
Compact representation of large

performability models

based on extended BDDs

Markus Siegle

Universit�at Erlangen-N�urnberg, IMMD VII

Martensstra�e 3, 91058 Erlangen, Germany

siegle@informatik.uni-erlangen.de

Abstract: We discuss compact symbolic representa-

tions of large state spaces, based on binary decision dia-

grams (BDD). Extensions of BDDs are considered, in order

to represent stochastic transition systems for performabil-

ity analysis. Parallel composition of components can be

performed in this context, without leading to state space

explosion. Furthermore, we discuss state space reduction

by Markovian bisimulation, also based on symbolic tech-

niques.

1 Introduction

During system design and analysis, there often

arises the problem of generating, manipulating and

analysing large labelled transition systems (LTS).

Such transition systems can be very di�cult to handle

in practice, due to memory limitations. In this paper,

the focus is on stochastic LTSs (SLTS) for performa-

bility analysis, where transitions are associated with

exponential delays. For example, SLTSs are generated

from stochastic process algebra (SPA) models. Under

certain conditions, such SLTSs can be interpreted as

Markov chains.

We investigate a novel approach to SLTS represen-

tation and manipulation which is based on symbolic

techniques. This is motivated by the fact that, in

recent years, the problem of large LTS analysis has

been very successfully approached by using compact

symbolic representations, in particular binary deci-

sion diagrams (BDD). Most of this work took place

in the context of formal veri�cation and model check-

ing, i.e. it deals exclusively with functional behaviour,

see e.g. [2, 3, 5]. The success of symbolic techniques

for functional analysis induced us to experiment with

BDD-based representations of performability models.

2 Symbolic representation of transi-

tion systems

A Binary Decision Diagram (BDD) [1] is a symbolic

representation of a Boolean function f : f0; 1g

n

!

f0; 1g. Its graphical interpretation is a rooted directed

acyclic graph. As a simple example, Fig. 1 (left) shows

the BDD for the function a t + a s t. The function

value for a given truth assignment can be determined

by following the corresponding edges (one-edges drawn

solid, zero-edges dashed) from the root until a terminal

node is reached. In the graphical representation of a

BDD, for reasons of simplicity, the terminal false-node

and its adjacent edges are usually omitted, see Fig. 1

(right).

1

a

s

t

0 1

Figure 1: BDD for a t + a s t, simpli�ed graphical

representation (right)

BDDs provide a canonical representation for

Boolean functions, once the ordering of Boolean vari-

ables is �xed. Given a Boolean function, the size of

the resulting BDD (the number of nodes) is highly

dependent on the chosen variable ordering.

A LTS consists of states and transitions between

states. In addition, each transition carries a label, as-

sociating the transition with a particular action, see

Fig. 2 (left). For the symbolic representation of a LTS,

states and action names are encoded as binary vectors.

We use Boolean variables act

i

to encode the action,

and s

i

and t

i

to encode the source and target state of

a transition (the sets of actions and states are assumed

to be �nite, which is a prerequisite for the symbolic

encoding). Fig. 2 (middle) shows how transitions are

encoded by binary vectors. The Boolean function cor-

responding to the whole LTS is simply the disjunction

of all the encodings of the individual transitions.

Experience has shown that the resulting BDD is

small if the ordering of Boolean variables is chosen

such that the variables encoding the action come �rst,

followed by the variables for source and target state

interleaved [5]. In particular, this ordering is advan-

tageous in view of the parallel composition operator

discussed below. Fig. 2 (right) depicts the resulting

BDD under this variable ordering.

3 Stochastic transition systems: Deci-

sion Node BDD

In stochastic transition systems (SLTS), each tran-

sition has as a second attribute a real number, the

rate of the transition (we assume that actions have

exponential delays). Clearly, pure BDDs do not of-

0 1

2 3

1

(act

1

; act

0

; s

1

; s

0

; t

1

; t

0

)

0

a

➤
1 ! (0; 0; 0; 0; 0; 1)

2

a

➤
1 ! (0; 0; 1; 0; 0; 1)

3

a

➤
2 ! (0; 0; 1; 1; 1; 0)

3

a

➤
3 ! (0; 0; 1; 1; 1; 1)

1

b

➤
1 ! (0; 1; 0; 1; 0; 1)

1

b

➤
3 ! (0; 1; 0; 1; 1; 1)

0

c

➤
1 ! (1; 0; 0; 0; 0; 1)

3

c

➤
0 ! (1; 0; 1; 1; 0; 0)

t

1

s

1

act

1

act

0

s

0

t

0

b

ac

a

c

a

b

a

Figure 2: LTS, transition encoding and corresponding BDD

fer any mechanism for representing the (numerical)

rate information. Multi-terminal BDDs [4] and Edge-

valued BDDs [11] have been suggested for represent-

ing functions of the type f : f0; 1g

n

! IR. However,

in both of these the e�ciency of the data structure,

due to the sharing of isomorphic subtrees, is dimin-

ished. Based on this observation, we decided to de-

velop a di�erent approach which we call decision-node

BDD (DNBDD) [13]. The distinguishing feature of

DNBDDs is that the basic BDD structure remains

completely untouched when moving from an LTS en-

coding to an SLTS encoding. The additional rate in-

formation is attached to speci�c edges of the BDD in

an orthogonal fashion.

A non-terminal BDD-node is called decision node if

both its successor nodes are di�erent from the terminal

false-node. A decision node BDD (DNBDD) is a BDD

enhanced by a function

rates : Paths! (IR)

+

(where Paths is the set of paths from the root node to

the terminal true-node) such that for any such path p,

rates(p) 2 (IR)

2

k

if k is the number of \don't cares"

on path p (a \don't care" is a variable not explicitly

checked on a path). The rate list rates(p) associated

with a path p is attached to the outgoing edge of the

last decision node on that path.

This concept is illustrated in Fig. 3 (in the �gure,

decision nodes are drawn black). The SLTS of this

example contains four transitions. Therefore there are

four Boolean assignments evaluating to true, each of

which is mapped onto a rate as shown in the middle

part of the �gure. The �rst two assignments share the

same path through the DNBDD, a path which has a

\don't care" in the Boolean variable s. Therefore, the

corresponding rate list (�; �) has length two.

The practical realisation of the DNBDD concept in-

troduced so far induces the following problem: There

are situations, where several paths share their last de-

cision node. In such a case, several rate lists would

be assigned to the same edge. We introduce a pointer

structure, the rate tree of a DNBDD, such that the

mapping from paths to rate lists is one-to-one [13].

4 Symbolic Parallel Composition and

Minimisation

When building structured performability models,

an important operation is parallel composition of com-

ponents. The parallel composition operator of a SPA,

for instance, can be realised directly and e�ciently

on the BDD-based representation of the two operand

processes. The resulting DNBDD describes all tran-

sitions which are possible in the product space of the

two processes. Given a pair of initial states, only part

of the product space may be reachable due to syn-

chronisation conditions. Reachability analysis can be

performed directly on the resulting DNBDD, restrict-

ing it to those transitions which originate in reachable

states.

Consider the parallel composition of two processes,

which can be written in process algebraic notation as

P = P

1

j[A]jP

2

, and assume that the DNBDDs which

correspond to processes P

1

and P

2

have already been

generated and are denoted P

1

and P

2

. The set of

synchronising actions A (i.e. the set of actions which

0 1
a; �

a; �

b; �

b; �

�

(a; s; t) ! rate

(0; 0; 1) ! �

(0; 1; 1) ! �

(1; 0; 1) ! �

(1; 1; 0) ! �

a

s

t

1

�; �

�

Figure 3: SLTS, mapping of Boolean assignments to rates and corresponding DNBDD

processes P

1

and P

2

must perform together) can also

be coded as a BDD, namely A. The DNBDD P which

corresponds to the resulting process P can then be

written as a Boolean expression:

P = (P

1

^A) ^ (P

2

^A)

_ (P

1

^A ^ Stab

P

2

)

_ (P

2

^A ^ Stab

P

1

)

Note that, during the evaluation of this expression,

the rate tree of DNBDD P is computed from the rate

trees of P

1

and P

2

. The term on the �rst line of the

above expression is for the synchronising actions in

which both P

1

and P

2

participate. The term on the

second (third) line is for those actions which P

1

(P

2

)

performs independently of P

2

(P

1

) | these actions

are all from the complement of the set A, which in

Boolean terms is expressed as A. The meaning of

Stab

P

2

(Stab

P

1

) is a BDD which expresses stability of

the non-moving partner of the parallel composition,

i.e. the fact that the source state of process P

2

(P

1

)

equals its target state.

Under the variable ordering described above, the

growth of the BDD-based representation is only lin-

ear in the number of parallel components (since par-

allelism is implicit), as opposed to the exponential

growth when working with transition systems and the

usual interleaving of actions. This is a major advan-

tage of the symbolic approach over conventional meth-

ods for state space representation.

A SLTS can be minimised based on an equivalence

relation de�ned on the set of states. The idea is to

reduce the state space by representing all equivalent

states by a single macro state. Such a minimisation

technique can be applied to the DNBDD representa-

tion of the SLTS, i.e. the minimisation is entirely based

on DNBDD operations.

The equivalence relation on which we focus is

known as Markovian bisimulation [7], which has a

strong connection to classical Markov chain lumpa-

bility [9]. Informally, two states are Markov-bisimilar

(members of the same equivalence class) if from both

states all equivalence classes can be reached (in one

step) by the same actions and with the same cumula-

tive rate, where the cumulative rate of action a from

state x to class C

i

is de�ned as

�(x; a; C

i

) =

X

x

a;�

!y; y2C

i

�

The cumulative rate can be easily computed in the

DNBDD context.

Fig. 4 illustrates how the state space S is parti-

tioned into disjoint classes C

1

, C

2

, In the �gure,

the cumulative rate of action a from state x

1

to class

C

2

is �, whereas the cumulative rate of action a from

state x

2

to class C

2

is �+�. Thus, for x

1

and x

2

to be

Markov-bisimilar the condition � = �+ � has to hold.

C

3

: : :

x

2

x

1

a; �

SC

1

C

2

a; �

a; �

Figure 4: Partitioning of state space S

Algorithms for Markovian bisimulation tradition-

ally follow an iterative re�nement scheme [12, 6, 10].

This means that starting from an initial partition

which consists of a single class (containing all states),

classes are re�ned until the obtained partition corre-

sponds to a Markovian bisimulation. The result thus

obtained is the largest existing Markovian bisimula-

tion, in a sense the \best" such bisimulation, since it

has a minimal number of equivalence classes.

For the re�nement of a partition, the notion of

a \splitter" is very important. A splitter is a pair

(a;C

spl

), consisting of an action a and a class C

spl

(whose members play the role of target states). Dur-

ing re�nement, classes of states (which in this con-

text play the role of source states) are split into sub-

classes in an iterative fashion until no further split-

ting is needed. Splitting of a class C

i

with respect to

a splitter (a;C

spl

) results in the computation of sub-

classes C

i

1

; C

i

2

; : : : ; C

i

k

(k � 1), such that the cumu-

lative rate �(x; a; C

spl

) is the same for all the states x

belonging to the same subclass C

i

j

.

The key to e�cient partition re�nement algorithms

lies in an intelligent management of the dynamic set

of splitters together with a memory-e�cient imple-

mentation based on BDDs. For details on symbolic

Markovian bisimulation see [8].

5 Conclusion

The advantages of symbolic representations for per-

formability analysis are obvious: The state space of a

complex system can be built from small components

by applying the (DN)BDD-based parallel composition

operator step by step. After every parallel compo-

sition step, the intermediate LTS can be minimised

without leaving the symbolic world. Thus, the use

of BDD-based representations quite ideally supports

the concept of compositional reduction, avoiding large

state spaces at every step of model construction.

Certainly, a lot of work remains to be done in this

�eld, but from our experience we can already say that

the symbolic representation of large state spaces is a

very promising approach!

References

[1] R.E. Bryant. Graph-based Algorithms for

Boolean Function Manipulation. IEEE ToCS, C-

35(8):677{691, August 1986.

[2] R.E. Bryant. Symbolic Boolean Manipulation

with Ordered Binary Decision Diagrams. ACM

Computing Surveys, 24(3):293{318, September

1992.

[3] J.R. Burch, E.M. Clarke, and K.L. McMillan.

Symbolic Model Checking: 10

20

States and Be-

yond. Information and Computation, (98):142{

170, 1992.

[4] E.M. Clarke, M. Fujita, P. McGeer, K. McMillan,

J. Yang, and X. Zhao. Multi-terminal Binary De-

cision Diagrams: An e�cient data structure for

matrix representation. In IWLS: Int. Workshop

on Logic Synthesis, Tahoe City, May 1993.

[5] R. Enders, T. Filkorn, and D. Taubner. Gener-

ating BDDs for symbolic model checking in CCS.

Distributed Computing, (6):155{164, 1993.

[6] J.C. Fernandez. An Implementation of an Ef-

�cient Algorithm for Bisimulation Equivalence.

Science of Computer Programming, 13:219{236,

1989.

[7] H. Hermanns and M. Rettelbach. Syntax, Se-

mantics, Equivalences, and Axioms for MTIPP.

In Proc. of the 2nd Workshop on Process Alge-

bras and Performance Modelling, p. 71{88, July

1994.

[8] H. Hermanns and M. Siegle. Computing Bisim-

ulations for Stochastic Process Algebras using

Symbolic Techniques. submitted to Sixth Int.

Workshop on Process Algebra and Performance

Modelling, 1998.

[9] J. Hillston. A Compositional Approach to Per-

formance Modelling. PhD thesis, Univ. of Edin-

burgh, 1994.

[10] P. Kanellakis and S. Smolka. CCS Expres-

sions, Finite State Processes, and Three Problems

of Equivalence. Information and Computation,

86:43{68, 1990.

[11] Y.-T. Lai and S. Sastry. Edge-Valued Binary De-

cision Diagrams for Multi-Level Hierarchical Ver-

i�cation. In 29th Design Automation Conference,

p. 608{613. ACM/IEEE, 1992.

[12] R. Paige and R. Tarjan. Three Partition Re-

�nement Algorithms. SIAM JoC, 16(6):973{989,

1987.

[13] M. Siegle. Technique and tool for symbolic rep-

resentation and manipulation of stochastic tran-

sition systems. TR IMMD 7 2/98, Universit�at

Erlangen-N�urnberg, 1998. http://

www7.informatik.uni-erlangen.de/�siegle/own.html.

