Non-commutative Fitting invariants and annihilation of
class groups

Andreas Nickel

ABSTRACT

One can associate to each finitely presented module M over a commutative ring R an
R-ideal Fittg(M) which is called the (zeroth) Fitting ideal of M over R and which is
an important natural invariant of M. We generalize this notion to o-orders in separable
algebras, where o is a complete commutative noetherian local ring. As an application we
construct annihilators of class groups assuming the validity of the Equivariant Tamagawa
Number Conjecture for a certain motive attached to a Galois CM-extension of number

fields.

Let R be a commutative ring with identity and M a finitely presented R-module. If we choose a

presentation
R* " RV M,

we can identify the homomorphism h with an a x b matrix with entries in R. If a > b, the (zeroth)
Fitting ideal of M over R, denoted by Fittr(M), is defined to be the R-ideal generated by all b x b
minors of the matrix corresponding to h. If a < b, one puts Fitt (M) = 0. This notion was introduced
by H. Fitting [Fi36] and became a very important tool in commutative algebra. For example, it can
be used to detect annihilators, since Fittp(M) is always contained in the R-annihilator of M. We
refer the reader to [No76] for a self-contained account of the theory.
Let A be a separable algebra over a field K and A an o-order in A, where o is a complete commutative
noetherian local ring with field of quotients K. We will assume once and for all that A is finitely
generated as an o-module. We denote by ((A) resp. ((A) the center of A resp. A. Given a A-left!
module M which admits a finite presentation

AP Ab M

we will define the Fitting invariant Fitty(h) of h over A to be an equivalence class of a certain
¢(A)-submodule of ((A) using reduced norms. We will call Fitta(h) a Fitting invariant of M over
A. In general, this notion depends on the chosen presentation h, but the assumption on o being a
complete commutative noetherian local ring allows us to obtain a relationship between two Fitting
invariants of M for this, we will make use of the fact that each finitely generated A-module has a
projective cover.

As in the commutative case, Fitting invariants have interesting properties, especially concerning
annihilation. We will see that there is a natural choice among all Fitting invariants of M if M
admits a finite presentation such that a = b. Thus we obtain a well defined object Fitty (M) in
this case. We define a partial order on Fitting invariants and, if the integral closure of o in K is
finitely generated as an o-module, we obtain a distinguished Fitting invariant Fitt}**(M) of M
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over A which is maximal with respect to this order. A first attempt to Fitting invariants over not
necessarily commutative group rings of a finite group was given by A. Parker in his Ph.D. Thesis
[Pa] essentially assuming that a = b. Note that this is the case which arises most often in arithmetic
contexts. We will see that our definition is compatible with Parker’s.

Now let L/ K be a Galois CM-extension of number fields with Galois group G and p an odd prime such
that the p-power roots of unity of L are cohomologically trivial as a G-module. Assuming the validity
of the Equivariant Tamagawa Number Conjecture (ETNC) for the corresponding motive attached to
L/K, we will construct elements of ((Z,G) which annihilate the p-part of the ideal class group cly, of
L. On the one hand, this generalizes a result of Greither [Gr07|, where G is assumed to be abelian.
On the other hand, the ETNC predicts more annihilators than the (unconditional) annihilators
constructed by Burns and Johnston [BJ]. But that is what one expects, since the assumptions made
in loc.cit. are adapted to ensure the validity of the Strong Stark Conjecture which is considerably
weaker than the ETNC.

1. Preliminaries

1.0.1 K-theory Let A be a left noetherian ring with 1 and PMod(A) the category of all finitely
generated projective A-modules. We write Ky(A) for the Grothendieck group of PMod(A), and
K1(A) for the Whitehead group of A which is the abelianized infinite general linear group. If S is a
multiplicatively closed subset of the center of A which contains no zero divisors, 1 € S, 0 € .S, we
denote the Grothendieck group of the category of all finitely generated S-torsion A-modules of finite
projective dimension by KyS(A). Writing Ag for the ring of quotients of A with denominators in S,
we have the following Localization Sequence (cf. [CR87]|, p. 65)

K1 (A) — K1 (As) -2 KoS(A) -2 Ko(A) — Ko(Ag). (1)

In the special case where A is an o-order and S is the set of all nonzerodivisors of o, we also
write KoT'(A) instead of K¢S(A). Moreover, we denote the relative K-group corresponding to a ring
homomorphism A — A’ by Ko(A, A’) (cf. [Sw68]). Then we have a Localization Sequence (cf. [CR87],
p. 72)

Op A/
Ki(A) — K (A) 25 Ko(A, ) — Ko(A) — Ko(A).
It is also shown in [Sw68| that we have an isomorphism Ky(A, Ag) ~ KpS(A).

1.0.2 Reduced norms Let A be a semi-simple K-algebra and A an o-order in A, where o is a
noetherian domain with field of quotients K. We decompose A into its simple components

A=A1D...D Ay,

i.e. each A; is a simple K-algebra and A; = Ae; = e;A with central primitive idempotents e;,
1 < i < t. Each A; is isomorphic to an algebra of n; x m; matrices over a skewfield D;, and
K; := ((A;) = ¢(D;) is a finite field extension of K. Moreover, we denote the Schur index of D; by
s, i.e. [D; : K;] = s?. The reduced norm map

nryg:A—C(A)=K1®...0K,

is defined componentwise (cf. [Re75], Ch. 9b) and extends to matrix rings over A in the obvious
way and hence induces a map K;(A) — ((A)* which we also denote by nr4. If K is a global field,
the image nra(K;(A)) is described explicitly by the Hasse-Schilling-Maass Theorem (cf. [Re75],
Th. 33.15) and we will denote nr4(K1(A)) for any A by ((A)*+.

Let L be a subfield of either C or C, for some prime p and let G be a finite group. In the case where
A is the group ring LG the reduced norm map is always injective. If in addition L = R, there exists
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a canonical map dg : ((RG)* — Ko(ZG,RG) such that the restriction of dg to ¢(RG)*" equals
07G.RG © nrﬂgé. This map is called the extended boundary homomorphism and was introduced by
Burns and Flach [BFO01].

We return to the more general case above, but we assume in addition that o is integrally closed.
We can choose a maximal o-order A’ in A which contains A; the reduced norm maps A in general
not into ¢(A), but into {(A’) =01 & ... ® o4, where o; denotes the integral closure of o in K;. This
turns out to be the reason that we can not expect to define a Fitting invariant contained in ((A).
Moreover, it leads us to the following definition. We denote the set of all m x n matrices with entries
in a ring R by M« (R) and in the case m = n the group of all invertible elements of M, «,(R) by
Gl,(R).

DEFINITION 1.1. Let o be a noetherian domain and let N and M be two ((A)-submodules of an
o-torsionfree ((A)-module. Then N and M are called nr(A)-equivalent if there exists an integer n
and an invertible matrix U € Gl,(A) such that N = nra(U) - M. We denote the corresponding
equivalence class by [N]n(a)-

Remark 1. i) Of course, we can replace U € Gl,(A) by U € K;(A) in the above definition.

ii) If A is commutative or if o is integrally closed and A is maximal, nr(A)-equivalence is just
equality.

EXAMPLE. Let p be a prime and K be a finite extension of Q,. We denote by o the ring of integers
of K and choose a proper subring o of ok of finite index m. Let A (resp. A’) be the algebra of all
2 x 2-matrices with entries in K (resp. ox) such that A’ is a maximal og-order as well as a maximal
o-order in A. We define an ox-submodule of ox by

I''={x €oglr-oxg Co}.

Since I' contains m - o, it is of finite index in o, and hence

T
A::{(,y/ x)\rEo,y,q/EI‘,xeoK}

: . . . 10
is an o-order in A contained in A’. For any = € ox, z € o the element \, =

0 =z
reduced norm x & ((A) = o. Finally, )\, is invertible in A if and only if x is a unit of K. In this case,
the o-submodule of ox generated by z is nr(A)-equivalent to o. To give an explicit example, choose

p=2, K =Q(+v2) and o = Z3[2v/2]. Then z = 1 + /2 is a unit of K which does not lie in o.

>€Ahas

We can define a partial order on nr(A)-equivalence classes:

DEFINITION 1.2. Let N and M be two finitely generated o-torsionfree ((A)-modules. Then we say
that N is nr(A)-contained in M (and write [N]yp(a) C [M]yeeay) if for all N” € [N]y, () there exists
M’ € [M]yy () such that N" C M’

To check antisymmetry, let [N];.(a) C [M]ur(a) € [N]nra)- Then there is an U € Kj(A) and
M'" € [M],p(a) such that N C M' C nr(U) - N. Assume that one of the inclusions is proper and
hence nr(U)" - N € nr(U)i*! - N for all i € N. But since nr(U) is integral over o, there is a natural
number n such that nr(U)" - N c [J}, nr(U)? - N, a contradiction. Hence [Nar(a) = [Mnr(a)-

Remark 2. It suffices to check the above property for one Ny € [N],;(a). To see this assume that
No C My for some My € [M]y,(a) and let N € [N],(ay be arbitrary. Then N’ = nra(U) - Ny for
some U € K1(A) and hence N' C nrg(U) - Mo € [M](n).-

3
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Remark 3. Let e € A be a central idempotent. Suppose that N and M are two o-torsionfree ((A)-
modules which are nr(A)-equivalent. Then eN and eM are nr(Ae)-equivalent ((Ae)-modules, since
for U € K1(A) we have Ue € K1(Ae) and nrs(U)e = nrae(Ue). Hence e[N]y(a) := [eN]nr(ae) is well
defined.

We will say that z is contained in [N],. sy if there is a No € [N]y(a) such that x € Np.
Accordingly, we say that 1, ...,z, generate [N],.(x) if they generate Ny for some Ny € [N]y(a)-

2. Projective resolutions

Let A be a semiperfect ring with radical v := rad(A), i.e. A/t is a semi-simple artinian ring and every
idempotent in A /v is the image of an idempotent in A. Let M be a finitely generated A-module; then
M has a projective cover, say fo: Py - M (cf. [CR81], Ch. 6C for basic facts on projective covers)
and we will assume that the kernel of fy is again finitely generated. For instance, this happens if
A is left artinian or if A is an o-algebra, finitely generated as an o-module, where o is a complete
commutative noetherian local ring. Now we can choose a projective cover f; : P, — ker(fy) and
proceeding in this way yields a projective covering Ppys of M:

Pyt —pdup fm S p gy 2)
Note that this covering is unique up to isomorphism and that each f; maps into tP;_;. We call a
complex trivial if it is the direct sum of complexes of the form

.—>0—>O—>Pid—P>P—>0—>0—>...

with projective P. We now prove the following result which is a generalization of [Ei95], Th. 20.2.

PROPOSITION 2.1. Let A be a semiperfect ring and M a finitely generated A-module which admits
a projective covering Pys. Then any projective resolution of M is isomorphic to the direct sum of
Puyr and a trivial complex.

h
Proof. Let Fay 0 ... — Qpn — ... , Qo > M be a projective resolution of M. Since Py and Qg
are projective, there are homomorphisms gg : Qo — Py and sg : Py — Qg such that fogo = hp and
hoso = fo. We observe that

fo(1 = goso) = fo — hoso = 0.
Hence 1 — ggsp maps Py into ker(fp) C tFy; thus Nakayama’s Lemma implies goso(FPy) = Py and
hence we find a map to : Py — Py such that gosoto = idp,. We see that gp is surjective (which was
clear from the outset by definition of a projective cover) and replacing sg by sotp we may assume
that sg is a section of gg. Proceeding inductively we obtain epimorphisms g; : QQ; - P; and sections
s; of g; such that h;s; = s;_1 f;. Therefore F; is isomorphic to the direct sum of Py; and a complex
with trivial homology which consists only of projective modules. But such a complex is isomorphic
to a trivial complex, as can be seen by adjusting the proof of [Ei95]|, Lemma 20.1. One only has to
replace ‘free’ by ‘projective’. O

3. Non-commutative Fitting invariants

Let A be a separable K-algebra and A an o-order in A, where o is a complete commutative noetherian
local ring with field of quotients K. Let M be a finitely presented A-module and choose a presentation

™

A AP T g (3)
4
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We identify the homomorphism h with the corresponding matrix in M, x,(A) and define S(h) = Sy(h)
to be the set of all bxb submatrices of h if @ > b. In the case a = b we call (3) a quadratic presentation.

DEFINITION 3.1. We define the Fitting invariant of h over A to be

FlttA(h) = { [(nI"A(H)|H S S(h»C(A)]nr(A) if a>0.

We call Fitty(h) a Fitting invariant of M over A. If M is a A-module which admits a quadratic
presentation h we put Fitty (M) := Fitty(h).

Hence if a > b, the Fitting invariant of h over A is the nr(A)-equivalence class of the ((A)-
submodule of ((A) generated by the reduced norms of all b x b submatrices of h. Even if the above
definition does in general not only depend on the isomorphism class of M, we often suppress the
dependency on the presentation h and write Fa (M) (or simply F(M) if A is clear from the context)
instead of Fittp (h).

Now let E,,(A) denote the subgroup of Gl,,(A) of all matrices which have reduced norm equal to 1.
We have the following

THEOREM 3.2. i) Ifhy and hg are two finite presentations of M, then there exist n € N, a matrix
X € Gl,(A) and finite presentations b and h% of M such that Fitty (h;) = Fitta(h}) fori =1,2
and by o X = hl,. If o has finite Krull dimension, we can choose X € E,(A).
ii) Ifhy and hg are quadratic presentations, we have Fittp (h1) = Fitta (ho). In particular, Fitt (M)
is well defined.

iii) If o is integrally closed and A is a maximal order, then Fitty (M) is maximal among all Fitting
invariants of M over A.

Proof. Since o is a complete commutative noetherian local ring, A is semiperfect and each finitely
generated A-module M has a projective covering (2). Given a finite presentation h; : A® — AP
of M, Proposition 2.1 implies that there are projective A-modules Qg and @1 and isomorphisms
U1 A~ P d Qo ® Q1 and ¢y : Ab ~ Py @ Qg such that hy = ¢f1(f1 ®1idg,|0)¢1.

Now let hy : A — AP be a second finite presentation of M. If by < b, we may replace hy by
ho @id : A% @ AP=02 — A2 @ AP~P2 without changing the Fitting invariant of ho. Note that he @ id
is quadratic if hg is. So we may assume by = b. If likewise as < a (which can not happen if hy and
hs are quadratic), we replace hy by (ha|0) : A% @ A%792 — Ab2 such that we may also assume that
a1 = a. As above, there exist isomorphisms 1y : A® ~ Py @ Qo @ Q1 and ¢ : A’ ~ Py ® Qq such
that hy = <Z>2_1(f1 @ idg,|0)12. We finally get hy 0 X = U o hy, where X := zpl_ll/fg € Glg(A) and
U := ¢ ¢z € Gly(A). By nr(A)-equivalence we have Fitty (U o he) = Fitta(he) and if hy and he
are quadratic, also Fitty(hy o X) = Fitty(hy). For arbitrary h; and he we have to show that we
may assume nr(X) = 1 if o has finite Krull dimension. Since A has finite stable range by a Theorem
of Bass (cf. [CR87|, Th. 41.25) in this case, we may write X = F - X, where E is a product of
elementary matrices and X is of shape

Y7 o«
(0 5)

Here, Y] is a upper triangular matrix whose diagonal consists of ones and Yy € Glg(A) for some
d € N. Enlarging a if necessary we may assume that there are at least d columns of zeros on the

~ -1
righthand side of the matrix corresponding to hs. Since the inverse of X is of shape ( Ylo Y*_l ) ,
2

the equation hy o E = ho o X! shows that we may replace Y5 by the d x d identity matrix and end
up with nrX = nrX = nrY; =1 as desired.
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Now suppose that o is integrally closed, A is maximal and Fitta (M) = Fitta (1) for some quadratic
presentation ¢ of M. Let h be an arbitrary finite presentation of M as in (3). We have to show
that Fittp(h) C Fitta(¢). We have proven that we may assume that A = (1]|0) o X for some
X € Gly(A). Hence each H € Sy(h) is the product ¥ o X for some b x b submatrix X of X. Thus
nr4(H) = nra(y) - nra(X) € Fittp (1), since nra(X) € C(A). O

EXAMPLES.

i) Consider the algebra A of 2 x 2 matrices with entries in @, and the maximal order A =
Msy2(Z,). The Fitting invariant of the trivial module is clearly Fitta(0) = ((A) = Zp. The
map 1 : A2 — A given by

()--(21)- (2= (3}

is also surjective and thus a finite presentation of 0. But
Fitta(¢) = (nr(A1), nr(A2))z, = (15,24)z, = 3Z,

1 0

which differs from Fitt, (0) if p = 3. We choose X = < 11

) € Es(A) to see that ¢ = o X

has Fitting invariant Fitts () = Z,,.

ii) In general, the Fitting invariant Fitta (M) is not maximal. Choose an order A and A € A such
that nr(\) € ((A) (compare the example following remark 1). Then the map ¢ : A2 — A
given by ((1)) — 1, ((1)) — A is a finite presentation of 0, and FittA(0) is properly contained in
Fitta (). Otherwise both invariants would be nr(A)-equivalent and hence Fitta (1) generated
by one single x, say. But since nr(1) = 1, the generator x has to be a unit of ((A) and hence

(x) = ¢(A) which does not contain nr(\).

Now let M be a finitely presented A-module and hy : A — AP and hy : A% — AP two
finite presentations of M. By the above theorem we may assume a1 = as =: a and by = by =: b
without changing the Fitting invariants of h; and hs. Moreover, there is an X € Gl,(A) such that
hi1 o X = ho. Hence

A Ae M by

is also a finite presentation of M such that Fittp((h1]|h2)) contains both Fitty(hi) and Fittp (hs).
Now assume that the integral closure o’ of o in K is finitely generated as an o-module and choose
a maximal o’-order A’ in A containing A. Since o is noetherian and {(A’) is finitely generated as an
o-module, the following definition is well defined:

DEFINITION 3.3. Assume that the integral closure of o in K is finitely generated as o-module and
let M be a finitely presented A-module. Then we define Fitt}{**(M) to be the Fitting invariant of
M over A which is maximal among all Fitting invariants of M over A.

Remark 4. 1) Now Theorem 3.2 (iii) states that if o is integrally closed and A is maximal, we have
Fitty (M) = Fitty** (M) for any M which admits a quadratic presentation.

ii) If M admits a quadratic presentation, it is often more natural to work with Fitts (M) rather
than with Fitt}**(M). Compare for example Proposition 5.3 and 6.3 below.

We set Mg := K ®, M and define
YT(M):={ie{l,...,t}e;Mg =0},

e=e(M):= Z ei.

€T (M)



NON-COMMUTATIVE FITTING INVARIANTS

By remark 3 above, multiplication on Fitts(h) by an idempotent e’ of A is well defined and it is
easy to see that e'Fitty(h) = Fittpe (Ae’ @ h).

LEMMA 3.4. Let M be a finitely presented A-module and let e = e(M). If h is a finite presentation
of M, we have

FittA(h) = eFittA(h) = FittAe(Ae A h).

Proof. Put ¢’ = 1—e such that we have a decomposition A = Ae® Ae’. We show that ¢'Fitty (h) = 0.
Ae’ decomposes into simple components A; = Ae; with center K; such that e'Fitty(h) can be
computed via

(A "2 (4, - e M.
Since e; Mg # 0 for each i ¢ Y(M), 1 ® he; is not surjective for any simple component A; and so
does 1 ® H; for each H; € Sp(he;). But this means that left multiplication on Mjyp(A;) by H; is

also not surjective and hence nr 4, (H;) vanishes, since the Kj-determinant of this multiplication is a
power of nr 4, (H;). O

Remark 5. In the case A = oG, where o is the localization or the completion of Z at a prime p and
G is a finite group, Parker [Pa] defines Fitty (M) € ((Ae)* to be the reduced norm of h assuming
the existence of an exact sequence

(Ae)™ L (Ae)™ — Ae @n M

for some n. This definition is well defined modulo nr4(K;(Ae)) (cf. loc.cit., Lemma 3.2.1). Hence
our definition is compatible with Parker’s. Moreover, Lemma 3.4 generalizes loc.cit., Lemma 3.3.2.

We summarize some first properties of Fitting invariants in the following Proposition whose third
item generalizes [Pal, Prop. 3.3.3.

PROPOSITION 3.5. Let My, Ms, Ms be finitely presented A-modules and let Fitt (hy) resp. Fitty (hs)
be Fitting invariants of My resp. Ms over A.

i) If My — My is an epimorphism, then there exists a finite presentation hy of My such that
Fitta(h1) C Fitta (he).

ii) If My = My x Ms, then Fittp(hy @ hs) = Fittp(hy) - Fitta(hs) is a Fitting invariant of My. If
in addition M; and M3 admit quadratic presentations, so does Ms and we have Fitty (M) =
FittA(Ml) . FittA(Mg).

iii) If My —— My — Mjy is an exact sequence of A-modules, then there is a Fitting invariant
Fittp (he) for My over A such that

FittA(hl) . FittA(hg) C FittA(hg).

If ¢ is injective and hs is a quadratic presentation, we can force the above inclusion to be an
equality. If in addition My and Ms admit quadratic presentations, so does My and we have

Fitta (M) - Fitta (Ms) = Fitty (Ms).

Proof. Let A® RN M be a finite presentation of Mj. Denote the epimorphism M; — My by
@ and define mo = pom : A’ - Ms. Let C be the cokernel of the inclusion ker(m;) — ker(ms) and
choose an epimorphism A¢ — C for some ¢ € N. This map factors through ker(my) and we denote
the corresponding map by g : A® — ker(m). This yields a finite presentation of Ms:
A% A WD A 2 pp,
7
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We conclude that Sy(hi) C Sp((h1]g)) and get (i). (ii) is clear once we observe that the reduced
norm of a matrix H vanishes if H is of shape

([ H 0
H‘<o H3)’

where H; € M, xp,(A) for i = 1,3 and either a; > by or az > bs. To see this, let E be a splitting field
of A and write 1® H € Ag as a direct sum of matrices with entries in E. Then each of these matrices
is of the same shape as H with a;, b; replaced by some multiple of it. The column vectors are linearly
dependent such that the determinant of each of these matrices vanishes and hence also nr(H) = 0.
Now we pass to (iii). By (i) we may assume that ¢ is injective. We choose finite presentations
Ao D pb T M; for i = 1,3 and construct a finite presentation of My in the following way. The
epimorphism 73 factors through My via a map f; and we define m9 = (vom|f1) : APt @ Abs s M.
In a similar manner we construct he = (h1|f2), where fy realizes the factorization of hs through
ker(72). Then hgy corresponds to a matrix of shape

h1 =
0 hs )’

From this we get the desired inclusion. Moreover, if we can choose as = bs, the matrix corresponding
to hs is quadratic. Hence each Ha € S, (h2) has either reduced norm equal to zero or is of shape

Hl *
0 hs
for some H; € Sy, (h1). This completes the proof. O

Now let C be a finitely generated o-torsion A-module of projective dimension at most 1 and
denote by [C] the corresponding class in KoT'(A). Then C' admits a quadratic presentation if and
only if p([C]) = 0. To see the non-trivial implication choose an epimorphism 7 : A™ — C. The kernel
of m is projective, and it is stably isomorphic to A™ if and only if p([C]) = 0. Now replace 7 by
7' = (w]0) : A" & A™ — C for suitable m € N such that ker(7') = P & A™ is free.

Now assume that C' admits a quadratic presentation ¢ : A™ ~— A™. Then the class [l ® ¥]of 1® Y €
Gl,(A4) in K;(A) is a preimage of [C] and Fittp(C) is generated by nra([1 ® ¢]). Proposition 3.5
(iii) implies that the relative Fitting invariant introduced just below is well defined.

DEFINITION 3.6. Assume that C' and C” are two finitely generated o-torsion A-modules of projective
dimension at most 1. If p([C] — [C']) = 0, we choose z € K;(A) such that 9(x) = [C] — [C’] and
define

Fitta(C: C') := [(mra(@))eny] pa) -

Remark 6. If A is a group ring oG of a finite group G, where o is a complete discrete valuation
ring, then Swan’s Theorem implies that p([C]) = 0 for any finitely generated o-torsion A-module C'
of projective dimension at most 1 (cf. [CR81] Th. 32.1). There is also a more general result due to
A. Hattori [Ha65|, see [CR81|, Th. 32.5. A similar statement holds if A is the complete group algebra
Zp||G]] of a profinite group G' which has a p-Sylow subgroup of finite index, see Lemma 6.2 below.

We immediately get

PROPOSITION 3.7. Let C' — C — C” be an exact sequence of finitely generated o-torsion A-modules
of projective dimension at most 1. If C' (resp. C") admits a quadratic presentation, we have

Fitts (C") = Fittp(C : C") (resp. Fitty(C”) = Fittp(C : C")).
If C' admits a quadratic presentation, then so does C' ® C” and we have

FittA(C) = Fittp (C' & C").

8
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4. Fitting invariants and Annihilation

Let A be a separable K-algebra and A an o-order in A, where o is an integrally closed complete com-
mutative noetherian local ring with field of quotients K. We choose a maximal order A’ containing
A. As A decomposes into its simple components A; = Ae;, 1 < i < t, we have

N=MNea&.. ¢\,
where A, = A'e;. Now let H € Mjy,(A) and decompose H into

t t
H = ZHZ € beb(A/) = @beb(A;)
i=1 i=1
Define H = nry, (Hz-)Hi_1 if H; is invertible over A;, and H; = 0 otherwise. A non-commutative
analog of the adjoined matrix is

t
H*:=) H;.
i=1
LEMMA 4.1. We have H* € Myyp(N') and H*H = HH* = nrg(H) - 1pxp-

Proof. The reduced characteristic polynomial f; of H; has coefficients in ((A;) = o;. Since the
constant term of f; equals +nr(H;), multiplying the equation f;(H;) = 0 by H, ' actually shows
that H is a polynomial in H; with coefficients in o0;. The second assertion is clear. O

THEOREM 4.2. Let M be a finitely presented A-module and h : A* — AP be a finite presentation of
M. Let x € ((A') and H € Sy(h) such that - H* € Myyp(A). Then x-nra(H) € ((A) annihilates M.
In particular, x -y € Annp (M) for all y € Fittp(h) if z -nry(U) - H* € Myyxp(A) for any H € Sy(h)
and U € Kq(A).

Proof. Since Fitty (h) is generated by nra(H), H € Sy(H), it suffices to show that z - nr4(H) anni-
hilates M. The cokernel of H surjects onto M and hence the assertion follows from the commutative
diagram

H

Ab AP cok (H)
o H znra(H) xnr(H)
Ab—T s g cok (H)

Now Lemma 4.1 implies

COROLLARY 4.3. If A is maximal or if A is commutative, then M is annihilated by each of its Fitting
invariants.

Let G be a finite group of order n and A = oG the group ring of G, where o is a complete discrete
valuation ring with field of quotients K. Recall that KG = Eszanani(Di), where D; is a skew
field of degree s? over its center K; with ring of integers o;. The central conductor of A’ over A is
defined to be F := {x € {(A’) : x A’ C A} and is explicitly given by

F=@ D '(wi/o)

o TS
where D~1(0;/0) denotes the inverse different of o; over o (cf. [CR81], Th. 27.13).
9
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COROLLARY 4.4. Let o be a complete discrete valuation ring and A = oG be the group ring of a
finite group G. If Fittp (h) is a Fitting invariant of a finitely presented A-module M, then

F - Fitta(h) C Anny (M).

5. Group rings

In this section we specialize to the case A = Q,G and A = Z,G, where G is a finite group. In this case
each simple component A; of A corresponds to an irreducible character x; and ((4;) = K; = Qp(xi),

where Q,(xi) = Qp(xi(g) : g € G). Note that x;(1) = n;s;.

5.0.3 x-twists We largely adopt the treatment of [Bu08|, §1. Fix an irreducible character x and
let E\ be the minimal subfield of C, over which x can be realized and which is both Galois and of
finite degree over Q,. We put

pr =Y x(g g, eyx:= >Tg|)prx-
geG

Hence ey is a central primitive idempotent of E,G and pr, is the associated projector. We write
oy for the ring of integers of E, and choose a maximal o,-order 9 in E,G which contains o, G.
We fix an indecomposable idempotent f, of e,M and define an o,-torsionfree right o, G-module
by setting Ty := f, M. Note that this slightly differs from the definition in [Bu08|, but follows the
notation of [BJ]. T is free of rank x(1) over o, and the associated right E,G-module E, ®,, T\ has
character x. For any left Z,G-module M we set M|[x] := Ty ®z, M, upon which G acts on the left by
tem— tg t@g(m) for t € Ty, m € M and g € G. For any integer i we write H'(G, M) for the Tate
cohomology in degree i of M with respect to G. Moreover, we write MY resp. Mg for the maximal
submodule resp. the maximal quotient module of M upon which G acts trivially. We obtain a left
exact functor M +— MX and a right exact functor M + M, from the category of left G-modules to
the category of o,-modules by setting MX := MIx]¢ and M, = M[x|g = T\ ®z,¢ M. The action
of Ng := >, cc g induces a homomorphism M, — M* with kernel H ~1(G, M[x]) and cokernel
HY(G, MIx]). Hence M, ~ MX whenever M and hence also M[x] is a c.t. (short for cohomologically
trivial) G-module.

For any A-module M we denote the Pontryagin dual Hom(M, Q,/Z,) of M by M"Y which is equipped
with the natural G-action (gf)(m) = f(g~'m) for f € MV, g € G and m € M. We have

(MY)X = (T ®z, Hom(M,Qp/Zy))" = (Hom(Ty ®z, M, Qp/Zp))" = (My)", (4)

where X denotes the character contragredient to x. If M is finite, we have Anny (M) = Anny (M)?¥,
where we denote by # : A — A the involution induced by ¢ — ¢~'. We use these observations to
prove another annihilation result:

PROPOSITION 5.1. Let A = Z,G and M be a finitely presented A-module. Choose a maximal order

A’ containing A and let Fitty/(h) be a Fitting invariant of A" @y M. Moreover, let x = Zle xT; €

Fitta (h) C @'_, 0; and y; € D (oy,/Z,), 1 <i < t. Then

t
Z Z yi 2 pryw € Anny (M).

=1 weGal(Ey,/Qp)

Proof. By Theorem 3.2 we may assume that h is a quadratic presentation of A’ ® M. Moreover,
Lemma 3.4 implies that we may assume that M is finite. Let us fix an integer ¢ and abbreviate y;

by x. We tensor the finite presentation A’® AN A @y M over A with T, and obtain an exact
10
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sequence of o,-modules
h
T 25 T = M.

If we write nr(h) = Y'_ nr(h;), we have an equality nr(h;) = detg, (hy) and hence

(Fittar(h) Nog)oy = Fitt,, (M) C Ann,, (My). (5)
But the right hand side equals Ann, (M) = Ann, ((M")X) by (4) above. Now [BJ], Lemma 11.1
and Lemma 11.2 imply that ZweGal(E;(/Qp) Yy s prgw € Annp(MY), where Y = x;. Applying the
involution ¥ yields the desired result, since clearly o; = 0; and E, = Ey. O
Remark 7. The equality in (5) above shows that computing Fitting invariants over the maximal
order A’ is equivalent to computing the Fitting ideals Fitt,, (My) for all characters x. Hence the

authors of [BJ] implicitly compute Fitting invariants over the maximal order A’ to derive annihilation
results in the spirit of Brumer’s conjecture.

LEMMA 5.2. Let A = Z,G be a group ring of a finite group G.

i) If x € ((A) is a nonzerodivisor, we have

(A/ ()" = A/ (2F)
ii) If a A-homomorphism 1 : A" — A™ induces ¢ : (A/(z))"* — (A/(x))", then

—-V

(A (@)")" —E— (A /(2))¥)"

- L

(A/ ()" —— (A (a))"
commutes.

Proof. In the special case where x = p™ is a power of p, we have

(A/(™)" = Hom(A/(p™), Zy/p™ Lp) = A/ (p™),

where the isomorphism on the right hand side is explicitly given by f — > . f(g)g for f €
Hom(A/(p™), Z,/p™Zy). A lengthy, but easy computation shows that the above diagram commutes
in this case.

Passing to the general case, we first observe that z# annihilates (A/(z))V. Applying duals twice we see
that 2 is indeed the exact annihilator. Thus it suffices to show that (A/(x))V is cyclic as A-module.
Choose m € N large enough such that p”™ annihilates (A/(z)). Then there exists a nonzerodivisor
y € ((A) such that p™ = z - y. This gives an exact sequence

.y .
A/ () = A/ (P™) = A/ (y).
The dual of this sequence induces a surjection (A/(p™))Y — (A/(x))V. Since (A/(p™))" is cyclic by

the above special case, so does (A/(x))Y. Moreover, if ¢ induces @T’ﬂ on (A/(p™))™, it also induces
this map on (A/(z%))" via the epimorphism (A/(p™))"* — (A/(z%))™. O

The second assertion of the following result is a non-commutative generalization of [CG98]|, Prop.
6. We also adopt some of the arguments in loc.cit.

PROPOSITION 5.3. i) Let C be a finite c.t. A-module and ¢ € ((A) be a generator of Fittp(C).
Then CV is also c.t., ¢ is a nonzerodivisor and Fitty(C"V) is generated by .

11
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i) If M — C — C" - M’ is an exact sequence of finite A-modules, where C' and C" are c.t., then
there are Fitting invariants F(M") and F(M') of MY and M’ over A such that

F(MY)* - Fittp(C") = F(M') - Fittp (C).
In particular, we have

Fitt P8 (MY)* - Fitty (C) = FittRa(M’) - Fitta (C).

Proof. The A-module CV is c.t. by [NSW00], Corollary (1.7.6). Choose a quadratic presentation
¥ A" — A™ of C such that nr(y)) = c. Since C is finite, 1 is injective and invertible over A and so
does ¢ the inverse given by (¢ ~1)T*f. We will show that 1% is a finite presentation of CV. Let z
be a nonzerodivisor contained in the central conductor. Then xc¢ annihilates C' by Corollary 4.4 and
the sequence

(A/(z))” & (A ()" — C

is still exact. By Lemma 5.2 we have a dual exact sequence

OV s (8 @)y T (A ()t —» cok (57 (©)

Put g := (47#)*. Then z*g has entries in A by Lemma 4.1 and we claim that

).

ker($' %) = im (afg), ker(afg) = im (9"

If this is known, we get

%) = im (aFg) =~ (A/(x)")" ker(aFg) = (A/(xe))" /im (%) = cok (§ %),

CY = ker(y

Note that under this identification ¥ € cok (@Tﬁ)) corresponds to 2fg(T) € ker(@T’ﬁ). Now sequence
(6) implies (i), since cok (1)) = cok (ET’ﬁ).

We have to prove the two equalities above. For this let 7 € (A/(xc)®)"; then ¥ lies in the kernel of JT’ﬁ
if and only if there exists a lift v € A of T and w € A" such that 74 (v) = (zc)* - w = 2fpTEg(w).
Since 1T*# is injective, we can remove it from both sides, which gives 7 € im (xT@) Now assume that
¥ € ker(ztg), i.e. there exists w € A™ such that zfg(v) = (zc)*(w). Here we may add ¢™*# to both
sides and obtain (zc)fv = (z¢)f#(w) and hence v = ¢ (w). This proves the second equality.
For (ii) let us at first assume that C' = C”. Let us denote the morphism C' — C' of the above sequence
by ac. By projectivity of A™ we can construct the following diagram

d
n
An

AR

ac

M¢ C

C M’

We see that the map (af¢) : A" @ A" — A™ is a finite presentation of M’ and thus Fitta((aft)) is
a Fitting invariant of M’. Writing (a|t) = v - (1 ta|1) we see that Fitta((a|t))) is generated by
nr(+) - nr(H), where H runs over the quadratic submatrices of ¥ ~la.

12
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Now we replace A by A/(xc) and 9 by v as above. Dualizing the diagram yields

CV

cv cok (&)

An easy computation shows that indeed &, = o and thus the cokernel of the bottom sequence
is again M. Hence Fitty((d"#TF)) is a Fitting invariant of MY. We may write (d7f[yT#) =
YT ((p~Ta)T#|1) such that Fitty ((d#ypTF)) is generated by nr(y™#) - nr(H), where H runs over
the quadratic submatrices of (¢ ~'a)T*. Hence Fitta ((d7#[¢)T#))* = Fitta ((a]t)) as desired.

For the general case we choose quadratic presentations ¢ : A™ ~— A™ of C' and ¢ : A™ — A™ of
C'. As above we can lift ac : C — C’ to a homomorphism « : A" — A™ and in turn o to a
homomorphism d : A — A™ such that ¢/ od = a0 ¢. Again F(M') := Fittp((a|¢’)) is a Fitting
invariant of M’ over A. Now we add C’ to the two leftmost terms of the sequence and C' to the two
rightmost terms such that we obtain the following diagram:

d/

A" @ A A" @A™
¥ Y

At g A — S An g Am

Mael———-CaC Cacc Cao M

Here, the (n +m) x (n + m)-matrices are given as

, (0 0Y , (00 (¢ 0
() e=(an)v=(0d)

The above shows that Fitty (((d)T#yp7#))f = Fitt((a/[)). But the latter Fitting invariant equals
. 0 0 ¢ 0 . . / . !
Fittp a0 0 & = Fitta(¢)Fitta((a|¢’)) = Fitta (C)F(M").

Likewise we find that Fitta (((d')7#|T")) is the product of Fitta (C')* and a Fitting invariant of MY
over A.

For the last assertion, we observe that we can choose a quadratic presentation ¢ of C' and a lift
a of a¢ such that « has shape (0|&), where & is a finite presentation of M’. To see this, let
m : A™ — M’ be the epimorphism which is the composition of 7, : A™ — C’ and «’ : C' — M.
Choose & : A™ — A™ such that im (&) = ker(w). Then 7,,& surjects onto ker(n’) and thus factors
through C. This factorization together with an epimorphism A* — M gives a surjection A¥@A™ — C

13
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such that o = (0|@) is a lift of ac. Now let h € Myyp(A) be a finite presentation of M’ such that
Fitty(h) = Fitt{*(M’). By Theorem 3.2 we may assume that a = n, b =m and ho X = & for an
appropriate matrix X € Gl,(A). Hence the images of h and & coincide such that we can choose h for
an &. We see that F(M') = Fitta((0|h|¢’)) is an appropriate Fitting invariant of M’ such that the
above proof works. But F(M') contains and thus equals Fitt(h) by maximality. We have proven
that there is a Fitting invariant (M) of MV such that

F(MY)F - Fitt (C") = Fitt P (M’) - Fitta (C).
Dualizing the above sequence likewise implies the existence of a Fitting invariant F(M’) of M’ such
that
F(M'* - Fittp (CV) = Fitt 22X (MY) - Fitts ((C)V).
The first part of the Proposition now implies that
Fitt(MY)F = F(M')Fittp (C)Fitty (C')~?
C Fitt®aX(M")Fitt (C)Fitty (C')
= F(MV)
and hence F(MV) = Fitt}** (M) as desired. O

If C is a finite c.t. Z,G-module for an abelian group G, one knows that |Z,G /Fittz,q(C)| = [C].
This is very useful if we want to compute Fittz, o (C), since it suffices to compute an ideal I contained
in Fittz,c(C) such that |Z,G/I| = |C]. An analogous statement in the non-abelian case is the
following

PROPOSITION 5.4. Let A = Z,G and C be a finite c.t. A-module. Let E be a splitting field of
A = Q,G with ring of integers o and ¢ € ((A)* NFittp(C). Write 1 @ ¢ = 3, cppyp () OxEx €
((E®A) =@, cm ) Eex Then c is a generator of Fitt(C) if and only if there is an o € oy such

1
that erlrr (@) C§( ) = Q- |C|

Proof. If ¢ is a generator of Fitty(C), the desired formula follows immediately from [Ni], Prop. 5.
Conversely, let ¢ be a generator of Fitty(C). Then ¢ = X - ¢ for some A € ((A) N¢(A)*. If we write
L@ A =23 MAex € ((E® A), the above product formula implies that [], )&(1) is a unit of op.
Hence each Ay is a unit and thus A is a unit of ((A’), where A’ is a maximal order in A. But since
C(A)NCA)* = ((A)*, we are done. O

In the case of commutative rings, Fitting ideals behave well under base change. We provide some
base change results for the case at hand. Let us begin with the more general situation, where o is a
complete commutative noetherian local ring and A is an o-order in the separable K-algebra A.

LEMMA 5.5. Ife € A is a central idempotent and F (M) is a Fitting invariant of a finitely presented
A-module M, then eF (M) is a Fitting invariant of the Ae-module Ae @p M.

Proof. Obvious from the definitions. O

If A = oG is a group ring of a finite group G and H is normal in G, then e := |H|"! Ny is a
central idempotent and Ae ~ o[G/H]. Thus base change behaves well if we factor G by a normal
subgroup.

COROLLARY 5.6. Let A = oG be a group ring of a finite group G and I a two-sided ideal of A such
that A := A/I is commutative. If F(M) is a Fitting invariant of the finitely presented A-module M,
then F(M) has a well defined image in A which is the Fitting ideal of A ® M over A.

14



NON-COMMUTATIVE FITTING INVARIANTS

Proof. Since A is abelian, the ideal I contains J := A(G,G’), where G’ denotes the commutator
subgroup of G and A(G, G’) is the kernel of the natural epimorphism oG — o[G/G’]. Hence we may
first base change to A/J by Lemma 5.5. Since A/J is commutative and Fitting ideals behave well
under base change, we are done. O

6. Complete group algebras

In this section let A be the complete group algebra Z,[[G]], where G is a profinite group which
contains a finite normal subgroup H such that G/H ~ I for a pro-p-group I, isomorphic to Z,; thus
G can be written as a semi-direct product H x I'. We fix a topological generator v of I' and choose
a natural number n such that " is central in G. Since also T'?" ~ Zy, there is an isomorphism
Zp[[TP"]] ~ Z,[[T]] induced by 4*" + 1 + T. Here, o := Z,|[[T]] denotes the power series ring in one
variable over Z,. If we view A as an o-module, there is a decomposition

pr—1
A= @ o' [H].
i=0

Hence A is finitely generated as an o-module and an o-order in the separable K := Quot(o)-algebra
A = Q(G) := @, K+'[H]. Note that A is obtained from A by inverting all regular elements. As in
the case of group rings we denote by # : A — A the involution induced by mapping each g € G
to g~'. Moreover, we denote the Iwasawa adjoint of a finitely generated o-torsion A-module M by
a(M).

Let m := (p,T) be the maximal ideal of 0. Since v?" = 1+ T =1 mod m, we have

A= A/mA = ZFp'Vi[H] = Fp[H x Cpn],

where Cpn denotes the cyclic group of order p™. Note that m is contained in the radical of A.

LEMMA 6.1. Let f € Zy[T] be a Weierstraf polynomial and M = A/(f). Then f*(T) = (1 +
T)deN) f((1 + 1)~ — 1) is also a Weierstraf polynomial and a(M) = A/(f%).

Proof. As in the proof of Lemma 5.2 the exact annihilator of a(M) is f* such that we only have
to show that «(M) is cyclic as A-module. The Iwasawa p-invariant of M is zero such that o(M) =
Hom(lim M /p"M,Qy,/Z,). Applying the Pontryagin dual to the exact sequence

M /pM »— lm M [p" M —= i M /p" M

implies that «(M)/pa(M) ~ (M/pM)V. Since p lies in the radical of A, it suffices to show that
(M/pM)V is cyclic. But since f is a nonzerodivisor, the ring M/pM = A/(p, f) is Gorenstein of
dimension zero. Therefore the socle of M/pM is cyclic which is equivalent to (M /pM)" being cyclic
modulo the radical. Now we are done via Nakayama’s Lemma. O

LEMMA 6.2. Let C be a finitely generated R-torsion A-module of projective dimension at most 1.
Then C admits a quadratic presentation.

Proof. Let us first assume that G is abelian. Then G is the direct product of its p-Sylow subgroup
Gp and a finite group H' prime to p such that there is a decomposition A = P, Z,[x]G), where
the sum runs through all irreducible characters x of H' module Galois conjugation over Q,. Now let
P — A" — C be a projective resolution of C. Then P = P, (Z,[x]Gp)"x with appropriate n, € N
by [NSW00], Corollary 5.2.19. But since C' is R-torsion, all these n, coincide. For the general case
we can adjust the proof of [RW04|, Lemma 13 to show that the map p : KoT'(A) — Ko(A) is zero
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if this is the case for abelian G. Note that the authors of loc.cit. so to speak show Lemma 6.2 for a
special element of KyT'(A). O
We have the following non-commutative version of [Gr04| Prop. 1 and 2.

PROPOSITION 6.3. i) Let C be a finitely generated R-torsion A-module of projective dimension
at most 1 which has no Z,-torsion and let ¢ be a generator of Fitt(C'). Then c* is a generator

of Fitty (a(C)).

ii) Let M — C 5 ¢ - M’ be an exact sequence of finitely generated R-torsion A-modules
which have no Z,-torsion and such that the projective dimension of C' and C’ is at most 1.
Then there are Fitting invariants F(a(M)) and F(M') of a(M) and M’ over A such that

F(a(M))*Fitt (C") = Fitt (C)F(M").
In particular, we have
Fitt% (o(M))*Fittp (C") = Fitta (C)Fitt (M.
Proof. Choose a Weierstrak polynomial f € Z,[T] such that f annihilates C. If ¢ : A" — A" is a

quadratic presentation of C, then (A/(f))" 2, (A/(f))™ — C is still exact. Now Lemma 6.1 implies
that applying « yields an exact sequence

a(C) — (A)(F)" T2 () (FE)" — cok (375,

As in the proof of Proposition 5.3 there is an isomorphism a(C') ~ cok (@T’ﬁ) = cok (¢7*%) which
implies (i). For (ii) we can conclude as in the proof of Proposition 5.3. O

T?ﬂ

Now we assume that I" ~ Z, is normal in G such that I H = 1. We fix a topological generator
v of ' and put G’ := G/T". We observe that the natural epimorphism G — G’ induces an embedding
H — G’ such that H is normal in G’. Note that this naturally arises in Iwasawa theory: If G’ is the
Galois group of a finite extension of number fields L/K, and T, resp. I are the Galois groups of
the cyclotomic Zy-extensions Ko, resp. Lo of K resp. L, then G := Gal(Loo/K) is the semi-direct
product of a normal subgroup H of G’ and I" such that I is normal in G.
We recall some results concerning the algebra A = Q(G) due to Ritter and Weiss [RW04]. Let E be
a splitting field of Z,G’ and fix an irreducible (E-valued) character x of G’ and an EG’-module V,,
with character x. We can view V, as a representation of G, where g € G acts on Vj, as g mod I".
Hence  is also an irreducible character of G. Let n be an irreducible constituent of res gx and set

1 _
Stn) ={9€G:n? =n}, ey = 7‘75{,) donhhHh ex= ) e
heH n|res§x

By [RW04], corollary to Proposition 6, e, is a primitive central idempotent of QF¥(G):=FE ®q, 2(G).
By loc.cit., Proposition 5 there is a distinguished element 7, € ((QF(G)e,) which generates a pro-
cyclic p-subgroup T'y, of (QF(G)e,)*. Moreover, v, induces an isomorphism QF(T'y) — ¢(QF(G)e,)
by loc.cit., Proposition 6. The authors define the following map

Jx : C(QF(G)) — ¢(QF(G)ey) ~ QF(Ty) — QF(D),
where the last arrow is induced by mapping v, to v*x, where w, = [G : St(n)]. It is shown that for
any matrix ® € M, »,(Q(G)) we have

Jx(nr(®)) = det gr ) (®[Homppy (Vy, oF(@amM). (7)

Here, ® acts on f € Hompgpy(Vy, QF(G)") via right multiplication, and v acts on the left via
(vf)(v) =v- f(y ') for all v € V. For any group G let us denote the canonical augmentation map
E[[G]] - E by aug ;. We now prove the following base change result:
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THEOREM 6.4. Let M be a finitely presented A-module and F (M) a Fitting invariant of M over
A. Assume that F (M) is generated by ¢; = nr(®;), i = 1,...,k. Then j,(¢;) actually lies in E[[I']]
and the elements
Z augr(jy(di))ey, i=1,....k
x€lrr (G')
lie in the center of Q,G" and generate a Fitting invariant of M/(y" — 1) over Z,G'.

Proof. Let x be an (E-valued) irreducible character of G’ and put m := x(1). For any f €
Hompe (Vy, EG') we will define an f € V) := Hompgpy(Vy, QF(G)) such that f takes values in
E[[G]] and f(v) mod I = f(v) for any v € V;. Let ¥ € G’ be the image of v in G’. Then we can
decompose G’ into

G":H

G’:UH

Hence any ¢’ € G’ can be uniquely written as ¢’ = hy - 4U9") with hy € H and 0 < i(¢) <
G" + Hl. If f(v) = X cqrgg € EG', we define f(v) = 3 e tghy "9 which lies in
Hompgg (Vy, E[[G]]), since hpy = h - hy for any h € H, ¢ € G'. Clearly f mod I = f. The E-
vector space Hompg: (Vy, EG’) has dlmensmn m, and we fix an E-basis fy,..., f,,. We claim that
fi,. -+, fm is a QF(T)-basis of V. Since the dimension of V, as Q¥ (I")-vector space is m by [RW04],
Proposition 6 resp. its proof, it sufﬁces to show that fy,..., fm are linearly independent over Q¥ (T").
Assume that there are \; € QF(I"), not all of them equal to zero, such that Y 1" \;fi = 0. We
may assume that A\; € og[[[']] for all 4, and identifying og[[I']] with the power series ring og[[T]], we
may also assume that there is at least one \; which is not divisible by T'. Since T corresponds to
1 — v € og|[[[]], this means that aug ()\;) # 0. But if \; :== \; mod IV = Z[G ] iV, aij € o, we
have

1
;3 INGERRINE

= i)\z i
=1

z]fz’

”M““Mm

which implies that aug ()\;) = aug v (\;) = ZE_I } a;; = 0 for any 4, a contradiction.

Recall that f; € Hompy(Vy, E[[G]]) for any i and that Homgg(Vy, E[[G]]) is a left E[[I']]-module
and a right E[[G]]-module, as (vf)(v) = vf(y 1v) and (fa)(v) = f(v)-a for f € Homgg(Vy, E[[G]]),
v € V, and a € E[[G]]. Moreover, v*“x f = f~, by the proof of [RW04|, Proposition 6. Now let A,
be the E[[G]]-submodule of V,, generated by 7/ fi, j =0,...,w, —1,4=1,...,m. Then A, is a free
E[[I']]-module of rank m and we choose a basis g1, . .., gm. Writing g; as an E[[G]]-linear combination
of the 77 f; we find that g, lies in Hompe (Vy, EG’). On the other hand, we can write any f; as an
E[[T]]-linear combination of g1, ..., gm, and hence f; can be written as an E-linear combination of
the g;. Thus gy, ..., 9, is also an E-basis of Hompg (Vy, EG").

Now let @ € A be arbitrary and write @ for the image of a in Z,G’. For any x let r, denote right
multiplication by x. Then ry 0 g; = g;a = Z;nzl Bijg; for some f;; € E[[I']] such that

Jx(nr(a)) = det ger)(6ij)
by (7). But clearly rzo0g; = Z ﬂng and hence the y-part of nr(@) equals
det p(alHompea (Vy, EG')) = det 5(B;;) = aug p(jy (nr(a))) (8)
and a similar equation holds for a € M« (A). Now let A® I, AP — M be a finite presentation
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of M such that Fitty(h) = F(M). Tensoring with Z,G’ over A yields a finite presentation h of
M/(v —1) over Z,G'. Moreover, F(M) is generated by ¢; = nr( ;), where Hj € Sy(h), 1 < j < ¥/,
while the elements nr(H ;) generate a Fitting invariant F(M /(7' —1)) of M/(v' —1) over Z,G'. Now
equation (8) implies the Theorem in the case ¢; = 1);. For the general case let us abbreviate the
map -, cpy (G 2ugp © jy by m. We claim that 7 maps ¢(A) into ¢(Z,G"). Since aug - o j,, just maps
7y to one and 7, acts trivially on V, by [RW04|, Prop. 5, the image of A € ((A) under this map
acts on Vy as A itself. Likewise Ae, € ((Q,G’) acts on V, as A, since  is a character of G’. Hence
m(A) — X acts as zero on V,, for each x and lies in the center of Q,G’; thus 7(\) = >\ € ¢(z,G").
Now let ¢;, 1 < i < k be arbitrary generators of F(M). Then we may write ¢; = Z 1 Aij¥; with
Aij € ((A) and obtain 7(¢;) = 3, m(Aij)m(¢;) which lies in .’F(M/(fy’ — 1)) by the clalm By a dual
argument each 1; lies in the ((Z,G’)-module generated by 7(¢;), 1 < i < k. Hence these elements
also generate F(M/(v' —1)). O

7. An application: Annihilation of class groups

Let us fix a finite Galois CM-extension L/K of number fields with Galois group G, i.e. L is a CM-
field, K is totally real and complex conjugation induces an unique automorphism j of L which lies
in the center of G. For any prime p of K we fix a prime P of L above p and write Gy resp. Iy
for the decomposition group resp. inertia subgroup of L/K at 8. Moreover, we denote the residual
group at P by Gy = Gg/Ip and choose a lift (bgp € Gy of the Frobenius automorphism ¢y € Gyp.
We fix an odd prime p and put A := Z,G/(1 + j) which is a Z,-order in the separable algebra
A =Q,®z, A. For any Z,G-module M we define M~ = A ®z,a M Since p is odd, taking minus
parts is an exact functor. If M is a ZG-module, we define M~ to be Z[3]G/(1 + j) ®z¢ M. This
notation is nonstandard, but practical: for example, taking minus parts is an exact functor, since we
invert 2.

For any subgroup H of G, let N := Y, .y h. We define central idempotents of Q,Gy by

= |Lp|_1N1m, e% =1- eﬁp.
We define a Z,Gyp-module Uy by

Uy = (N1, 1 — €ty ) 2,65 C QpGop.

Note that Uy = Z,Gy if p is unramified in L/K. If S is a finite set of places of K containing all the
infinite places S, and x is a (complex) character of G, we denote the S-truncated Artin L-function
attached to x and S by Lg(s,x) and define Lg(0,x) to be the leading coefficient of the Taylor
expansion of Lg(s,x) at s = 0. Recall that there is a canonical isomorphism ((CG) = ][, ey () €
where Irr (G) denotes the set of irreducible complex characters of G. We define the equivariant Artin
L-function to be the meromorphic ((CG)-valued function

LS(‘S) = (LS(Sa X))xEIrr (G)-

We put Lg(0) = (L5(0, X)) yenr (¢) and abbreviate Lg, (s) to L(s). Note that if z = (z,)y € ((CG),
then 2* = (zy),. In [Bu01] the author defines the following element of Ko(ZG, R):

TQ(L/K,0) := ¢ (xar(s, Ag") + o (L5(0)F)).

Here, ¢, is a certain involution on Ky(ZG,R) which is not important for our purposes, since we
will be only interested in the nullity of TQ(L/K,0). Furthermore, 7¢ € Ext%(FEs,,ASy) is Tate’s
canonical class (cf. [Ta66]), where S7, denotes the set of places of L which lie above those in S,
Eg, are the Sp-units of L and ASy, is the kernel of the augmentation map ZS7, — Z which maps
each P € S, to 1. Finally, Ag denotes the negative of the usual Dirichlet map, so A\g : R® Eg, —
R®ASL, u— =) nes, loglulpP, and xer(Ts, Ag') is the refined Euler characteristic associated
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to the perfect 2-extension Ag — Bg whose extension class is 7g, metrised by /\51. For more precise
definitions we refer the reader to [Bu01]. The ETNC for the motive h°(L) with coefficients in ZG in
this context asserts that the element TQ(L/K,0) is zero. Note that this statement is also equivalent
to the Lifted Root Number Conjecture formulated by Gruenberg, Ritter and Weiss [GRW99).

It is also proven in [BuOl1] that TQ(L/K,0) lies in Ko(ZG,Q) if and only if Stark’s conjecture
holds. In this case the ETNC decomposes into local conjectures at each prime p by means of the
isomorphism

Ko(ZG,Q) ~ P Ko(Z,G, Qy).
pfoo
Since Stark’s conjecture is known for odd characters (cf. [Ta84|, Th. 1.2, p. 70), TQ(L/K,0) has a
well defined image TQ(L/K,0), in Ko(A, A). Let us fix an embedding ¢ : C — C,; then the image
of L(0) (which actually lies in ((QG)) in ¢(Q,G) via the canonical embedding

(QG) ~ (@G = P &),

x€lrry, (G)/~

is given by erhrp @)/~ L(0, X‘_I)L. Here the sum runs over all Cp,-valued irreducible characters of
G modulo Galois action.

We denote the class group of L by cl;, and the roots of unity in L by ;. We are ready to state a
non-abelian generalization of [Gr07|, Theorem 8.8.

THEOREM 7.1. Let L/K be a finite Galois CM-extension of number fields and p an odd prime. If
pr ® Zy is G-¢.t. and TQ(L/K,0),, = 0, then

L(0)'nr(a) [] nr(Up) C FittR*((clp @ Z,)" )%, (9)
pESram
where Syam denotes the set of finite places of K which ramify in L/K and a is a generator of

Annp(pur ® Zp).

Remark 8. It follows from the results in [BJ] that the inclusion in (9) becomes an equality over A’/
if A’ is a maximal order containing A, and indeed
C(A,) ®C(A) Fittr/{lax((ClL ® Zp)\/—)ﬂ = FittA/(A/ XA (ClL ® Zp)_).

Note that it suffices to assume the Strong Stark Conjecture rather than the ETNC to obtain results
over A’. This conjecture is known to be true in many cases (cf. [Ni] Corollary 2).

COROLLARY 7.2. Let L/K be a finite Galois CM-extension of number fields and p an odd prime
such that ju;, @ Zy is G-c.t. and TQ(L/K,0),, = 0. Let x € ((A") such that x- H* € Myxp(A) for any
H € Myxp(A) and any b € N. Then for any y € L(0)*nr(a) [1,es,.,, 1r(Us), the product x -y belongs
to ((ZpG) and annihilates cl, ® Zp. In particular, if v = (zy)yx € Dyer, )/~ D~YZ,[x]/Z,) and
S is a set of places of K containing Syam U Seo, then
w(a) Y aLs(0,X)'pry € ((Z,0) (10)
x€lrrp (G)/~

annihilates cly, ® Z,. Moreover, if G is abelian, then Brumer’s conjecture is true outside the 2-part.

The last statement is, of course, still contained in [Gr07] (see Corollary 8.11). In the non-abelian
case, the above corollary predicts more annihilators than [BJ], Theorem 1.2. But note that the
explicit annilators (10) are the same as in loc.cit. We conclude with the

of Theorem 7.1. We briefly review the parts of the construction in [Gr07] which are of interest for
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us. For the set Sy of all infinite primes of K, there is a Tate sequence (cf. [RW96])
Eg () = Ao — B = V, (11)
where Ao, is G-c.t., B is ZG-projective and V fits into an exact sequence
cly -V >V,

where V is a ZG-lattice. On minus parts, there is an isomorphism V=~ D,cs,.,, (ind gm (W)™,
where ng can be described as the cokernel of the map (cf. [Gr07], §5)
20y — 26y /(Noy) x 0y
1 — (Np. 1—ogh).
Let x be the canonical epimorphism ZGy @ ZGyp — W;% and define a map 0, : ZGyp - v, — W;g by
d(zy) == k((—1,1)). We induce this map to ZG and sum over all ramified primes p such that we
obtain a map dp : C~ — V , where C is ZG-free with basis z,, p € Sram. Finally, let 6 : C7 — V™~

be any lift of §p and choose a natural number x such that V™~ C §(C)~. Then there is a four-term
exact sequence (cf. [Gr07|, proof of Lemma 8.2 or |[BJ|, proof of Proposition 9.1)

cly — V7 /35(C7) — 27 15(C7)/6(C7) -z~ 16(C7)/V . (12)

Since the minus part of the global units consists of the roots of unity, sequence (11) and the hypothesis
on p, imply that the A-module V™ ® Z,, is c.t. But C is ZG-free and hence V™~ /§(C™) ® Z,, is also
c.t. It follows that we can apply Proposition 5.3 to sequence (12) tensored with Z,.

Let s denote the number of finite primes of K which ramify in L/K. Since C~ ® Z,, ~ A®, we have
a quadratic presentation

A2 g L)

(716(C7)/6(C7)) @ 2y (13)
and thus
Fitta ((2~16(C)/8(C7)) @ Zp) = [(0r(2) Mueca) (14)
Following the notation of [Gr07| and [BJ| we put g, := [Ip|+1 —(bfgl and h, = gye, +e, for p € Sram.
Since C' is projective, sequence (11) gives rise to an exact sequence of finite c.t. A-modules
pr @ Ly — Ay, @ Ly — (B, /0(CT)) @ Zp - (V7 /6(C7)) @ Zp.

Now we reinterpret [BJ], Proposition 8.7 in terms of Fitting invariants: If TQ(L/K,0), = 0, then

Fitta((V™/6(C7)) @ Zp) = Fitta(ur ® Zy) - | (LH(0)nr(hgiop)) e (15)
where hgop =[]

pESeam o Since pup, is cyclic, there is an exact sequence
ram

AL A > pp @7,y

Then a clearly generates the A-annihilator of puy ® Z, and Fitta(pur, ® Z,) is generated by nr(a).
Since there is an isomorphism (cf. [BJ], proof of Prop. 9.1)

(@ 15(CT)/V ) @Zy~ @ AxA(h, Uy),
peSram
the maximal Fitting invariant of this module contains []
together with (15) and (14) implies that
nr(a) L*(0)nr(hgp)nr(z) ™ H nr(:php_lUm) = nr(a)L*(0) H nr(Us).
pESram PESram

is contained in FittR**((cl, ® Z,)"™)". O

pESram nr(zh, 'Uy). Now Proposition 5.3
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