
LARES - A Novel Approach for Describing System Reconfigurability in
Dependability Models of Fault-Tolerant Systems

Max Walter
Technische Universität München, Germany

Alexander Gouberman, Martin Riedl, Johann Schuster, Markus Siegle
Universität der Bundeswehr München, Germany

This paper presents LARES, a novel approach to the modeling of fault-tolerant systems. We introduce a for-
malism for describing the structure of a system which is able to express dynamic behavior such as imperfect
coverage, common cause errors, failure propagation, increase of failure rates after partial system failure, and
phased missions. It is designed with the intention to provide a convenient and easy-to-learn formalism for mod-
eling – even for non-specialists. The paper introduces the modeling language and illustrates its use by means of
two non-trivial examples.

1 INTRODUCTION

Due to the dynamic behavior of reconfigurable fault-
tolerant systems, the creation of stochastic depend-
ability models is a difficult task. Traditional tech-
niques like fault trees or reliability block diagrams
are no longer sufficient in many cases, because they
assume all components to be of a Boolean nature.
However, in today’s adaptable and reconfigurable sys-
tems, components must be described by more than the
states ‘active’ and ‘failed’ in order to reflect the differ-
ent roles of a component in a reconfigurable system.
Moreover, often the system itself is not considered to
be Boolean, but different failure classes are discrim-
inated. Finally, the basic events (component failures
and repairs) cannot be assumed to be independent, but
common cause failure, failure propagation, limited re-
pair capacities etc. must be taken into account.

Therefore, methods like Markov chains, stochastic
Petri nets or models based on a stochastic process al-
gebra must be applied. However, these methods are
usually considered to be too formal, error-prone, and
work-intensive to be applicable in most industrial sce-
narios.

To increase the applicability of state-based meth-
ods, several approaches have been developed in or-
der to automatically generate these models from high-
level input specifications (see Sec. 2). All these ap-
proaches convert one specific type of input to one spe-
cific type of state-based model. In order to be more
flexible, we suggest to use an intermediate model rep-

resentation, which can be generated from different
kind of application-specific input, and from which
different type of state-based models and be gener-
ated. Hence, different types of analytical solvers or
simulators readily available can be applied for quanti-
tative evaluation. The intermediate model must nei-
ther be too low-level nor too high-level: a tradeoff
must be found in order to be able to easily generate
the intermediate model and to easily convert it into
the state-based low-level representation. In this paper,
we present a possible candidate for such a tradeoff
called LARES (modeling LAnguage for REconfig-
urable Systems) . LARES supports both the textual
and graphical representation of dependability models
which allows for a manual editing of the automati-
cally generated intermediate models. Models of larger
systems are modularized and arranged in a hierar-
chic manner, allowing for efficient quantitative evalu-
ation. Regarding modeling power, features of LARES
include: non-Boolean systems and non-Boolean ba-
sic events, repairable and non repairable systems, re-
liability and availability analysis, distinction of hot-
, warm- and cold-redundancy, fault-tolerant redun-
dancy groups and system reconfiguration after fail-
ures, repairs, or other events.

The paper is organized as follows: Sec. 2 presents
some related work. Sec. 3 describes the basic mod-
eling formalism in textual form. In Sec. 4 we apply
our specification formalism to two case studies from
the literature showing the power of our new approach.
Sec. 5 concludes the paper.

2 RELATED WORK

2.1 SAVE

The System AVailability Estimator (SAVE, (Goyal
et al. 1986; Blum et al. 1994; Blum et al. 1993)) is
one of the earliest tools which are able to automati-
cally generate Markov Chains for dependability eval-
uation. The model is specified using a text file de-
scribing the components and the system’s redundancy
structure, the available repair resources and the re-
pair strategies, and other inter-component dependen-
cies. In comparison with more modern approaches,
the modeling power of SAVE is limited. A graphical
representation does not exist and there is no support
for hierarchical models.

2.2 Dynamic Fault Trees (DFT)

Another tool which transforms high-level input dia-
grams into state-spaced models is Dynamic Innova-
tive Fault Tree (DIFtree, (Dugan et al. 1992; Manian
et al. 1998; Coppit & Sullivan 2000; Dugan et al.
2000; Dugan et al. 1997)). Dynamic fault trees ex-
tend traditional fault trees by a set of novel gates:
PAND (priority AND) are special AND-gate which
take into account the sequence in which the events oc-
cur. A SPARE-gate allows for modeling varying fail-
ure rates in cold- or warm-standby redundant systems.
Finally, FDEP-gates are used to model deterministic
failure propagation. To avoid disambiguities, dynamic
fault tree gates have been formally defined using so-
called interactive Markov chains. This also allows for
a more efficient evaluation method of DFT which has
been implemented in the tool CORAL (COmposi-
tional Reliability and Availability anaLysis, (Boudali
et al. 2007b; Boudali et al. 2007a)).

2.3 Arcade

Within the architectural dependability evaluation (Ar-
cade) framework (Boudali et al. 2008), fault-tolerant
systems are modeled using three different types of
building blocks: basic components, repair units and
spare management units. The semantics of these
blocks and their interaction is defined using interac-
tive Markov chains. The syntax of an Arcade model
bears similarities to SAVE. However, due to the def-
inition of the basic building blocks by interactive
Markov chains, Arcade allows for compositional state
space generation and reduction. Moreover, the model-
ing language can be extended more easily.

2.4 Dynamic Reliability Block Diagrams (DRBD)

As the name implies, in this approach (Distefano &
Puliafito 2007b; Distefano & Puliafito 2007a) reliabil-
ity block diagrams are used to specify the redundancy
structure of the system. The edges of the diagram are
attributed with components, which are implicitly de-
fined to have 3 states: active, standby and failed. Com-

ponents in active and standby-state can fail (a transi-
tion to state failed occurs) whereas failed components
can be repaired (modeled by a transition to the state
active). Moreover, dependency edges can be defined
by the modeler further specifying the behavior of the
components and interdependencies between pairs of
components. The DRBD-approach is very flexible:
in total, 24 different kinds of dependencies between
a pair of components can be defined. The approach
also addresses the problem of conflicting dependen-
cies, i.e. the behavior of the system in case of multi-
ple dependencies influencing the same target at same
time.

2.5 Extended Fault Trees (eFT)

Extended fault trees (Buchacker 1999; Buchacker
2000) allow for refining the leaves of traditional fault
trees using finite automata. The modelers may either
chose from a predefined set of automata (like compo-
nents with several mutually exclusive failure modes)
or create custom sub-models. Furthermore, it is pos-
sible to define interactions between different leaves of
the fault tree. This is done by defining shared transi-
tions in the respective automata. In such a way, events
happening in one leave may affect the behavior of
other leaves as well. Using predefined automata, inter-
component dependencies can also be generated auto-
matically. For instance, different types of failure prop-
agation or varying failure rates are readily available.

2.6 Boolean Driven Markov Processes (BDMP)

In the approach Boolean logic driven Markov pro-
cesses (BDMP, (Bouissou & Dutuit 2004; Bouissou
& Maillard 2004)) each leave of the fault tree is re-
fined using two Markov chains: one for normal op-
eration and one for a so-called triggered operation.
A trigger is a Boolean variable. Whenever a trigger
changes from ‘true’ to ‘false’ or from ‘false’ to ‘true’,
the affected component(s) change their state from one
Markov chain to the other. Triggers are defined on the
fault tree level as an edge between a source and a tar-
get gate. They are set to ‘true’ if the source gate is
failed and set to ‘false’ otherwise. A trigger affects all
components which are ancestors of the ‘target’-gate.
The BDMP-approach can be used to model a wide
variety of inter-component dependencies, including
cold, hot and warm standby, on demand failures, ag-
ing components, mutually exclusive failure modes, as
well as common cause failures. It was shown that such
an approach is more general than the DFT-approach
(Bouissou 2007).

2.7 OpenSESAME

In our previous work we have developed the
tool OpenSESAME (Simple but Extensive, Struc-
tured Availability Modeling Environment (Walter &
Schneeweiss 2005; Walter et al. 2008; Walter 2000)).

In OpenSESAME, systems structures are specified
using reliability block diagrams or fault trees. So
called failure dependency diagrams (FDD) are used
to describe failures with a common cause, failure
propagation and so on. Furthermore, shared repair
resources and non-zero fail-over times between re-
dundant components can be modeled with Open-
SESAME.

3 DEPENDABILITY MODEL SPECIFICATION

In this section we introduce our new formalism
LARES for specifying dependability models. This
formalism allows the user to define a wide variety of
behaviors, starting from simple static reliability block
diagrams or fault trees up to complex dynamic behav-
ior including failure propagation, failures with com-
mon cause, prioritized repair strategies, etc..

3.1 Goals and principles

LARES has been devised with the following goals in
mind:

• A dependability model should have a clear struc-
ture, consisting of modules with well-defined in-
terfaces and realizing an encapsulation of inter-
nal information.

• The specification formalism should provide an
easy-to-learn textual user interface and it should
also provide an equivalent graphical user inter-
face, generated with the help of state-of-the-art
tools.

• The specification formalism should be designed
having in mind that other kinds of system mod-
els or specifications will be automatically trans-
formed to/from this formalism.

Our reliability model consists of one or more mod-
ules which are composed in a strictly hierarchical
manner. There is always a single top-level system in-
stance, representing the overall system. Usually, each
module describes a part (component or subsystem) of
the modeled system, but a module may also represent
a different entity relevant to the modeled system, such
as a repairman or some kind of external influence.

A module may have arbitrarily complex behav-
ior. In the simplest non-trivial case, the behavior is
Boolean, meaning that the module has two states,
being either functional or failed. In the most gen-
eral case, a module may have an underlying multi-
dimensional state space, generated as the cross-
product of several one-dimensional state spaces.

In general, the behavior of a module is composed of
different aspects (also called behaviors or traits). As
an example, one behavior could be the level of opera-
tion of the system (with states fully functional,
degraded and failed), and another aspect could

be the way in which the module is used as a spare
within the overall, reconfigurable system (with states
idle, used by subsys1, used by subsys2). Each
such behavior corresponds to one dimension of the
module’s state space, and a possible combined state
would be the tuple (degraded, used by subsys2).

For defining the state space of a module, we exactly
one so-called behavior description (Behavior) for
each dimension of the state space. A behavior descrip-
tion can also be represented graphically by equiva-
lent behavior diagrams, as exemplified below in the
case studies. Behavior descriptions are finite state ma-
chines, whose transitions are labeled with a name and
attributed with either delay information (in the case of
timed transitions) or weight information (in the case
of immediate, i.e. instantaneous transitions). The be-
havior diagram as a whole may carry parameters, such
as delay parameters or branching probabilities.

Within a module, Boolean conditions, depending
on the states of this module and of all its sub-modules,
can be specified. These Boolean conditions, in turn,
are used to guard transitions of the behavior descrip-
tions, i.e. a transition may only take place if the cor-
responding guard condition is satisfied. Furthermore
in each module, single instances or containers of in-
stances of the modules types within the scope can be
defined to express the internal structure of a module.

3.2 Specification language

In this section, the grammar definition is presented in
a somehow “trimmed” version, just to point out the
most important aspects.

The definition of a behavior has the following form:

Behavior <beh_name> {
State state_1, state_2, ..
Transitions from <state_name>
if [<trans_cond>] -> <state_name>

[, <delay_attrib> | <weight_attrib>]
Transitions from ..

}

The name beh name of a behavior will be referred to
in the behavior list of those modules implementing
this kind of behavior. Internally, the behavior descrip-
tion defines the set of states and all possible state tran-
sitions. It is also possible that a behavior inherits from
another behavior.

A module type is described using the keyword
Module, followed by the module’s name. The list of
the module’s behaviors and possibly the name of a
module with higher abstraction from which it inherits
is separated by a colon.

Module <name> : [moduleref,]
beh_1, beh_2, .. {

<initial_settings>
<sub_modules>
<instance_definitions>
<boolean_conditions>
<guard_statements>
<modification_statements>
<measure_definitions>

}

The contents of a module will be explained next.
Each module’s weight and delay parameters can be
initially set:

initially <param_name> = <arith_expr>

The internal structure of each module is represented
by defining the contained module instances. Again,
the keyword initially allows to declare the initial
state for each behavior of the specified instances. For
a single instance:

<instance_name> is instance of <module>
initially <combined_state>

For defining a container of instances:

<container_name> consists of <n> instances {
[<range>] of <module> initially <combined_state>
...

}

A Boolean condition is defined using the keyword
Condition, followed by a Boolean expression:

Condition <cond_name> = <boolean_expression>

Such conditions are used to guard transitions of be-
havior descriptions.

<cond_name> guards <trans_cond>

A condition may also be employed to trigger the mod-
ification of weight or delay parameters:

<cond_name> causes
[delay_attrib | weight_attrib] = <arith_expr>

Result measures of interest are specified using the
keyword Probability.

Probability <measure_name> =
[Steady_State(<state>) | Transient(<state>,t)]

The next section will show how these language ele-
ments can be employed for specifying dependability
models with non-trivial behavior.

4 CASE STUDIES

4.1 Phased mission system

Phased mission systems are reconfigured not only af-
ter failures, but also according to predefined time in-
tervals with deterministic or random duration. Their
lifetime is thus divided into phases which cannot be
modeled independently of each other, because e.g. a
failure of a component in one phase might influence
the behavior of the system in the following phases.

An example of a simple but non-trivial system
is presented in (Bouissou & Dutuit 2004). There, it
is modeled in two different ways: by a stochastic
Petri net and by a Boolean Driven Markov Process
(BDMP). In the following, we will present a model of
the same system using LARES .

/∗ ∗∗∗∗∗∗∗ B e h a v i o r D e f i n i t i o n s ∗∗∗∗∗∗∗ ∗ /
Behavior B NonRepa i r ab le {

S t a t e Act ive , F a i l e d
T r a n s i t i o n s from A c t i v e

i f [t r u e] → F a i l e d , de lay MTTF
}

Behavior B Switch {
S t a t e Closed , Open , SA Open , SA Closed
T r a n s i t i o n s from Open

i f [i n t c l o s e] → Closed , weight gamma
i f [i n t c l o s e] → SA Open , weight 1−gamma

T r a n s i t i o n s from Closed
i f [i n t o p e n] → Open , weight gamma
i f [i n t o p e n] → SA Closed , weight 1−gamma
i f [t r u e] → SA Open , de lay MTTF

}

Behavior B Phases {
S t a t e Phase1 , Phase2 , Miss ion Acc , F a i l u r e
T r a n s i t i o n s from Phase1

i f [t r u e] → Phase2 , de lay t a u 1
i f [F a i l P 1] → F a i l u r e

T r a n s i t i o n s from Phase2
i f [t r u e] → Miss ion Acc , de lay t a u 2
i f [F a i l P 2] → F a i l u r e

}

/∗ ∗∗∗∗ O v e r a l l Sys tem D e f i n i t i o n ∗∗∗∗ ∗ /
System main : B Phases {

/∗ ∗∗∗∗∗∗∗∗∗ I n i t i a l i z a t i o n ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
i n i t i a l l y t a u 1 = e x p o n e n t i a l 100h
i n i t i a l l y t a u 2 = e x p o n e n t i a l 50h

/∗ ∗∗∗∗∗∗ Module−Type D e f i n i t i o n s ∗∗∗∗∗∗ ∗ /
Module M Component : B NonRepa i rab le{

i n i t i a l l y MTTF = e x p o n e n t i a l 10000 h
}

Module M Switch : B Swi tch{
i n i t i a l l y MTTF = e x p o n e n t i a l 10000 h
i n i t i a l l y gamma = 0 . 0 5

}

/∗ ∗∗∗∗∗∗∗∗ Submodule−I n s t a n c e s ∗∗∗∗∗∗∗∗ ∗ /
s c o n t a i n s 5 instances {

[1 . . 4] of M Switch i n i t i a l l y Closed
[5] of M Switch i n i t i a l l y Open

}

a i s instance o f M Component i n i t i a l l y A c t i v e
b i s instance o f M Component i n i t i a l l y A c t i v e

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗ C o n d i t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
((a . F a i l e d | n o t s [2] . C losed | n o t s [4] . C losed) &

(b . F a i l e d | n o t s [1] . C losed | n o t s [3] . C losed))
| s [2] . SA Closed | s [3] . SA Closed
guards F a i l P 1

a . F a i l e d | b . F a i l e d | n o t s [2] . C losed |
n o t s [3] . C losed | n o t s [5] . C losed
guards F a i l P 2

a . F a i l e d guards s [2] . i n t o p e n
b . F a i l e d guards s [3] . i n t o p e n
Phase2 guards s [1] . i n t o p e n , s [4] . i n t o p e n , s

[5] . i n t c l o s e

Miss ion Acc | F a i l u r e ca us es
f o r a l l m i n { a , b , s [1 . . 5] }
{ m.MTTF ∗= I n f i n i t y }

/∗ ∗∗∗∗∗∗∗ Measure D e f i n i t i o n s ∗∗∗∗∗∗∗ ∗ /
P r o b a b i l i t y M i s s i o n S u c c e s s = S t e a d y S t a t e (main .

Miss ion Acc)
P r o b a b i l i t y M i s s i o n F a i l u r e = 1−M i s s i o n S u c c e s s
P r o b a b i l i t y R e l i a b i l i t y = T r a n s i e n t (main .

F a i l u r e , t)
}

Listing 1. LARES model of the phased mission system.

Fig. 2 contains a schematic drawing of the system:
it comprises two major components (labeled a and
b) and five switches. During phase 1, switches s[1],

Phases

[true] τ2[true] τ1

Failure

Phase1 Phase2 Mission Acc

[Fail P1] 0

[int close] 0, 1− γ

[int open] 0, 1− γ

Open

Closed

Switch

SA Open

SA Closed

[Fail P2] 0[int close] 0, γ [int open] 0, γ [true] MTTF

Figure 1. Behavior diagrams of the phased mission system.

s1

a

b

s2s5

s3 s4

Figure 2. Phased mission system during phase 1 (no fail-
ures occurred).

s[2], s[3], and s[4] are all closed, whereas s[5]
is in the open position. Components a and b are re-
dundant and only one of them is needed for opera-
tion. However, a failure of either a and b is assumed
to short-circuit the system which must be prevented
by opening switch s[2] or s[3], respectively. An
intentional opening of a switch fails with probabil-
ity γ. Furthermore, unintentional opening of switches
s[1..4] may also occur. Open switches (e.g. s[5] in
phase 1) are assumed to be fault-free.

After an exponentially distributed time interval
with mean τ1 = 100h, phase 1 ends and transition into
phase 2 is made. In order to do so, first switches s[1]
and s[4] are opened (unless they were opened unin-
tentionally in phase 1), and then s[5] is closed. All
three operations may fail with probability γ. During
phase 2, a and b operate in series and a failure of ei-
ther a,b, or an unintentional opening of s[2], s[5], or
s[3] will lead to system failure. The mean length of
phase 2 is τ2 = 50h, and it is exponentially distributed,
too.

It is assumed that the system cannot be repaired and
that all failure events occur with the same mean time
to failure MTTF.

The textual LARES-model of the phased mission
system is shown in Fig. 1. It consists of three behav-
iors, one module describing the overall system, and
three measures.

The behavior NonRepairable defines a simple, non-
repairable component which is used for the compo-
nents a and b. The behavior Switch (see Fig. 1 (left),
for a graphical representation) is used for the five
switches. A switch can be intentionally opened or
closed. Two guards (int open and int close) enable a
state change from the closed to the open state and vice
versa. However, with probability 1− γ a stuck-at fault

occurs which is modeled using the states SA Open
and SA Closed. Finally, in the closed position, the
switch can fail by itself with mean time to failure
MTTF.

The individual phases of the system are modeled
using the behavior Phases, graphically represented in
Fig. 1, right. The guards Fail P1 and Fail P2 describe
situations which lead to system failure during phase 1
and phase 2, respectively.

In addition to these behaviors, the model comprises
the component System which behaves according to
Phases. It further defines that the system is made
up of two non-repairable components a and b and
five switches. Moreover, it describes the redundancy
structure of the system during phase 1 and phase 2,
and the interactions between the sub-modules. For ex-
ample, it specifies that s[2] opens after a failure of
component a, or that s[5] is closed at the beginning
of phase 2. Finally, it sets the MTTF of all compo-
nents to infinity (i.e. a failure can no longer occur),
once the system is in the state Mission Acc or in the
failed state. The latter is done in order to decrease the
size of the Markov chain defined by the model.

Finally, three measures Mission Success, Mis-
sion Failure and Reliability are defined.

4.2 Multicomputer

This is a slightly modified example taken from (Suñé
& Carrasco 2001). It models a fault-tolerant multi-
computer (see Fig. 3) comprising three computing
modules (cmi, i ∈ {1,2,3}). Each cmi comprises
three CPU chips (cpuc), two port chips (ptc), and
three memory modules (mmi,j , j ∈ {1,2,3}). Each
memory unit consists of ten memory chips (mc) and
an interface chip (ic).

As the system is non-repairable, we do not involve
transitions from failed to working states of a compo-
nent. The failure rates of the CPU chips are identical
for the CPUs on each computing module. However,
each computing module is equipped with a different
kind of chip. Therefore, the failure rate of the CPU
chips depends on parameter i. The same holds for the
port chips. On the contrary, the computing modules
are identical in terms of memory. However, the mem-
ory modules within each computing module are dif-

main: cmi, i ∈ {1, 2, 3} mmi,j, i, j ∈ {1, 2, 3}

mm2

cpuc2

cm1 cm2 cm3
mm1 mm3

ptc1cpuc1 ptc2

mc2mc1

ic

mc8 mc9 mc10

cpuc3

Figure 3. Hierarchical multicomputer. Grey blocks indicate spare-components with reduced failure rate during normal
operation.

Good Failed Good

[true] λ[fail] 0, 1

IBEM BEM

Failed

CoverageSM

Active Idle Normal Uncovered

[wakeup] 0 ,1

[sleep] 0 , 1

[fail] 0, 1-c

[fail] 0, c

Figure 4. Behavior diagrams of the Multicomputer system.

ferent. Therefore, the failure rate of the memory and
interface chips depends on parameter j.

According to (Suñé & Carrasco 2001), the sys-
tem is working if at least two computing modules are
working. In turn, a computing module requires two
CPU chips, one port chip, and two memory modules
for fault-free operation. Finally, a memory module is
working if at least eight memory chips and its inter-
face chip are fault-free. The undesirable event Sys-
tem Failure can therefore be described using the fol-
lowing Boolean terms:

(1) System Failure ≡ main.IBEM.Failed ← 2
oo cmi.IBEM.Failed

(2) cm.IBEM.Failed ← 2 oo mmi.IBEM.Failed
| 2 oo cpuci.BEM.Failed | 2 oo
ptci.BEM.Failed

(3) mm.IBEM.Failed ← 3 oo mci.BEM.Failed |
ici.BEM.Failed

Hereby, (1) corresponds to line 27 in Listing 2 and
defines a system failure. (2) corresponds to line 46 and
defines the failure of a computing module. Finally, (3)
corresponds to line 90 and defines a memory module
failure.

The dynamic behavior of the system is, again fol-
lowing (Suñé & Carrasco 2001), defined as follows:

1. The system parts shown in grey in Fig. 3, i.e.
cm3, cpuci,3, ptci,2, mci,j,9, and mci,j,10 are spare
components which are only activated if they are
needed for system operation. While not needed,
the failure rate of all components belonging to
the respective part of the system is reduced.

2. In all cases, recovery may fail itself, leading to
an immediate failure of the corresponding (sub-
)system. In detail, a failure of one of the ten
mci,j,∗ is not covered with probability 1 − cmc,
leading to a failure of mmi,j . A failure of one of
the mmi,∗, cpuci,∗, or ptci,∗ is not recovered with
probability 1− cmm, 1− ccpuc or 1− cptc, respec-
tively, and leads to a failure of cmi. Finally, if one
of cm∗ fails, the overall system fails immediately
with probability 1− ccm. Note that also the fail-
ure of unused spare components can affect the
system in such a way.

The failure behavior of a (sub-)system is modeled
by using the ”boolean error model” (BEM) for fail-
ures after an exponentially distributed time as well
as the ”immediate BEM” (IBEM) for triggered fail-
ure transitions, which is needed to push a failure in
subsystems bottom-up (see Fig. 4, for the shortened
textual specification see Listing 2).

In order to model issue 1, we use the spare model
behavior SM. A subsystem which has this behavior
can be Active or Idle, meaning that the subsystem
is used for the overall operation or is functioning as
spare. For instance, computing module cm3 is initially
spare, which means that all of its submodules are idle.
If cm3 is activated after failure of cm1 or cm2 then
all of its submodules are activated recursively, except
those which are still designated to work as spare com-
ponent. For example the modules cpuc3,1, cpuc3,2 and
ptc3,1 are activated and their failure rate is increased
immediately. The memory modules mm3,1 and mm3,2

are activated in such a way that all of their submod-
ules, which are necessary for the correct functioning
of these modules are activated. On the other hand the
modules cpuc3,3, ptc3,2 and mm3,3 remain idle, if all
the other activated submodules of module cm3 are not
yet failed.

1Behavior IBEM {
2S t a t e Good , F a i l e d
3T r a n s i t i o n s from Good
4i f [f a i l] → F a i l e d
5}
6Behavior Coverage {
7S t a t e Normal , Uncovered
8T r a n s i t i o n s from Normal
9i f [f a i l] → Normal , weight c
10i f [f a i l] → Uncovered , weight 1−c
11}
12Behavior SM {
13S t a t e Act ive , I d l e
14T r a n s i t i o n s from A c t i v e
15i f [s l e e p] → I d l e
16T r a n s i t i o n s from I d l e
17i f [wakeup] → A c t i v e
18}

20System main : IBEM , Coverage {
21i n i t i a l l y Coverage . c = 0 . 9

23/∗ ∗∗∗∗∗∗∗∗∗∗ I n s t a n c e s ∗∗∗∗∗∗∗∗∗∗∗ ∗ /
24cmi c o n t a i n s 3 instances o f cm

26/∗ ∗∗∗∗∗∗∗ Sys tem F a i l u r e ∗∗∗∗∗∗∗∗∗ ∗ /
272 oo cmi . IBEM . F a i l e d guards IBEM . f a i l

29/∗ ∗∗∗ Coverage R e c o n f i g u r a t i o n ∗∗∗ ∗ /
301 oo cmi . IBEM . F a i l e d guards Coverage . f a i l , cmi

[3] .SM. wakeup
31Coverage . Uncovered guards IBEM . f a i l

33Behavior Cov cpuc : Coverage {}
34Behavior Cov ptc : Coverage {}
35Behavior Cov mm : Coverage {}

37Module cm : IBEM , SM, Cov cpuc , Cov ptc ,
Cov mm {

38i n i t i a l l y Cov cpuc . c = 0 . 9 5 , Cov p tc . c =
0 . 9 8 , Cov mm . c = 0 . 9 9

40/∗ ∗∗∗∗∗∗∗∗∗∗ I n s t a n c e s ∗∗∗∗∗∗∗∗∗∗∗ ∗ /
41mmi c o n t a i n s 3 instances o f mm
42c p u c i c o n t a i n s 3 instances o f cpuc
43p t c i c o n t a i n s 3 instances o f p t c

45/∗ ∗∗∗∗∗∗∗ Module F a i l u r e ∗∗∗∗∗∗∗∗∗ ∗ /
462 oo mmi . IBEM . F a i l e d | 2 oo c p u c i .BEM. F a i l e d

| 2 oo p t c i .BEM. F a i l e d guards IBEM . f a i l

48/∗ ∗∗∗ Coverage R e c o n f i g u r a t i o n ∗∗∗ ∗ /
491 oo c p u c i [1 . . 2] .BEM. F a i l e d & SM. A c t i v e

guards Cov cpuc . f a i l , c p u c i [3] .SM. wakeup
50p t c i [1] .BEM. F a i l e d & SM. A c t i v e guards

Cov ptc . f a i l , p t c [2] .SM. wakeup
511 oo mmi[1 . . 2] . IBEM . F a i l e d & SM. A c t i v e

guards Cov mm . f a i l , mm[3] .SM. wakeup
52Cov cpuc . Uncovered | Cov ptc . Uncovered |

Cov mm . Uncovered | guards IBEM . f a i l

54/∗ ∗∗ SpareModel R e c o n f i g u r a t i o n ∗∗∗ ∗ /
55SM. I d l e guards mmi[1 . . 3] .SM. s l e e p , c p u c i [1

. . 3] .SM. s l e e p , p t c i [1 . . 3] .SM. s l e e p
56SM. A c t i v e & p t c i [1] .BEM. Good guards p t c i [1] .

SM. wakeup
57SM. A c t i v e & 2 oo mmi[1 . . 2] . IBEM . Good

guards mmi[1 . . 2] .SM. wakeup
58SM. A c t i v e & 2 oo c p u c i [1 . . 2] .BEM. Good

guards c p u c i [1 . . 2] .SM. wakeup

60Behavior BEM {
61S t a t e Good , F a i l e d
62T r a n s i t i o n s from Good
63i f [t r u e] → F a i l e d , de lay e x p o n e n t i a l

lambda
64}
65Module cpuc : BEM, SM {}
66Module cpuc1 : cpuc {
67SM. A c t i v e ca us es BEM. lambda = 6
68SM. I d l e ca us es BEM. lambda = 3
69}
70Module cpuc2 : cpuc { . . . }
71Module cpuc3 : cpuc {
72SM. A c t i v e ca us es BEM. lambda = 4
73SM. I d l e ca us es BEM. lambda = 2
74}
75Module p t c : BEM, SM {}

76Module p t c 1 : p t c {
77SM. A c t i v e ca us es BEM. lambda = 4
78SM. I d l e ca us es BEM. lambda = 2
79}
80Module p t c 2 : p t c { . . . }
81Module p t c 3 : p t c { . . . }
82Module mm : IBEM , SM, Coverage {
83i n i t i a l l y Coverage . c = 0 . 8

85/∗ ∗∗∗∗∗∗∗∗∗∗ I n s t a n c e s ∗∗∗∗∗∗∗∗∗∗∗ ∗ /
86mci c o n t a i n s 10 instances o f mc
87i c i i s instance o f i c i n i t i a l l y BEM. Good , SM

. A c t i v e

89/∗ ∗∗∗∗∗∗∗ Module F a i l u r e ∗∗∗∗∗∗∗∗∗ ∗ /
903 oo mci .BEM. F a i l e d | i c i .BEM. F a i l e d

guards IBEM . f a i l

92/∗ ∗∗∗ Coverage R e c o n f i g u r a t i o n ∗∗∗ ∗ /
93Condit ion o n e f a i l = 1 oo mci [1 . . 8] .BEM.

F a i l e d & 7 oo mci [1 . . 8] .BEM. Good &
SM. A c t i v e

94o n e f a i l & mc [9] .BEM. Good guards Coverage .
f a i l , mc [9] .SM. wakeup

95o n e f a i l & mc [9] .BEM. F a i l e d guards
Coverage . f a i l , mc[9 . . 1 0] .SM. wakeup

962 oo mci [1 . . 8] .BEM. F a i l e d & SM. A c t i v e
guards Coverage . f a i l , mc[9 . . 1 0] .SM.
wakeup

97Coverage . Uncovered guards IBEM . f a i l

99/∗ ∗∗ SpareModel R e c o n f i g u r a t i o n ∗∗∗ ∗ /
100SM. I d l e guards mci [1 . . 1 0] .SM. s l e e p
101SM. A c t i v e & 8 oo mci [1 . . 8] .BEM. Good

guards mci [1 . . 8] .SM. wakeup

103Module i c : BEM, SM {
104SM. A c t i v e ca us es BEM. lambda =8
105SM. A c t i v e ca us es BEM. lambda =4
106}
107Module mc : BEM, SM {}
108Module mc1 : mc {
109SM. A c t i v e ca us es BEM. lambda = 6
110SM. I d l e ca us es BEM. lambda = 3
111}
112Module mc2 : mc { . . . }
113Module mc3 : mc { . . . }
114}

116Module mm1 : mm {
117mci [1 . . 10] are instances o f mc1 {
118[1 . . 8] i n i t i a l l y BEM. Good , SM. A c t i v e
119[9 . . 10] i n i t i a l l y BEM. Good , SM. I d l e
120}
121}
122Module mm2 : mm {
123mci [1 . . 10] are instances o f mc2 { . . . }
124}
125Module mm3 : mm { . . . }
126}

128Module cm1 : cm {
129c p u c i [1 . . 3] are instances o f cpuc1 {
130[1 . . 2] i n i t i a l l y BEM. Good , SM. A c t i v e
131[3] i n i t i a l l y BEM. Good , SM. I d l e
132}
133mmi[1 . . 3] are instances o f mm1 {
134[1 . . 2] i n i t i a l l y BEM. Good , SM. A c t i v e
135[3] i n i t i a l l y BEM. Good , SM. I d l e
136}
137p t c i [1 . . 2] are instances o f p t c 1 {
138[1] i n i t i a l l y BEM. Good , SM. A c t i v e
139[2] i n i t i a l l y BEM. Good , SM. I d l e
140}
141}
142Module cm2 : cm { . . . }
143Module cm3 : cm { . . . }

145cmi [1] i s instance o f cm1 i n i t i a l l y
146IBEM . Good , SM. Act ive , Coverage .

Normal
147cmi [2] i s instance o f cm2 i n i t i a l l y
148IBEM . Good , SM. Act ive , Coverage .

Normal
149cmi [3] i s instance o f cm3 i n i t i a l l y
150IBEM . Good , SM. I d l e , Coverage . Normal
151}

Listing 2. LARES model of the multicomputer system.

Dynamic behavior 2 is modeled by using the
Coverage behavior. For instance if one of the active
cmi fails then this failure could remain undetected
leading to the state Uncovered within the main mod-
ules Coverage behavior. That, in consequence, re-
sults in a system failure (see line 31 in Listing 2). The
module cm has three different Coverage behaviors in
order to parametrize the (possibly different) proba-
bilities ccpuc, cptc and cmm for detecting a failure of
one of its submodules cpuc, ptc resp. mm. For that
purpose we use the inheritance property of Behaviors
(see lines 33 - 38).
Specialized subtypes of abstract module types can be
specified as illustrated in lines 65 - 74. There, cpuc 1,
cpuc 2 and cpuc 3 inherit all Behaviors, Guards- and
Cause-Conditions of the abstract module cpuc and
are specialized by the newly defined conditions. The
concrete instances of these abstract modules are de-
fined as cpuci in the modules cm 1, cm 2 and cm 3
(see lines 128 - 143). In this way it is possible to
build up a hierarchy of modules with different (sub-
)module types in each hierarchy layer.

5 CONCLUSION & OUTLOOK

In this paper we have introduced the LARES for-
malism for the specification of dependability mod-
els of reconfigurable systems. The formalism follows
a structured hierarchical approach and includes fea-
tures that allow the user to describe arbitrarily com-
plex dynamic behavior. The paper described the tex-
tual user interface, concretized by two examples from
the literature. Next steps will include the definition
of a formal semantics for LARES. Based on this se-
mantics, we will develop model transformations in
order to automatically convert different application-
specific modeling formalisms to the LARES formal-
ism, and implement interfaces to existing analysis en-
gines, which will be used to perform the quantitative
analysis of the specified models.

REFERENCES

Blum, A., Goyal, A., Heidelberger, P., Lavenberg, S.,
Nakayama, M., & Shahbuddin, P. (1994). Modeling
and analysis of system dependability using the sys-
tem availability estimator. In FTCS 1994, pp. 137–
141.

Blum, A., Heidelberger, P., Lavenberg, S. S.,
Nakayama, M. K., & Shahabuddin, P. (1993).
”System Availability Estimator (SAVE) Language
Reference and User’s Manual Version 4.0”. IBM
Research Report RA 219S.

Boudali, H., Crouzen, P., Haverkort, B. R., Kuntz, M.,
& Stoelinga, M. (2008). Architectural dependability
evaluation with arcade. In DSN 2008, pp. 512–521.

Boudali, H., Crouzen, P., & Stoelinga, M. (2007a). A
Compositional Semantics for Dynamic Fault Tree

Analysis in terms of Interactive Markov Chains. In
ATVA’07, LNCS, pp. 708–717. Springer.

Boudali, H., Crouzen, P., & Stoelinga, M. (2007b). Dy-
namic Fault Tree Analysis Using Input/Output In-
teractive Markov Chains. In DSN 2007, pp. 708–
717. IEEE Computer Society.

Bouissou, M. (2007). A generalization of Dynamic
Fault Trees through Boolean logic Driven Markov
Processes (BDMP). In ESREL 2007, Volume 2, pp.
1051–1058. Taylor & Francis Ltd.

Bouissou, M. & Dutuit, Y. (2004). Reliability analysis
of a dynamic phased mission system. In MMR 04.

Bouissou, M. & Maillard, S. (2004). Set of test-cases in
the field of system dependability assessment.

Buchacker, K. (1999). Analyzing Safety Critical Sys-
tems Using Extended Fault Trees. In ARCS 1999,
pp. 117–125. Gesellschaft für Informatik.

Buchacker, K. (2000). Modelling with extended fault
trees. In HASE 2000, pp. 238–246. IEEE.

Coppit, D. & Sullivan, K. (2000). Galileo: A tool built
from Mass-Market Applications. In ICSE ’00, pp.
750–753. IEEE Computer Society Press.

Distefano, S. & Puliafito, A. (2007a). Dependabil-
ity modeling and analysis in dynamic systems. In
IPDPS ’07.

Distefano, S. & Puliafito, A. (2007b). Dynamic reliabil-
ity block diagrams: Overview of a methodology. In
ESREL ’07, pp. 1059–1068.

Dugan, J., Bavuso, S., & Boyd, M. (1992). Dynamic
fault-tree models for fault-tolerant computer sys-
tems. IEEE Trans. on Rel. 41(3), 363ff.

Dugan, J., Sullivan, K., & Coppit, D. (2000). Devel-
oping a low-cost high-quality software tool for dy-
namic fault-tree analysis. IEEE Trans. on Rel. 49–
59(1), 49ff.

Dugan, J., Venkataraman, B., & Gulati, R. (1997).
DIFTree: A software package for the analysis of dy-
namic fault tree models. In RAMS ’97, pp. 64–70.

Goyal, A., Carter, W., de Souza e Silva, E., Lavenberg,
S., & Trivedi, K. S. (1986). The System AVailability
Estimator (SAVE). In FTCS 1986. IEEE Computer
Society Press.

Manian, R., Dugan, J., Coppit, D., & Sullivan, K.
(1998). Combining various solution techniques for
dynamic fault tree analysis of computer systems. In
HASE ’98, pp. 21–28.

Suñé, V. & Carrasco, J. (2001). A failure-distance based
method to bound the reliability of non-repairable
fault-tolerant systems without the knowledge of
minimal cuts. IEEE Trans. on Rel. 50(1), 60–74.

Walter, M. (2000). OpenSESAME - A Tool’s Concept.
In ICALP ’00, Volume 8 of Proceedings in Infor-
matics, pp. 477–484. Carleton Scientific.

Walter, M. & Schneeweiss, W. (2005). The model-
ing world of Reliability/Safety Engineering. LiLoLe
Verlag.

Walter, M., Siegle, M., & Bode, A. (2008). Open-
SESAME - The simple but extensive, structured
availability modeling environment. Reliability En-
gineering and System Safety 93(6), 857–873.

