On lifetime optimization of Boolean parallel
systems with Erlang repair distributions

Alexander Gouberman and Markus Siegle

We assume a Boolean parallel system with exponentially distributed component
failure times. In order to maximize the lifetime of the system we consider a repair-
man with Erlang-k distributed repair time. By extending the classical exponential
case k = 1 to k > 2 different repair semantics arise in this context. In the case of
restart repair semantics we show that a repairman should have few Erlang phases in
order to maximize mean time to failure (MTTF). In the case k > 2 with full mem-
ory semantics an optimal repairman policy shows counter-intuitive repair behaviour
dependent on the mean repair time.

1 Introduction

The field of research for system optimization covers a wide range of models and
specialized optimization algorithms. For the subclass of coherent Boolean systems,
with which we are concerned here, in [6, 1] the authors maximized the availability
of a series system by assigning the repairman to the most reliable failed compo-
nent (MRC policy). In [2] a generalization of this result to K-out-of-N systems and
a repair team consisting of several repairmen was established. The assumption of
both exponential component failure rate and repair rate makes it possible to provide
an optimal policy which depends only on the order of failure resp. repair rates and
not on their concrete values: the fastest repairman should repair the most reliable
component. While this assumption may hold for components due to the memory-
less property of the exponential distribution (if no concrete component model is
known), it is used for the repairman in general just for reasons of model simplifi-
cation. Repair time distributions which follow the typical “S”-shape like Weibull
or Lognormal distributions or even deterministic repair time are known to be more
realistic because they often fit to empirical repairman data [3]. Erlang distributions
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with a small number of phases can be used to approximate these repair distributions.
We extend the exponential repair model to Erlang repair distributions, whereby first
of all some repair semantics concerning the Erlang phases have to be chosen. We
concentrate on parallel systems and show that for the “restart repair semantics” the
fewer phases an Erlang distribution has, the better it maximizes the lifetime of the
system. In the case of a “full memory semantics” model we show by a small case
study that the optimal policy which assigns the repairman to a failed component de-
pends on the concrete values of the component failure rates and mean Erlang repair
time in a somewhat counter-intuitive manner.

2 Markov Decision Model

A parallel system with N components where the lifetime of the i-th component is

exponentially distributed with parameter u; > 0 can be described by a CTMC with

state space S = {0, 1}". A system state is given by x = (x1,...,xy) where x; = 1 or

0 depending whether the i-th component is functioning or not. Define
Co(x):={i|x;=0} and Ci(x):={i|x=1}

for a state x € S as the sets of nonfunctioning resp. functioning components. From

a state x there are |C(x)| transitions given by x Ly (Og,x), k € C1(x) with rate L,
where (8, x) := (X1,...,Xk—1,0,Xk41,--.,Xn), 0 € {0,1} denotes the state, where
the entry corresponding to the k-th component is set to 8. The single absorbing state
of the CTMC is (0, ...,0) which represents the failure of the whole parallel system.
As a reliability measure for the lifetime of the system we analyze in the following
the mean time to failure (MTTF) and assume that the system starts in state (1,...,1).
In order to maximize MTTF by assigning a single repairman with exponential repair
time distribution Exp(1) a continuous time Markov decision process (CTMDP) is
induced, where the action set in state x € S is given by Act(x) := {r; | i € Co(x)} U
{nr}, r; representing the choice to repair the failed component i and nr not to repair
any component. The transitions of this CTMDP are given by

x (1;,x), fori € Co(x) and X (0j,x), for j € Cy(x), a € Act(x),
meaning that by choosing the repair action r; the i-th component can be repaired,
and by choosing any action a working component can fail.

The reward which measures the mean sojourn time in a state x when choosing ac-
tion a € Act(x) is given by R(x,a) = , where E(x,a) is the exit rate in state x
provided action a is chosen, i.e.

E(x,a) = Z uj+o(a)d, d(a)€{0,1}, 8(a) =0 a=nr.
Jj€Ci(x)

This reward definition implies that the optimal MTTF from state x to the system
failure state (0,...,0) can be found by solving the Bellman equation induced by
this CTMDP. For a detailed discussion on stochastic dynamic programming and
especially CTMDPs we refer to [5]. In order to compare exponential and Erlang
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repair time distributions with the same expected values we propose two different
(extremal) repair model semantics:

e Model 1 (“restart repair semantics”): If during repair of a component a further
component fails then the reached phase of the Erlang-k distribution is reset and
the repairman can choose any failed component to repair beginning from phase
0 again.

e Model 2 (’full memory semantics”): The Erlang phases of all partially repaired
components are remembered and the repairman can be assigned in each state to
another failed component (even if no further component failed during the repair
procedure). Moreover the repairman continues the repair process from the Erlang
phase reached so far for that failed component.

These semantics are indeed “extremal”, because one could define other possible
repair semantics in between these two. For example, if during a repair procedure of
component C a further component fails and the repairman changes to another failed
component # C, then the repair phase of C could get lost. If he does not change he
could continue the repair of C from the phase already reached so far.

We now describe the state spaces S; of model i. In order to compose the system
state space S together with an Erlang-k repair state space Ey := {0,1,....k— 1} we
remember the repair phase for each component, s.t. the composed state space can be
described by a subset of § := S x E,’CV . For both models 1 and 2 there are states in S
which are not reachable, more precisely for model 1

Si={(xe)€S|xi=1=¢=0, 3=t e >0},
meaning that working components cannot be repaired and there is at most one com-
ponent i which has a positive Erlang repair phase e;. In the following, we denote a

system state by x € S, active resp. failed components by j € C(x) resp. i € Cy(x)
and the Erlang-k parameter by 7. The transitions for model 1 are given by

(x,(0,...,0)) 2 ((0;,x),(0,...,0)) and

(x,(0,...e,...,0)) 75 (x,(0,...,ei4+1,...,0)) ife;<k—1
N ((1;,x),(0,...,0)) ife,=k—1

(%, (0,...er,...,0) ZH ((0;,x),(0,...,0))

In model 2 with full memory semantics there are more reachable states from S be-
cause Erlang phases are used to model the partially reached repair stage for a failed
component. The corresponding state space is given by

S ={(xe)eS|xi=1=¢=0}

with transitions

(x,€) “H ((0j,x),e), for any a € Act(x) and
(xe)”—’% (x7(€l7-..,ei+1,...,€]\/')) 1f€,<k—1
7 ((1;,x), (e1,- - ei-1,0,eit1,...,en)) ife;=k—1
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Figure 1 shows an excerpt of the CTMDP for a parallel system with N = 3 compo-
nents and Erlang-2 repairman. The upper line represents a system state x € S and
the number below each component state x; is its Erlang phase e; € E;.

000
000

(a) Model 1 (restart repair semantics) (b) Model 2 (full memory semantics)

Fig. 1 Excerpt of the CTMDP for different Erlang-2 repair semantics for a parallel system of 3
components ((b) showing especially transitions for repair procedure which differ from (a)). Dashed
lines represent decisions and solid lines exponential transitions.

Let us assume, that the repairman does not change to another failed component be-
fore a further functioning component fails (as it is always the case in model 1), see
Fig. 2. Then the following proposition holds.

Fig. 2 Local excerpt of the induced CTMC by choosing a repair action r; in state x = (0;,x). The
lower number indicates the Erlang phase of the i-th component. The shaded states correspond to
states in the case of exponential repair time.

Proposition:
Let x € S and consider Erlang-k distributed repair times Ty ~ Erli(kA) with same
expected values E(7;) = % Vk e N.

(a) The probability to repair a failed component i € Cy(x) without further failure of
another component during the repair procedure is decreasing with k.

(b) The mean time to repair a failed component, under the condition that no further
failure of another component during the repair procedure occurs, is increasing
with k.
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Proof: The probability for following the path
o= (x,0) = (x,1) = - = (x,k— 1) = ((1;,x),0)

kA

k i wa )
m) swhere p =} uj.Itlsknownthath:(1+T)

J€C1(x)
is monotonically decreasing (and converging to e #/*), thus (a) holds. The mean

time to repair a failed component on the path o} can be computed by summing up

. . . . .1 _ 1_kA :
the sojourn times in the states along o;: E(o;) =k TIH = AThig Butsince

flx) = ﬁ, x € R is strictly monotonic increasing, statement (b) also holds. O

is given by P, = (

Special cases: Among all Erlang repair distributions with identical expected values
the following holds.

1. An exponentially distributed repair time (k = 1) maximizes the probability to
repair a failed component and minimizes the mean time to repair it before a
further component fails.

2. In case of deterministic repair time (for k — oo) this probability is minimal
(e’“/ A = P(sojourn time in state x is lower than repair time %)) and the corre-

sponding repair time is maximal.

For the restart repair model, exponentially distributed repair time is the best among
all Erlang repair time distributions. But since the practical issue of this model is
low (and only introduced for comparison with the exponential repairman case) we
adhere to the more practical model 2 with full memory semantics, since Erlang
phases can approximately describe repair stages during repair of a failed component.
For the case k = 1 Katehakis and Melolidakis showed, that the MRC policy which
assigns the repairman to the failed component with least failure rate maximizes
MTTF [2]. We show that for the case k > 2 in model 2 this is not the case, since
repair phases are remembered. Figure 2 shows optimal policies with regard to MTTF
maximization in model 2 with k = 2 Erlang repair phases for a parallel system with
3 components and component failure rates (; = 1, tp =2, pz = 3. In this case the
optimal policy differs only for state 010 — 001 in a noncoherent manner: Relatively
”slow” and “fast” repairmen should continue to repair the third component, but there
is also a region, in which it is better to change repair to component one which is in
repair phase 0. The results were computed by implementing the policy iteration
method [5] in Wolfram Mathematica 7 and apply it to the CTMDP of model 2.

3 Conclusion

We have generalized the classical exponential repairman models to Erlang-k repair-
man models in order to maximize the MTTF of a Boolean parallel system. In this
context we discussed two different semantics which lead to different extensions of
the system state space. We showed by optimizing the CTMDP for a toy example
with full memory semantics that classical results on optimal repair strategies do not
hold any more for Erlang-k repairmen. It would be interesting to see whether avail-
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(c) Difference of MTTF values for policies I
and 1T

(a) Optimal policies with mean repair time E(73)

Fig. 3 Optimal policies for a parallel system with 3 different components and Erlang-2 distributed
repair time 7> with full memory semantics

able measures for component importance (like Barlow-Proschan or Natvig [4]) lead
to good heuristics or even optimal repair policies.
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