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Abstract

Let L/K be a �nite Galois extension of number �elds with Galois group G. We use
leading terms of Artin L-series at strictly negative integers to construct elements which
we conjecture to lie in the annihilator ideal associated to the Galois action on the
higher dimensional algebraic K-groups of the ring of integers in L. For abelian G our
conjecture coincides with a conjecture of Snaith and thus generalizes also the well known
Coates-Sinnott conjecture. We show that our conjecture is implied by the appropriate
special case of the equivariant Tamagawa number conjecture (ETNC) provided that
the Quillen-Lichtenbaum conjecture holds. Moreover, we prove induction results for the
ETNC in the case of Tate motives h0(Spec(L))(r), where r is a strictly negative integer.
In particular, this implies the ETNC for the pair (h0(Spec(L))(r),M), where L is totally
real, r < 0 is odd and M is a maximal order containing Z[12 ]G, and will also provide some
evidence for our conjecture.

1. Introduction

Let L/K be a �nite Galois extension of number �elds with Galois group G. To each �nite set S
of places of K which contains all the in�nite places, one can associate a so-called �Stickelberger
element� θS in the center of the group ring algebra CG. This Stickelberger element is de�ned via
L-values at zero of S-truncated Artin L-functions attached to the (complex) characters of G. Let us
denote the roots of unity of L by µL and the class group of L by clL. Assume that S contains the
set Sram of all �nite primes of K which ramify in L/K. Then it was independently shown in [Ca79],
[DR80] and [Ba77] that for abelian G one has

AnnZG(µL)θS ⊂ ZG, (1)

where we denote by AnnΛ(M) the annihilator ideal ofM regarded as a module over the ring Λ. Now
Brumer's conjecture asserts that AnnZG(µL)θS annihilates clL. Using L-values at strictly negative
integers r, one can de�ne higher Stickelberger elements θS(r). Coates and Sinnott [CS74] conjectured
that these elements can be used to construct annihilators of the higher K-groups K−2r(oL,S), where
we denote by oL,S the ring of S(L)-integers in L for any �nite set S of places of K; here, we write
S(L) for the set of places of L which lie above those in S. But if, for example, L is totally real and r
is even, this conjecture merely predicts that zero annihilates K−2r(oL,S). Assuming the validity of a
conjecture of Gross [Gr05] which is a higher analogue of Stark's conjecture, Snaith [Sn06] constructed
a fractional ideal J S

r in the rational group ring QG, the so-called canonical fractional Galois ideal.
The construction involves leading terms rather than values of Artin L-functions at negative integers.
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Snaith conjectured that for any odd prime p one has

AnnZpG(K1−2r(oL,S)tor ⊗ Zp) · J S
r ∩ ZpG ⊂ AnnZpG(K−2r(oL,S)⊗ Zp). (2)

Here, we write Mtor for the R-torsion submodule of an RG-module M if R is a commutative ring
and G is a �nite group.
The Quillen-Lichtenbaum conjecture relates K-groups to étale cohomology, predicting that for all
odd primes p, r ∈ Z<0 and i = 0, 1 the canonical p-adic Chern class maps

ch
(p)
1−r,2−i : Ki−2r(oL)⊗ Zp → H2−i

ét (oL[1/p],Zp(1− r)) (3)

constructed by Soulé [So79] are isomorphisms. Soulé proved surjectivity and recent unpublished
work of Rost and Weibel seems to have led to a proof of the Quillen-Lichtenbaum conjecture such
that one may replace the K-groups in the above conjecture by the corresponding étale cohomology
groups.
In [BS10] the authors generalize the notion of the canonical fractional Galois ideal to arbitrary Ga-
lois extensions of number �elds. We will introduce a di�erent generalization of J S

r to non-abelian
Galois extensions and, as in the abelian case, we conjecture that J S

r can be used to construct an-
nihilators of K−2r(oL,S) ⊗ Zp for all odd primes p. We show that J S

r can be expressed in terms
of (non-commutative) Fitting invariants. Assuming the validity of the Quillen-Lichtenbaum conjec-
ture, this gives the connection to the appropriate special case of the equivariant Tamagawa number
conjecture (ETNC) as formulated by Burns and Flach [BF01]. More precisely, the ETNC for the
Tate motive Q(r)L := h0(Spec(L))(r) with coe�cients in Z[12 ]G implies the cohomological version of
our conjecture (and hence the cohomological version of Snaith's conjecture). This �ts well into the
picture that the ETNC should be the central conjecture in the �eld. Together with a recent result
of Burns [Bu] this will provide some evidence for our conjecture.
We use a new formulation of the ETNC for Tate motives Q(r)L, r ∈ Z<0 due to Burns [Bu10]
to prove induction results which are well known in the case r = 0. This will provide some further
evidence for our conjecture and in fact will lead to a proof of the ETNC for the pair (Q(r)L,M),
where L is totally real, r < 0 is odd and M is a maximal order containing Z[12 ]G. As a byproduct
we obtain spectral sequences for χ-twists which have been introduced by Burns [Bu08].
I would like to thank M. Witte for many enlightening discussions and D. Burns, T. Nguyen Quang
Do and the reviewer for their useful remarks.

2. The conjectures

Let L/K be a �nite Galois extension of number �elds with Galois group G. For any place v of K we
�x a place w of L above v and write Gw resp. Iw for the decomposition group resp. inertia subgroup
of L/K at w. Moreover, we choose a lift ϕw ∈ Gw of the Frobenius automorphism at w. Let S
be a �nite set of places of K containing the set S∞ of all in�nite primes and the set Sram of all
primes which ramify in L/K. We denote the S-truncated Artin L-function attached to a (complex)
character χ of G by LS(s, χ), and the leading coe�cient of the Taylor expansion of LS(s, χ) at s = r,
r ∈ Z by L∗

S(r, χ). Recall that there is a canonical isomorphism ζ(CG) =
∏
χ∈Irr (G)C, where Irr (G)

denotes the set of irreducible complex characters of G, and where we write ζ(Λ) for the center of any
ring Λ. We de�ne the equivariant Artin L-function to be the meromorphic ζ(CG)-valued function

LS(s) := (LS(s, χ))χ∈Irr (G).

Let us denote by ♯ : CG→ CG the involution which is induced by mapping each g ∈ G to its inverse,
and let nr : CG→ ζ(CG) be the reduced norm map. If T is a second �nite set of places of K sucht
that S ∩ T = ∅, we de�ne δT (s) := (δT (s, χ))χ∈Irr (G), where δT (s, χ) =

∏
v∈T nr(1 − N(v)1−sϕ−1

w ),
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and put

ΘS,T (s) := δT (s) · LS(s)♯.
These functions are the so-called (S, T )-modi�ed G-equivariant L-functions and for r ∈ Z60 we
de�ne Stickelberger elements

θTS (r) := ΘS,T (r) ∈ ζ(CG).
Note that these elements actually lie in the center of the rational group ring QG by a classical result
of Siegel [Si70]. If T is empty, we abbreviate θTS (r) by θS(r). Now the higher K-theoretic analogue
of Brumer's conjecture asserts the following:

Conjecture 2.1 Coates-Sinnott. For all abelian extensions L/K, S and p ̸= 2 as above, and all
r ∈ Z<0 we have

AnnZpG(K1−2r(oL)tor ⊗ Zp) · θS(r) ⊂ AnnZpG(K−2r(oL)⊗ Zp).

Since we would like to use étale cohomology rather than K-theory, we state the following con-
jecture:

Conjecture 2.2 Quillen-Lichtenbaum. The p-adic Chern class maps ch
(p)
1−r,2−i are isomorphisms

for all primes p ̸= 2, r ∈ Z<0 and i = 0, 1.

Note that Dwyer and Friedlander [DF85] have constructed Chern class maps also for p = 2,
but these maps are in general neither surjective nor injective. Since the Chern class maps are G-
equivariant, the following conjecture should be equivalent to Conjecture 2.1.

Conjecture 2.3 Coates-Sinnott, cohomological version. For all abelian extensions L/K, S and
p ̸= 2 as above, and all r ∈ Z<0 we have

AnnZpG(H
1
ét(oL[1/p],Zp(1− r))tor) · θS(r) ⊂ AnnZpG(H

2
ét(oL[1/p],Zp(1− r))).

Let us denote the cyclotomic Zp-extension of a number �eld K by Kp
∞, and the maximal real

sub�eld of K by K+. Then the strongest piece of evidence in support of Conjecture 2.3 is the
following:

Theorem 2.4 Burns-Greither, [BG03b], Cor. 5.3. Conjecture 2.3 is true if K is totally real, L is
either totally real or CM, p is a prime such that L∩Kp

∞ = K, and the Iwasawa µ-invariant attached
to L+ and p vanishes.

The vanishing of the µ-invariant is a long-standing conjecture of Iwasawa theory. The most
general result is still due to Ferrero and Washington [FW79] and says that µ = 0 for absolutely
abelian extensions. The condition L ∩Kp

∞ = K can be relaxed (cf. [Ng05]).
Let Σ(L) denote the set of embeddings of L into the complex numbers; we have |Σ(L)| = r1 + 2r2,
where r1 and r2 are the number of real embeddings and the number of pairs of complex embeddings,
respectively. For r ∈ Z<0 we de�ne

Hr(L) :=
⊕
Σ(L)

(2πi)−rZ

which is endowed with a Gal(C/R)-action, diagonally on Σ(L) and on (2πi)−r. We denote the �xed
points of Hr(L) under this action by H+

r (L), and it is easily seen that

rkZ(H
+
r (L)) = d1−r :=

{
r2 if 2 - r
r1 + r2 if 2 | r.

3
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Borel [Bo74] has determined the group structure of the higher K-groups: For r < 0 the groups
K−2r(oL) are �nite, K1−2r(oL) has a �nite torsion submodule and K1−2r(oL)tf ≃ Zd1−r , where we
use the notation Mtf :=M/Mtor for any G-module M . Indeed, Borel de�ned higher regulator maps

ρr : K1−2r(oL) −→ H+
r (L)⊗ R

and showed that the kernel is �nite and the image is a full lattice in H+
r (L) ⊗ R. The covolume of

this lattice is called the Borel regulator and will be denoted by RBr (L). Moreover, Borel obtained
that there is a nonzero rational number qr such that

ζ∗L(r) = qr ·RBr (L),

where ζL(s) denotes the Dedekind zeta function attached to L. Lichtenbaum conjectured the follow-
ing generalization of the classical class number formula:

Conjecture 2.5 Lichtenbaum. For all r < 0 we have

ζ∗L(r) = ± |K−2r(oL)|
|K1−2r(oL)tor|

·RBr (L)

up to powers of 2.

In view of Conjecture 2.2 we may also state the following cohomological version of this conjecture:

Conjecture 2.6 Lichtenbaum, cohomological version. For all r < 0 and all primes p ̸= 2 we have

ζ∗L(r) ∼p
|H2

ét(oL[1/p],Zp(1− r))|
|H1

ét(oL[1/p],Zp(1− r))tor|
·RBr (L),

where ∼p means �equal up to a p-adic unit�.

As a consequence of his proof of the Iwasawa main conjecture for totally real �elds, Wiles
(cf. [Wi90]) obtained the following result:

Theorem 2.7 Wiles. If L is totally real and r < 0 is odd, then Conjecture 2.6 holds.

Note that in this case ζ∗L(r) = ζL(r) and the Borel regulator is trivial, since d1−r = 0. In the
case of absolutely abelian extensions Conjecture 2.6 is known in full generality (cf. [KNF96, BN02,
HK03, BG03a]).
Since the Borel regulator map induces an isomorphism of RG-modules, the Noether-Deuring theorem
implies the existence of QG-isomorphisms

ϕr : H
+
r (L)⊗Q ≃−→ K1−2r(oL)⊗Q. (4)

Let R(G) denote the ring of virtual characters with values in the algebraic closure Qc of Q. Let F
be a �nite Galois extension of Q such that each representation of G can be realized over F , and let
Vχ be a FG-module with character χ. We form regulator maps

Rϕr : R(G) −→ C×

χ 7→ det(ρr ◦ ϕr|HomG(Vχ̌, H
+
r (L)⊗ C)),

where χ̌ is the character contragradient to χ. Moreover, we de�ne a function

ASϕr : R(G) −→ C×

χ 7→ Rϕr(χ)/L
∗
S(r, χ).

The higher analogue of Stark's conjecture is the following (cf. [Gr05], Conj. 3.11):

Conjecture 2.8 Gross. We have ASϕr(χ
σ) = ASϕr(χ)

σ for all r < 0 and all σ ∈ Aut(C).
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Mimicking the construction of Snaith [Sn06], �4.3, we now de�ne the canonical fractional Galois
ideal for an arbitrary �nite extension of number �elds. Assume for the moment that K is any �eld,
A is a �nite dimensional semi-simple K-algebra and Λ is an R-order in A, where R is a commutative
noetherian domain with �eld of quotients K. If P is a �nitely generated projective Λ-module, and
α is an endomorphism of P ⊗ K, then we may choose a �nitely generated (projective) Λ-module
Q such that P ⊕Q is free, and taking the reduced norm of α ⊕ 1 with respect to a chosen Λ-basis
yields a well de�ned element

nrP (α) ∈ ζ(A).

Since Hr(L) is a Z[G × Gal(C/R)]-module which is free over ZG, we may apply the above con-
struction to the projective Z[12 ]G-module H+

r (L) ⊗ Z[12 ]: Choose an isomorphism ϕr as in (4) and
de�ne Iϕr to be the (�nitely generated) ζ(Z[12 ]G)-submodule of ζ(QG) generated by all the ele-
ments nr

H+
r (L)⊗Z[ 12 ]

(α), where α runs through the QG-endomorphisms of H+
r (L)⊗Q satisfying the

integrality condition

αfr(K1−2r(oL)) ⊂ H+
r (L),

where fr := ϕ−1
r . We may regard ASϕr as an element of ζ(CG)×; its χ-component via the isomorphism

ζ(CG) ≃
⊕

χ∈Irr (G)C is just ASϕr(χ). We put

J S
r = J S

r (L/K) := Iϕr · ((ASϕr)
−1)♯.

Definition 2.9. Assume that Gross' conjecture (Conjecture 2.8) holds. Then J S
r is a �nitely gen-

erated ζ(Z[12 ]G)-submodule of ζ(QG) which is called the canonical fractional Galois ideal.

It is clear that our de�nition coincides with the de�nition of Snaith for abelian G; for non-abelian
G, however, our de�nition di�ers from that in [BS10]. Even if the de�nition involves the choice of
an isomorphism ϕr, we have the following proposition which is proved along the lines of [Sn06],
Prop. 4.5.

Proposition 2.10. The de�nition of J S
r does not depend on the choice of ϕr.

Before we can state our new conjecture, we have to introduce the following construction in
order to get rid of possible denominators. Assume that Λ is an R-order in a semi-simple �nite
dimensional K-algebra A, where R is an integrally closed commutative noetherian ring with �eld
of quotients K. We choose a maximal order Λ′ containing Λ. For any matrix H ∈ Mb×b(Λ) there
is a matrix H∗ ∈ Mb×b(Λ

′) such that H∗H = HH∗ = nr(H) · 1b×b (cf. [Ni10], Lemma 4.1; the
additional assumption on R to be complete local is not necessary), where for any ring Λ we denote
by Ma×b(Λ) the set of all a× b matrices with entries in Λ. If H̃ ∈Mb×b(Λ) is a second matrix, then
(HH̃)∗ = H̃∗H∗. We de�ne

H(Λ) := {x ∈ ζ(Λ)|xH∗ ∈Mb×b(Λ)∀b ∈ N ∀H ∈Mb×b(Λ)} .

Note that in particular x · nr(H) ∈ Λ for all x ∈ H(Λ) and all matrices H with entries in Λ. If p is
a prime, we will abbreviate H(ZpG) by Hp(G). We now state:

Conjecture 2.11. Let L/K be a �nite Galois extension of number �elds with Galois group G,
r ∈ Z<0 and S a �nite set of primes of K containing all the in�nite primes and those which ramify
in L/K. Then for all odd primes p and any x ∈ AnnZpG(K1−2r(oL,S)tor ⊗ Zp) we have

nr(x) · Hp(G) · J S
r ⊂ AnnZpG(K−2r(oL,S)⊗ Zp).

As before, we may also formulate a cohomological version of this conjecture:

5



Andreas Nickel

Conjecture 2.12. Let r and S as above. Then for all odd primes p and any
x ∈ AnnZpG(H

1
ét(oL,S [1/p],Zp(1− r))tor) we have

nr(x) · Hp(G) · J S
r ⊂ AnnZpG(H

2
ét(oL,S [1/p],Zp(1− r))).

Remark 1. i) Since Hp(G) = ZpG for abelian G, Conjecture 2.11 recovers Snaith's conjecture
([Sn06], Conj. 5.1, see (2) above), but with an additional integrality statement which was posed
as Question 5.3 in loc.cit.

ii) The localization sequence in p-adic étale cohomology leads to an isomorphism (cf. [So79])

H1
ét(oL[1/p],Zp(1− r)) ≃ H1

ét(oL,S [1/p],Zp(1− r))

and to an exact sequence

H2
ét(oL[1/p],Zp(1− r)) � H2

ét(oL,S [1/p],Zp(1− r)) �
⊕

w∈S(L)
w-p∞

H1
ét(L(w),Zp(−r)), (5)

where L(w) denotes the residue �eld at w. Let GL := Gal(Qc/L); the above isomorphism
implies that

H1
ét(oL,S [1/p],Zp(1− r))tor ≃ H0

ét(oL[1/p],Qp/Zp(1− r)) = Qp/Zp(1− r)GL =: µ1−r(L)

whose annihilator is generated by the elements 1−ϕw ·N(v)r−1, where v runs through the �nite
places of K not above p, v ̸∈ Sram (cf. [Co77]). Similarly, the annihilator of H1

ét(L(w),Zp(−r))
is generated by 1− ϕw ·N(v)r. Moreover, if S′ is a second �nite set of places of K containing
S, we have

J S′
r = J S

r · δS′\S(1− r)♯ = J S
r ·

∏
v∈S′\S

nr(1− ϕw ·N(v)r).

Assume that Hp(G) = ζ(ZpG) which is ful�lled, for instance, if G is abelian or if p - |G|. Then
sequence (5) implies that the validity of Conjecture 2.12 for the set S implies Conjecture 2.12
for the set S′. For the required fact that nr(1− ϕw ·N(v)r) annihilates H1

ét(L(w),Zp(−r)) see
Theorem 4.3 below.

iii) Assume that L is totally real and r < 0 is odd. Then

J S
r = θS(r) · ζ(Z[12 ]G)

and Conjecture 2.12 predicts that in particular

Hp(G) · θTS (r) ⊂ AnnZpG(H
2
ét(oL,S [1/p],Zp(1− r)))

for all �nite sets T of places of K such that S ∩ T = ∅. By virtue of sequence (5) we see that
Conjecture 2.12 generalizes Conjecture 2.3. Similar observations hold if L/K is a CM-extension
and r < 0 is even.

iv) In [BdJG] the authors conjecture the existence of elements in odd degree higher algebraic K-
groups of number �elds that are related in an explicit way to the values at strictly negative
integers of the �rst derivatives of Artin L-functions. These elements can be used to construct
conjectural annihilators of even degree higher algebraic K-groups (cf. loc.cit., Th. 3.1). Their
approach is di�erent from ours (as they use values of �rst derivatives instead of leading terms),
and probably more convenient for providing numerical evidence.

At last, we have to deal with the ETNC for the Tate motive Q(r)L. We will give a reformulation
due to Burns [Bu10]. Let G be a �nite group and let A be an R-order in QG containing the group
ring RG, where R is a �nitely generated subring of Q. The reduced norm induces an injective
homomorphism nr : K1(RG) → ζ(RG)×, and there exists an extended boundary homomorphism

6
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(due to Burns and Flach [BF01])

∂̂A : ζ(RG)× −→ K0(A,RG)

such that ∂̂A ◦ nr is the usual boundary homomorphism of the localization sequence of relative
K-theory (cf. [CR87], p. 72).

Definition 2.13. Let H0 and H1 be �nitely generated A-modules.

i) An element ϵ ∈ Ext2A(H
1,H0) is called perfect if it can be represented as a Yoneda extension

by an exact sequence

H0 � A→ B � H1

in which A and B are both �nitely generated A-modules of �nite projective dimension.

ii) An augmented trivialized extension (a.t.e. for short) of A-modules is a triple τ = (ϵτ , λτ ,L
∗
τ )

comprising a perfect 2-extension ϵτ ∈ Ext2A(H
1
τ ,H

0
τ ) of �nitely generated A-modules, an iso-

morphism λτ : H0
τ ⊗R R ≃ H1

τ ⊗R R of RG-modules and an element L∗
τ ∈ ζ(RG)×.

iii) The Euler characteristic χ(τ) of an a.t.e. τ is de�ned to be

χ(τ) := χA,RG(ϵτ , λτ )− ∂̂A(L
∗
τ ) ∈ K0(A,RG),

where the �rst term on the right hand side denotes the re�ned Euler characteristic of the perfect
complex A→ B whose extension class is ϵτ , trivialized by λτ (cf. [Bu03]).

We now state the following proposition due to Burns ([Bu10], Prop. 4.2.6) which provides a
reformulation of the ETNC for the pair (Q(r)L,ZG). As before, let S be a �nite set of places of K
containing Sram ∪ S∞.

Proposition 2.14. Let r ∈ Z<0 and assume that the Quillen-Lichtenbaum Conjecture (Conjecture
2.2) holds for all odd primes p. Then there exists an a.t.e. τr of ZG-modules with the following
properties:

i) H0
τr ⊗ Z[12 ] = K1−2r(oL)⊗ Z[12 ] and (H1

τr)tor ⊗ Z[12 ] = K−2r(oL,S)⊗ Z[12 ] and (H1
τr)tf ⊗ Z[12 ] =

H+
r ⊗ Z[12 ];

ii) λτr is induced by −1 times the Beilinson regulator map (as described in [BG02]);

iii) L∗
τr = L∗

S(r)
♯;

iv) The Euler characteristic χ(τr) vanishes if and only if the ETNC holds for the pair (Q(r)L,ZG).

Since the Borel regulator is twice the Beilinson regulator by a result of Burgos Gil [BG02], there
will be no essential di�erence if we replace Borel's regulator by Beilinson's throughout the above
mentioned conjectures.
In fact, the proof of Proposition 2.14 shows more: For each prime p we set

C ·
p,r := RHomZp(RΓc(oL,S [1/p],Zp(r)),Zp[−2]),

where RΓc(oL,S [1/p],Zp(r)) is the complex of ZpG-modules given by the cohomology with compact
support as de�ned in [BF01], p. 522. For any ring Λ we write D(Λ) for the derived category of
Λ-modules and denote the full triangulated subcategory of D(Λ) consisting of perfect complexes by
Dperf(Λ). Then the complex C ·

p,r belongs to Dperf(ZpG) and is acyclic outside degrees 0 and 1. Then
for any prime p there are isomorphisms

H i
τr ⊗ Zp ≃ H i(C ·

p,r), i = 0, 1

and the extension class ϵτr corresponds to ⊕C ·
p,r under the homomorphism

Ext2ZG(H
1
τr ,H

0
τr) −→

⊕
p

Ext2ZpG(H
1(C ·

p,r),H
0(C ·

p,r)).

7



Andreas Nickel

Moreover, C ·
p,r �ts into an exact triangle in D(ZpG) (cf. [BF98], Prop. 4.1).:⊕

w∈S∞(L)

RHomZp(RΓ∆(L(w),Zp(r)),Zp)[−3] −→ RΓ(oL,S [1/p],Zp(1− r)) −→ C ·
p,r[−1] −→ (6)

where RHomZp(RΓ∆(L(w),Zp(r)),Zp) is given by Zp(−r) (placed in degree zero) if w is complex,
and by

Zp
δ1−→ Zp

δ0−→ Zp
δ1−→ . . .

if w is real and δi is multiplication with 1 − (−1)r+i+1 for i = 0, 1; here, the �rst Zp is placed in
degree 0. Let us denote the sets of real and complex places of K by SR and SC, respectively. Then the
triangle (6) gives the following description of H i

τr , i = 0, 1: For each prime p there are isomorphisms

H0
τr ⊗ Zp ≃ H1

ét(oL[1/p],Zp(1− r)), (H1
τr)tor ⊗ Zp ≃ H2

ét(oL,S [1/p],Zp(1− r)).

Moreover, we have an isomorphism

(H1
τr)tf ⊗ Zp ≃ H+

r (L)⊗ Zp

unless p = 2 and r is even; in this case we have an exact sequence

(H1
τr)tf ⊗ Z2 � H+

r (L)⊗ Z2 �
⊕

w∈SR(L)

Z/2Z.

Globally, we thus obtain

H0
τr ≃ H1(oL,Z(1− r)),

H2(oL,S ,Z(1− r)) � H1
τr → H+

r (L) �
⊕

w∈SR(L)

Z/2Z (7)

if r is even, and without the rightmost term if r is odd. Here we use the global �models� for the
étale cohomology groups as de�ned in [CKPS98], �3. Hence H2(oL,S ,Z(1− r)) is simply the direct
product

∏
pH

2
ét(oL,S [1/p],Zp(1− r)), whereas the construction of H1(oL,Z(1− r)) is more involved:

the Chern class maps ch
(p)
1−r,1 for all primes p yield a homomorphism

ch1−r,1 : K1−2r(oL)⊗ Ẑ −→ H1
∞(oL,Z(1− r)) :=

∏
p

H1
ét(oL[1/p],Zp(1− r))

with �nite cokernel T of 2-power order. Then there is an exact sequence (cf. [CKPS98], Lemma 3.8)

ch1−r,1(K1−2r(oL)) � H1(oL,Z(1− r)) � T

and the isomorphism λτr of Proposition 2.14 is −λr ◦ ch−1
1−r,1, where λr = 1

2 · ρr is the Beilinson
regulator. Since the proof of Proposition 2.14 makes use of the Quillen-Lichtenbaum Conjecture
only to derive assertion (i), we obtain the following result (for the last two assertions compare
[Bu10], Lemma 6.1.1, Th. 5.1.1 and Remark 5.1.3).

Proposition 2.15. Let L/K be a Galois extension of number �elds with Galois group G and let
r ∈ Z<0. Then there exists an a.t.e. τr of ZG-modules with the following properties:

i) H i
τr are as described in (7), i = 0, 1;

ii) λτr = −λr ◦ ch−1
1−r,1;

iii) L∗
τr = L∗

S(r)
♯;

iv) The Euler characteristic χ(τr) vanishes if and only if the ETNC holds for the pair (Q(r)L,ZG);
v) χ(τr) ∈ K0(ZG,QG) if and only if Gross' Conjecture (Conjecture 2.8) holds for r;

8
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vi) Assume that Gross' Conjecture holds, and let A be an R-order in QG containing ZG, where
R is a �nitely generated subring of Q. Then χ(τr) lies in the kernel of the natural map
K0(ZG,QG) → K0(A,QG) if and only if the ETNC holds for the pair (Q(r)L,A).

3. An alternative de�nition of the canonical fractional Galois ideal

In this section we �x an integer r < 0, an abelian extension of number �elds L/K with Galois group
G and a �nite set S of places of K containing Sram ∪ S∞. For any ZG-module (resp. ZpG-module)
M we denote the Pontryagin dual Hom(M,Q/Z) (resp. Hom(M,Qp/Zp)) of M by M∨ which is
equipped with the natural G-action (gf)(m) = f(g−1m) for f ∈M∨, g ∈ G and m ∈M . Assuming
Conjecture 2.8, we choose an equivariant injection

ϕr : H
+
r (L)⊗ Z[12 ] � K1−2r(oL)tf ⊗ Z[12 ]

and de�ne a Z[12 ]G-submodule J̃ S
r = J̃ S

r (L/K) of QG by declaring

(J̃ S
r )

♯ = Fitt
Z[ 12 ]G

((cokϕr)
∨) · (ASϕr)

−1.

We will need the following lemma.

Lemma 3.1. Let R be a commutative ring with identity and let π : P � M be an epimorphism
of �nitely generated R-modules with projective P . Then FittR(M) is generated by the elements
nrP (α), where α runs through the endomorphisms of P such that im (α) is contained in the kernel
of π.

Proof. Two R-ideals are equal if they become equal after localization at each prime ideal. But a
projective module over a commutative local ring is free, and in this case the above assertion is clear
by the de�nition of Fitting ideals and the fact that they are well de�ned.

Proposition 3.2. Let L/K be an abelian extension of number �elds, r and S as above. Then we
have an equality

J̃ S
r = J S

r .

In particular, the de�nition of J̃ S
r does not depend on ϕr.

Proof. As before, we will drop _ ⊗ Z[12 ] from the notation. Choose a G-equivariant embedding
fr : K1−2r(oL)tf � H+

r (L) and put ϕr := (Qfr)−1. Moreover, choose an integer n such that n · ϕr
maps H+

r (L) into K1−2r(oL)tf . Since fr ◦ (nϕr) is multiplication by n on H+
r (L), we have an exact

sequence

(cok fr)
∨ � H+

r (L)/n
π̃
� (cok (nϕr))

∨. (8)

where the epimorphism π̃ is induced by fr. We now show that J S
r contains J̃ S

r . Let π : H+
r (L) �

(cok (nϕr))
∨ be the epimorphism which is obtained by composing the natural projection H+

r (L) �
H+
r (L)/n and π̃. Let α be an endomorphism of H+

r (L) such that im (α) lies in the kernel of π.
By Lemma 3.1 it su�ces to show that nrH+

r (L)(α)
♯ belongs to Inϕr . Let P be a �nitely generated

projective Z[12 ]G-module such that H+
r (L) ⊕ P is free of rank m, say. Moreover, let α′ = α ⊕ idP

and let α′ be the endomorphism of (H+
r (L)⊕ P )/n induced by α′. Then the cokernel of α′ projects

onto (cok (nϕr))
∨ and hence there exists an injection

cok (nϕr) � (cok (α′))∨ ≃ ker((α′)T,♯),

where we identify α′ with the corresponding m × m matrix, (α′)T denotes the transpose of this
matrix, and the isomorphism on the right hand side follows from [Ni10], Lemma 5.2 and the proof
of loc.cit., Prop. 5.3, where it is shown that ker((α′)T,♯) ≃ cok ((α′)T,♯) (see four lines after equation

9
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(6) of the proof). We may write (α′)T,♯ = αT,♯⊕ idP , where α
T,♯ is an endomorphism of H+

r (L) such
that its reduced norm equals nrH+

r (L)(α)
♯. But since αT,♯ induces the zero map on cok (nϕr), the

dual of sequence (8) implies that

K1−2r(oL)tf
fr−→ H+

r (L) � H+
r (L)/n

αT,♯

−→ H+
r (L)/n

is the zero map and hence αT,♯n−1fr(K1−2r(oL)) ⊂ H+
r (L) as desired. Conversely, let α be an

endomorphism of H+
r (L) ⊗ Q such that αn−1fr(K1−2r(oL)) ⊂ H+

r (L). Since n
−1fr(K1−2r(oL))

contains H+
r (L), we see that α is actually an endomorphism of H+

r (L) such that α : H+
r (L)/n →

H+
r (L)/n induces the zero map on cok (nϕr) (via the dual of sequence (8)). Taking duals, we �nd

that αT,♯ induces the zero map on (cok (nϕr))
∨ and we obtain epimorphisms

cok (αT,♯) � cok (αT,♯) � (cok (nϕr))
∨

such that Fitt
Z[ 12 ]G

((cok (nϕr))
∨) contains nr(αT,♯) = nr(α)♯. As any equivariant injection ψr :

H+
r (L) ⊗ Z[12 ] � K1−2r(oL)tf ⊗ Z[12 ] arises as n · (Qfr)−1 for appropriate n and fr as above (put

fr = n · (Qψr)−1 for suitable n), we are done.

4. The relation to the equivariant Tamagawa number conjecture

The aim of this section is to prove the following result.

Theorem 4.1. Let L/K be a Galois extension of number �elds with Galois group G and r ∈ Z<0.
Assume that the ETNC holds for the pair (Q(r)L,Z[12 ]G). Then Conjecture 2.12 is true for r and
all admissible sets S. In particular, Conjecture 2.11 holds for r and S if the Quillen-Lichtenbaum
conjecture (Conjecture 2.2) holds for r.

If L/K is a CM-extension, we denote by j ∈ G the unique automorphism induced by complex
conjugation and put e− := 1−j

2 ∈ Z[12 ]G. Theorem 4.1 together with [Bu], Cor. 2.10 immediately
implies the following result.

Corollary 4.2. i) Let L/K be a Galois extension of totally real �elds with Galois group G and
let r < 0 be odd. Assume that the Iwasawa µ-invariant vanishes for all odd primes p. Then
conjecture 2.12 is true for r and all admissible sets S.

ii) Let L/K be a Galois CM-extension with Galois group G and let r < 0 be even. Assume that
the Iwasawa µ-invariant vanishes for all odd primes p. Then conjecture 2.12 is true for r and
all admissible sets S if we replace J S

r by J S
r e−.

Since we will not assume that G is abelian, we give a short introduction to non-commutative
Fitting invariants (cf. [Ni10]).
If R is a ring and n ∈ N, we denote the group of all invertible elements of Mn×n(R) by Gln(R).
Let A be a separable K-algebra and Λ be an R-order in A, �nitely generated as R-module, where
R is a complete commutative noetherian local ring with �eld of quotients K. Moreover, we will
assume that the integral closure of R in K is �nitely generated as R-module. The group ring ZpG
of a �nite group G will serve as a standard example. Let N and M be two ζ(Λ)-submodules of an
R-torsionfree ζ(Λ)-module. Then N and M are called nr(Λ)-equivalent if there exists an integer
n and a matrix U ∈ Gln(Λ) such that N = nr(U) ·M . We denote the corresponding equivalence
class by [N ]nr(Λ). We say that N is nr(Λ)-contained in M (and write [N ]nr(Λ) ⊂ [M ]nr(Λ)) if for all
N ′ ∈ [N ]nr(Λ) there exists M ′ ∈ [M ]nr(Λ) such that N ′ ⊂ M ′. Note that it su�ces to check this
property for one N0 ∈ [N ]nr(Λ). We will say that x is contained in [N ]nr(Λ) (and write x ∈ [N ]nr(Λ))
if there is N0 ∈ [N ]nr(Λ) such that x ∈ N0.

10
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Now let M be a �nitely presented (left) Λ-module and let

Λa
h−→ Λb � M (9)

be a �nite presentation of M . We identify the homomorphism h with the corresponding matrix in
Ma×b(Λ) and de�ne S(h) = Sb(h) to be the set of all b × b submatrices of h if a > b. In the case
a = b we call (9) a quadratic presentation. The Fitting invariant of h over Λ is de�ned to be

FittΛ(h) =

{
[0]nr(Λ) if a < b[
⟨nr(H)|H ∈ S(h)⟩ζ(Λ)

]
nr(Λ)

if a > b.

We call FittΛ(h) a (non-commutative) Fitting invariant of M over Λ. One de�nes Fittmax
Λ (M)

to be the unique Fitting invariant of M over Λ which is maximal among all Fitting invariants of
M with respect to the partial order �⊂�. If M admits a quadratic presentation h, one also puts
FittΛ(M) := FittΛ(h) which is independent of the chosen quadratic presentation. The following
result is [Ni10], Th. 4.2.

Theorem 4.3. If R is an integrally closed complete commutative noetherian local ring and M is a
�nitely presented Λ-module, then

H(Λ) · Fittmax
Λ (M) ⊂ AnnΛ(M).

Lemma 4.4. Let ϵ : H0 � A → B � H1 be a perfect 2-extension of ZpG-modules, where H i is

�nite, i = 0, 1. If χZpG,QpG(ϵ, 0) = ∂̂ZpG(L), where L ∈ ζ(QpG)
×, then we have an equality

Fittmax
ZpG((H

0)∨)♯ = Fittmax
ZpG(H

1) · L.

Proof. Since the re�ned Euler characteristic χZpG,QpG(ϵ, 0) only depends upon the isomorphism class
of the perfect complex A → B in Dperf(ZpG), we may assume that A and B are �nite G-modules.
But then [Ni10], Prop. 5.3 gives the �rst equality in

Fittmax
ZpG((H

0)∨)♯ = Fittmax
ZpG(H

1)FittZpG(A)FittZpG(B)−1

= Fittmax
ZpG(H

1) · L,

whereas the second equality follows from

∂̂ZpG(L) = χZpG,QpG(ϵ, 0) = (A)− (B)

(here we regard (A) and (B) as elements ofK0(ZpG,Qp) under the canonical isomorphismK0(ZpG,Qp) ≃
K0T (ZpG), where K0T (ZpG) denotes the Grothendieck group of the category of all Zp-torsion ZpG-
modules of �nite projective dimension) and the following observation: Let A be a �nite c.t. (short
for cohomologically trivial) ZpG-module; we may choose a quadratic presentation

(ZpG)n
h
� (ZpG)n � A

and, by de�nition, nr(h) is a generator of FittZpG(A). Since the class of Qph inK1(QpG) is a preimage

of (A), we have ∂̂ZpG(nr(h)) = (A). Now assume that L′ ∈ ζ(QpG)
× is such that ∂̂ZpG(L′) = (A),

then L′ is also a generator of FittZpG(A), since nr(h)(L′)−1 ∈ nr(K1(ZpG)). Now apply this to
L′ = L · nr(g), where g is a quadratic presentation of B.

Proof of Theorem 4.1. Let τr be the a.t.e. described in Proposition 2.15 and let

ϵ : H0 � A→ B � H1

be the corresponding perfect 2-extension. As before, we will implicitly tensor with Z[12 ] such that we
have isomorphisms

H0 ≃ H1(oL,Z(1− r)), H1 ≃ H+
r (L)⊕H2(oL,S ,Z(1− r))

11
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by projectivity of H+
r (L). By the same reason we have an isomorphism B ≃ H+

r (L)⊕ B′. We now
choose a G-equivariant embedding

ϕ : H1
tf � H0

which induces an embedding ϕ : H1
tf � H0

tf . For each prime p ̸= 2 we de�ne

KS
r (p) :=

(
Fittmax

ZpG((cokϕ⊗ Zp)∨) · (ASϕ)−1
)♯
, (10)

J̃ S
r (p) :=

(
Fittmax

ZpG((cokϕ⊗ Zp)∨) · (ASϕ)−1
)♯
.

As before, these de�nitions do not depend on ϕ (but we will make no use of this fact). We observe
that H1

tf = H+
r (L) and ch−1

1−r,1 induces an isomorphism H0
tf ≃ K1−2r(oL)tf , since the kernel of the

Chern class maps are �nite. A similar proof as of Proposition 3.2 shows that for any prime p ̸= 2 we
have an inclusion

J̃ S
r (p) ⊇ J S

r ⊗ Zp. (11)

Obviously, this inclusion is an equality for abelian G by Proposition 3.2. For arbitrary G, the proof
only shows that (♯ applied to) the right hand side generates a Fitting invariant of (cokϕ)∨ times
(ASϕ)

−1, but maybe not the maximal one. Moreover, the dual of the exact sequence

H0
tor � cokϕ � cokϕ

implies that

KS
r (p) ⊇ J̃ S

r (p)Fitt
max
ZpG((H

0
tor ⊗ Zp)∨)♯. (12)

Consider the following commutative diagram whose middle row is the 2-extension ϵ:

H+
r (L)� _

ϕ

��

H+
r (L)

0 //
� _

��

H+
r (L)� _

��

H+
r (L)� _

��
H0 � � //

����

A //

����

B // //

����

H1

����
cokϕ � � // A′ // B′ // // H1

tor

If we denote the extension class of the bottom and top row by ϵ′ and ϵ′′, respectively, we have
equalities

χ
Z[ 12 ]G,RG

(ϵ, ϕ−1) = χ
Z[ 12 ]G,RG

(ϵ′, 0) + χ
Z[ 12 ]G,RG

(ϵ′′, idH+
r (L))

= χ
Z[ 12 ]G,RG

(ϵ′, 0) + (H+
r (L), idH+

r (L),H
+
r (L))

= χ
Z[ 12 ]G,RG

(ϵ′, 0).

(13)

Moreover, we have

χ
Z[ 12 ]G,RG

(ϵ, ϕ−1) = −χ
Z[ 12 ]G,RG

(ϵ, λτr) + ∂̂
Z[ 12 ]G

((R♯ϕ))

= −χ(τr) + ∂̂
Z[ 12 ]G

((ASϕ)
♯).

(14)

By Proposition 2.15 (iv) the ETNC for the pair (Q(r)L,Z[12 ]G) asserts that χ(τr) vanishes; this
together with (13) and (14) yields

∂̂
Z[ 12 ]G

((ASϕ)
♯) = χ

Z[ 12 ]G,RG
(ϵ′, 0).

12
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Now Lemma 4.4 implies that for p ̸= 2 we have

Fittmax
ZpG(H

1
tor ⊗ Zp) = KS

r (p)

⊇ (J S
r ⊗ Zp) · Fittmax

ZpG((H
0
tor ⊗ Zp)∨)♯

by (11) and (12). But sinceH1
tor⊗Zp ≃ H2

ét(oL,S [1/p],Zp(1−r)) andH0
tor⊗Zp ≃ H1

ét(oL,S [1/p],Zp(1−
r)) is cyclic, Theorem 4.3 implies the desired result.

Remark 2. The proof shows that the ETNC implies

Hp(G) · KS
r (p) ⊂ AnnZpG(H

2
ét(oL,S [1/p],Zp(1− r))) (15)

and in fact KS
r (p) has better base change properties than J S

r ⊗ Zp (cf. Corollary 6.7 below and
[BS10], Prop. 3.3). But note that the inclusion (12) happens to be an equality in many cases. For
example, this is true if K is totally real and L is either totally real or CM, since in this case H0

decomposes into H0
tor ⊕H0

tf as Z[
1
2 ]G-module: If L is totally real, either H0

tor or H
0
tf is trivial; if L is

CM, complex conjugation acts trivially on one of these modules and as −1 on the other (depending
on the parity of r). Likewise, the inclusion (11) is an equality for abelian G and if p - |G|.

5. χ-twists and q-indices

For the following, we largely adopt the treatment of [Bu08], �1. Let G be a �nite group and let
F be a �nite Galois extension of Q such that each representation of G can be realized over F .
For any irreducible character χ ∈ Irr (G) we de�ne a central primitive idempotent of FG by eχ :=
χ(1)
|G|

∑
g∈G χ(g

−1)g. We write oF for the ring of integers of F and choose a maximal oF -orderM in FG
which contains oFG. We �x an indecomposable idempotent fχ of eχM and de�ne an oF -torsionfree
right oFG-module by setting Tχ := fχM. Note that this slightly di�ers from the de�nition in [Bu08].
Tχ is locally free of rank χ(1) over oF and the associated right FG-module Vχ = Tχ ⊗oF F has
character χ. For any left G-module M we set M [χ] := Tχ ⊗Z M , upon which G acts on the left by
t⊗m 7→ tg−1⊗g(m) for t ∈ Tχ, m ∈M and g ∈ G. For any integer i we write H i(G,M) for the Tate
cohomology in degree i of M with respect to G. Moreover, we write MG resp. MG for the maximal
submodule resp. the maximal quotient module of M upon which G acts trivially. We obtain a left
exact functor M 7→Mχ and a right exact functor M 7→Mχ from the category of left G-modules to
the category of oF -modules by setting Mχ := M [χ]G and Mχ := M [χ]G. We denote the right and
left derived functors by H i(χ,_) and Hi(χ,_), respectively. Obviously, we have isomorphisms

H i(χ,M) ≃ H i(G,M [χ]), Hi(χ,M) ≃ H−i−1(G,M [χ])

for all i > 0. The action of NG :=
∑

g∈G g induces a homomorphism t(M,χ) :Mχ →Mχ with kernel

H−1(G,M [χ]) and cokernel H0(G,M [χ]). Thus Mχ ≃ Mχ whenever M and hence also M [χ] is a
c.t. G-module. We may extend the above constructions to arbitrary characters χ′ =

∑
χ∈Irr (G) nχχ,

as we may replace Tχ by Tχ′ := ⊕χnχTχ throughout.
If H is a subgroup of G and ψ is a character of H, we write indGHψ for the induced character; if H
is normal and ψ is a character of G := G/H, we write inflG

G
ψ for the character which maps g ∈ G

to ψ(g mod H).

Lemma 5.1. Let G be a �nite group, H a normal subgroup of G and M a �nitely generated left
G-module. If ψ is a character of G = G/H and χ = inflG

G
ψ, we have isomorphisms

Mχ ≃ (MH)ψ, M
χ ≃ (MH)ψ.

Proof. We have Tχ = Tψ such that

Mχ = Tχ ⊗ZGM = Tχ ⊗ZGMH = (MH)ψ,

13
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Mχ ≃ HomZG(Tχ̌,M) = HomZG(Tχ̌,M
H) = (MH)ψ.

Corollary 5.2. Let H be a normal subgroup of a �nite group G, ψ a character of G = G/H and
χ = inflG

G
ψ. Let M be a �nitely generated G-module.

i) We have a cohomological spectral sequence

H i(ψ,Hj(H,M)) =⇒ H i+j(χ,M).

In particular, we have a �ve-term exact sequence

H1(ψ,MH) � H1(χ,M) → H1(H,M)ψ → H2(ψ,MH) → H2(χ,M).

ii) We have a homological spectral sequence

Hi(ψ,H
−j−1(H,M)) =⇒ Hi+j(χ,M).

In particular, we have a �ve-term exact sequence

H2(χ,M) → H2(ψ,MH) → H−2(H,M)ψ → H1(χ,M) � H1(ψ,MH).

Remark 3. In the case, where ψ is the trivial character, Corollary 5.2 (i) recovers the Hochschild-Serre
spectral sequence (cf. [NSW00], Th. 2.4.1) in the case of �nite groups.

Definition 5.3. If o is a Dedekind domain and f is an o-homomorphism with �nite kernel and
�nite cokernel, then the q-index of f is de�ned to be

q(f) := Fitto(cok f) · Fitto(ker f)−1.

We now return to the case, where G is the Galois group of a �nite extension of number �elds
L/K. As before, let r be a negative integer and let τr be the a.t.e. described in Proposition 2.15. Let

ϵ : H0 � A→ B � H1

be the corresponding 2-extension and �x an equivariant homomorphism ϕ : H1 → H0 such that Qϕ
is an isomorphism. Each character χ of G induces a map

ϕ̂χ : H1
χ

t(H1,χ) // (H1)χ
ϕχ // (H0)χ

and we de�ne

q(ϕ, χ) := q(ϕ̂χ̌).

Note that q(ϕ, χ) invisibly depends on a �nite set S of places of K.

Conjecture 5.4 Burns. Assume that Gross' conjecture (Conjecture 2.8) holds for r and the char-
acter χ. Then ASϕ(χ) lies in the number �eld F and in F one has

ASϕ(χ)oF = q(ϕ, χ).

We will say, that the p-part of Conjecture 5.4 holds if the above equality is true after localization
at p for any prime p in F above p. As in the case r = 0 one can prove (cf. [Bu10], Prop. 6.2.1):

Proposition 5.5. Let L/K be a Galois extension of number �elds with Galois group G and r ∈ Z<0.
Then Conjecture 5.4 holds for all characters of G if and only if the ETNC holds for the pair
(Q(r)L,M), where M is a maximal order in QG containing ZG.

We now study the behavior of the q-index under induction and in�ation. Let ϕ : H1(L/K) →
H0(L/K) be an equivariant homomorphism as above, where we write H i(L/K), i = 0, 1 to indicate
that these modules belong to the extension L/K.
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Lemma 5.6. Let H be a subgroup of G and L := LH .

i) If ψ is a character of H, then we have an equality

q(ϕ, ψ) = q(ϕ, indGHψ).

ii) If H is normal and ψ is a character of G := G/H, then there are equivariant homomorphisms
ϕ and ϕ such that

H1(L/K)
ϕ //

����

H0(L/K)

H1(L/K)
ϕ // H0(L/K)

?�

OO

commutes and we have an equality

q(ϕ, ψ) = q(ϕ, inflG
G
ψ).

Proof. The associated FG-module of the oFG-module T̃χ := Tψ ⊗ZH ZG is Vχ = Tχ ⊗ F . But the
q-index does not change if we replace Tχ by T̃χ throughout (cf. [Ta84], Th. II.6.4); this proves (i).
For (ii) we observe that taking H-invariants of the complexes C ·

p,r(L/K) yields C ·
p,r(L/K), since

the same is true for the complexes RΓc(oL,S [1/p],Zp(r)). This implies that

H0(L/K) = H0(L/K)H , H1(L/K) = H1(L/K)H

such that we may choose ϕ and ϕ as desired. The equality of the q-indices now follows from Lemma
5.1.

Example. We compute the q-index of the trivial character 1G. Since 1G = inflG1 1, we may assume
that L = K. Moreover, we will choose ϕ as the composite of the natural projection π : H1 � H1

tf

and an embedding ϕ′ : H1
tf � H0. Then

q(ϕ, 1) =
[H0 : ϕ′(H1

tf)]

|H2(oK ,Z(1− r))|

=
|H0

tor| · det(λτr ◦ ϕ)
RM

1−r(K) · |H2(oK ,Z(1− r))|

=
|H1

M(K,Z(1− r))tor| · det(λτr ◦ ϕ)
RM

1−r(K) · |H2
M(K,Z(1− r))|

,

where H i
M(K,Z(1− r)) are suitable motivic cohomology groups and RM

1−r is a suitable motivic reg-
ulator. Hence Conjecture 5.4 is true for the trivial character if and only if the motivic Lichtenbaum
conjecture holds (cf. for instance, the survey article [Ko03], p. 208). In particular, Conjecture 5.4
is true for the trivial character up to primes above 2 if and only if the cohomological Lichtenbaum
conjecture (Conjecture 2.6) holds.

More generally, let χ be any irreducible character of G. Then, ignoring the primes above 2, we
have

q(ϕ, χ̌) = FittoF ((cokϕ)
χ)FittoF (kerπχ)

−1.

For any prime p ̸= 2, the p-part of ker(πχ) is H
2
ét(oL,S [1/p],Zp(1−r))χ, since H1

tf⊗Zp ≃ H+
r (L)⊗Zp

is projective. For any �nite G-module M , we have (M∨)χ = (Mχ̌)
∨ (cf. [Ni10], �5 (4)) and for any

�nite oF -module M , we have FittoF (M) = FittoF (M
∨). This implies

FittoF ((cokϕ)
χ) = FittoF (((cokϕ)

∨)χ̌).
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Let Mp be a maximal order in QpG containing ZpG and let M be a ZpG-module. Then computing
the (non-commutative) Fitting invariant of M ⊗Mp over Mp is equivalent to computing the Fitting
invariants FittoF (Mχ) for all χ by loc.cit., Remark 7. We obtain that the p-part of Conjecture 5.4
holds if and only if

FittMp(H
2
ét(oL,S [1/p],Zp(1− r))⊗Mp) = ((ASϕ)

−1 · FittMp((cokϕ)
∨ ⊗Mp))

♯.

As in the proof of Theorem 4.1, we can show that the right hand side contains

(J S
r ⊗ Zp) · nr

(
AnnZpG(H

1
ét(oL[1/p],Zp(1− r))tor)

)
· ζ(Mp).

Let Fp(G) = {x ∈ ζ(ZpG)|x · Mp ⊂ ZpG} be the central conductor. Then Fp(G) is contained in
Hp(G) and loc.cit., Prop. 5.1 implies the following maximal order analogue of Theorem 4.1.

Theorem 5.7. Let L/K be a Galois extension of number �elds with Galois group G and r ∈ Z<0.
Assume that the ETNC holds for the pair (Q(r)L,M), where M is a maximal order in QG containing
Z[12 ]G. Then Conjecture 2.12 is true for r and all admissible sets S if we replace Hp(G) by Fp(G).

Remark 4. Since the ETNC also splits into local conjectures at each prime p, it is clear that local
analogues of Theorem 4.1 and Theorem 5.7 are valid, too.

6. An induction result

If L/K is a Galois CM-extension with Galois group G, recall that we denote by j ∈ G the unique
automorphism induced by complex conjugation and that e− = 1−j

2 ∈ Z[12 ]G. A character χ of G is
called even (resp. odd) if χ(j) = χ(1) (resp. χ(j) = −χ(1)). We will prove the following proposition.

Proposition 6.1. Let L/K be a Galois extension of number �elds with Galois group G, r ∈ Z<0

and let p be a prime.

i) If the p-part of Conjecture 5.4 holds for all abelian intermediate extensions of L/K, then it
holds also for L/K.

ii) Assume that Gross' conjecture (Conjecture 2.8) is valid for L/K. Then the p-part of Conjecture
5.4 holds for L/K if it is true for all cyclic intermediate extensions of degree prime to p.

iii) Assume that the extension L/K is CM, p ̸= 2 and Gross' conjecture holds for odd characters.
Then the p-part of Conjecture 5.4 holds for L/K and odd characters if it is true for all inter-
mediate CM-extensions whose Galois group is either C or C × ⟨j⟩, where C is a cyclic group
of order prime to p.

Corollary 6.2. Let L/K be a Galois extension of totally real �elds with Galois group G and let
r < 0 be odd. Then the ETNC holds for the pair (Q(r)L,M), where M is a maximal order in QG
containing Z[12 ]G. In particular, Conjecture 2.12 holds if we replace Hp(G) by Fp(G) for all primes
p.

Proof. Since Gross' Conjecture holds in this case by the earlier mentioned result of Siegel, Proposi-
tion 6.1 implies that it su�ces to verify the p-part of the ETNC for cyclic extensions of totally real
�elds whose degree is prime to p. But this is a special case of [BG03b], Th. 5.1 if we assume that
the Iwasawa µ-invariant vanishes, and follows from [Po09], Th. 5.2 and Th. 5.4 if not.

Corollary 6.3. Let L/K be a Galois CM-extension and let r < 0 be even. Assume that the
Iwasawa µ-invariant vanishes for all odd primes p. Then the ETNC holds for the pair (Q(r)L,Me−),
where M is a maximal order in QG containing Z[12 ]G. In particular, Conjecture 2.12 holds if we
replace J S

r by J S
r e− and Hp(G) by Fp(G) for all primes p.

Proof. As above, Proposition 6.1 reduces the assertion to a special case of [BG03b], Th. 5.1.
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Remark 5. Obviously, Corollary 6.3 is weaker than Corollary 4.2 (ii), but the author expects that it
is possible to remove the hypothesis on the µ-invariants as in Corollary 6.2 by mimicking the proofs
of [Po09], Th. 5.2 and Th. 5.4 and then applying Proposition 6.1.

Let G be a �nite group,M a �nitely generated ZG-module and θ a CG-automorphism ofM ⊗C.
For any character χ of G we put

δ(χ, θ) := det(θ|HomG(Vχ̌,M ⊗ C)) ∈ C×.

In particular, we have Rϕr(χ) = δ(χ, ρr ◦ ϕr). We will need the following lemma which is proved as
[Ta84], I.6.4., but in fact most of the assertions are obvious.

Lemma 6.4. i) δ(χ+ χ′, θ) = δ(χ, θ)δ(χ′, θ)

ii) δ(χ, θθ′) = δ(χ, θ)δ(χ, θ′)

iii) δ(indGHχ, θ) = δ(χ, θ) for all subgroups H of G

iv) δ(inflG
G
χ, θ) = δ(χ, θ|MH⊗C) for all normal subgroups H of G, where G = G/H.

v) δ(χα, θα) = δ(χ, θ)α for all α ∈ Aut(C).

Remark 6. For example, Lemma 6.4 can be used to prove that Gross' conjecture does not depend
on the choice of the QG-isomorphism ϕr in (4): If ϕ′r is a second QG-isomorphism, then by (ii) we
have

ASϕr(χ) = ASϕ′r(χ) · δ(χ, ϕ
−1
r ϕ′r)

and the rightmost term commutes with Galois action by (v).

By Lemma 6.4 and Brauer induction we obtain the following, probably well known result (for
instance, assertion (iv) is a special case of [BF01], Prop. 4.2.a).

Corollary 6.5. i) ASϕr(χ+ χ′) = ASϕr(χ)A
S
ϕr
(χ′)

ii) ASϕr(ind
G
Hχ) = ASϕr(χ) for all subgroups H of G

iii) ASϕr(infl
G
G
χ) = AS

ϕr
(χ) for all normal subgroups H of G, where G = G/H and ϕr is obtained

as in Lemma 5.6 (ii).

iv) Gross' conjecture (Conjecture 2.8) holds for L/K if and only if it holds for all abelian interme-
diate extensions.

Corollary 6.6. Assume that Lichtenbaum's conjecture (Conjecture 2.6) holds for all intermediate
�elds of L/K. Then Conjecture 5.4 holds for all rational valued characters of G outside the 2-primary
part.

Proof. Since Lichtenbaum's conjecture is equivalent to Conjecture 5.4 for the trivial character, and
both sides of Conjecture 5.4 behave well under induction by Lemma 5.6 and Corollary 6.5, we obtain
that Conjecture 5.4 holds for permutation characters. But if χ is rational valued, there is an integer
m such that mχ is a permutation character by a theorem of Artin (cf. [Ta84], Th. II.1.2). This
implies ASϕr(χ) = q(ϕr, χ), since both sides agree if we raise to the mth power.

Let H be a normal subgroup of G and put G = G/H and L = LH . We denote the canonical
projection map QpG � QpG by πG

G
. Recall from (10) the de�nition of KS

r (p) = KS
r (L/K, p).

Corollary 6.7. In the notation from above we have

πG
G
(KS

r (L/K, p)) ⊆ KS
r (L/K, p)

and equality holds if G is abelian or if p - |H|.
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Proof. Choose an equivariant embedding ϕr : H
+
r (L) � H0(L/K) such that

KS
r (L/K, p) =

(
Fittmax

ZpG((cokϕ⊗ Zp)∨) · (ASϕ)−1
)♯
.

As in Lemma 5.6 (ii), ϕr induces ϕr : H+
r (L) � H0(L/K). In fact, ϕr = ϕHr and cok (ϕr) =

(cokϕr)
H , as H+

r (L) is a c.t. G-module. Since Fitting invariants behave well under base change
(cf. [Ni10], Lemma 5.5) and πG

G
(ASϕr) = AS

ϕr
by Corollary 6.5 (iii), we obtain

πG
G
(KS

r (L/K, p)) =
(
FZpG

((cokϕr ⊗ Zp)∨H) · (ASϕr)
−1

)♯
=

(
FZpG

((cokϕHr ⊗ Zp)∨) · (ASϕr)
−1

)♯
⊆ KS

r (L/K, p),

where FZpG
((cokϕr ⊗ Zp)∨H) is a Fitting invariant of (cokϕr ⊗ Zp)∨H over ZpG, but maybe not the

maximal one. Since Fitting invariants over commutative rings are unique, we have an equality if G
is abelian. If p is prime to |H|, the idempotent eH := |H|−1

∑
h∈H h belongs to ZpG such that ZpG

occurs as a direct factor of ZpG and hence

Fittmax
ZpG(M) = Fittmax

ZpG
(eH ·M)⊕ Fittmax

(1−eH)ZpG
((1− eH) ·M)

for any ZpG-module M .

Remark 7. Assume that p - |H|. Then the above shows that if (15) holds for L/K, the same is true
for L/K.

Proof of Proposition 6.1. By Lemma 5.6 and Corollary 6.5 both sides of Conjecture 5.4 commute
with induction and in�ation of characters. This implies (i) and can be used to prove the other two
assertions exactly as [RW97], Prop. 11 and [Nia], Cor. 2. Note that Proposition 5.5 shows that (i) is
also a special case of [BF01], Prop. 4.2.b.
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