have

FittΛ(C) = FittΛ(C ′ ⊕ C ′′).
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4. Fitting invariants and Annihilation

Let A be a separable K-algebra and Λ an o-order in A, where o is an integrally closed complete com-
mutative noetherian local ring with field of quotients K. We choose a maximal order Λ′ containing
Λ. As A decomposes into its simple components Ai = Aei, 1 6 i 6 t, we have

Λ′ = Λ′1 ⊕ . . .⊕ Λ′t,

where Λ′i = Λ′ei. Now let H ∈ Mb×b(Λ) and decompose H into

H =
t∑

i=1

Hi ∈ Mb×b(Λ′) =
t⊕

i=1

Mb×b(Λ′i).

Define H∗
i = nrAi(Hi)H−1

i if Hi is invertible over Ai, and H∗
i = 0 otherwise. A non-commutative

analog of the adjoined matrix is

H∗ :=
t∑

i=1

H∗
i .

Lemma 4.1. We have H∗ ∈ Mb×b(Λ′) and H∗H = HH∗ = nrA(H) · 1b×b.

Proof. The reduced characteristic polynomial fi of Hi has coefficients in ζ(Λi) = oi. Since the
constant term of fi equals ±nr(Hi), multiplying the equation fi(Hi) = 0 by H−1

i actually shows
that H∗

i is a polynomial in Hi with coefficients in oi. The second assertion is clear.

Theorem 4.2. Let M be a finitely presented Λ-module and h : Λa → Λb be a finite presentation of
M . Let x ∈ ζ(Λ′) and H ∈ Sb(h) such that x ·H∗ ∈ Mb×b(Λ). Then x ·nrA(H) ∈ ζ(Λ) annihilates M .
In particular, x · y ∈ AnnΛ(M) for all y ∈ FittΛ(h) if x · nrA(U) ·H∗ ∈ Mb×b(Λ) for any H ∈ Sb(h)
and U ∈ K1(Λ).

Proof. Since FittΛ(h) is generated by nrA(H), H ∈ Sb(H), it suffices to show that x · nrA(H) anni-
hilates M . The cokernel of H surjects onto M and hence the assertion follows from the commutative
diagram

Λb H // Λb // //

x·nrA(H)

²²

x·H∗

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä

cok (H)

x·nrA(H)

²²
Λb H // Λb // // cok (H)

Now Lemma 4.1 implies

Corollary 4.3. If Λ is maximal or if A is commutative, then M is annihilated by each of its Fitting
invariants.

Let G be a finite group of order n and Λ = oG the group ring of G, where o is a complete discrete
valuation ring with field of quotients K. Recall that KG = ⊕t

i=1Mni×ni(Di), where Di is a skew
field of degree s2

i over its center Ki with ring of integers oi. The central conductor of Λ′ over Λ is
defined to be F := {x ∈ ζ(Λ′) : xΛ′ ⊂ Λ} and is explicitly given by

F =
t⊕

i=1

n

nisi
D−1(oi/o),

where D−1(oi/o) denotes the inverse different of oi over o (cf. [CR81], Th. 27.13).

9
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Corollary 4.4. Let o be a complete discrete valuation ring and Λ = oG be the group ring of a
finite group G. If FittΛ(h) is a Fitting invariant of a finitely presented Λ-module M , then

F · FittΛ(h) ⊂ AnnΛ(M).

5. Group rings

In this section we specialize to the case A = QpG and Λ = ZpG, where G is a finite group. In this case
each simple component Ai of A corresponds to an irreducible character χi and ζ(Ai) = Ki = Qp(χi),
where Qp(χi) = Qp(χi(g) : g ∈ G). Note that χi(1) = nisi.

5.0.3 χ-twists We largely adopt the treatment of [Bu08], §1. Fix an irreducible character χ and
let Eχ be the minimal subfield of Cp over which χ can be realized and which is both Galois and of
finite degree over Qp. We put

prχ :=
∑

g∈G

χ(g−1)g, eχ :=
χ(1)
|G| prχ.

Hence eχ is a central primitive idempotent of EχG and prχ is the associated projector. We write
oχ for the ring of integers of Eχ and choose a maximal oχ-order M in EχG which contains oχG.
We fix an indecomposable idempotent fχ of eχM and define an oχ-torsionfree right oχG-module
by setting Tχ := fχM. Note that this slightly differs from the definition in [Bu08], but follows the
notation of [BJ]. Tχ is free of rank χ(1) over oχ and the associated right EχG-module Eχ⊗oχ Tχ has
character χ. For any left ZpG-module M we set M [χ] := Tχ⊗Zp M , upon which G acts on the left by
t⊗m 7→ tg−1⊗g(m) for t ∈ Tχ, m ∈ M and g ∈ G. For any integer i we write H i(G,M) for the Tate
cohomology in degree i of M with respect to G. Moreover, we write MG resp. MG for the maximal
submodule resp. the maximal quotient module of M upon which G acts trivially. We obtain a left
exact functor M 7→ Mχ and a right exact functor M 7→ Mχ from the category of left G-modules to
the category of oχ-modules by setting Mχ := M [χ]G and Mχ := M [χ]G = Tχ ⊗ZpG M . The action
of NG :=

∑
g∈G g induces a homomorphism Mχ → Mχ with kernel H−1(G,M [χ]) and cokernel

H0(G,M [χ]). Hence Mχ ' Mχ whenever M and hence also M [χ] is a c.t. (short for cohomologically
trivial) G-module.
For any Λ-module M we denote the Pontryagin dual Hom(M,Qp/Zp) of M by M∨ which is equipped
with the natural G-action (gf)(m) = f(g−1m) for f ∈ M∨, g ∈ G and m ∈ M . We have

(M∨)χ = (Tχ ⊗Zp Hom(M,Qp/Zp))G = (Hom(Tχ̌ ⊗Zp M,Qp/Zp))G = (Mχ̌)∨, (4)

where χ̌ denotes the character contragredient to χ. If M is finite, we have AnnΛ(M∨) = AnnΛ(M)],
where we denote by ] : A → A the involution induced by g 7→ g−1. We use these observations to
prove another annihilation result:

Proposition 5.1. Let Λ = ZpG and M be a finitely presented Λ-module. Choose a maximal order
Λ′ containing Λ and let FittΛ′(h) be a Fitting invariant of Λ′ ⊗Λ M . Moreover, let x =

∑t
i=1 xi ∈

FittΛ′(h) ⊂ ⊕t
i=1 oi and yi ∈ D−1(oχi/Zp), 1 6 i 6 t. Then

t∑

i=1

∑

ω∈Gal(Eχi/Qp)

yω
i xω

i prχω
i
∈ AnnΛ(M).

Proof. By Theorem 3.2 we may assume that h is a quadratic presentation of Λ′ ⊗Λ M . Moreover,
Lemma 3.4 implies that we may assume that M is finite. Let us fix an integer i and abbreviate χi

by χ. We tensor the finite presentation Λ′a h−→ Λ′a ³ Λ′⊗Λ M over Λ′ with Tχ and obtain an exact
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sequence of oχ-modules

T a
χ

hχ−→ T a
χ ³ Mχ.

If we write nr(h) =
∑t

i=1 nr(hi), we have an equality nr(hi) = detEχ(hχ) and hence

(FittΛ′(h) ∩ oi)oχ = Fittoχ(Mχ) ⊂ Annoχ(Mχ). (5)

But the right hand side equals Annoχ̌(M∨
χ ) = Annoχ̌((M∨)χ̌) by (4) above. Now [BJ], Lemma 11.1

and Lemma 11.2 imply that
∑

ω∈Gal(Eχ̌/Qp) yω
j xω

j prχ̌ω ∈ AnnΛ(M∨), where χ̌ = χj . Applying the
involution ] yields the desired result, since clearly oi = oj and Eχ = Eχ̌.

Remark 7. The equality in (5) above shows that computing Fitting invariants over the maximal
order Λ′ is equivalent to computing the Fitting ideals Fittoχ(Mχ) for all characters χ. Hence the
authors of [BJ] implicitly compute Fitting invariants over the maximal order Λ′ to derive annihilation
results in the spirit of Brumer’s conjecture.

Lemma 5.2. Let Λ = ZpG be a group ring of a finite group G.

i) If x ∈ ζ(Λ) is a nonzerodivisor, we have

(Λ/(x))∨ ' Λ/(x])

ii) If a Λ-homomorphism ψ : Λn → Λn induces ψ : (Λ/(x))n → (Λ/(x))n, then

((Λ/(x))∨)n ψ
∨

//

'
²²

((Λ/(x))∨)n

'
²²

(Λ/(x]))n ψ
T,]

// (Λ/(x]))n

commutes.

Proof. In the special case where x = pm is a power of p, we have

(Λ/(pm))∨ = Hom(Λ/(pm),Zp/pmZp) ' Λ/(pm),

where the isomorphism on the right hand side is explicitly given by f 7→ ∑
g∈G f(g)g for f ∈

Hom(Λ/(pm),Zp/pmZp). A lengthy, but easy computation shows that the above diagram commutes
in this case.
Passing to the general case, we first observe that x] annihilates (Λ/(x))∨. Applying duals twice we see
that x] is indeed the exact annihilator. Thus it suffices to show that (Λ/(x))∨ is cyclic as Λ-module.
Choose m ∈ N large enough such that pm annihilates (Λ/(x)). Then there exists a nonzerodivisor
y ∈ ζ(Λ) such that pm = x · y. This gives an exact sequence

Λ/(x)
·y
½ Λ/(pm) ³ Λ/(y).

The dual of this sequence induces a surjection (Λ/(pm))∨ ³ (Λ/(x))∨. Since (Λ/(pm))∨ is cyclic by
the above special case, so does (Λ/(x))∨. Moreover, if ψ induces ψ

T,] on (Λ/(pm))n, it also induces
this map on (Λ/(x]))n via the epimorphism (Λ/(pm))n ³ (Λ/(x]))n.

The second assertion of the following result is a non-commutative generalization of [CG98], Prop.
6. We also adopt some of the arguments in loc.cit.

Proposition 5.3. i) Let C be a finite c.t. Λ-module and c ∈ ζ(A) be a generator of FittΛ(C).
Then C∨ is also c.t., c is a nonzerodivisor and FittΛ(C∨) is generated by c].

11
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ii) If M ½ C → C ′ ³ M ′ is an exact sequence of finite Λ-modules, where C and C ′ are c.t., then
there are Fitting invariants F(M∨) and F(M ′) of M∨ and M ′ over Λ such that

F(M∨)] · FittΛ(C ′) = F(M ′) · FittΛ(C).

In particular, we have

Fittmax
Λ (M∨)] · FittΛ(C ′) = Fittmax

Λ (M ′) · FittΛ(C).

Proof. The Λ-module C∨ is c.t. by [NSW00], Corollary (1.7.6). Choose a quadratic presentation
ψ : Λn → Λn of C such that nr(ψ) = c. Since C is finite, ψ is injective and invertible over A and so
does ψT,], the inverse given by (ψ−1)T,]. We will show that ψT,] is a finite presentation of C∨. Let x
be a nonzerodivisor contained in the central conductor. Then xc annihilates C by Corollary 4.4 and
the sequence

(Λ/(xc))n ψ−→ (Λ/(xc))n ³ C

is still exact. By Lemma 5.2 we have a dual exact sequence

C∨ ½ (Λ/(xc)])n ψ
T,]

−→ (Λ/(xc)])n ³ cok (ψT,]). (6)

Put g := (ψT,])∗. Then x]g has entries in Λ by Lemma 4.1 and we claim that

ker(ψT,]) = im (x]g), ker(x]g) = im (ψT,]).

If this is known, we get

C∨ = ker(ψT,]) = im (x]g) ' (Λ/(xc)])n/ ker(x]g) = (Λ/(xc)])n/im (ψT,]) = cok (ψT,]).

Note that under this identification v ∈ cok (ψT,])) corresponds to x]g(v) ∈ ker(ψT,]). Now sequence
(6) implies (i), since cok (ψT,]) = cok (ψT,]).
We have to prove the two equalities above. For this let v ∈ (Λ/(xc)])n; then v lies in the kernel of ψ

T,]

if and only if there exists a lift v ∈ Λn of v and w ∈ Λn such that ψT,](v) = (xc)] · w = x]ψT,]g(w).
Since ψT,] is injective, we can remove it from both sides, which gives v ∈ im (x]g). Now assume that
v ∈ ker(x]g), i.e. there exists w ∈ Λn such that x]g(v) = (xc)](w). Here we may add ψT,] to both
sides and obtain (xc)]v = (xc)]ψT,](w) and hence v = ψT,](w). This proves the second equality.
For (ii) let us at first assume that C = C ′. Let us denote the morphism C → C of the above sequence
by αC . By projectivity of Λn we can construct the following diagram

Λn d //
Ä _

ψ

²²

Λn
Ä _

ψ

²²
Λn α //

²²²²

Λn

²²²²
M

Â Ä // C
αC // C // // M ′

We see that the map (α|ψ) : Λn ⊕ Λn → Λn is a finite presentation of M ′ and thus FittΛ((α|ψ)) is
a Fitting invariant of M ′. Writing (α|ψ) = ψ · (ψ−1α|1) we see that FittΛ((α|ψ)) is generated by
nr(ψ) · nr(H), where H runs over the quadratic submatrices of ψ−1α.
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Now we replace Λ by Λ/(xc) and ψ by ψ as above. Dualizing the diagram yields

C∨ α∨C //
Ä _

²²

C∨ // //
Ä _

²²

M∨

(Λ/(xc)])n αT,]
//

ψ
T,]

²²

(Λ/(xc)])n

ψ
T,]

²²
(Λ/(xc)])n d

T,]

//

x]g

²²²²

(Λ/(xc)])n

x]g

²²²²
C∨ α̃∨C // C∨ // // cok (α̃∨C)

An easy computation shows that indeed α̃∨C = α∨C and thus the cokernel of the bottom sequence
is again M∨. Hence FittΛ((dT,]|ψT,])) is a Fitting invariant of M∨. We may write (dT,]|ψT,]) =
ψT,] · ((ψ−1α)T,]|1) such that FittΛ((dT,]|ψT,])) is generated by nr(ψT,]) · nr(H), where H runs over
the quadratic submatrices of (ψ−1α)T,]. Hence FittΛ((dT,]|ψT,]))] = FittΛ((α|ψ)) as desired.
For the general case we choose quadratic presentations φ : Λn ½ Λn of C and φ′ : Λm ½ Λm of
C ′. As above we can lift αC : C → C ′ to a homomorphism α : Λn → Λm, and in turn α to a
homomorphism d : Λn → Λm such that φ′ ◦ d = α ◦ φ. Again F(M ′) := FittΛ((α|φ′)) is a Fitting
invariant of M ′ over Λ. Now we add C ′ to the two leftmost terms of the sequence and C to the two
rightmost terms such that we obtain the following diagram:

Λn ⊕ Λm d′ //
Ä _

ψ

²²

Λn ⊕ Λm
Ä _

ψ

²²
Λn ⊕ Λm α′ //

²²²²

Λn ⊕ Λm

²²²²
M ⊕ C ′ Â Ä // C ⊕ C ′ // C ⊕ C ′ // // C ⊕M ′

Here, the (n + m)× (n + m)-matrices are given as

α′ =
(

0 0
α 0

)
, d′ =

(
0 0
d 0

)
, ψ =

(
φ 0
0 φ′

)
.

The above shows that FittΛ(((d′)T,]|ψT,]))] = FittΛ((α′|ψ)). But the latter Fitting invariant equals

FittΛ

((
0 0 φ 0
α 0 0 φ′

))
= FittΛ(φ)FittΛ((α|φ′)) = FittΛ(C)F(M ′).

Likewise we find that FittΛ(((d′)T,]|ψT,])) is the product of FittΛ(C ′)] and a Fitting invariant of M∨

over Λ.
For the last assertion, we observe that we can choose a quadratic presentation φ of C and a lift
α of αC such that α has shape (0|α̃), where α̃ is a finite presentation of M ′. To see this, let
π : Λm ³ M ′ be the epimorphism which is the composition of πm : Λm ³ C ′ and π′ : C ′ ³ M ′.
Choose α̃ : Λn → Λm such that im (α̃) = ker(π). Then πmα̃ surjects onto ker(π′) and thus factors
through C. This factorization together with an epimorphism Λk ³ M gives a surjection Λk⊕Λn ³ C
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such that α = (0|α̃) is a lift of αC . Now let h ∈ Ma×b(Λ) be a finite presentation of M ′ such that
FittΛ(h) = Fittmax

Λ (M ′). By Theorem 3.2 we may assume that a = n, b = m and h ◦X = α̃ for an
appropriate matrix X ∈ Gla(Λ). Hence the images of h and α̃ coincide such that we can choose h for
an α̃. We see that F(M ′) = FittΛ((0|h|φ′)) is an appropriate Fitting invariant of M ′ such that the
above proof works. But F(M ′) contains and thus equals FittΛ(h) by maximality. We have proven
that there is a Fitting invariant F(M∨) of M∨ such that

F(M∨)] · FittΛ(C ′) = Fittmax
Λ (M ′) · FittΛ(C).

Dualizing the above sequence likewise implies the existence of a Fitting invariant F(M ′) of M ′ such
that

F(M ′)] · FittΛ(C∨) = Fittmax
Λ (M∨) · FittΛ((C ′)∨).

The first part of the Proposition now implies that

Fittmax
Λ (M∨)] = F(M ′)FittΛ(C)FittΛ(C ′)−1

⊂ Fittmax
Λ (M ′)FittΛ(C)FittΛ(C ′)−1

= F(M∨)]

and hence F(M∨) = Fittmax
Λ (M∨) as desired.

If C is a finite c.t. ZpG-module for an abelian group G, one knows that |ZpG/FittZpG(C)| = |C|.
This is very useful if we want to compute FittZpG(C), since it suffices to compute an ideal I contained
in FittZpG(C) such that |ZpG/I| = |C|. An analogous statement in the non-abelian case is the
following

Proposition 5.4. Let Λ = ZpG and C be a finite c.t. Λ-module. Let E be a splitting field of
A = QpG with ring of integers oE and c ∈ ζ(A)× ∩ FittΛ(C). Write 1 ⊗ c =

∑
χ∈Irr (G) cχeχ ∈

ζ(E ⊗A) =
⊕

χ∈Irr (G) Eeχ Then c is a generator of FittΛ(C) if and only if there is an α ∈ o×E such

that
∏

χ∈Irr (G) c
χ(1)
χ = α · |C|.

Proof. If c is a generator of FittΛ(C), the desired formula follows immediately from [Ni], Prop. 5.
Conversely, let c′ be a generator of FittΛ(C). Then c = λ · c′ for some λ ∈ ζ(Λ)∩ ζ(A)×. If we write
1 ⊗ λ =

∑
χ λχeχ ∈ ζ(E ⊗ A), the above product formula implies that

∏
χ λ

χ(1)
χ is a unit of oE .

Hence each λχ is a unit and thus λ is a unit of ζ(Λ′), where Λ′ is a maximal order in A. But since
ζ(Λ) ∩ ζ(Λ′)× = ζ(Λ)×, we are done.

In the case of commutative rings, Fitting ideals behave well under base change. We provide some
base change results for the case at hand. Let us begin with the more general situation, where o is a
complete commutative noetherian local ring and Λ is an o-order in the separable K-algebra A.

Lemma 5.5. If e ∈ A is a central idempotent and F(M) is a Fitting invariant of a finitely presented
Λ-module M , then eF(M) is a Fitting invariant of the Λe-module Λe⊗Λ M .

Proof. Obvious from the definitions.

If Λ = oG is a group ring of a finite group G and H is normal in G, then e := |H|−1NH is a
central idempotent and Λe ' o[G/H]. Thus base change behaves well if we factor G by a normal
subgroup.

Corollary 5.6. Let Λ = oG be a group ring of a finite group G and I a two-sided ideal of Λ such
that Λ := Λ/I is commutative. If F(M) is a Fitting invariant of the finitely presented Λ-module M ,
then F(M) has a well defined image in Λ which is the Fitting ideal of Λ⊗Λ M over Λ.
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Proof. Since Λ is abelian, the ideal I contains J := ∆(G,G′), where G′ denotes the commutator
subgroup of G and ∆(G,G′) is the kernel of the natural epimorphism oG ³ o[G/G′]. Hence we may
first base change to Λ/J by Lemma 5.5. Since Λ/J is commutative and Fitting ideals behave well
under base change, we are done.

6. Complete group algebras

In this section let Λ be the complete group algebra Zp[[G]], where G is a profinite group which
contains a finite normal subgroup H such that G/H ' Γ for a pro-p-group Γ, isomorphic to Zp; thus
G can be written as a semi-direct product H o Γ. We fix a topological generator γ of Γ and choose
a natural number n such that γpn is central in G. Since also Γpn ' Zp, there is an isomorphism
Zp[[Γpn

]] ' Zp[[T ]] induced by γpn 7→ 1 + T . Here, o := Zp[[T ]] denotes the power series ring in one
variable over Zp. If we view Λ as an o-module, there is a decomposition

Λ =
pn−1⊕

i=0

oγi[H].

Hence Λ is finitely generated as an o-module and an o-order in the separable K := Quot(o)-algebra
A = Q(G) :=

⊕
i Kγi[H]. Note that A is obtained from Λ by inverting all regular elements. As in

the case of group rings we denote by ] : A → A the involution induced by mapping each g ∈ G
to g−1. Moreover, we denote the Iwasawa adjoint of a finitely generated o-torsion Λ-module M by
α(M).
Let m := (p, T ) be the maximal ideal of o. Since γpn

= 1 + T ≡ 1 mod m, we have

Λ := Λ/mΛ =
∑

i

Fpγ
i[H] = Fp[H o Cpn ],

where Cpn denotes the cyclic group of order pn. Note that m is contained in the radical of Λ.

Lemma 6.1. Let f ∈ Zp[T ] be a Weierstraß polynomial and M = Λ/(f). Then f ](T ) = (1 +
T )deg(f)f((1 + T )−1 − 1) is also a Weierstraß polynomial and α(M) = Λ/(f ]).

Proof. As in the proof of Lemma 5.2 the exact annihilator of α(M) is f ] such that we only have
to show that α(M) is cyclic as Λ-module. The Iwasawa µ-invariant of M is zero such that α(M) =
Hom( lim→

n

M/pnM,Qp/Zp). Applying the Pontryagin dual to the exact sequence

M/pM ½ lim→
n

M/pnM
·p−→ lim→

n

M/pnM

implies that α(M)/pα(M) ' (M/pM)∨. Since p lies in the radical of Λ, it suffices to show that
(M/pM)∨ is cyclic. But since f is a nonzerodivisor, the ring M/pM = Λ/(p, f) is Gorenstein of
dimension zero. Therefore the socle of M/pM is cyclic which is equivalent to (M/pM)∨ being cyclic
modulo the radical. Now we are done via Nakayama’s Lemma.

Lemma 6.2. Let C be a finitely generated R-torsion Λ-module of projective dimension at most 1.
Then C admits a quadratic presentation.

Proof. Let us first assume that G is abelian. Then G is the direct product of its p-Sylow subgroup
Gp and a finite group H ′ prime to p such that there is a decomposition Λ =

⊕
χ Zp[χ]Gp, where

the sum runs through all irreducible characters χ of H ′ module Galois conjugation over Qp. Now let
P ½ Λn ³ C be a projective resolution of C. Then P =

⊕
χ(Zp[χ]Gp)nχ with appropriate nχ ∈ N

by [NSW00], Corollary 5.2.19. But since C is R-torsion, all these nχ coincide. For the general case
we can adjust the proof of [RW04], Lemma 13 to show that the map ρ : K0T (Λ) → K0(Λ) is zero
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if this is the case for abelian G. Note that the authors of loc.cit. so to speak show Lemma 6.2 for a
special element of K0T (Λ).

We have the following non-commutative version of [Gr04] Prop. 1 and 2.

Proposition 6.3. i) Let C be a finitely generated R-torsion Λ-module of projective dimension
at most 1 which has no Zp-torsion and let c be a generator of FittΛ(C). Then c] is a generator
of FittΛ(α(C)).

ii) Let M ½ C
γ−→ C ′ ³ M ′ be an exact sequence of finitely generated R-torsion Λ-modules

which have no Zp-torsion and such that the projective dimension of C and C ′ is at most 1.
Then there are Fitting invariants F(α(M)) and F(M ′) of α(M) and M ′ over Λ such that

F(α(M))]FittΛ(C ′) = FittΛ(C)F(M ′).

In particular, we have

Fittmax
Λ (α(M))]FittΛ(C ′) = FittΛ(C)Fittmax

Λ (M ′).

Proof. Choose a Weierstraß polynomial f ∈ Zp[T ] such that f annihilates C. If ψ : Λn ½ Λn is a

quadratic presentation of C, then (Λ/(f))n ψ−→ (Λ/(f))n ³ C is still exact. Now Lemma 6.1 implies
that applying α yields an exact sequence

α(C) ½ (Λ/(f ]))n ψ
T,]

−→ (Λ/(f ]))n ³ cok (ψT,]).

As in the proof of Proposition 5.3 there is an isomorphism α(C) ' cok (ψT,]) = cok (ψT,]) which
implies (i). For (ii) we can conclude as in the proof of Proposition 5.3.

Now we assume that Γ′ ' Zp is normal in G such that Γ′∩H = 1. We fix a topological generator
γ′ of Γ′ and put G′ := G/Γ′. We observe that the natural epimorphism G ³ G′ induces an embedding
H ½ G′ such that H is normal in G′. Note that this naturally arises in Iwasawa theory: If G′ is the
Galois group of a finite extension of number fields L/K, and Γ, resp. Γ′ are the Galois groups of
the cyclotomic Zp-extensions K∞ resp. L∞ of K resp. L, then G := Gal(L∞/K) is the semi-direct
product of a normal subgroup H of G′ and Γ such that Γ′ is normal in G.
We recall some results concerning the algebra A = Q(G) due to Ritter and Weiss [RW04]. Let E be
a splitting field of ZpG

′ and fix an irreducible (E-valued) character χ of G′ and an EG′-module Vχ

with character χ. We can view Vχ as a representation of G, where g ∈ G acts on Vχ as g mod Γ′.
Hence χ is also an irreducible character of G. Let η be an irreducible constituent of res G

Hχ and set

St(η) := {g ∈ G : ηg = η}, eη =
η(1)
|H|

∑

h∈H

η(h−1)h, eχ =
∑

η|res G
Hχ

eη.

By [RW04], corollary to Proposition 6, eχ is a primitive central idempotent ofQE(G) := E⊗QpQ(G).
By loc.cit., Proposition 5 there is a distinguished element γχ ∈ ζ(QE(G)eχ) which generates a pro-
cyclic p-subgroup Γχ of (QE(G)eχ)×. Moreover, γχ induces an isomorphismQE(Γχ) '−→ ζ(QE(G)eχ)
by loc.cit., Proposition 6. The authors define the following map

jχ : ζ(QE(G)) ³ ζ(QE(G)eχ) ' QE(Γχ) → QE(Γ),

where the last arrow is induced by mapping γχ to γwχ , where wχ = [G : St(η)]. It is shown that for
any matrix Φ ∈ Mn×n(Q(G)) we have

jχ(nr(Φ)) = det QE(Γ)(Φ|HomEH(Vχ,QE(G)n)). (7)

Here, Φ acts on f ∈ HomEH(Vχ,QE(G)n) via right multiplication, and γ acts on the left via
(γf)(v) = γ ·f(γ−1v) for all v ∈ Vχ. For any group G let us denote the canonical augmentation map
E[[G]] ³ E by aug G. We now prove the following base change result:
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Theorem 6.4. Let M be a finitely presented Λ-module and F(M) a Fitting invariant of M over
Λ. Assume that F(M) is generated by φi = nr(Φi), i = 1, . . . , k. Then jχ(φi) actually lies in E[[Γ]]
and the elements ∑

χ∈Irr (G′)

aug Γ(jχ(φi))eχ, i = 1, . . . , k

lie in the center of QpG
′ and generate a Fitting invariant of M/(γ′ − 1) over ZpG

′.

Proof. Let χ be an (E-valued) irreducible character of G′ and put m := χ(1). For any f ∈
HomEG′(Vχ, EG′) we will define an f ∈ Vχ := HomEH(Vχ,QE(G)) such that f takes values in
E[[G]] and f(v) mod Γ′ = f(v) for any v ∈ Vχ. Let γ ∈ G′ be the image of γ in G′. Then we can
decompose G′ into

G′ =
[G′:H]−1⋃

i=0

Hγi.

Hence any g′ ∈ G′ can be uniquely written as g′ = hg′ · γi(g′) with hg′ ∈ H and 0 6 i(g′) <
[G′ : H]. If f(v) =

∑
g′∈G′ xg′g

′ ∈ EG′, we define f(v) :=
∑

g′∈G′ xg′hg′γ
i(g′) which lies in

HomEH(Vχ, E[[G]]), since hhg′ = h · hg′ for any h ∈ H, g′ ∈ G′. Clearly f mod Γ′ = f . The E-
vector space HomEG′(Vχ, EG′) has dimension m, and we fix an E-basis f1, . . . , fm. We claim that
f1, . . . , fm is a QE(Γ)-basis of Vχ. Since the dimension of Vχ as QE(Γ)-vector space is m by [RW04],
Proposition 6 resp. its proof, it suffices to show that f1, . . . , fm are linearly independent over QE(Γ).
Assume that there are λi ∈ QE(Γ), not all of them equal to zero, such that

∑m
i=1 λifi = 0. We

may assume that λi ∈ oE [[Γ]] for all i, and identifying oE [[Γ]] with the power series ring oE [[T ]], we
may also assume that there is at least one λi which is not divisible by T . Since T corresponds to
1− γ ∈ oE [[Γ]], this means that aug Γ(λi) 6= 0. But if λi := λi mod Γ′ =

∑[G′:H]
j=1 αijγ

j , αij ∈ oE , we
have

0 =
m∑

i=1

λifi =
m∑

i=1

[G′:H]∑

j=1

αij

(
γjf i

)

=
m∑

i=1

[G′:H]∑

j=1

αijf i

which implies that aug Γ(λi) = aug G′(λi) =
∑[G′:H]

j=1 αij = 0 for any i, a contradiction.
Recall that fi ∈ HomEH(Vχ, E[[G]]) for any i and that HomEH(Vχ, E[[G]]) is a left E[[Γ]]-module
and a right E[[G]]-module, as (γf)(v) = γf(γ−1v) and (fα)(v) = f(v)·α for f ∈ HomEH(Vχ, E[[G]]),
v ∈ Vχ and α ∈ E[[G]]. Moreover, γwχf = fγχ by the proof of [RW04], Proposition 6. Now let Aχ

be the E[[G]]-submodule of Vχ generated by γjfi, j = 0, . . . , wχ− 1, i = 1, . . . , m. Then Aχ is a free
E[[Γ]]-module of rank m and we choose a basis g1, . . . , gm. Writing gi as an E[[G]]-linear combination
of the γjfi we find that gi lies in HomEG′(Vχ, EG′). On the other hand, we can write any fi as an
E[[Γ]]-linear combination of g1, . . . , gm, and hence f i can be written as an E-linear combination of
the gj . Thus g1, . . . , gm is also an E-basis of HomEG′(Vχ, EG′).
Now let α ∈ Λ be arbitrary and write α for the image of α in ZpG

′. For any x let rx denote right
multiplication by x. Then rα ◦ gi = giα =

∑m
j=1 βijgj for some βij ∈ E[[Γ]] such that

jχ(nr(α)) = det QE(Γ)(βij)

by (7). But clearly rα ◦ gi =
∑

j βijgj and hence the χ-part of nr(α) equals

det E(α|HomEG′(Vχ, EG′)) = det E(βij) = aug Γ(jχ(nr(α))) (8)

and a similar equation holds for α ∈ Mn×n(Λ). Now let Λa h−→ Λb ³ M be a finite presentation
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of M such that FittΛ(h) = F(M). Tensoring with ZpG
′ over Λ yields a finite presentation h of

M/(γ′− 1) over ZpG
′. Moreover, F(M) is generated by ψj = nr(Hj), where Hj ∈ Sb(h), 1 6 j 6 k′,

while the elements nr(Hj) generate a Fitting invariant F(M/(γ′−1)) of M/(γ′−1) over ZpG
′. Now

equation (8) implies the Theorem in the case φi = ψi. For the general case let us abbreviate the
map

∑
χ∈Irr (G′) aug Γ ◦ jχ by π. We claim that π maps ζ(Λ) into ζ(ZpG

′). Since aug Γ ◦ jχ just maps
γχ to one and γχ acts trivially on Vχ by [RW04], Prop. 5, the image of λ ∈ ζ(Λ) under this map
acts on Vχ as λ itself. Likewise λeχ ∈ ζ(QpG

′) acts on Vχ as λ, since χ is a character of G′. Hence
π(λ) − λ acts as zero on Vχ for each χ and lies in the center of QpG

′; thus π(λ) = λ ∈ ζ(ZpG
′).

Now let φi, 1 6 i 6 k be arbitrary generators of F(M). Then we may write φi =
∑k′

j=1 λijψj with
λij ∈ ζ(Λ) and obtain π(φi) =

∑
j π(λij)π(ψj) which lies in F(M/(γ′ − 1)) by the claim. By a dual

argument each ψj lies in the ζ(ZpG
′)-module generated by π(φi), 1 6 i 6 k. Hence these elements

also generate F(M/(γ′ − 1)).

7. An application: Annihilation of class groups

Let us fix a finite Galois CM-extension L/K of number fields with Galois group G, i.e. L is a CM-
field, K is totally real and complex conjugation induces an unique automorphism j of L which lies
in the center of G. For any prime p of K we fix a prime P of L above p and write GP resp. IP

for the decomposition group resp. inertia subgroup of L/K at P. Moreover, we denote the residual
group at P by GP = GP/IP and choose a lift φP ∈ GP of the Frobenius automorphism φP ∈ GP.
We fix an odd prime p and put Λ := ZpG/(1 + j) which is a Zp-order in the separable algebra
A = Qp ⊗Zp Λ. For any ZpG-module M we define M− = Λ ⊗ZpG M . Since p is odd, taking minus
parts is an exact functor. If M is a ZG-module, we define M− to be Z[12 ]G/(1 + j) ⊗ZG M . This
notation is nonstandard, but practical: for example, taking minus parts is an exact functor, since we
invert 2.
For any subgroup H of G, let NH :=

∑
h∈H h. We define central idempotents of QpGP by

e′P := |IP|−1NIP
, e′′P = 1− e′P.

We define a ZpGP-module UP by

UP := 〈NIP
, 1− e′Pφ−1

P 〉ZpGP
⊂ QpGP.

Note that UP = ZpGP if p is unramified in L/K. If S is a finite set of places of K containing all the
infinite places S∞, and χ is a (complex) character of G, we denote the S-truncated Artin L-function
attached to χ and S by LS(s, χ) and define L∗S(0, χ) to be the leading coefficient of the Taylor
expansion of LS(s, χ) at s = 0. Recall that there is a canonical isomorphism ζ(CG) =

∏
χ∈Irr (G)C,

where Irr (G) denotes the set of irreducible complex characters of G. We define the equivariant Artin
L-function to be the meromorphic ζ(CG)-valued function

LS(s) := (LS(s, χ))χ∈Irr (G).

We put L∗S(0) = (L∗S(0, χ))χ∈Irr (G) and abbreviate LS∞(s) to L(s). Note that if x = (xχ)χ ∈ ζ(CG),
then x] = (xχ)χ. In [Bu01] the author defines the following element of K0(ZG,R):

TΩ(L/K, 0) := ψ∗G(χG,R(τS , λ−1
S ) + ∂̂G(L∗S(0)])).

Here, ψ∗G is a certain involution on K0(ZG,R) which is not important for our purposes, since we
will be only interested in the nullity of TΩ(L/K, 0). Furthermore, τS ∈ Ext2G(ESL

, ∆SL) is Tate’s
canonical class (cf. [Ta66]), where SL denotes the set of places of L which lie above those in S,
ESL

are the SL-units of L and ∆SL is the kernel of the augmentation map ZSL ³ Z which maps
each P ∈ SL to 1. Finally, λS denotes the negative of the usual Dirichlet map, so λS : R ⊗ ESL

→
R⊗∆SL, u 7→ −∑

P∈SL
log |u|PP, and χG,R(τS , λ−1

S ) is the refined Euler characteristic associated
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to the perfect 2-extension AS → BS whose extension class is τS , metrised by λ−1
S . For more precise

definitions we refer the reader to [Bu01]. The ETNC for the motive h0(L) with coefficients in ZG in
this context asserts that the element TΩ(L/K, 0) is zero. Note that this statement is also equivalent
to the Lifted Root Number Conjecture formulated by Gruenberg, Ritter and Weiss [GRW99].
It is also proven in [Bu01] that TΩ(L/K, 0) lies in K0(ZG,Q) if and only if Stark’s conjecture
holds. In this case the ETNC decomposes into local conjectures at each prime p by means of the
isomorphism

K0(ZG,Q) '
⊕

p-∞
K0(ZpG,Qp).

Since Stark’s conjecture is known for odd characters (cf. [Ta84], Th. 1.2, p. 70), TΩ(L/K, 0) has a
well defined image TΩ(L/K, 0)−p in K0(Λ, A). Let us fix an embedding ι : C ½ Cp; then the image
of L(0) (which actually lies in ζ(QG)) in ζ(QpG) via the canonical embedding

ζ(QG) ½ ζ(QpG) =
⊕

χ∈Irrp (G)/∼
Qp(χ),

is given by
∑

χ∈Irrp (G)/∼ L(0, χι−1
)ι. Here the sum runs over all Cp-valued irreducible characters of

G modulo Galois action.
We denote the class group of L by clL and the roots of unity in L by µL. We are ready to state a
non-abelian generalization of [Gr07], Theorem 8.8.

Theorem 7.1. Let L/K be a finite Galois CM-extension of number fields and p an odd prime. If
µL ⊗ Zp is G-c.t. and TΩ(L/K, 0)−p = 0, then

L(0)]nr(a)
∏

p∈Sram

nr(UP) ⊂ Fittmax
Λ ((clL ⊗ Zp)∨−)], (9)

where Sram denotes the set of finite places of K which ramify in L/K and a is a generator of
AnnΛ(µL ⊗ Zp).

Remark 8. It follows from the results in [BJ] that the inclusion in (9) becomes an equality over Λ′

if Λ′ is a maximal order containing Λ, and indeed

ζ(Λ′)⊗ζ(Λ) Fittmax
Λ ((clL ⊗ Zp)∨−)] = FittΛ′(Λ′ ⊗Λ (clL ⊗ Zp)−).

Note that it suffices to assume the Strong Stark Conjecture rather than the ETNC to obtain results
over Λ′. This conjecture is known to be true in many cases (cf. [Ni] Corollary 2).

Corollary 7.2. Let L/K be a finite Galois CM-extension of number fields and p an odd prime
such that µL⊗Zp is G-c.t. and TΩ(L/K, 0)−p = 0. Let x ∈ ζ(Λ′) such that x ·H∗ ∈ Mb×b(Λ) for any
H ∈ Mb×b(Λ) and any b ∈ N. Then for any y ∈ L(0)]nr(a)

∏
p∈Sram

nr(UP), the product x ·y belongs
to ζ(ZpG) and annihilates clL ⊗ Zp. In particular, if x = (xχ)χ ∈

⊕
χ∈Irrp (G)/∼D−1(Zp[χ]/Zp) and

S is a set of places of K containing Sram ∪ S∞, then

nr(a) ·
∑

χ∈Irrp (G)/∼
xχLS(0, χι−1

)ιprχ ∈ ζ(ZpG) (10)

annihilates clL ⊗ Zp. Moreover, if G is abelian, then Brumer’s conjecture is true outside the 2-part.

The last statement is, of course, still contained in [Gr07] (see Corollary 8.11). In the non-abelian
case, the above corollary predicts more annihilators than [BJ], Theorem 1.2. But note that the
explicit annilators (10) are the same as in loc.cit. We conclude with the

of Theorem 7.1. We briefly review the parts of the construction in [Gr07] which are of interest for
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us. For the set S∞ of all infinite primes of K, there is a Tate sequence (cf. [RW96])

ES∞(L) ½ A∞ → B∞ ³ ∇, (11)

where A∞ is G-c.t., B is ZG-projective and ∇ fits into an exact sequence

clL ½ ∇ ³ ∇,

where ∇ is a ZG-lattice. On minus parts, there is an isomorphism ∇− ' ⊕
p∈Sram

(ind G
GP

(W 0
P))−,

where W 0
P can be described as the cokernel of the map (cf. [Gr07], §5)

ZGP −→ ZGP/(NGP
)× ZGP

1 7→ (NIP
, 1− φ−1

P ).

Let κ be the canonical epimorphism ZGP ⊕ ZGP ³ W 0
P and define a map δp : ZGP · xp → W 0

P by
δ(xp) := κ((−1, 1)). We induce this map to ZG and sum over all ramified primes p such that we
obtain a map δ0 : C− ½ ∇−, where C is ZG-free with basis xp, p ∈ Sram. Finally, let δ : C− ½ ∇−
be any lift of δ0 and choose a natural number x such that x∇− ⊂ δ(C)−. Then there is a four-term
exact sequence (cf. [Gr07], proof of Lemma 8.2 or [BJ], proof of Proposition 9.1)

cl−L ½ ∇−/δ(C−) → x−1δ(C−)/δ(C−) ³ x−1δ(C−)/∇−. (12)

Since the minus part of the global units consists of the roots of unity, sequence (11) and the hypothesis
on µL imply that the Λ-module ∇− ⊗Zp is c.t. But C is ZG-free and hence ∇−/δ(C−)⊗Zp is also
c.t. It follows that we can apply Proposition 5.3 to sequence (12) tensored with Zp.
Let s denote the number of finite primes of K which ramify in L/K. Since C− ⊗ Zp ' Λs, we have
a quadratic presentation

Λs ·x−→ Λs x−1δ
³ (x−1δ(C−)/δ(C−))⊗ Zp (13)

and thus
FittΛ((x−1δ(C−)/δ(C−))⊗ Zp) = [〈nr(x)s〉]nr(Λ). (14)

Following the notation of [Gr07] and [BJ] we put gp := |IP|+1−φ−1
P and hp = gpe

′
p+e′′p for p ∈ Sram.

Since C is projective, sequence (11) gives rise to an exact sequence of finite c.t. Λ-modules

µL ⊗ Zp ½ A−∞ ⊗ Zp → (B−
∞/δ(C−))⊗ Zp ³ (∇−/δ(C−))⊗ Zp.

Now we reinterpret [BJ], Proposition 8.7 in terms of Fitting invariants: If TΩ(L/K, 0)−p = 0, then

FittΛ((∇−/δ(C−))⊗ Zp) = FittΛ(µL ⊗ Zp) ·
[
〈L](0)nr(hglob)〉

]
nr(Λ)

, (15)

where hglob =
∏

p∈Sram
hp. Since µL is cyclic, there is an exact sequence

Λ
·a
½ Λ ³ µL ⊗ Zp.

Then a clearly generates the Λ-annihilator of µL ⊗ Zp and FittΛ(µL ⊗ Zp) is generated by nr(a).
Since there is an isomorphism (cf. [BJ], proof of Prop. 9.1)

(x−1δ(C−)/∇−)⊗ Zp '
⊕

p∈Sram

Λ/xΛ(h−1
p UP),

the maximal Fitting invariant of this module contains
∏

p∈Sram
nr(xh−1

p UP). Now Proposition 5.3
together with (15) and (14) implies that

nr(a)L](0)nr(hglob)nr(x)−s
∏

p∈Sram

nr(xh−1
p UP) = nr(a)L](0)

∏

p∈Sram

nr(UP).

is contained in Fittmax
Λ ((clL ⊗ Zp)∨−)].

20



Non-commutative Fitting invariants

References

Bu01 Burns, D.: Equivariant Tamagawa numbers and Galois module theory I, Compos. Math. 129, No.
2 (2001), 203-237

Bu08 Burns, D.: Refined Stark conjectures in the non-abelian case, Math. Res. Letters 15 (2008), 841-856
BF01 Burns, D., Flach, M.: Tamagawa numbers for motives with (non-commutative) coefficients, Doc.

Math. 6 (2001), 501-570
BJ Burns, D., Johnston, H.: A non-abelian Stickelberger Theorem, preprint - see

http://www.mth.kcl.ac.uk/staff/dj_burns/newdbpublist.html
CG98 Cornacchia, P., Greither, C.: Fitting ideals of class groups of real fields with prime power conductor,

J. Number Theory 73 (1998), 459-471
CR81 Curtis, C. W., Reiner, I.: Methods of Representation Theory with applications to finite groups and

orders, Vol. 1, John Wiley & Sons, (1981)
CR87 Curtis, C. W., Reiner, I.: Methods of Representation Theory with applications to finite groups and

orders, Vol. 2, John Wiley & Sons, (1987)
Ei95 Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in

Math. 150, Springer, New York-Berlin-Heidelberg (1995)
Fi36 Fitting, H.: Die Determinantenideale eines Moduls, Jahresbericht der Deutschen Math.-Vereinigung

46 (1936), 195-229
Gr04 Greither, C.: Computing Fitting ideals of Iwasawa modules, Math. Z. 246 (2004), 733-767
Gr07 Greither, C.: Determining Fitting ideals of minus class groups via the Equivariant Tamagawa Num-

ber Conjecture, Compos. Math. 143, No. 6 (2007), 1399-1426
GRW99 Gruenberg, K. W., Ritter, J., Weiss, A.: A Local Approach to Chinburg´s Root Number Conjecture,

Proc. London Math. Soc. (3) 79 (1999), 47-80
Ha65 Hattori, A.: Rank element of a projective module, Nagoya Math. J. 25 (1965), 113-120
NSW00 Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields, Springer (2000)
Ni Nickel, A.: On the Equivariant Tamagawa Number Conjecture in tame CM-extensions, preprint -

see http://www.math.u-bordeaux1.fr/∼nickel/english.html
No76 Northcott, D.G.: Finite free resolutions, Cambridge Tracts in Math 71, Cambridge Univ. Press,

Cambridge-New York (1976)
Pa Parker, A.: Equivariant Tamagawa Numbers and non-commutative Fitting invariants, Ph.D. Thesis,

King’s College London (2007)
Re75 Reiner, I.: Maximal orders L.M.S. Monographs, Academic Press, London (1975)
RW96 Ritter, J., Weiss, A.: A Tate sequence for global units, Compos. Math. 102 (1996), 147-178
RW04 Ritter, J., Weiss, A. : Toward equivariant Iwasawa theory, II, Indag. Math. 15 (2004), 549-572
Sw68 Swan, R.G.: Algebraic K-theory, Springer Lecture Notes 76 (1968)
Ta66 Tate, J.: The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math.

J. 27 (1966), 709-719
Ta84 Tate, J.: Les conjectures de Stark sur les fonctions L d’Artin en s = 0, Birkhäuser, (1984)

Andreas Nickel nickel@math.u-bordeaux1.fr
Université de Bordeaux 1, UFR de Mathématiques et Informatique, 351 cours de la Libération,
33405 Talence cedex, France

21


