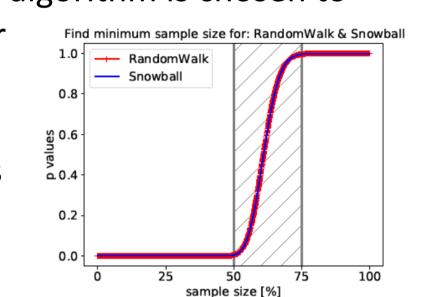
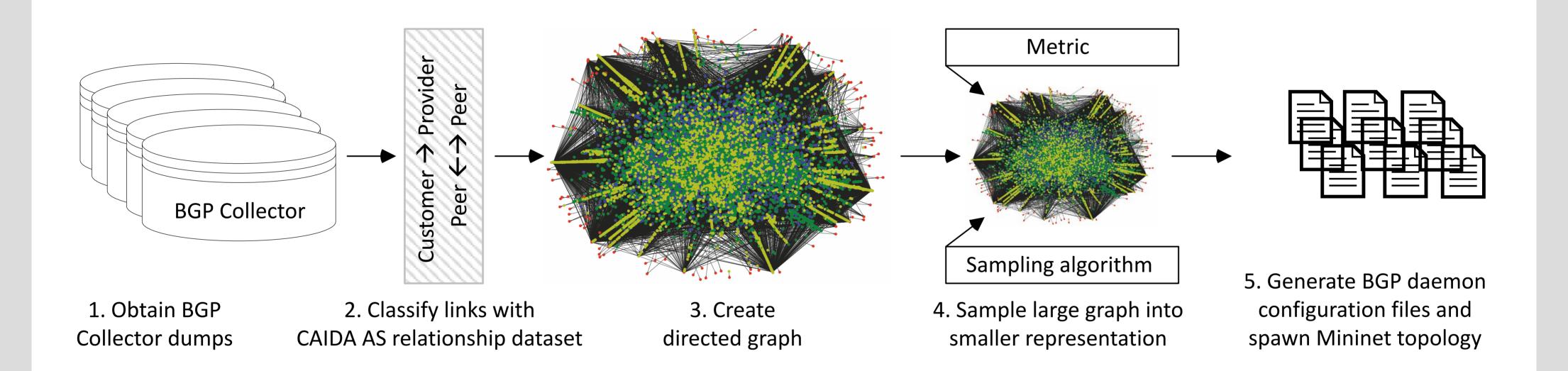
Evaluating RPKI ROV Identification Methodologies in Automatically Generated Mininet Topologies

Nils Rodday^{1,4}, Ruben van Baaren², Luuk Hendriks³, Roland van Rijswijk-Deij^{3,4}, Aiko Pras⁴, and Gabi Dreo¹

¹Research Institute CODE, ²Radboud University, ³NLNet Labs, ⁴University of Twente

Abstract


- Evaluation testbed creation is cumbersome, error-prone and time-consuming.
- We aim at creating a topology generator that automatically creates Mininet testbeds for BGP-related evaluations.
- Our use-case will be RPKI Route-Origin-Validation measurements to validate the generated topologies.


Topology extraction (1-3)

- <u>Data collection</u>: BGP collector data from RIPE RIS and Routeviews via BGPStream.
- Relationship extraction & classification: The as_path
 attribute is extracted and relationships between neighboring
 ASs inferred. Links (customer-to-provider, peer-to-peer) are
 classified using the CAIDA AS relationship dataset. This is a
 limiting factor as links that could not be found will be
 discarded.
- <u>Graph creation</u>: A directed graph is created with the help of NetworkX [1]. ASs are represented by nodes, relationships by links between nodes.

Graph sampling (4)

- <u>Sampling</u>: Since a large graph cannot be emulated in the Mininet testbed [2], a smaller sample must be created.
- Metric: A metric is selected to compare features of the original and the abstracted graph (e.g. PageRank).
- <u>Sampling algorithm</u>: A sampling algorithm is chosen to select nodes that should appear in the graph representation (e.g. RandomWalk) [3].
- <u>Comparison</u>: The KS test tells us whether the created sample exhibits the same distribution.

Topology generator (5)

- <u>Input</u>: A sampled, smaller and directed graph is now available for topology creation.
- <u>Generation</u>: Based on the graph we create BGP daemon configuration files (e.g. Bird) that follow well-known BGP route selection and export policies [4].
- Spawn testbed: Mininet will spawn the testbed based on the previously generated configuration files which is used for the evaluation.

Evaluation of RPKI ROV methodologies

- <u>Methodologies</u>: Many RPKI ROV measurement methodologies exist, but comparison is hard.
- Evaluation: With the help of the topology generator, we plan to generate an evaluation testbed on the fly that allows to implement different RPKI ROV measurement approaches.
- <u>Applicability</u>: The generated testbeds are independent of the use case evaluated within the testbed. They can therefore be used for any BGP-related evaluation.

Conclusion

- The Mininet topology generator allows to quickly spawn evaluation testbeds for BGP-related research fields.
- We plan to utilize the generator to evaluate different RPKI ROV measurement approaches.

UNIVERSITY OF TWENTE.

Contact

References

- 1. Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod Millman (Eds.). Pasadena, CA USA, 11 15.
- 2. Lantz, B., Heller, B. and McKeown, N., 2010, October. A network in a laptop: rapid prototyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks (pp. 1-6).
- Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Little Ball of Fur: A Python Library for Graph Sampling. arXiv:2006.04311 [cs.SI]
 Xenofontas Dimitropoulos and George Riley. 2006. Modeling autonomous-system relationships. In 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06). IEEE, 143–149