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Abstract. In order to support the editing, validation and analysis of
LARES dependability model specifications, a textual editor and a graph-
ical user interface for performing experiments have been developed. In
collaboration with the LARES toolset library they serve as an Integrated
Development Environment (IDE) based on the Eclipse framework. The
paper first introduces the features of the LARES language by means of a
hysteresis model taken from the literature. It then describes the textual
Editor Plugin. Beyond standard features such as syntax highlighting and
code completion, it emphasises syntactical and semantic validation ca-
pabilities. Subsequently, the View Plugin component is presented, that
is used to perform the experiments and to gather the analysis results
from the solvers. The current state of development of a graphical Editor
Plugin and other features of the LARES IDE are also addressed.

1 Introduction

LARES (LAnguage for REconfigurable Systems) is a language and toolset for
modelling the dynamic behaviour of systems, with a focus on dependability,
fault-tolerance and reconfigurability. Previous papers about LARES focussed on
the expressiveness of the modelling language [13, 14], its semantics [23, 14] and
its transformation to evaluation formalisms such as Stochastic Process Algebra
(SPA) or Stochastic Petri Nets (SPN) [12].
The present paper is the first one in which the LARES toolset is described from
the user’s point of view. We present an Integrated Development Environment
(IDE), consisting of a sophisticated textual Editor Plugin as well as a View
Plugin which serve as a comfortable user interface during all phases of model
specification, validation, quantitative analysis and result presentation. Fig. 1
gives an overview of the LARES IDE, comprising the editor and the analysis
view component, both Eclipse-based plugins, and the LARES library. When the
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Fig. 1. The Eclipse-based LARES IDE

active page inside the Eclipse instance is a LARES specification (indicated by
the filename extension lrs), the textual Editor Plugin becomes active and per-
forms a validation of the model w.r.t. the LARES metamodel. The View Plugin
parses the model, extracts the defined measures and constructs and visualises
the instance graph (which depicts the model’s structure in terms of submodel
instances). The View Plugin also allows the user to perform additional checks
(e.g. for the presence of deadlocks or unsafe states), to investigate the state space
and to visualize analysis results. For interacting with the specified model, e.g. to
initiate an analysis, the LARES library is applied. That library implements all
aspects related to the language and its transformation to the target formalisms
where the actual analysis is carried out. Beside the already mentioned SPA and
SPN target formalisms we also support flat Labelled Transition Systems (LTS)
and Markov Decision Processes (MDP). The library also interfaces with the
solvers, thereby abstracting from their specific interfaces. The LARES toolset
is available from [11]. Among related approaches we mention the COMPASS
project with the hierarchic language SLIM [9] that applies the powerful nuSMV
solver [10], MoDeST [17] as a very concise language to describe non-hierarchic
systems applying numerous tools for analysis, and the very mature AltaRica
language [21] that lately also includes some extensions to enable non-functional
analysis. Compared to these approaches, LARES focusses on hierarchic systems
with complex interaction patterns. Beyond triggering reactions based on the cur-
rent state, LARES offers flexible types of synchronisation by means of reactive
expressions which take the combinatorics of subsequent behaviours of each com-
ponent into account.
The paper is structured as follows: Sec. 2 introduces the LARES language by
means of a non-trivial example taken from the recent literature. It presents two
approaches, representing different degrees of modularity of how to model the
system in a more or less modular fashion. Sec. 3 details the textual Editor Plu-
gin which – beyond syntax highlighting and code-completion – offers advanced
syntactical validation, and also partial semantic validation. Sec. 4 presents the
analysis environment and its capabilities to perform calculations and visualise
the analysis results. Sec. 5 briefly sketches our current efforts in developing a
graphical Editor Plugin and the View Plugin, after which the paper concludes
with Sec. 6.



2 Compositional Modelling with LARES by Example

For describing the modelling capabilities of LARES, we consider the “multiple
parallel hysteresis” queueing model from [20]. It is a model for load-dependent
power-saving operation, where the activation and deactivation of servers occurs
at different levels, leading to a hysteresis-like behaviour. The model is repre-
sented as a CTMC with states (i, j) ∈ N × N, where 0 ≤ i ≤ n denotes the
number of servers running in parallel (n − i servers are idle) and 0 ≤ j ≤ size
denotes the number of jobs in the system. Turning on an idle server can be
problematic (e.g. causes costs or can lead to server breakdowns). For this rea-
son, in order to bound the number of waiting jobs, a server is activated only if
the number of jobs in the queue exceeds a certain threshold. In particular, the
i-th server is activated if j = w(i) and deactivated only if the queue is empty
(j = 0), which leads to a hysteresis (see Fig. 11(b)).

In order to specify this model in LARES, we first briefly outline the LARES
language. A LARES model consists of Behavior and Module definitions. A Be-
havior represents (one dimension of) the state space of a system component,
in which transitions can be guarded by a guard label and either delayed by an
exponential distribution or triggered immediately by a weighted discrete dis-
tribution. A Module can instantiate Behaviors or other Modules, thus provid-
ing a hierarchy of instantiations (instance tree), in which the Module repre-
senting the root instance is specified by a System definition. Furthermore, in
a Module definition, the guarded transitions of instantiated Behaviors can be
triggered by a guards statement, dependent on assertions over states. This trig-
gering can be either direct or by interaction with other guard labels in form
of synchronisation or choice. LARES supports three types of synchronous in-
teractions: sync (all addressed guard labels have to be provided to perform
a synchronized transition), maxsync (all transitions which offer the guard la-
bels will take place) and choose (if only a single guard label is offered then the
transition will take place). Moreover, inside a Module definition one can spec-
ify further Behavior and Module definitions, Instance statements for instanti-
ating Modules, and Condition statements representing logical expressions over
states (or other Conditions). forward statements are like guards statements, but
comprise additionally a forward label which may be triggered externally (pro-
ducing an information flow towards all Behavior instances). Initial statements
define an initial state configuration and Probability statements specify desired
transient or steady state measures. Note that due to the instance hierarchy
there are visibility constraints on states/conditions and guard/forward labels.
Thus, Condition statements can be used in order to lift state assertions from
Behavior instances towards a Module, and forward statements to propagate trig-
gering events from a Module towards Behaviors. For increasing the modelling
flexibility, Behaviors and Modules can be parametrised and expand statements
can be defined, which define a shortcut for symmetric statements.
Due to the described expressiveness, there are several ways how to specify the
hysteresis model with LARES. For the purpose of this paper, we present two



1 Behavior Composed ( s i z e=n∗w, n=1,w=1,lambda ,mu) {
expand( i in {0 . . n − 1} , j in {0 . . i ∗w} ) { State s [ i , j ] }
expand( j in {0 . . s i z e } ) { State s [ n , j ] }
// case (1) : not a l l s ervers are busy
expand( i in {0 . . n − 1} ) {

6 expand( j in {0 . . i ∗w − 1} ) {
Transitions from s [ i , j ] → s [ i , j +1] , delay exponential lambda
Transitions from s [ i , j +1] → s [ i , j ] , delay exponential i ∗ mu

}
Transitions from s [ i , i ∗w] → s [ i +1, i ∗w] , delay exponential lambda

11 Transitions from s [ i +1 ,0] → s [ i , 0 ] , delay exponential ( i +1) ∗ mu
}
// case (2) : a l l s e rvers are busy
expand( j in {0 . . s i z e − 1} ) {

Transitions from s [ n , j ] → s [ n , j +1] , delay exponential lambda
16 Transitions from s [ n , j +1] → s [ n , j ] , delay exponential n ∗ mu

}
}

System Hys t e r e s i s ( s i z e=n∗w + 5 ,n=3,w=4) :
21 Composed ( s i z e=s i z e , n=n ,w=w, lambda=4.0 ,mu=2.0) {

In i t i a l i n i t = Composed . s [ 0 , 0 ]
expand( i in {0 . . n − 1} ) {

Condition serverBusy [ i ] = OR( j in {0 . . i ∗w} ) { Composed . s [ i , j ] }
}

26 Condition serverBusy [ n ] = OR( j in {0 . . s i z e } ) { Composed . s [ n , j ] }

Probability queueFul l = Transient (Composed . s [ n , s i z e ] , 1 0 . 0 )
expand( i in {0 . . n} ) {

Probability serverBusy [ i ] = Transient ( serverBusy [ i ] , 1 0 . 0 )
31 }

Probability a l lSe rve r sBusy = SteadyState ( serverBusy [ n ] )
}

Fig. 2. Planar LARES specification of a multiple parallel hysteresis model with queue
length size, n servers and equidistant hysteresis widths w(i) = i · w.

LARES specifications given in Fig. 2 and 3. Fig. 2 describes the whole hysteresis
model in a planar way by defining a single Behavior Composed with parameters
for the number n of servers (with default value 1), the width w (s.t. the hysteresis
widths are given by w(i) = i · w), the size of the queue (set by default to n*w),
and rates lambda and mu for the arrival and service processes (without default
values). The first two expand statements (lines 2 .. 3) define the running indices
i and j in order to declare all the states s[i,j]. The ranges for the indices are
dependent on the values of other parameters. The expand statements (lines 5 ..
17) define all the necessary exponential transitions dependent on the two cases as
specified in the comments. Note that expand statements can also be nested. The
Behavior definition is instantiated in the System definition Hysteresis which
defines its own parameters and sets (resp. overwrites) the parameters of the
Behavior (line 21). Since the whole hysteresis model is specified in a single Be-
havior, there is no need to define any guard labels for the transitions. In the
System we first set the initial state to s[0,0] and define the measure queueFull
which computes the transient probability at t = 10 for the state s[n,size] of
the Behavior instance Composed (line 28). Furthermore, in order to analyze the
number of running servers, we specify the conditions serverBusy[i] which rep-



Behavior Queue ( s i z e =1, lambda ) {
2 expand( i in {0 . . s i z e } ) { State s [ i ] }

expand( i in {0 . . s i z e −1} ) {
Transitions from s [ i ] → s [ i +1] , delay exponential lambda

}
expand( i in {1 . . s i z e } ) {

7 Transitions from s [ i ] i f 〈deq 〉 → s [ i −1]
}

}

Behavior Se rv i c e (n=1, mu) {
12 expand( i in {0 . . n} ) { State a c t i v e [ i ] }

expand( i in {0 . . n−1} ) {
Transitions from a c t i v e [ i ] i f 〈 act ivateNext 〉 → a c t i v e [ i +1]

}
expand( i in {1 . . n} ) {

17 Transitions from a c t i v e [ i ]
i f 〈 deac t i va t e 〉 → a c t i v e [ i −1] , delay exponential i ∗ mu
i f 〈 proce s s 〉 → a c t i v e [ i ] , delay exponential i ∗ mu

}
}

22
System Hys t e r e s i s ( s i z e=n∗w + 5 , n=3, w=4) :

Q ← Queue ( s i z e=s i z e , lambda=4.0) ,
S ← Se rv i c e (n=n , mu=2.0) {

In i t i a l i n i t = Q. s [ 0 ] , S . a c t i v e [ 0 ]
27 expand( i in {0 . . n−1} ) {

Condition switch [ i ] = Q. s [ 1 + i ∗ w]
switch [ i ] & S . a c t i v e [ i ] guards sync { S . 〈 act ivateNext 〉 , Q. 〈deq 〉 }

}
! S . a c t i v e [ 0 ] guards sync { S . 〈 proce s s 〉 , Q. 〈deq 〉 }

32 Q. s [ 0 ] guards S . 〈 deac t i v e 〉

Probability queueFul l = Transient (Q. s [ s i z e ] , 1 0 . 0 )
expand( i in {0 . . n} ) {

Probability serverBusy [ i ] = Transient (S . a c t i v e [ i ] , 1 0 . 0 )
37 }

Probability a l lSe rve r sBusy = SteadyState (S . a c t i v e [ n ] )
}

Fig. 3. Towards greater modularity: Splitting the arrival and service process into dif-
ferent Behaviors.

resent all states in which exactly i servers are active (lines 23 .. 26). For this
reason, we abstract of the number of jobs in the queue by disjunction.

As one can see, the planar representation of the whole hysteresis model can be
difficult to understand and may be prone to errors (e.g. consistency regarding the
index values and ranges). For this reason, Fig. 3 shows an alternative LARES
specification of the same system by splitting the model into several parts: a
Behavior for the Queue and a Behavior for the Service process. The queue is
responsible for the arrival process (line 4) and provides for interaction a guard
label <deq> in order to dequeue a job (line 7). Note that these guarded transi-
tions do not provide any distribution type. This means that they act passively
if a synchronisation is desired. The service process defines the states active[i]
in order to denote i running servers. An additional server can be immediately
activated if the guard label <activateNext> is triggered (line 14). Furthermore,
a server can be deactivated, which takes some time in order to complete the



job first (line 18). By triggering the <process> guard label, the server remains
active after service completion (line 19).
The System definition instantiates both behaviours with the names Q resp. S
(lines 24 .. 25). The Condition switch[i] (line 28) provides information about
states when an activation of a further server can take place, i.e. if a job enters the
queue s.t. the hysteresis width w(i) is exceeded. In this case the guards statement
(line 29) synchronously activates a further server and dequeues a job from the
queue, but only if there are not enough servers running (S.active[i] addition-
ally satisfied). Since the transitions for both guard labels do not provide any
distribution type (both are passive), we model an immediate synchronous tran-
sition. If there is at least one server running a guards statement (line 31) allows
to synchronously process a job and dequeue the next job. Here the <process>

transitions in the Service behavior provide the exponential distribution type,
which is also the composed synchronous distribution, since the Q.<deq> tran-
sitions are passive. The third guards statement (line 32) is responsible for the
deactivation of servers, if the queue is empty. Finally, the Probability statements
(lines 34 .. 38) specify the same measures as in Fig. 2.
In order to emphasise the modularity aspects of LARES we propose a third
LARES specification for the same model on the LARES website [11]. There, the
service process (from Fig. 3) is split into distinct server instances (represented by
a Module definition), which yields a non-trivial instance tree with intermediately
instantiated Modules. Surely the reachable state space gets enlarged since sym-
metries in the service process are unfolded. However, these symmetrical states
can be aggregated by lumping.

3 Textual Editor Plugin

In order to support the LARES modeller we implemented an editor environment
for the LARES DSL (domain specific language) which runs in Eclipse. For this
purpose we use the Xtext framework [8] which generates default implementations
for both the DSL and the editor components. Xtext needs two models: a DSL
grammar model and a DSL object model (see Fig. 4). The LARES Grammar
model is textually specified within the Xtext editor and conforms to the Xtext
Grammar meta-model. Here all parser rules for the grammar of the LARES lan-
guage are specified in an EBNF-like style. A textual LARES model (conforming
to the LARES Grammar model) is parsed by the XText framework and trans-
formed into an instance of the DSL object model. In our case the object model
is provided by the LaresDsl model which in turn conforms to the Ecore meta-
model. Concretely, the LaresDsl model corresponds to the textual notation and
provides types which represent the entities of the LARES language.
In order to be able to parse a textual LARES model into the LaresDsl ob-
ject model, a connection between both is specified inside the LARES Grammar
model. As an example consider Fig. 5. Here a parser rule named Transition-

Statement parses a character string starting with “Transitions from” and trans-
forms to a TransitionDefinition object in the object model. The Transition-



EMF Ecore

LaresDsl LaresBasic

LaresDsl
model instance

LaresBasic
model instance

LARES Grammar

textual LARES
model specification

Xtext Grammar
instance of

maps to

X
te

x
t 

fr
a
m

e
w

o
rk

Fig. 4. Interrelations between the LARES models and their model instantiations

Definition object is fed with the following information: a cross-reference to an
existing source state of type State created when an ID is parsed, an optional list
of indices for the source state by delegating to the IndexList parser rule and a
non-empty list of transitions which delegate to the Transition parser rule.

TransitionStatement returns TransitionDefinition:
"Transitions" "from"

sourceState = [State | ID] (sourceStateIndexList = IndexList)?

(transitions += Transition)+;

Fig. 5. Specification of TransitionStatement parser rule in the LARES Grammar
model. Italic text denotes the connection to the LaresDsl object model.

As mentioned, LaresDsl corresponds to the textual notation of LARES, which
also allows to represent “dynamic” LARES constructs such as parameters, arith-
metic expressions and expand statements. These dynamic parts of LaresDsl can
be made “static” by an in-place transformation to a resolved LaresDsl model
(cf. Sec. 3.2). We further define the LaresBasic model, which abstracts Lares-
Dsl from these dynamic constructs and textual pecularities such that a graphical
editor can be directly supported (cf. Sec. 5). The transformations between Lares-
Dsl and LaresBasic are implemented in a rule-based fashion by applying ETL
(Epsilon Transformation Language [18, 2]).

3.1 Editor Features

In addition to the mentioned parsing functionality, Xtext also generates a mini-
mal default implementation for the infrastructure of the LARES editor, which is
briefly outlined in the following. We also show how some of these features were
modified and new features added in order to be able to specify valid LARES
models and assist the modeller while editing. For this reason Fig. 6 shall serve
as an example of a parametrised Behavior definition named B.



Fig. 6. Behavior definition with
cross-references (dashed arrows),
error markers and content assist.

Xtext comes with a default scoping functionality, which allows to restrict the
view on objects which can be cross-referenced. Since LARES follows the object-
oriented paradigm, e.g. allows to build models in a modular and hierarchical way,
information can be encapsulated. For this reason we modified the default scoping
feature by restricting the visibility of objects that can be cross-referenced. As
an example, Behavior B in Fig. 6 defines four states, which are cross-referenced
in the transition statement as source or target states. Note that the t states
are indexed with arithmetic expressions. The parameter i is cross-referenced in
the index expression of state t[i+1]. All defined parameters and states are only
visible inside the Behavior, i.e. they cannot be referenced from the outside.
The cross-references can be visualised to the modeller by the hyperlinking feature,
which allows to jump in the editor from a textual region representing a cross-
reference to the textual element representing the referenced object. In order to
establish a cross-reference, Xtext comes with a default linking feature. As already
mentioned, LARES models are parametrizable and allow to model arithmetic
expressions and set expressions. These expressions belong to the LaresDsl object
model and are not evaluated on-the-fly while editing. For this reason, we made
the linking smarter by matching the index list in patterns in order to create
a cross-reference which is either correct or a provisional suggestion to the first
matched appropriate object. As an example, the target state t[3] references to
the suggested state definition t[i+1], since all other state definitions starting
with t do not match the pattern ’3’ of the index list. Note that without evaluating
the arithmetic expressions, it is not guaranteed to find the semantically correct
cross-reference.

Fig. 7. Linking feature: The cross-reference
t[2,2] cannot be matched to any state.

Consider for this Fig. 7: The
source states t[1,1] and t[i,i]

could match all of the state def-
initions, since the parameter i is
not known and the expression 1+1

is not evaluated. Therefore they
are referenced to the first found
match t[1,i]. In the same way
the target state t[2,1] is refer-
enced to t[i,1]. However, for the target state t[2,2] no defined state can be



surely matched, regardless of which value the parameter i takes. Therefore no
cross-reference is created and the LARES model is considered as invalid.

The semantics of a LARES model is defined by transformation into the Stochas-
tic Process Algebra CASPA [22] (cf. Fig. 1). In order to be able to perform this
transformation, the LARES model has to fulfil several validation constraints.
The default syntax validator automatically checks whether the textual model
conforms to the LARES Grammar model. If it violates the grammar, an error
marker is created and visualised at the corresponding location in the editor. Fur-
thermore, an Ecore reference validator also checks if all cross-references in the
model have been established. Remember that Xtext restricts the view on objects
that can be cross-referenced by the scoping feature. As an example, Fig. 6 shows
two violations. First, the index unknown is marked as erroneous, since there is no
defined parameter named unknown in the scope of the reference. Second, the tar-
get state in a transition is compulsory (by the grammar) and has to be specified.
In order to be able to check the LARES model for additional semantical valida-
tion constraints, Xtext provides a validator feature. We describe in the following
only a few of the implemented constraints checked during validation. First of
all, names of objects of specific types have to be unique in scope. Second, the
ranges for numerical values are restricted, e.g. rates of an exponentially delayed
transition have to be positive. Last but not least, definitions which induce cyclic
dependencies cannot be evaluated and have to be checked.

Fig. 8. Validation feature: Elements can be
checked for cyclic dependencies.

As an example, in Fig. 8 the
Condition statements b and c

are cyclic and same also holds for
d[1]. In the expand statement
for each value of i in the range
between 2 and 10 a Condition

named d[i] is defined, which also
induces cycles, if this statement
were expanded into nine separate
Condition statements. However,
since arithmetic and set expres-
sions are not evaluated the cyclic
dependency can not be assured
and thus not checked in the validator feature. We will deal with this problem in
more detail in Sec. 3.2.

In order to support the LARES modeller in the user interface, the content assist
feature provides context-dependent textual proposals. By default these proposals
contain all grammar elements and cross-referencable objects which are allowed in
the context of the cursor. As an example, Fig. 6 shows proposals for states in the
scope of the target state reference. Since LARES statements do not employ sepa-
rators, many parser rules from different semantical contexts might be applicable,
s.t. the plethora of default proposals might rather confuse LARES newcomers.
For this reason we modified the content assist by a context-dependent filtering
of the default proposals. Moreover, we added some typical templates and com-



ments to the proposals [16].
As already mentioned, the parsing process transforms a textual model to the
LaresDsl object model. This transformation can be reverted by the serializer
feature which plays an important role in Sec. 3.2. Note that the LARES lan-
guage is descriptive, which means that the order of the statements does not
matter. For this reason different textual representations might yield the same
LaresDsl object model when parsed. Therefore the serializer transforms into one
of the possible textual representations. In order to make the serialised textual
representation more readable (following some textual modelling conventions),
a formatter feature has been implemented, which is responsible for the pretty
printing functionality [16].

3.2 Deep Validation

LARES models are analyzed by performing several sequential transformation
steps, which all together resolve parameters and references to conditions and
labels (forward resp. guard labels), thereby ending up in an intermediate model.
This resolved model can then be either transformed to a SPA specification [22]
or by performing a reachability analysis into an LTS [15] (cf. Fig. 1) upon which
state-based computations are performed in order to return the desired mea-
sure values. Each of these transformations can only be performed correctly if
some assumptions or necessary restrictions are met in the source model of the
corresponding transformation. In order to further assist the modeller, these as-
sumptions can be validated before executing the transformation. If a constraint
has proven to be invalid, the modeller can be notified with additional informa-
tion about the error type and its origin in the source model.
The first transformation step performed on a LARES model is the parameter
resolution phase. Here arithmetic expressions and set expressions are evaluated
and looping and recursive constructs are expanded (e.g. the expand statements).
As an example Fig. 9 shows a LARES specification with parameters and an
equivalent specification without parameters.

Fig. 9. Parameter resolution: Two equivalent LARES specifications. Left: parametric
dependencies and expand statement. Right: all parameters are resolved.

We implemented this transformation with EPL (Epsilon Pattern Language [2])
as an in-place transformation, i.e. an arbitrary LaresDsl model is transformed
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into a resolved LaresDsl model. The EPL transformation is defined in a de-
scriptive pattern-based way, which allows to split the rather complex recursive
and iterative transformation into several independent parts, thus improving the
maintenance and correctness of the transformation. In Fig. 9 the Behavior B is
instantiated in the System main and defines the values w and N which can be sub-
stituted in the Behavior definition. Now all arithmetic expressions which refer
to these parameters can be evaluated to numbers. Therefore the set expression
in the expand construct can be resolved s.t. in turn all arithmetic expressions
which refer to i can be resolved and finally evaluated.
If a necessary cross-reference to some object cannot be established in the pa-
rameter resolution phase, it is considered as invalid and the modeller is informed
with an error marker on the appropriate cross-referencing element in the editor.
For instance, if the EPL transformation is performed on the model in Fig. 8 the
resolution of the expand statement produces such a cross-reference error, since
after resolution there is no Condition definition named d[11]. In order to be
able to create these error markers in the editor, we accompany the EPL trans-
formation with a Trace model, which maps a resolved LaresDsl element to the
element from which it originated by transformation. Once all cross-references
are established, the resolved LaresDsl model can be serialised to its textual rep-
resentation which can be viewed or edited with the LARES editor and manually
investigated and validated by the modeller. Finally, the resolved LaresDsl model
is further validated by constraints defined in EVL (Epsilon Validation Language
[19, 2]), which roughly speaking perform (among others) once more the fast on-
the-fly validations from the Xtext validator but now for all resolved LaresDsl
elements [16]. The whole validation workflow is summarised in Fig. 10.
Note that the validation process for the analysis presented here is not complete,
since further transformations in the LARES workflow are not pre-validated. The
reason is that for some model constraints an expensive reachability analysis on
the composed state space has to be performed.

4 View Plugin

In order to extend the graphical user interface (GUI), the LARES View Plu-
gin has been developed to carry out the analysis in a comfortable way. It aims
to support the experiments by steering the analysis process, the visualisation



of results and their management. It has been developed as an Eclipse View
Plugin component, which reacts on specific editor events to synchronise to mod-
ifications applied to the model. Whenever the current model has changed, the
instance tree is internally reconstructed, then converted to a DOT graph [5] and
drawn on an SWT composite [7] using the ZEST library [3]. Fig. 11(a) shows
the GUI of the View Plugin: the instance graph of a LARES model is instan-
taneously visualised on the GUI (cf. 6©). A more elaborated version (including
the provided Condition and forward identifiers of all instances as well as the as-
sociated Behavior definitions) can be serialised in the DOT format if required
(cf. 1©). In order to check whether the intended semantics is met for some spe-
cific construct inside a LARES model, if e.g. a modeller is not certain about
the transformation semantics, the plugin allows to dump the generated SPA
specification (cf. 4©). For smaller models, also a reachability analysis to gener-
ate a DOT graph of the composed state space might help for model validation
(cf. 2© and Fig. 11(b)). Moreover, the ability of the CASPA tool to determine
the k-most probable paths into a set of target states [24], for instance deadlock
states, is accessible using the GUI and can be directly visualised (cf. 3© and 6©).
The Probability measure statements specified in a LARES model are extracted
(cf. 7©): the transient measures are grouped following the associated analysis
timepoint, while the steady-state measures are within a single group since their
timepoint is implicitly considered infinity. For all transient measures, a dialogue
is opened when performing their analysis to ask for additional equidistant inter-
mediate timepoint analysis. Then the transformation workflow as implemented
by the LARES library is performed to construct the SPA specification which
is accepted and analysed by the CASPA process algebra solver. The obtained
results are collected in a list (cf. 9©) for which a copy&paste feature has been
implemented to allow a transfer to external tools such as spreadsheet packages.
Simultaneously, the results are visualised (cf. 10©) in terms of an xy-plot drawn
by the JFree chart library [6]. Since each timepoint requires its own indepen-
dent analysis run, parallel execution following the number of logical CPU cores
is supported. There is also a progress monitor for the analysis (cf. 8©). Finally,
output information and errors occurring while parsing, transformation or anal-
ysis are reported (cf. 11©) to give feedback to the user in the case of issues that
have not already been detected by the semantic validation features included in
the textual Editor Plugin. These outputs can help the user to fix his model or to
obtain further knowledge about the intermediate steps of the transformation or
analysis of a model. It is planned to connect to a database to save and manage
the experiments performed (cf. 5©). There the results obtained from the solvers
are stored together with the version of the specification used for analysis, e.g. to
compare different model parametrisations.
Internally, the View Plugin is a mixed Scala/Java project that uses the AKKA
actor library [1] for decoupling the internal components via message passing and
assuring smooth usability of the GUI, since each component is realised as an
actor which itself is a lightweight process. In consequence, the GUI does not
block the whole IDE, despite performing an analysis burdening the CPU.
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Fig. 11. Analysis of the multiple parallel hysteresis model from Fig. 2

5 Ongoing Development

Currently a graphical LARES editor is also in development, using the Eclipse
Graphiti framework [4] and plain Java. Beyond the application of graphical lay-
out algorithms, Graphiti directly supports EMF models. To facilitate the inter-
change of model information, we specified the LaresBasic model (cf. Sec. 3). Two
diagram types, one for a Module definition and another one for the Behavior defi-
nition have been developed. The class structure generated from the LaresBasic
model is used to deal with a graphical LARES representation. The Graphiti
classes have been extended to realise the graphical notation and tooling. Thus
standard features such as delete, resize or wizards to construct diagrams were
inherited and could be used out-of-the-box. Furthermore, the layout information
of a LARES model had to be separated from the content, and the drill-down
functionality (i.e. construct/open new diagrams inside another via double-click)
needed to be implemented to enable a smooth navigation among the different
diagram entities. As a medium term goal, we aim to complete the graphical edi-
tor to ease the LARES modelling for new users not yet familiar with the textual
syntax. As a long term goal, we aim for a hybrid graphical/textual editor that
integrates both approaches, in order to experience the best from both worlds.
As already indicated, it is foreseen for the LARES View Plugin to establish a



database binding to save and manage experiments. For that purpose, a simple
database query language will be applied to store current experiments or to gather
results of older ones for further processing or comparison.

6 Conclusion/Outlook

We have presented an informative overview on the LARES IDE with a focus
on the textual Editor Plugin. This plugin was created in a model-driven way by
employing the Xtext and Epsilon frameworks. The editor is enhanced beyond
the semantically correct scoping mechanism with several assisting features, like
a smart content assist, cross-reference linking and a fast partial model validation
facility. These extended editor features support the user by a facilitated access to
the modelling world of LARES. Furthermore, it allows to perform a deep valida-
tion by transforming parametrised LARES models into parameter-free LARES
models. The LARES View Plugin has also been detailed in this paper. This
user interface enables a modeller to analyse LARES specifications and calculate
the measures of interest. Intermediate representations, such as the reachability
graph or the generated process algebra model, can be used to validate the model
beyond the syntactical and semantic aspects captured by the grammar and the
transformations applied, thus ensuring that the model indeed has the desired be-
haviour. The graph representations (instance graph or reachability graph) and
the xy-plots can easily be serialised in the SVG file format for further use e.g.
in publications.
We have also already extended the LARES language with the capability to
specify Markov reward models and Markov decision processes [14, 15], such that
measures regarding the performability of a LARES model can be specified and
an optimal policy w.r.t. to such a measure can be computed. In the future, in ad-
dition to the issues discussed in Sec. 5, we plan to provide the necessary tooling
for these extensions on the LARES website [11].
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