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Abstract. This paper presents IM-SPDL, a stochastic extension of the
modal logic PDL, which supports the specification of complex perfor-
mance and dependability requirements. The logic is interpreted over
extended stochastic labelled transition systems (ESLTS), i.e. transition
systems containing both immediate and Markovian transitions. We de-
fine the syntax and semantics of the new logic and show that IM-SPDL
provides powerful means to specify path-based properties with timing
restrictions. In general, paths can be characterised by regular expres-
sions, also called programs, where the executability of a program may
depend on the validity of test formulae. For the model checking of IM-
SPDL time-bounded path formulae, a deterministic program automaton
is constructed from the requirement. Afterwards the product transition
system between this automaton and the ESLTS is built and subsequently
transformed into a continuous time Markov Chain (CTMC) on which nu-
merical analysis is performed. Empirical results given in the paper show
that model checking IM-SPDL can be realised efficiently in practice.

Keywords: Stochastic systems, performance and dependability analysis, sym-
bolic model checking, model checking software.

1 Introduction

It is extremely important to develop techniques for constructing and analysing
distributed, concurrent hard- and software systems, which have become part
of our daily life. Such systems must work correctly and meet high performance
and dependability requirements. Our approach to the combined analysis of func-
tional, performance and dependability aspects (the latter two commonly known
as performability) is based on the formal verification of a stochastic model which
describes both functional and temporal aspects of behaviour.

Such models can be constructed with the help of high-level formalisms, where
stochastic Petri nets and stochastic process algebras are among the most popular
ones. Generalised stochastic Petri nets (GSPNs) [1] offer two types of transitions:
Timed transitions, associated with an exponentially distributed delay, and imme-
diate transitions which, once enabled, fire without delay. Immediate transitions
have been shown to be very useful for the modelling of complex synchronisation



or cooperation schemes, for representing probabilistic decisions or simply for
modelling bookkeeping activities which consume only negligible time. For this
reason, immediate activities are also an integral part of the Stochastic Activity
Network (SAN) modelling formalism [25] as implemented in the Möbius mod-
elling framework [10] for the modelling and analysis of performability properties
of distributed systems. For similar reasons, immediate transitions have also been
included, in the form of immediate actions, into several stochastic process alge-
bras, such as TIPP [13], EMPA [8] and IMC [12]. Overall, one may say that
immediate transitions are a very valuable and often used modelling feature.

While there has been substantial work on the model checking of stochastic
systems, the aspect of immediate transitions has not been considered in this con-
text. In this paper, we present an extension of the modal logic PDL [11], called
IM-SPDL (immediate and Markovian stochastic PDL), which can be used for
specifying requirements for models that contain both immediate and Markovian
transitions. Such a model we call extended stochastic labelled transition system
(ESLTS), since it has two types of transitions and carries action labels as well as
state labels. As the paper shall explain, IM-SPDL is a very powerful logic in that
it allows its user to specify requirements which are based on the probability mea-
sure of sets of execution paths, where regular expressions of actions and so-called
tests are used to characterise the set of satisfying paths. The model checking of
IM-SPDL time-bounded path formulae follows an automaton-based approach:
From the requirement, a deterministic program automaton is constructed, and
subsequently the product transition system between this automaton and the
ESLTS is built and thereafter transformed into a continuous time Markov Chain
(CTMC) on which numerical analysis is performed.

Related Work In recent years, many efforts have been made to devise temporal
logics for the specification of system properties in the area of performance anal-
ysis, where the underlying model is a labelled Markov chain. One result of these
efforts is the logic CSL (continuous stochastic logic) [6], introduced by [3] and
extended in [7] with an operator to reason about steady-state behaviour. CSL al-
lows the specification of certain types of performability measures (cf. [5]), but the
specification of these measures is completely state-oriented, i.e. based on atomic
propositions. In [15] an action-based variant of CSL, called aCSL, was proposed,
which is not based on atomic propositions but on sequences of named actions and
therefore more suitable for action-oriented formalisms such as process algebras.
In [14] it was shown how to employ the logic aCSL for performability modelling.
A first combination of the state-oriented and action-oriented approach was the
logic aCSL+ [22], where regular expressions of actions are used to characterise
satisfying paths. In [18] we presented the first ideas of a stochastic extension of
the logic PDL (SPDL) which also combines state-oriented and action-oriented
features, and where paths can be specified via regular expressions of actions
and so-called tests. The logic asCSL [4], inspired by the path-based reward vari-
ables of [23], follows a similar motivation. However, we emphasise the fact that
the model to be checked by all logics mentioned in this paragraph is a labelled
CTMC which is not allowed to contain immediate transitions.
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Fig. 1. GSPN-style model of a fault-tolerant packet collector

Organisation of the Paper This paper is organised as follows: In Sec. 2, we
introduce ESLTS, the class of models which we consider. Sec. 3 defines the syn-
tax and semantics of the new logics IM-SPDL. In Sec. 4, we show how model
checking of IM-SPDL path formulae can be carried out, by constructing a prod-
uct transition system on which numerical analysis is performed. Sec. 5 presents
some empirical results obtained from a prototype implementation. Finally, in
Sec. 6 we summarise the results and give pointers to future research.

Example 1 (Running example: Fault-tolerant packet collector). Throughout this
paper, we use the example of a fault-tolerant packet collector. Fig. 1 shows the
GSPN-style specification of this simple system which has the following repeating
behaviour: n data packets arrive independently, are stored, and then all n data
packets are jointly processed. Arrivals can either be error-free (upper transition
ARR, rate λ) or erroneous (lower transition ARR, rate µ). Rather unusual for
GSPNs, there are two timed transitions bearing the same name, ARR, which
expresses the fact that these transitions are not distinguishable by an observer.
If a data packet contains an error, this error can be correctable (immediate tran-
sition c) with a certain probability p, or non-correctable (immediate transition
nc) with the complementary probability. In the case of a correctable error, the
error is corrected (transition CO) and more data packets can be received. If
the error is non-correctable, the data packet has to be retransmitted (transition
RT ). During the processing of an erroneous packet, no new packet can arrive,
which is modelled by the inhibitor arcs from places error, waitcor, and waitrt

to the ARR transitions of the model. 2

2 Model: Extended Stochastic Labelled Transition

Systems

The model of the logic IM-SPDL is an extended stochastic labelled transition sys-
tem (ESLTS). An ESLTS has two types of transitions, immediate and Markovian
transitions. Immediate transitions are untimed transitions, whereas Markovian
transitions are associated with an exponentially distributed delay.



Definition 1. (Extended Stochastic Labelled Transition System) An
extended stochastic labelled transition system (ESLTS) is a quintuple M :=
(S, L, RI , RM , s), where:

– S is a finite set of states.
– L : S 7→ 2AP is the state labelling function that associates with every state

s ∈ S the set of atomic propositions which hold in that state. AP is the set
of atomic propositions.

– RI : S×ActI ×IP ×S is the immediate transition relation, where IP = (0, 1].

If (s, a, p, s′) ∈ RI , we write s
a,p

-------➤ s′. ActI is a finite set of immediate
action labels, i.e. actions, that are associated with immediate transitions,
and p ∈ IP is a probability. The probabilities associated with the immediate
transitions leaving a particular state must sum up to 1 (provided that the
state has at least one emanating immediate transition).

– RM : S × ActM × IR × S is the Markovian transition relation. ActM is a
finite set of Markovian action labels, i.e. actions, that are associated with
Markovian transitions. We require that ActI∩ActM = ∅. If (s, a, λ, s′) ∈ RM ,

we write s
a,λ
−−→ s′.

– s ∈ S is the unique initial state of M.

Example 2 (ESLTS of packet collector). In Fig. 2, the ESLTS M for the packet
collector GSPN from Fig. 1 is shown, where we assume that the number n of
data packets that are to be processed is equal to four.
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Fig. 2. ESLTS of the GSPN model for n = 4

The system has the following state labels:

L(s5) = {full}, L(s6) = ... = L(s9) = {error},
L(s10) = .... = L(s13) = {waitrt}, L(s14) = ... = L(s17) = {waitcor}

The sets of immediate and Markovian actions are given as follows:

ActI := {nc, c}, ActM := {ARR, RT, CO, PRC}

For example, transitions s6
nc,1−p

------------➤ s10 and s6
c,p

-------➤ s14 are immediate,

whereas s1
ARR,λ
−−−−→ s2 and s14

CO,γ
−−−→ s2 are Markovian transitions. 2



Since an ESLTS may have two types of transitions, there are two types of states,
vanishing and tangible states.

Definition 2. (Vanishing and tangible states) A state of an ESLTS is called
vanishing if it possesses at least one outgoing immediate transition. Otherwise
the state is called tangible.

A vanishing state is left as soon as it is entered, i.e. its sojourn time is zero. A
tangible state has at least one outgoing Markovian, but no immediate transition
(unless it is absorbing), therefore its sojourn time is governed by an exponen-
tial distribution whose rate parameter λ equals the sum of all the rates of the
Markovian transitions emanating from that state. In the context of compositional
modelling formalisms, such as stochastic process algebras, a further refinement
of the notions of tangible/vanishing states is possible [26]. However, as our model
checking approach is independent of any high-level modelling formalism, as long
as the model to be checked is a single ESLTS which is considered in isolation, it
suffices to distinguish between vanishing and tangible states.

Example 3. In Fig. 2 states s6, s7, s8, and s9 are vanishing, the remaining states
are tangible. 2

For the semantics of the logic IM-SPDL, the following notion of a path is of
great importance:

Definition 3. (Paths in M) An infinite path σ of an ESLTS M is a sequence

of transitions of the form s0
a0,t0
−→ s1

a1,t1
−→ s2 . . . where:

– ti = τ(σ, i) ∈ IR≥0 is the real-valued sojourn time in si before passing to
si+1.

– if ai ∈ ActM , then ∃λ : (si, ai, λ, si+1) ∈ RM and ti > 0 is the sojourn time
in state si (i.e. ti is the value drawn from an exponential distribution).

– if ai ∈ ActI , then ∃p : (si, ai, p, si+1) ∈ RI and ti = 0 is the sojourn time in
state si.

– σ[i] is the (i + 1)st state on path σ.
– σ@t is the state at time point t.
– a[i] is the (i + 1)st action on path σ.

A finite path σ is a finite sequence of transitions of the form: s0
a0,t0
−→ s1

a1,t1
−→

s2 . . . sn−1
an−1,tn−1

−→ sn, where sn is an absorbing state. For a finite path, τ(σ, i)
is defined for i < n as for infinite paths, and for i = n we define τ(σ, i) = ∞.
The set PATH

M(s) := {σ
∣

∣σ[0] = s} is the set of all finite or infinite paths with
initial state s.

3 Syntax and Semantics of IM-SPDL

The logic IM-SPDL is a stochastic extension of PDL [11], a multi-modal pro-
gram logic. Beside the standard ingredients such as propositional logic and the



modal �-operator (“possibly”), PDL enriches the �-operator with so-called reg-
ular programs which are basically regular expressions of actions and tests (cf.
Def. 5 below). If Φ and Ψ are PDL formulae and ρ is a program, then Φ ∨ Ψ ,
¬Φ and

〈

ρ
〉

Ψ are formulae.
〈

ρ
〉

Ψ means that it is possible to execute program
ρ, thereby ending up in a state that satisfies Ψ .

With respect to PDL we have added the following operators to obtain IM-
SPDL: A path operator that extends the original PDL

〈

.
〉

-operator by specifying
time bounds within which the Ψ state has to be reached, a probabilistic path
quantifier P./p to reason about the transient probabilistic behaviour of a system,
and a steady-state operator S./p to reason about the behaviour of the system
once stationarity of the underlying Markov chain is reached.

3.1 Syntax of IM-SPDL

The formulae of IM-SPDL are formally defined as follows:

Definition 4. (Syntax of IM-SPDL) Let p ∈ [0, 1] be a probability and
q ∈ AP an atomic proposition and ./∈ {≤, <,≥, >} a comparison operator.
The state formulae Φ of SPDL are defined as follows:

Φ := q
∣

∣Φ ∨ Φ
∣

∣¬Φ
∣

∣S./p(Φ)
∣

∣P./p(φ)
∣

∣(Φ)

Path formulae φ are defined by:

φ := Φ[ρ]IΦ

where Φ is a state formula as defined above, and I is the closed time interval
[t, t′] of the real axis. The symbol ρ represents a program as defined by Def. 5.

Definition 5. (Programs) Let Act = ActI ∪ ActM be a set of actions, which
are also called atomic programs, and TEST be a set of IM-SPDL state formulae.
A program ρ is defined by the following grammar:

ρ := ε
∣

∣Φ?; a
∣

∣ρ; ρ
∣

∣ρ ∪ ρ
∣

∣ρ∗
∣

∣Φ?; ρ
∣

∣(ρ)

where ε 6∈ Act is the empty program, a ∈ Act and Φ ∈ TEST.

The operators ; (sequential composition), ∪ (choice), and ∗ (Kleene star) have
their usual meaning. The operator Φ?; ρ (resp. Φ?; a) is the so-called test operator
(also called guard operator). Its informal semantics is as follows: Test whether Φ

holds in the current state of the model. If this is the case, then execute program
ρ, otherwise ρ is not executable. Def. 5 requires that every atomic program is
preceded by a test formula Φ, but this can be the trivial test (i.e. Φ = true).
From standard automata theory it is known that regular expressions coincide
with regular languages, i.e. sets of words that are generated according to the
rules of regular expressions. Programs as defined in Def. 5 can be seen as regular
expressions over the alphabet Σ = TEST× (Act ∪ ε). Words that are generated



from programs in IM-SPDL will be referred to as program instances. The set of
these program instances is called, as before, a language.

The length of a program instance r, denoted by
∣

∣r
∣

∣, is the number of elements

from Σ occuring in it. For 0 ≤ i <
∣

∣r
∣

∣, r[i] is the (i + 1)st element of r. TF (r[i])
denotes the test formula part of r[i], and Act(r[i]) denotes the action part of r[i].

Example 4 (Programs and program instances). Let Act = ActI∪ActM as in Ex. 2
be the set of atomic programs, and TEST = {error, full, ...,¬error,¬full, ...} the
set of test formulae. Using the grammar from Def. 5, possible programs are1

ρ1 = ARR; (¬error?; ARR)∗; c; CO; ARR∗ and
ρ2 = (¬full?; ARR); c; CO; (full?; ε).

Some program instances of ρ1 are:

q = ARR; c; CO; ARR; ARR,
r = ARR; (¬error?; ARR); c; CO and
s = ARR; (¬error?; ARR); (¬error?; ARR); c; CO; ARR.

For r it holds that
∣

∣r
∣

∣ = 4, Act(r[1]) = ARR and TF (r[1]) = ¬error. 2

3.2 Semantics of IM-SPDL

Before we give the formal semantics of IM-SPDL, we provide an informal ex-
planation. The meaning of negation (¬Φ) and disjunction (Φ ∨ Ψ) is as usual.
S./p(Φ) asserts that the steady-state probability of the set of Φ-states, i.e. the
probability to reside in a Φ-state once the system has reached stationarity, satis-
fies the boundary as given by ./ p. P./p(φ) asserts that the probability measure
of the paths that satisfy φ is within the bounds as given by ./ p. Path formula
Φ[ρ][t,t

′]Ψ means that a state that satisfies Ψ is reached within at least t but at
most t′ time units, and that all preceding states must satisfy Φ. Additionally,
the action sequence of the path to the Ψ state must correspond to the action
sequence of a word from the language Lρ (the language induced by program
ρ) and all test formulae that are part of program ρ must be satisfied by the
corresponding states on the path.

Definition 6. (State probabilities) The probability to be in state s′ at time
point t, provided that the system is in state s at time 0, is given by

πM(s, s′, t) = Pr{σ ∈ PATH
M(s)

∣

∣σ@t = s′}

The set of paths {σ ∈ PATH
M(s)

∣

∣σ@t = s′} is measurable (see [6]), and Pr

denotes this probability measure.
The definition for steady-state probabilities is similar, taking into account

that steady-state means ‘on the long run’:

πM(s, s′) = limt→∞πM(s, s′, t)

1 For better readability we often omit the trivial test formula, i.e. we write a instead
of (true?; a).



These definitions can be extended to sets of states: For S ′ ⊆ S:

πM(s, S′, t) :=
∑

s′∈S′

πM(s, s′, t) and πM(s, S′) :=
∑

s′∈S′

πM(s, s′).

We are now ready to give the formal semantics of IM-SPDL.

Definition 7. (Semantics of IM-SPDL) The semantics of state formulae is
defined as follows:

M, s |= q ⇐⇒ q ∈ L(s)

M, s |= ¬Φ ⇐⇒ M, s 6|= Φ

M, s |= (Φ ∨ Ψ) ⇐⇒ M, s |= Φ or M, s |= Ψ

M, s |= S./p(Φ) ⇐⇒ πM(s, Sat(Φ)) ./ p

M, s |= P./p(φ) ⇐⇒ ProbM(s, φ) ./ p

Sat(Φ) is the set of states that satisfy Φ, and ProbM(s, φ) is the probability
measure of all paths σ ∈ PATH(s) that satisfy φ:

ProbM(s, φ) := Pr{σ ∈ PATH
M(s)

∣

∣M, σ |= φ}

For the semantics of path formulae we have to relate the instances of the program
ρ to words on paths in the ESLTS M.

Definition 8. (Words on paths) The word Wk of length k ≥ 0 on a path
σ ∈ PATH

M is defined as follows:

W0(σ) := ε

Wk(σ) := Wk−1(σ) ◦ a[k − 1]

where a[k − 1] ∈ ActM ∧ σ[k − 1]
a[k−1],tk−1
−−−−−−−→ σ[k] or

a[k − 1] ∈ ActI ∧ σ[k − 1]
a[k−1],0
−−−−−→ σ[k].

For i = 0, 1, . . . , k − 1, Wk(σ)[i] denotes the i + 1st action on path σ.

Example 5. Consider a path σ := s1
ARR,t1
−−−−−→ s6

c,0
−−→ s14

CO,t2
−−−−→ s2

ARR,t3
−−−−−→ . . .

of the ESLTS from Fig. 2. The word of length 2 induced by σ is (ARR, c), the
word of length 4 is (ARR, c, CO, ARR) and W4(σ)[2] = CO. 2

Definition 9. (Semantics of path formulae) The semantics of path formulae
is defined as follows:

M, σ |= Φ[ρ][t,t
′]Ψ ⇐⇒ ∃k

(

M, σ[k] |= Ψ ∧ ∀0 ≤ i < k(M, σ[i] |= Φ)

∧ time restriction

∧ program matching
)

The first line states that there must be a state σ[k] that satisfies Ψ and that
all preceding states must satisfy Φ. The formula time restriction is defined as



follows:

time restriction :=

(1)
(

(t = 0 ∧
k−1
∑

i=0

ti ≤ t′) ∨

(2)
(

t 6= 0 ∧ ((t ≤
k−1
∑

i=0

ti ≤ t′) ∨ (

k−1
∑

i=0

ti < t ∧
k

∑

i=0

ti > t ∧ σ[k] |= Φ))
)

It expresses the restrictions stemming from the time bounds that are imposed
on paths. In line (1), if the lower time bound is zero, then the only requirement
is to reach a Ψ -state before more than t′ time units have passed. Line (2) covers
the case where the lower time bound is greater than zero. In this case, either the
entry time into state σ[k] must lie within the interval [t, t′], or if the entry time is
less than t, then the sojourn time in σ[k] plus the sojourn times in the previous
states must be greater than t. The formula program matching is defined as
follows:

program matching :=

(1)
(

∃r ∈ L(ρ) ∧
∣

∣r
∣

∣ = k ∧ Act(r[k − 1]) 6= ε ∧

∀0 ≤ i ≤ k − 1(Act(r[i]) = W (k)(σ)[i] ∧M, σ[i] |= TF (r[i]))
)

∨

(2)
(

∃r ∈ L(ρ) ∧
∣

∣r
∣

∣ = k + 1 ∧ Act(r[k]) = ε ∧ σ[k] |= TF (r[k]) ∧

∀0 ≤ i ≤ k − 1(Act(r[i]) = W (k)(σ)[i] ∧M, σ[i] |= TF (r[i]))
)

This formula expresses that the word induced on path σ must be matched by the
corresponding action parts of a program instance r and that the tests appearing
in the program must be satisfied by the appropriate states on the path. There
are two possibilities, as indicated in the formula: (1) If the last element of r is
of the form Φ?; a, where a 6= ε, the corresponding state must satisfy the test
formula and the last transition on the path must have a label identical to the
action part of r[k − 1]. (2) If the last element of r is of the form Φ?; ε, i.e. has
an empty action part, then it only has to be checked whether the corresponding
state on the path satisfies the test formula.

Example 6 (IM-SPDL formulae). With respect to the ESLTS M of Fig. 2 we
specify four example requirements:

– Is the probability to receive four data packets with at most one packet con-
taining a non-correctable error within 5 time units greater than 0.9?

Φ1 := P>0.9(¬full [ARR∗; nc; RT ; ARR∗ ∪ ARR∗][0,5]
full)

– Is the probability to reach a state in which the buffer is full with a single
arrival greater than zero?

Φ2 := P>0(¬full [ARR][0,∞]
full)

Requirement Φ2 characterises state s4.



– Is the probability that the buffer is full after at most 7.3 time units greater
than 75 percent, if the following side conditions must be met: The only packet
that contains an error is the fourth packet. This error must be correctable.

Φ3 := P>0.75(true [ARR∗; (Φ2?; ARR); c; CO][0,7.3]
true)

– In steady-state, is the probability that the system is currently processing
either a correctable or a non-correctable error, less than 3%?

Φ4 := S<0.03(waitcor ∨ waitrt)

2

4 Model Checking IM-SPDL

In this section, we describe the model checking algorithm for the logic IM-SPDL.
Central for this are the notions of program automata and product transition
systems which we introduce in the sequel. Due to restricted space we will only
describe the general idea of how to model check IM-SPDL path formulae, full
details can be found in [19].

4.1 General Idea

The overall model checking algorithm for IM-SPDL is similar to that of CTL in
the sense that we start by checking elementary subformulae and then proceed
to the checking of more and more complex subformulae until the overall formula
has been checked. Model checking propositional logic subformulae works as for
CTL. Steady-state subformulae are checked in three steps as follows:

1. The ESLTS M is transformed into a state-labelled CTMC M′, by eliminat-
ing the vanishing states, as described, for instance, in [2].

2. On M′, model checking the steady-state operator works as for CSL [6]. Step
2 yields the verification results for the tangible states only.

3. During step 1, for each vanishing state the probability to reach a certain
tangible state as the next tangible state is recorded. These probabilities are
now combined with the results of step 2 in order to obtain the verification
results for the vanishing states.

The basic model checking procedure for IM-SPDL path formulae with leading
P./p operator is more involved: We assume that we want to check whether state

s of a given ESLTS M satisfies the formula P./p(φ), where φ = Φ[ρ][t,t
′]Ψ . The

basic idea is to reduce the IM-SPDL model checking problem M, s |= P./p(φ) to

the CSL model checking problem of deciding whether M∗, s∗ |= P./p(F
[t,t′]succ)

for a CTMC M∗ (to be constructed) and a state s∗ of M∗. A path satisfies the
CSL path formula F[t,t′]succ, if within the time interval [t, t′] a state is reached
that satisfies the new atomic proposition succ. We take the following steps:



1. From the program ρ we derive a deterministic program automaton Aρ, which
is a variant of deterministic finite automata.

2. Using the given ESLTS M and the program automaton Aρ, we construct
a product ESLTS (PESLTS) M×. The state space of M× is the product
between M and Aρ, i.e. states are of the form (si, zi), where si is a state
of M and zi a state of Aρ. In addition, M× contains an absorbing error
state with the new state label fail. The transitions in M× are labelled with
rates in the case of Markovian transitions and with probabilities in the case
of immediate transitions. The purpose of building this PESLTS is to check
whether φ = Φ[ρ][t,t

′]Ψ is functionally satisfiable in M or not.
3. In order to compute the probability measure of the paths satisfying φ we

proceed as follows:
(a) All states (si, zi) of M× for which si is a Ψ -state and zi is an accepting

state are replaced by a single absorbing goal state, with the special state
label succ (for “success”). All transitions leading to a state (sj , zj) of the
kind just described are redirected to this succ-state.

(b) The PESLTS M× is transformed into a CTMC M∗ by eliminating van-
ishing states as in [2].

4. On M∗ we can compute the probability measure of all paths satisfying the
CSL formula P./p(F

[t,t′]succ), which is equivalent to the probability measure
of the paths satisfying the original formula P./p(φ) in the original model M.

4.2 Program Automata

According to Sec. 4.1 we have to derive an automaton from a given program ρ.
This is done by the following steps:

– At first, we construct from ρ a non-deterministic program automaton (NPA)
Nρ. The definition of NPA is identical to that of non-deterministic finite
automata as known from standard automata theory, albeit with special input
alphabet Σ as introduced above in Sec. 3.1.

– Secondly, we turn Nρ into a deterministic program automaton (DPA) Aρ.
DPAs are formally defined in Def. 10. From this definition, it follows that the
determinisation of an NPA is quite different from making a non-deterministic
finite automaton deterministic. We will exemplify and justify our approach
in example 7.

Definition 10 (Deterministic program automaton DPA). A DPA A is a
quintuple (ZA, ΣA, zStart, EA, δA) where

– ZA is a finite set of states,
– ΣA = TEST× (Act ∪ ε) is the input alphabet,
– zStart

A ∈ ZA is the initial state,
– EA ⊆ ZA is the set of accepting states and
– δA : ZA ×ΣA → ZA is the state transition function which has to satisfy the

following condition: If a state z possesses more than one outgoing transition
then, either the action parts of the labellings of all outgoing transitions must



be pairwise different, or if there are two or more transitions whose action
parts are identical, then the test formula parts of them must not be true at
the same time.

Our model checking approach relies on the following theorem:

Theorem 1. For every NPA, an equivalent DPA can be constructed.

Although Theorem 1 seems quite obvious, it should be noted that its proof [16]
is not the same as the equivalence proof of deterministic and non-deterministic
finite automata from standard automata theory, since the input symbols have
both a test part and an action part, and during determinisation the semantics of
the test part must be taken into account. Instead of a formal proof of Theorem 1,
we consider the following illustrative example:

PSfrag replacements
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Fig. 3. Non-deterministic program automaton Nρ for the program of Φ3

Example 7 (NPA and DPA). Fig. 3 shows a non-deterministic program automa-
ton Nρ for the program ρ = ARR∗; (Φ2?; ARR); c; CO (taken from Ex. 6, re-
quirement Φ3). The automaton is non-deterministic since the arcs emanating
from state A, labelled with ARR (which is equivalent to (true?; ARR)) and
(Φ2?; ARR), have identical action label and the test parts are not disjoint. We
cannot directly use such a non-deterministic automaton for our model checking
algorithm, as the product construction explained in Sec. 4.3 could modify the
stochastic behaviour of M and thus lead to wrong numerical results. Therefore
we first construct a deterministic program automaton Aρ, which is shown in
Fig 4. In Aρ, no two transitions are activated at the same time. This deter-
minisation guarantees that the product automaton will preserve the branching
structure and therefore the stochastic behaviour of M. 2

4.3 Product ESLTS Construction and Analysis

The central part of model checking probabilistic path formulae is the construc-
tion of the PESLTS of the model M and the DPA Aρ for the program ρ of the
path formula that is to be checked. In this section, we describe by means of an
example how this PESLTS is generated.

Example 8 (Constructing the PESLTS). Let the ESLTS M from Fig. 2 and the
DPA Aρ, shown in Fig. 4, be given. We now explain by example, how their
PESLTS M×, shown in Fig. 5, is constructed:

– The combinations of the transitions s1
ARR,λ
−−−−→ s2 in M and A

¬Φ2?;ARR
−−−−−−−→ A

in Aρ leads to the transition (s1, A)
λ
−→ (s2, A) in M×.



– In M, transition s1
ARR,µ
−−−−→ s6 is also possible, therefore M× also has the

transition (s1, A)
µ
−→ (s6, A).

– Transition (s9, AB)
p

-----➤ (s17, C) in M× stems from the transition s9
c,p

-------➤

s17 in M and AB
c
−→ C in Aρ.

– Transition (s6, A)
1

-----➤ fail is composed of the transitions s6
c,p

-------➤ s14 and

s6
nc,1−p

------------➤ s10 in M, since in state A neither a c nor an nc transition is

possible. Therefore in M× we obtain the transitions (s6, A)
p

-----➤ fail and

(s6, A)
1−p

--------➤ fail which can be replaced by a single immediate transition
that has probability one.

– In state C there is a transition C
CO
−−→ D, where D is an accepting state,

and in M there is a transition s17
CO,γ
−−−→ s5. In M× this leads to transition

(s17, C)
γ
−→ succ, which stems from the fact that the automaton goal state D

is accepting and that the goal state s5 of the ESLTS satisfies Ψ = true, i.e.
state (s5, D) satisfies the conditions of Sec. 4.1, item 3(a). 2

After the product ESLTS M× has been constructed, its vanishing states are
eliminated. We explain this elimination by means of the example:

Example 9 (Elimination of vanishing states). Let the PESLTS M× from Fig. 5
be given. The vanishing states (s6, A), (s7, A), (s8, A) and (s9, AB) are elimi-
nated, thereby redirecting their incoming arcs to the respective successor states2

and weighing them with the corresponding probabilities. This leads to the la-
belled CTMC M∗ shown in Fig. 6. 2

4.4 Complexity

It is known that the time complexity of model checking CSL is linear in the
number of transitions of the model, the uniformisation rate (determined by the
largest exit rate of any state of the model), and the involved time bound [6].
For model checking IM-SPDL probabilistic path formulae, a product transition
system must be constructed first whose size, in the worst case, is the product
of the original model and the program automaton at hand. However, in spite
of this potential blow-up of the state space, in most practical cases (like the
ones in Sec. 5) the product transition system remains small (even smaller than

2 In general, sequences and even cycles of immediate transitions are possible, which
situation can be handled by several published elimination algorithms.

PSfrag replacements

A AB DC

Φ2?; ARR

Φ2?; ARR

¬Φ2?; ARR

¬Φ2?; ARR

c CO

Fig. 4. Deterministic program automaton Aρ for the program of Φ3



11
1

PSfrag replacements

λ

λλλ

µµµ

µ

κ

p

1 − p
ω

γ
(s1, A) (s2, A) (s3, A) (s4, A) (s9, AB) (s17, C) succ

(s6, A) (s7, A) (s8, A) (s5, AB)

(s13, AB)

fail

Fig. 5. Product ESLTS M
×

PSfrag replacements

λ

λλλ

µµµ

ω

κ

p

1 − p

µ · (1 − p)

µ · p γ
(s1, A) (s2, A) (s3, A) (s4, A)

(s9, AB)

(s17, C) succ

(s6, A)

(s7, A)

(s8, A)

(s5, AB)

(s13, AB)

fail

Fig. 6. M∗: Result of the elimination of vanishing states

the original model), since the program automaton typically restricts the possible
behaviour of the original model and only the reachable portion of the product
transition system needs to be constructed.

5 Empirical Results

This section presents empirical results of model checking IM-SPDL requirements,
obtained with the help of the tool CASPA [20] which we have recently extended
by model checking features.

5.1 The Tool CASPA

In CASPA the system to be checked is specified with the help of a stochastic
process algebra (SPA) language, which is augmented by constructs for describ-
ing performability requirements as well as classical performance and depend-
ability measures. Fig. 7 shows the building blocks of CASPA and their inter-
action. CASPA is a fully symbolic model checker, i.e. it relies completely on
multi-terminal binary decision diagrams (MTBDDs), both for representing the
transition system and for implementing the verification algorithms. In our expe-
rience, MTBDDs are superior to explicit representations in that they enable the
compact storage of very large state spaces, where the symbolic representation of
the ESLTS from the SPA specification can be generated very efficiently [17]. The
use of MTBDDs thus enables the generation and storage of state spaces whose
sizes are prohibitive in the case of explicit storage schemes. Using extensions of
MTBDDs and efficient algorithms for numerical analysis, as implemented in the
tool PRISM [21], it is possible to analyse very large systems.
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n: States: Φ1 Φ3

States M
∗: Gen. Time: N.A. Time: States M

∗: Gen. Time: N.A. Time:

5,000 20,001 10,002 1.69 0.32 5,003 1.80 0.11

15,000 60,001 30,002 6.09 1.08 15,003 6.70 0.32

30,000 120,001 60,002 13.72 2.20 30,003 14.59 0.68

50,000 200,001 100,002 25.88 3.57 50,003 28.12 1.16

Table 1. Model checking statistics for fault-tolerant packet collector for Φ1 and Φ3

5.2 Case Studies

Fault-tolerant Packet Collector We check the path-based requirements Φ1

and Φ3 from Ex. 6. Table 1 shows the model checking times3 for different values
of the model parameter n. Columns “States M∗” denote the number of states
of the final transition system M∗, obtained by eliminating the vanishing states
from the respective product transition system M×. For the model checking of
Φ1 and Φ3, most of the time is needed for generating the product ESLTS, since
the times for constructing the DPA and for eliminating the vanishing states were
found to be negligible.

For Φ1 the number of states for the PESLTS is about half the number of states
of the original model because the requirement states that either all packets should
be error-free or at most one packet may contain an incorrectable error. Likewise,
we observe that for Φ3 the number of states of the PESLTS is also smaller than
for the original model. This is due to the fact that we are only interested in the
paths that result from a single correctable error that occurs in the last packet to
be received. This restricts the number of states, as all other transitions not being

3 All execution times are given in seconds, measured on a 3.0 GHz Pentium IV with
1GB of memory, running SuSe Linux 9.0.



n: States: Transitions: Model Gen. Time: MTBDD Nodes:

5 2,546,432 2.446e+07 0.42 5,392

6 11,261,376 1.15709e+08 0.94 8,086

7 41,644,800 4.45046e+09 1.59 10,389

10 1,005,927,208 1.20322e+10 8.37 23,245

11 2,435,541,472 2.98062e+10 12.90 27,425

12 5,519,907,575 6.88839e+10 17.22 32,324

Table 2. Model statistics for the Kanban system

labelled with the appropriate actions in the respective states can be redirected
to a single absorbing error state.

According to Table 1, the numerical analysis (N.A.) times are small compared
to the generation times. However, model checking of Φ1 consumes more time than
that of Φ3 because the number of states of the PESLTS is larger for Φ1 (but the
construction times for both PESLTSs are roughly the same).

Kanban System The Kanban manufacturing system was first described as a
generalised stochastic Petri net in [9]. We consider a Kanban system with four
cells, a single type of Kanban cards and the possibility that some workpieces
may need to be reworked (i.e. moved back to the same cell).

The Kanban system demonstrates the usefulness of symbolic data structures
for representing large state spaces. Table 2 gives the model statistics, where the
scaling parameter n denotes the number of Kanban cards. For n = 12 and a
reachable state space of more than 5.5 billion states only 32, 324 MTBDD nodes
are required. Generating the state space from the given SPA specification and
restricting it to its reachable portion takes only about 17 seconds in the case of
n = 12. Consider the following requirements (only textual definitions are given):

– Φ1: The probability, that within t time units a single workpiece needs exactly
three reworks, should be below p.

– Φ2: The requirement, that a job needs three reworks in the first cell and zero
reworks in the second cell within a given time bound, should be satisfied
with a probability of p?

– Φ3 : The steady-state probability that cell 3 or 4 is blocked, i.e. the maximum
number of Kanban cards is reached, should be below p.

From the results given in Table 3 we observe that for requirements Φ1 and Φ2

the state space of the PESLTS is dramatically smaller than that of the original
system, which stems from the fact that in both cases only very specific paths
in the system are of interest. The table also gives the generation time for the
PESLTS for Φ1 and Φ2 with varying n. For Φ3 the state space size is the same as
for the original model, since in the case of a steady-state requirement no PESLTS
has to be generated. For Φ1 and Φ2 the numerical analysis time is small compared
to the generation time (because the size of the PESLTS is very small). For Φ3

numerical analysis for the cases n ≥ 10 was not feasible (indicated by “–” in the
table), since the allocation of a solution vector in main memory for more than
one billion states is not possible on a common workstation, not to speak of the
solution time.



n: Φ1 Φ2 Φ3

States M
∗: Gen. Time : N.A. Time: States M

∗: Gen. Time: N.A. Time: Gen. Time: N.A. Time:

5 44 0.39 < 10−6 42 0.19 < 10−6 0.42 164

6 53 0.91 < 10−6 53 0.93 < 10−6 0.94 1093

7 62 1.71 < 10−6 54 1.91 < 10−6 1.59 75,600

10 89 7.76 0.01 108 7.71 0.03 8.37 –

11 98 12.88 0.03 119 11.46 0.04 12.90 –

12 107 16.03 0.05 130 17.89 0.09 17.22 –

Table 3. Model checking statistics for Kanban for Φ1 to Φ3

Config.: States: Φ

States M
∗: Gen. Time: N.A. Time:

C1 753,664 4,098 0.06 0.02

C2 2,152 33 0.02 < 10−6

C3 889 11 0.01 < 10−6

C4 123,760 134 0.03 0.01

Table 4. Model checking statistics for FTMCS for Φ

Fault-tolerant Multi Computer System (FTMCS) This computer system,
originally described in [24], comes in different configurations, thereby achieving
different degrees of fault-tolerance (due to the replication of certain components).
For example, configuration C1 has three computers and three memory modules
of which at least one must be operational for the entire system to be operational.
Requirement Φ which we check here, a time-bounded probabilistic path formula,
describes a system failure which is only due to memory failures, no failures of
other components shall contribute to this situation. Table 4 shows that, for all
considered configurations, the state space size of M∗ is very small compared to
the size of the system, since only a very restricted number of paths is of interest,
such that many transitions are redirected to the absorbing failure state.

6 Conclusions and Future Work

In this paper, we have introduced the logic IM-SPDL, a state- and action-
oriented logic whose semantic model contains both Markovian and immediate
transitions. We have shown how the model checking of IM-SPDL path formulae
can be carried out with the help of a product transition system construction.
The papers also presented some empirical results, obtained with our tool CASPA,
which showed the feasibility and efficiency of the proposed method in spite of
the theoretical worst-case complexity of the model checking algorithm.

As future work, it would be interesting to check whether the validity of IM-
SPDL is invariant with respect to some notion of bisimulation, as is the case for
other stochastic temporal logics. Such a result would enable reductions of the
state space prior to model checking, which could be of great value, in particular
in connection with compositional model checking approaches. We also plan to



extend IM-SPDL with random time bounds, i.e. we intend to replace the fixed
time bounds by time bounds whose value is drawn from a random variable.
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