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Abstract. State-based systems with discrete or continuous time are
often modelled with the help of Markov chains. In order to specify perfor-
mance measures for such systems, one can define a reward structure over
the Markov chain, leading to the Markov Reward Model (MRM) formal-
ism. Typical examples of performance measures that can be defined in
this way are time-based measures (e.g. mean time to failure), average en-
ergy consumption, monetary cost (e.g. for repair, maintenance) or even
combinations of such measures. These measures can also be regarded as
target objects for system optimization. For that reason, an MRM can be
enhanced with an additional control structure, leading to the formalism
of Markov Decision Processes (MDP).

In this tutorial, we first introduce the MRM formalism with different
types of reward structures and explain how these can be combined to a
performance measure for the system model. We provide running exam-
ples which show how some of the above mentioned performance measures
can be employed. Building on this, we extend to the MDP formalism and
introduce the concept of a policy. The global optimization task (over the
huge policy space) can be reduced to a greedy local optimization by
exploiting the non-linear Bellman equations. We review several dynamic
programming algorithms which can be used in order to solve the Bellman
equations exactly. Moreover, we consider Markovian models in discrete
and continuous time and study value-preserving transformations between
them. We accompany the technical sections by applying the presented
optimization algorithms to the example performance models.

1 Introduction

State-based systems with stochastic behavior and discrete or continuous time are
often modelled with the help of Markov chains. Their efficient evaluation and
optimization is an important research topic. There is a wide range of application
areas for such kind of models, coming especially from the field of Operations
Research, e.g. economics [4,23,31] and health care [14,36], Artificial Intelligence,
e.g. robotics, planning and automated control [11,40] and Computer Science [2,6,
12,13,21,25,34]. In order to specify performance and dependability measures for
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such systems, one can define a reward structure over the Markov chain, leading to
the Markov Reward Model (MRM) formalism. Typical examples of performance
measures that can be defined in this way are time-based measures (e.g. mean
time to failure), average energy consumption, monetary cost (e.g. for repair,
maintenance) or even combinations of such measures. These measures can also
be regarded as target objects for system optimization. For that reason, an MRM
can be enhanced with an additional control structure, leading to the formalism of
Markov Decision Processes (MDP) [20]. There is a huge number of optimization
algorithms for MDPs in the literature, based on dynamic programming and
linear programming [7, 8, 17, 33] – all of them rely on the Bellman optimality
principle [5].

In many applications, the optimization criteria are a trade-off between several
competing goals, e.g. minimization of running cost and maximization of profit
at the same time. For sure, in these kinds of trade-off models, it is important
to establish an optimal policy which in most cases is not intuitive. However,
there are also examples of target functions with no trade-off character (e.g.
pure lifetime maximization [16]) which can also lead to counterintuitive optimal
policies. Therefore, using MDPs for optimization of stochastic systems should
not be neglected, even if a heuristically established policy seems to be optimal.

In order to build up the necessary theoretical background in this introductory
tutorial, we first introduce in Sect. 2 the discrete-time MRM formalism with
finite state space and define different types of reward measures typically used
in performance evaluation, such as total reward, discounted reward and average
reward. In contrast to the majority of literature, we follow a different approach
to deduce the definition of the discounted reward through a special memoryless
horizon-expected reward. We discuss properties of these measures and create a
fundamental link between them, which is based on the Laurent series expansion
of the discounted reward (and involves the deviation matrix for Markov chains).
We derive systems of linear equations used for evaluation of the reward measures
and provide a running example based on a simple queueing model, in order to
show how these performance measures can be employed.

Building on this, in Sect. 3 we introduce the MDP formalism and the concept
of a policy. The global optimization task (over the huge policy space) can be
reduced to a greedy local optimization by exploiting the set of non-linear Bell-
man equations. We review some of the basic dynamic programming algorithms
(policy iteration and value iteration) which can be used in order to solve the
Bellman equations. As a running example, we extend the queueing model from
the preceding section with a control structure and compute optimal policies with
respect to several performance measures.

From Sect. 4 on we switch to the continuous-time setting and present the CT-
MRM formalism with a reward structure consisting of the following two different
types: impulse rewards which measure discrete events (i.e. transitions) and rate
rewards which measure continuous time activities. In analogy to the discrete-time
case, we discuss the performance measures given by the total, horizon-expected,
discounted and average reward measures. In order to be able to evaluate these
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measures, we present model transformations that can be used for discretizing the
CTMRM to a DTMRM by embedding or uniformization [24]. As a third trans-
formation, we define the continuization which integrates the discrete impulse re-
wards into a continuous-time rate, such that the whole CTMRM possesses only
rate rewards. We further study the soundness of these transformations, i.e. the
preservation of the aforementioned performance measures. Similar to DTMRMs,
the discounted reward measure can be expanded into a Laurent series which once
again shows the intrinsic structure between the measures. We accompany Sect.
4 with a small wireless sensor network model.

In Sect. 5 we finally are able to define the continuous-time MDP formalism
which extends CTMRMs with a control structure, as for discrete-time MDPs.
With all the knowledge collected in the preceding sections, the optimization
algorithms for CTMDPs can be performed by MDP algorithms through time
discretization. For evaluation of the average reward measure, we reveal a slightly
different version of policy iteration [17], which can be used for the continuization
transformation. As an example, we define a bridge circuit CTMDP model and
optimize typical time-based dependability measures like mean time to failure
and the availability of the system.

Figure 1.1 shows some dependencies between the sections in this tutorial in
form of a roadmap. One can read the tutorial in a linear fashion from beginning
to end, but if one wants to focus on specific topics it is also possible to skip cer-
tain sections. For instance, readers may wish to concentrate on Markov Reward
Models in either discrete or continuous time (Sects. 2 and 4), while neglecting
the optimization aspect. Alternatively, they may be interested in the discrete
time setting only, ignoring the continuous time case, which would mean to read
only Sects. 2 (on DTMRMs) and 3 (on MDPs). Furthermore, if the reader is in-
terested in the discounted reward measure, then he may skip the average reward
measure in every subsection.

Readers are assumed to be familiar with basic calculus, linear algebra and
probability theory which should suffice to follow most explanations and deriva-
tions. For those wishing to gain insight into the deeper mathematical structure of
MRMs and MDPs, additional theorems and proofs are provided, some of which
require more involved concepts such as measure theory, Fubini’s theorem or Lau-
rent series. For improved readability, long proofs are moved to the Appendix in
Sect. A.

The material presented in this tutorial paper has been covered previously by
several authors, notably in the books of Puterman [33], Bertsekas [7, 8], Bert-
sekas/Tsitsiklis [10] and Guo/Hernandez-Lerma [17]. However, the present pa-
per offers its own new points of view: Apart from dealing also with non-standard
measures, such as horizon-expected reward measures and the unified treatment
of rate rewards and impulse rewards through the concept of continuization, the
paper puts an emphasis on transformations between the different model classes
by embedding and uniformization. The paper ultimately anwers the interesting
question of which measures are preserved by those transformations.
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Fig. 1.1. Roadmap of the tutorial with dependencies between the sections and sub-
sections. As an example, Sect. 3.3 on stochastic shortest paths, needs Sect. 3.2 and
therefore also Sect. 2.3 but not Sect. 2.4. The Big Picture in Sect. 4.7 is one of the
main goals of this tutorial and also necessary for the section on CTMDPs.

Symbols

BA set of functions f : A → B
2A power set of A
D(S) set of probability distributions over S
P probability measure, probability transition matrix
Ps probability measure assuming initial state s
Es expectation from initial state s
�A(x) indicator function, �A(x) = 1 if x ∈ A and 0 otherwise
δs,s′ Kronecker-δ, δs,s′ = 1 if s = s′ and 0 otherwise
I identity matrix
1 column vector consisting of ones in each entry
p p = 1− p
ker(A) kernel of a matrix A
γ discount factor, 0 < γ < 1
α discount rate, α > 0
V value function
g average reward
h bias
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2 Discrete Time Markov Reward Models

2.1 Preliminaries

Definition 2.1. For a finite set S let D(S) :=
{
δ : S → [0, 1] |

∑
s∈S δ(s) = 1

}

be the space of discrete probability distributions over S.

Definition 2.2. A discrete-time Markov chain (DTMC) is a structure
M = (S, P ) consisting of a finite set of states S (also called the state space
of M) and a transition function P : S → D(S) which assigns to each state s
the probability P (s, s′) := (P (s)) (s′) to move to state s′ within one transition.
A discrete-time Markov Reward Model (DTMRM) enhances a DTMC
(S, P ) by a reward function R : S × S → R and is thus regarded as a structure
M = (S, P,R).

In the definition, the rewards are defined over transitions, i.e. whenever a tran-
sition from s to s′ takes place, a reward R(s, s′) is gained. Alternatively, a
DTMRM can also be defined with state-based rewards R : S → R. There is
a correspondence between transition-based and state-based reward models: A
state-based reward R(s) can be converted into a transition-based reward by
defining R(s, s′) := R(s) for all s′ ∈ S. On the other hand, a transition-based
reward R(s, s′) can be transformed by expectation into its state-based version
by defining R(s) :=

∑
s′∈S R(s, s′)P (s, s′). Of course, this transformation can

not be inverted, but as we will see, the reward measures that we consider do not
differ. Note that for state-based rewards there are two canonical but totally dif-
ferent possibilities to define the point in time, when such a reward can be gained:
either when a transition into the state or out of the state is performed. This cor-
responds to the difference in the point of view for “arrivals” and “departures” of
jobs in queueing systems. When working with transition-based rewards R(s, s′)
as in Definition 2.2, then such a confusion does not occur since R(s, s′) is gained
in state s after transition to s′ and thus its expected value R(s) corresponds to
the “departure” point of view. For our purposes we will mix both representions
and if we write R for a reward then it is assumed to be interpreted in a context-
dependent way as either the state-based or the transition-based version.

Each bijective representation

ϕ : S → {1, 2, . . . , n} , n := |S| (2.1)

of the state space as natural numbered indices allows to regard the rewards and
the transition probabilities as real-valued vectors in R

n respectively matrices in
R

n×n. We indirectly take such a representation ϕ, especially when we talk about
P and R in vector notation. In this case the transition function P : S → D(S)
can be regarded as a stochastic matrix, i.e. P1 = 1, where 1 = (1, . . . , 1)T is
the column vector consisting of all ones.

Example 2.1 (Queueing system). As a running example, consider a system con-
sisting of a queue of capacity k and a service unit which can be idle, busy or
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Fig. 2.1. Queueing model with queue capacity k = 1 and a service unit which can be
idle, busy or on vacation. State (0, 1,busy) represents 0 jobs in the queue, 1 job in
service and server is busy. The dashed transitions represent the event that an incoming
job is discarded. The parameter values are q = 0.25, pd = 0.5, pv = 0.1 and pr = 0.25.
Overlined probabilities are defined as p := 1− p.

on vacation (Fig. 2.1) [38]. A job arrives with probability q = 0.25 and gets en-
queued if the queue is not full. If the server is idle and there is some job waiting
in the queue, the server immediately gets busy and processes the job. At the
end of each unit of service time, the server is done with the job with probability
pd = 0.5 and can either go idle (and possibly getting the next job) or the server
needs vacation with probability pv = 0.1. From the vacation mode the server
returns with probability pr = 0.25. Figure 2.1 shows the model for the case of
queue capacity k = 1, where transitions are split into regular transitions (solid
lines) and transitions indicating that an incoming job gets discarded (dashed
lines). The reward model is as follows: For each accomplished service a reward
of Racc = $100 is gained, regardless of whether the server moves to idle or to va-
cation. However, the loss of a job during arrival causes a cost of Closs = −$1000.
Therefore we consider the following state-based reward structures:

Rprofit =

⎛

⎜
⎜⎜
⎜
⎝

0
0

Raccpd
0

Raccpd

⎞

⎟
⎟⎟
⎟
⎠

, Rcost =

⎛

⎜
⎜⎜
⎜
⎝

0
0
0

Clossqpr
Closs (qpd + qpdpv)

⎞

⎟
⎟⎟
⎟
⎠

, Rtotal = Rprofit +Rcost,

(2.2)
where p := 1− p for some probability p. ��

There are several ways how the rewards gained for each taken transition (re-
spectively for a visited state) can contribute to certain measures of interest. In
typical applications of performance evaluation, rewards are accumulated over
some time period or a kind of averaging over rewards is established. In order
to be able to define these reward measures formally, we need to provide some
basic knowledge on the stochastic state process induced by the DTMC part of
a DTMRM.
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2.1.1 Sample Space
For a DTMC M = (S, P ) define Ω as the set of infinite paths, i.e.

Ω :=
{
(s0, s1, s2, . . . ) ∈ SN | P (si−1, si) > 0 for all i ≥ 1

}
(2.3)

and let B(Ω) be the Borel σ-algebra over Ω generated by the cylinder sets

C(s0, s1, . . . , sN ) := {ω ∈ Ω | ωi = si ∀i ≤ N} .

Each s ∈ S induces a probability space (Ω,B(Ω), Ps) with a probability distri-
bution Ps : B(Ω) → R over paths, such that for each cylinder set C(s0, . . . , sN ) ∈
B(Ω)

Ps (C(s0, . . . , sN )) = δs0,sP (s0, s1)P (s1, s2) . . . P (sN−1, sN),

where δ is the Kronecker-δ, i.e. δs,s′ = 1 if s = s′ and 0 otherwise.

Definition 2.3. The DTMC M induces the stochastic state process (Xn)n∈N

over Ω which is a sequence of S-valued random variables such that Xn(ω) := sn
for ω = (s0, s1, . . . ) ∈ Ω.

Note that

Ps(Xn = s′) =
∑

s1,...,sn−1

P (s, s1)P (s1, s2) . . . P (sn−2, sn−1)P (sn−1, s
′) = Pn(s, s′),

where
∑

s1,...,sn−1
denotes summation over all tuples (s1, . . . , sn−1) ∈ Sn−1. The

process Xn also fulfills the Markov property (or memorylessness): For all
s, s′, s0, s1, . . . sn−1 ∈ S it holds that

Ps0(Xn+1 = s′ | X1 = s1, . . . , Xn−1 = sn−1, Xn = s) = P (s, s′), (2.4)

i.e. if the process is in state s at the current point in time n, then the probability
to be in state s′ after the next transition does not depend on the history of
the process consisting of the initial state X0 = s0 and the traversed states
X1 = s1, . . . , Xn−1 = sn−1 up to time n− 1.
We denote the expectation operator over (Ω,B(Ω), Ps) as Es. For a function
f : Sn+1 → R it holds

Es [f(X0, X1, . . . , Xn)] =
∑

s1,...,sn

f(s, s1 . . . , sn)P (s, s1)P (s1, s2) . . . P (sn−1, sn).

In vector representation we often write E [Y ] := (Es [Y ])s∈S for the vector con-
sisting of expectations of a real-valued random variable Y .

2.1.2 State Classification
In the following, we briefly outline the usual taxonomy regarding the classifica-
tion of states for a discrete-time Markov chain M = (S, P ). The state process
Xn induced by M allows to classify the states S with respect to their recurrence
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and reachability behavior. If X0 = s is the initial state then the random vari-
able Ms := inf {n ≥ 1 | Xn = s} ∈ N ∪ {∞} is the first point in time when the
process Xn returns to s. If along a path ω ∈ Ω the process never returns to s
then Ms(ω) = inf ∅ = ∞. If there is a positive probability to never come back
to s, i.e. Ps(Ms = ∞) > 0 then the state s is called transient. Otherwise, if
Ps(Ms < ∞) = 1 then s is recurrent. We denote St as the set of transient states
and Sr as the set of recurrent states. A state s′ is reachable from s (denoted by
s → s′), if there exists n ∈ N with Ps(Xn = s′) > 0. The notion of reachability
induces the (communcation) equivalence relation

s ↔ s′ ⇔ s → s′ and s′ → s.

This relation further partitions the set of recurrent states Sr into the equivalence
classes Sr

i , i = 1, . . . , k such that the whole state space S can be written as the

disjoint union S =
⋃k

i=1 S
r
i ∪ St. Each of these equivalence classes Sr

i is called a
closed recurrent class, since (by the communication relation) for every s ∈ Sr

i

there are no transitions out of this class, i.e. P (s, s′) = 0 for all s′ ∈ S\Sr
i . For this

reason each Sr
i is a minimal closed subset of S, i.e. there is no proper nonempty

subset of Sr
i which is closed. In case a closed recurrent class consists only of one

state s, then s is called absorbing. The DTMC M is unichain if there is only
one recurrent class (k = 1) and if in addition St = ∅ then M is irreducible. A
DTMC that is not unichain will be called multichain. The queueing system in
Example 2.1 is irreducible, since every state is reachable from every other state.
For discrete-time Markov chains there are some peculiarities regarding the long-
run behavior of the Markov chain as n → ∞. If X0 = s is the initial state
and the limit ρs(s

′) := limn→∞ Ps(Xn = s′) exists for all s′, then ρs ∈ D(S)
is called the limiting distribution from s. In general this limit does not need
to exist, since the sequence Ps(Xn = s′) = Pn(s, s′) might have oscillations
between distinct accumulation points. This fact is related to the periodicity of a
state: From state s the points in time of possible returns to s are given by the
set Rs := {n ≥ 1 | Ps(Xn = s) > 0}. If all n ∈ Rs are multiples of some natural
number d ≥ 2 (i.e. Rs ⊆ {kd | k ∈ N}) then the state s is called periodic and the
periodicity of s is the largest such integer d. Otherwise s is called aperiodic
and the periodicity of s is set to 1. The periodicity is a class property and means
that for every closed recurrent class Sr

i and for all s, s′ ∈ Sr
i the periodicity of s

and s′ is the same. A Markov chain which is irreducible and aperiodic is often
called ergodic in the literature. As an example, a two-state Markov chain with
transition probability matrix

P =

(
0 1
1 0

)

is irreducible but not ergodic, since it is periodic with periodicity 2.
One can show that a recurrent state s in a DTMC with finite state space

is aperiodic if and only if for all s′ ∈ S the sequence Pn(s, s′) converges.
Therefore, the limiting distribution ρs exists (for s recurrent) if and only if s
is aperiodic. In this case ρs(s

′) =
∑

t ρs(t)P (t, s′) for all s′, which is written in
vector notation by ρs = ρsP . This equation is often interpreted as the invariance
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(or stationarity) condition: If ρs(s
′) is the probability to find the system in state

s′ at some point in time, then this probability remains unchanged after the sys-
tem performs a transition. In general, there can be several distributions ρ ∈ D(S)
with the invariance property ρ = ρP and any such distribution ρ is called a sta-
tionary distribution. It holds that the set of all stationary distributions forms
a simplex in R

S and the number of vertices of this simplex is exactly the number
of recurrent classes k. Therefore, in a unichain model M there is only one sta-
tionary distribution ρ and if M is irreducible then ρ(s) > 0 for all s ∈ S. Since
a limiting distribution is stationary it further holds that if M is unichain and
aperiodic (or even ergodic), then for all initial states s the limiting distribution
ρs exists and ρs = ρ is the unique stationary distribution and thus independent
of s.

We will draw on the stationary distributions (and also the periodic behavior)
of a Markov chain in Sect. 2.4, where we will outline the average reward analysis.
In order to make the intuition on the average reward clear, we will also work
with the splitting S =

⋃k
i=1 S

r
i ∪ St into closed recurrent classes and transient

states. The computation of this splitting can be performed by the Fox-Landi
state classification algorithm [15]. It finds a representation ϕ of S (see (2.1))
such that P can be written as

P =

⎛

⎜
⎜
⎜
⎜⎜
⎝

P1 0 0 . . . 0 0
0 P2 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0 . . . Pk 0

P̃1 P̃2 P̃3 . . . P̃k P̃k+1

⎞

⎟
⎟
⎟
⎟⎟
⎠

(2.5)

where Pi ∈ R
ri×ri , P̃i ∈ R

t×ri , P̃k+1 ∈ R
t×t with ri := |Sr

i | for i = 1, . . . , k and
t := |St|. The matrix Pi represents the transition probabilities within the i-th

recurrent class Sr
i and P̃i the transition probabilities from transient states St

into Sr
i if i = 1, . . . , k, respectively transitions within St for i = k + 1. Every

closed recurrent class Sr
i can be seen as a DTMC Mi = (Sr

i , Pi) by omitting
incoming transitions from transient states. It holds that Mi is irreducible and
thus has a unique stationary distribution ρi ∈ D(Sri) with ρi(s) > 0 for all
s ∈ Sri . This distribution ρi can be extended to a distribution ρi ∈ D(S) on
S by setting ρi(s) := 0 for all s ∈ S \ Sr

i . Note that ρi is also stationary on
M. Since transient states St of M are left forever with probability 1 (into the
recurrent classes), every stationary distribution ρ ∈ D(S) fulfills that ρ(s) = 0
for all s ∈ St. Thus, an arbitrary stationary distribution ρ ∈ D(S) is a convex

combination of all the ρi, i.e. ρ(s) =
∑k

i=1 aiρi(s) with ai ≥ 0 and
∑k

i=1 ai = 1.
(This forms the k-dimensional simplex with vertices ρi as mentioned above.)

2.1.3 Reward Measure
We now consider a DTMRM M = (S, P,R) and want to describe in the fol-
lowing sections several ways to accumulate the rewards R(s, s′) along paths
ω = (s0, s1, . . . ) ∈ Ω. As an example, for a fixed N ∈ N ∪ {∞} (also called the



Markov Reward Models and Markov Decision Processes 165

horizon length) we can accumulate the rewards for the first N transitions by
simple summation: the reward gained for the i-th transition is R(si−1, si) and is

summed up to
∑N

i=1 R(si−1, si), which is regarded as the value of the path ω for
the first N transitions. The following definition introduces the notion of a value
for state-based models, with which we will be concerned in this tutorial.

Definition 2.4. Consider a state-based model M with state space S and a real
vector space V. A reward measure R is an evaluation of the model M that
maps M with an optional set of parameters to the value V ∈ V of the model.
If V is a vector space of functions over S, i.e. V = R

S = {V : S → R}, then a
value V ∈ V is also called a value function of the model.

Note that we consider in this definition an arbitrary state-based model, which
can have discrete time (e.g. DTMRM or MDP, cf. Sect. 3) or continuous time
(CTMRM or CTMDP, cf. Sects. 4 and 5). We will mainly consider vector spaces
V which consist of real-valued functions. Beside value functions V ∈ R

S which
map every state s ∈ S to a real value V (s) ∈ R, we will also consider value
functions that are time-dependent. For example, if T denotes a set of time values
then V = R

S×T consists of value functions V : S × T → R such that V (s, t) ∈ R

is the real value of state s ∈ S at the point in time t ∈ T . In typical applications
T is a discrete set for discrete-time models (e.g. T = N or T = {0, 1, . . . , N}), or
T is an interval for continuous-time models (e.g. T = [0,∞) or T = [0, Tmax]).
The difference between the notion of a reward measure R and its value function
V is that a reward measure can be seen as a measure type which needs additional
parameters in order to be able to formally define its value function V . Examples
for such parameters are the horizon length N , a discount factor γ (in Sect. 2.3)
or a discount rate α (in Sect. 4.5). If clear from the context, we use the notions
reward measure and value (function) interchangeably.

2.2 Total Reward Measure

We now define the finite-horizon and infinite-horizon total reward measures
which formalize the accumulation procedure along paths by summation as men-
tioned in the motivation of Definition 2.4. The finite-horizon reward measure is
used as a basis upon which all the following reward measures will be defined.

Definition 2.5. Let M be a DTMRM with state process (Xn)n∈N and N < ∞ a
fixed finite horizon length. We define the finite-horizon total value function
VN : S → R by

VN (s) := Es

[
N∑

i=1

R(Xi−1, Xi)

]

. (2.6)

If for all states s the sequence Es

[∑N
i=1 |R(Xi−1, Xi)|

]
converges with N → ∞,

we define the (infinite-horizon) total value function as

V∞(s) := lim
N→∞

VN (s).
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In general VN (s) does not need to converge as N → ∞. For example, if all
rewards for every recurrent state are strictly positive, then accumulation of pos-
itive values diverges to ∞. Even worse, if the rewards have different signs then
their accumulation can also oscillate. In order not to be concerned with such
oscillations, we impose as a stronger condition the absolute convergence for the
infinite-horizon case as in the definition.

As next we want to provide a method which helps to evaluate the total reward
measure for the finite and infinite horizon cases. The proof of the following
theorem can be found in the Appendix (page 234).

Theorem 2.1 (Evaluation of the Total Reward Measure).

(i) The finite-horizon total value VN (s) can be computed iteratively through

VN (s) = R(s) +
∑

s′∈S

P (s, s′)VN−1(s
′),

where V0(s) := 0 for all s ∈ S.

(ii) If the infinite-horizon total value V∞(s) exists, then it solves the system of
linear equations

V∞(s) = R(s) +
∑

s′∈S

P (s, s′)V∞(s′). (2.7)

We formulate the evaluation of the total value function in vector notation:

VN = R+ PVN−1 =
N∑

i=1

P i−1R. (2.8)

For the infinite-horizon total value function it holds

V∞ = R+ PV∞ respectively (I − P )V∞ = R. (2.9)

Note that Theorem 2.1 states that if V∞ exists, then it solves (2.9). On the
other hand the system of equations (I−P )X = R with the variable X may have
several solutions, since P is stochastic and thus the rank of I−P is not full. The
next proposition shows a necessary and sufficient condition for the existence of
V∞ in terms of the reward function R. Furthermore, it follows that if V∞ exists
then V∞(s) = 0 on all recurrent states s and V∞ is also the unique solution to
(I − P )X = R with the property that X(s) = 0 for all recurrent states s. A
proof (for aperiodic Markov chains) can be found in the Appendix on page 235.

Proposition 2.1. For a DTMRM (S, P,R) let S =
⋃k

i=1 S
r
i ∪ St be the par-

titioning of S into k closed recurrent classes Sr
i and transient states St. The

infinite-horizon total value function V∞ exists if and only if for all i = 1, . . . , k
and for all s, s′ ∈ Sr

i it holds that

R(s, s′) = 0.
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Example 2.2. Let us go back to the queueing model introduced in Example 2.1.
The finite-horizon total value function for the first 30 transitions and reward
function R := Rtotal is shown in Fig. 2.2 for the initial state sinit = (0, 0, idle).

5 10 15 20 25 30
N

-40

-20

20

40

VN

Fig. 2.2. Finite-horizon total value function with horizon length N = 30 for the queue-
ing model in Example 2.1 and initial state sinit = (0, 0, idle)

As one can see, at the beginning the jobs need some time to fill the system
(i.e. both the queue and the server) and thus the expected accumulated reward
increases. But after some time steps the high penalty of Closs = −$1000 for
discarding a job outweighs the accumulation of the relatively small rewardRacc =
$100 for accomplishing a job and the total value decreases. The infinite-horizon
total value does not exist in this model, since VN (sinit) diverges to −∞. However,
in case the total reward up to the first loss of a job is of interest, one can
introduce an auxiliary absorbing state loss with reward 0, which represents that
an incoming job has been discarded (Fig. 2.3).

Fig. 2.3. Queueing model enhanced with an auxiliary absorbing state ’loss’ represent-
ing the loss of an incoming job due to a full queue

Since the single recurrent state loss in this DTMRM has reward 0, the total value
function exists and fulfills (2.7) (respectively (2.9)) with R(s) := Rprofit(s) for
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s �= loss (see (2.2)) and R(loss) := 0. Note that I −P has rank 5 since P defines
an absorbing state. From R(loss) = 0 it follows that the total value function V∞
is the unique solution for (2.7) with the constraint V∞(loss) = 0 and is given by

V∞ ≈ (1221.95, 980.892, 1221.95, 659.481, 950.514, 0)
T
. ��

2.3 Horizon-Expected and Discounted Reward Measure

In order to be able to evaluate and compare the performance of systems in which
the total value does not exist, we need other appropriate reward measures. In
this and the following subsection, we will present two other typically used reward
measures: the discounted and the average reward measure. Roughly speaking,
the average reward measures the derivation of the total value with respect to the
horizon length N , i.e. its average growth. The discounted measure can be used
if the horizon length for the system is finite but a priori unknown and can be
assumed as being random (and memoryless). In order to define the discounted
reward measure, we first introduce the more general horizon-expected reward
measure.

Definition 2.6. Let M = (S, P,R) be a DTMRM and consider a random hori-
zon length N for M, i.e. N is a random variable over N that is independent of
the state process Xn of M. Let V(N) denote the random finite-horizon total value

function that takes values in
{
Vn ∈ R

S | n ∈ N
}
. Define the horizon-expected

value function by

V (s) := E
[
V(N)(s)

]
,

if the expectation exists for all s ∈ S, i.e. |V(N)(s)| has finite expectation.

In order to be formally correct, the random variable V(N)(s) is the conditional ex-

pectation V(N)(s) = Es

[∑N
i=1 R(Xi−1, Xi) | N

]
and thus if N = n then V(N)(s)

takes the value Es

[∑N
i=1 R(Xi−1, Xi) | N = n

]
=Es [

∑n
i=1 R(Xi−1, Xi)] = Vn(s).

By the law of total expectation it follows that

V (s) = E

[

Es

[
N∑

i=1

R(Xi−1, Xi) | N
]]

= Es

[
N∑

i=1

R(Xi−1, Xi)

]

,

i.e. V (s) is a joint expectation with respect to the product of the probability
measures of N and all the Xi.

The following lemma presents a natural sufficient condition that ensures the
existence of the horizon-expected value function.

Lemma 2.1. If the random horizon length N has finite expectation E [N ] < ∞
then V (s) exists.
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Proof. Since the state space is finite there exists C ∈ R such that |R(s, s′)| ≤ C
∀s, s′ ∈ S. Therefore

|Vn(s)| ≤ Es

[
n∑

i=1

|R(Xi−1, Xi)|
]

≤ n · C

and thus

E
[
|V(N)(s)|

]
=

∞∑

n=0

|Vn(s)| · P (N = n) ≤ C · E [N ] < ∞. ��

In many applications the horizon length is considered to be memoryless, i.e.
P (N > n+m | N > m) = P (N > n) and is therefore geometrically distributed.
This fact motivates the following definition.

Definition 2.7. For γ ∈ (0, 1) let N be geometrically distributed with parameter
1 − γ, i.e. P (N = n) = γn−1(1 − γ) for n = 1, 2, . . . . In this case the horizon-
expected value function is called discounted value function with discount
factor γ (or just γ-discounted value function) and is denoted by V γ.

As for the total value function in Sect. 2.2 we can explicitly compute the dis-
counted value function:

Theorem 2.2 (Evaluation of the Discounted Reward Measure). For a
discount factor γ ∈ (0, 1) it holds that

V γ(s) = lim
n→∞Es

[
n∑

i=1

γi−1R(Xi−1, Xi)

]

. (2.10)

Furthermore, V γ is the unique solution to the system of linear equations

V γ(s) = R(s) + γ
∑

s′∈S

P (s, s′)V γ(s′) (2.11)

which is written in vector notation as

(I − γP )V γ = R.

Proof. Let N be geometrically distributed with parameter γ. By conditional
expectation we get

V γ(s) = E

[

Es

[
N∑

i=1

R(Xi−1, Xi) | N
]]

=

∞∑

n=1

Es

[
n∑

i=1

R(Xi−1, Xi)

]

P (N = n)

= (1− γ)

∞∑

i=1

Es [R(Xi−1, Xi)]

∞∑

n=i

γn−1 =

∞∑

i=1

Es [R(Xi−1, Xi)] γ
i−1,

which gives (2.10). The derivation of the linear equations (2.11) is completely
analogous to the total case by comparing (2.10) to (2.6) (see proof of Theorem
2.1). Since I − γP has full rank for γ ∈ (0, 1) the solution is unique. ��
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Equation (2.10) yields also another characterization of the discounted reward
measure. Along a path ω = (s0, s1, s2, . . . ) the accumulated discounted reward
is R(s0, s1) + γR(s1, s2) + γ2R(s2, s3) + . . . . The future rewards R(si, si+1) are
reduced by the factor γi < 1 in order to express some kind of uncertainty about
the future reward value (e.g. induced by inflation). In many applications, the
discounted reward measure is used with a high discount factor close to 1 which
still avoids possible divergence of the infinite-horizon total value. Qualitatively
speaking, for high γ < 1 the sequence γi decreases for the first few points in time
i slowly, but exponentially to 0. If we assume that the rewards R(s) are close to
each other for each state s, then the rewards accumulated within the first few
time steps approximately give the discounted value.

Remark 2.1. Note that the discounted value function can be equivalently char-
acterized as an infinite-horizon total value function by adding an absorbing and
reward-free final state abs to the state space S such that abs is reachable from
any other state with probability 1 − γ and any other transition probability is
multiplied with γ (see Fig. 2.4). Since abs is eventually reached on every path
within a finite number of transitions with probability 1 and has reward 0, it
characterizes the end of the accumulation procedure. The extended transition
probability matrix P ′ ∈ R

(|S|+1)×(|S|+1) and the reward vector R′ ∈ R
|S|+1 are

given by

P ′ =
(
γP (1− γ)1
0 1

)
and R′ =

(
R
0

)
,

where 1 = (1, . . . , 1)T . Since abs is the single recurrent state and R(abs) = 0 it
follows by Proposition 2.1 that V∞ exists. Furthermore, it satisfies (I−P ′)V∞ =
R′ and because V∞(abs) = 0 it is also the unique solution with this property.

On the other hand (V γ , 0)
T
is also a solution and thus V∞ = (V γ , 0)

T
.

s''s'

s

abss''s'

s

Fig. 2.4. Equivalent characterization of the γ-discounted reward measure as a total
reward measure by extending the state space with an absorbing reward-free state

Example 2.3. As an example we analyze the queueing model from Example 2.1
with respect to the discounted reward measure. Figure 2.5 shows V γ(s) for the
inital state sinit = (0, 0, idle) as a function of γ. As we see, for small values
of γ the discounted values are positive, since the expected horizon length 1

1−γ
is also small and thus incoming jobs have a chance to be processed and not
discarded within that time. However for γ approaching 1, the expected horizon
length gets larger and the accumulation of the negative reward Closs = −$1000
for discarding jobs in a full queue prevails. ��
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Fig. 2.5. Discounted reward V γ(sinit) as a function of γ for the queueing model in
Example 2.1 and initial state sinit = (0, 0, idle)

2.4 Average Reward Measure

We now provide another important reward measure for the case that the horizon
length is infinite (and not random as assumed in Sect. 2.3). We assume for this
section that the reader is familiar with the concept of periodicity as presented
in Sect. 2.1.2. If for a DTMRM M = (S, P,R) the infinite-horizon total value
function V∞ does not exist, then either VN (s) diverges to ±∞ for some state s
or VN (s) is oscillating over time. The problem with this measure is that V∞ in-
finitely often collects the rewards and sums them all up. Instead of building such
a total accumulation, one can also measure the system by considering the gained
rewards only per time step. As an example, consider an ergodic model M in the
long run with limiting distribution ρ := ρs given by ρs(s

′) := limn→∞ Pn(s, s′)
for an arbitrary intial state s. Then in steady-state the system is rewarded at
each time step with ρR =

∑
s ρ(s)R(s) ∈ R, i.e. an average of all the rewards

R(s) weighted by the probability ρ(s) that the system occupies state s in steady-
state. But averaging the rewardsR(s) shall not be restricted to only those models
M for which a limiting distribution exists. First of all, the limiting distribution
ρs can depend on the initial state s, if M has several closed recurrent classes.
More important, the limiting distribution might even not exist, as one can see
for the periodic model with

P =

(
0 1
1 0

)
and R =

(
2
4

)
.

However, in this case one would also expect an average reward of 3 for each time
step and for every state, since P is irreducible and has the unique stationary
distribution ρ = (0.5, 0.5). This means that the average reward measure shall
also be applicable to models for which the limiting distribution does not exist.
Instead of computing an average per time step in steady-state, one can also
think of calculating an average in the long-run by accumulating for each horizon
length N the total value VN and dividing it by the time N . The limit of the
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sequence of these finite horizon averages establishes the desired long-run aver-
age. As we will see in Proposition 2.2, this long-run average always converges,
independent of the structure of the underyling DTMRM. Furthermore, in case
the limiting distribution exists then the steady-state average and the long-run
average coincide and thus the long-run average fulfills the desired requirements
from the motivation.

Definition 2.8. The average reward measure (or gain) of a DTMRM with
value function g(s) is defined by

g(s) := lim
N→∞

1

N
VN (s)

if the limit exists.

In the following, we summarize well-known results from linear algebra which
first of all directly imply that the average reward exists (at least for finite state
spaces) and furthermore also allow us to provide methods for its evaluation.

Definition 2.9. For a stochastic matrix P define the limiting matrices P∞

and P ∗ as:

P∞ := lim
N→∞

PN and P ∗ := lim
N→∞

1

N

N∑

i=1

P i−1,

if the limits exist. (P ∗ is the Cesàro limit of the sequence P i.)

Suppose that P ∗ exists. Then the average reward can be computed by

g = P ∗R, (2.12)

since by (2.8) it holds that

g(s) = lim
N→∞

1

N
VN (s) = lim

N→∞
1

N

N∑

i=1

(
P i−1R

)
(s) = (P ∗R) (s).

Note also that if P∞ exists, then the i-th row in P∞ (with i = ϕ(s), see (2.1))
represents the limiting distribution ρi of the model, given that the initial state of
the system is s. By the motivation from above it should also hold that g(s) = ρiR.
The following proposition relates these two quantities to each other. We refer
for proof to [33].

Proposition 2.2. Consider a DTMC M = (S, P ) with finite state space.

(i) The limiting matrix P ∗ exists.
(ii) If P∞ exists, then P ∗ = P∞.
(iii) If P is aperiodic then P∞ exists and if in addition P is unichain (or ergodic)

with limiting distribution ρ then ρP = ρ and P∞ has identical rows ρ, i.e.

P ∗ = P∞ = 1ρ,

where 1 = (1, . . . , 1)T is the column vector consisting of all ones.
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From Proposition 2.2(ii) it follows that the definition of the average reward cor-
responds to its motivation from above in the case that the limiting distribution
ρi exists for all i. However, in the case of periodic DTMRMs (when the limiting
distribution is not available), Proposition 2.2(i) ensures that at least P ∗ exists
and due to (2.12) this is sufficient for the computation of the average reward.

Remark 2.2. The limiting matrix P ∗ satisfies the equalities

PP ∗ = P ∗P = P ∗P ∗ = P ∗. (2.13)

P ∗ can be computed by partitioning the state space S = ∪k
i=1S

r
i ∪St into closed

recurrent classes Sr
i and transient states St which results in a representation of P

as in (2.5). Let the row vector ρi ∈ R
ri denote the unique stationary distribution

of Pi, i.e. ρiPi = ρi. Then

P ∗ =

⎛

⎜
⎜
⎜⎜
⎜
⎝

P ∗
1 0 0 . . . 0 0
0 P ∗

2 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0 . . . P ∗
k 0

P̃ ∗
1 P̃ ∗

2 P̃ ∗
3 . . . P̃ ∗

k 0

⎞

⎟
⎟
⎟⎟
⎟
⎠

(2.14)

where P ∗
i = 1ρi has identical rows ρi ∈ R

ri and P̃ ∗
i = (I − P̃k+1)

−1P̃iP
∗
i

consists of trapping probabilities from transient states into the i-th recurrent
class. It follows that the average reward g is constant on each recurrent class,
i.e. g(s) = gi := ρiRi for all s ∈ Sr

i where Ri ∈ R
ri is the vector of rewards on

Sr
i . On transient states the average reward g is a weighted sum of all the gi with

weights given by the trapping probabilities.

We want to provide another method to evaluate the average reward measure,
because it will be useful for the section on MDPs. This method relies on the key
aspect of a Laurent series decomposition which also links together the three pro-
posed measures total reward, discounted reward and average reward. Consider
the discounted value V γ = (I − γP )−1R as a function of γ (cf. Theorem 2.2). If
the total value function V∞ = (I − P )−1R exists then V γ converges to V∞ as
γ ↗ 1. But what happens if V∞ diverges to ∞ or −∞? In this case V γ has a
pole singularity at γ = 1 and can be expanded into a Laurent series. Roughly
speaking, a Laurent series generalizes the concept of a power series for (differ-
entiable) functions f with poles, i.e. points c at the boundary of the domain of
f with limx→c f(x) = ±∞. In such a case, f can be expanded in some neigh-
borhood of c into a function of the form

∑∞
n=−N an(x − c)n for some N ∈ N

and an ∈ R, which is a sum of a rational function and a power series. In our
case, since γ �→ V γ might have a pole at γ = 1, the Laurent series is of the form
V γ =

∑∞
n=−N an(γ − 1)n for γ close to 1. The coefficients an in this expansion

are given in Theorem 2.3 in the sequel which can be deduced from the following
Lemma. A proof for the lemma can be found in [33].

Lemma 2.2 (Laurent Series Expansion). For a stochastic matrix P the
matrix (I − P + P ∗) is invertible. Let

H := (I − P + P ∗)−1 − P ∗.
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There exists δ > 0 such that for all 0 < ρ < δ the Laurent series of the matrix-
valued function ρ �→ (ρI + (I − P ))−1 is given by

(ρI + (I − P ))−1 = ρ−1P ∗ +
∞∑

n=0

(−ρ)nHn+1.

Theorem 2.3 (Laurent Series of the Discounted Value Function). Let
M = (S, P,R) be a DTMRM. For a discount factor γ < 1 close to 1 write
γ(ρ) := 1

1+ρ where ρ = 1−γ
γ > 0 and consider the discounted value V γ(ρ) as a

function of ρ.

(i) The Laurent series of ρ �→ V γ(ρ) at 0 is given (for small ρ > 0) by

V γ(ρ) = (1 + ρ)

(

ρ−1g +

∞∑

n=0

(−ρ)nHn+1R

)

, (2.15)

where g is the average reward.
(ii) It holds that

V γ =
1

1− γ
g + h+ f(γ) (2.16)

where h := HR and f is some function with lim
γ↗1

f(γ) = 0. Furthermore,

g = lim
γ↗1

(1− γ)V γ .

Proof. (i) We apply the Laurent series from Lemma 2.2 as follows:

V γ = (I − γP )−1R = (1 + ρ)(ρI + (I − P ))−1R

= (1 + ρ)

(

ρ−1P ∗R+

∞∑

n=0

(−ρ)nHn+1R

)

and the claim follows from (2.12). Furthermore, by substituting γ = (1 + ρ)
−1

V γ =
1

γ

(
γ

1− γ
g + h+

∞∑

n=1

(
γ − 1

γ

)n

Hn+1R

)

=
1

1− γ
g + h+ f(γ)

where f(γ) :=
1− γ

γ
h+

∞∑

n=1

(
γ − 1

γ

)n

Hn+1R and f(γ) → 0 when γ ↗ 1 such

that (ii) follows. ��

The vector h in (2.16) is called the bias for the DTMRM. We provide an equiva-
lent characterization for h that allows a simpler interpretation of the term “bias”
as some sort of deviation. If the reward function R is replaced by the average
reward g, such that in every state s the average reward g(s) is gained instead of

R(s), then the finite horizon total reward is given by GN (s) := Es

[∑N
i=1 g(Xi)

]
,
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where Xi is the state process. In this case ΔN := VN − GN describes the de-
viation in accumulation between the specified reward R and its corresponding
average reward g = P ∗R within N steps. By (2.8) it holds that

ΔN =

N−1∑

n=0

Pn(R− g) =

N−1∑

n=0

(Pn − P ∗)R.

Note that Pn − P ∗ = (P − P ∗)n for all n ≥ 1 which follows from (2.13) and∑n
k=0(−1)k

(
n
k

)
= 0 applied on (P−P ∗)n =

∑n
k=0

(
n
k

)
Pn−k(−P ∗)k. If we assume

that ΔN converges for any reward function R then
∑∞

n=0(P − P ∗)n converges
and it holds that

∑∞
n=0(P − P ∗)n = (I − (P − P ∗))−1. It follows

lim
N→∞

ΔN =

∞∑

n=0

(Pn − P ∗)R =

(

(I − P ∗) +
∞∑

n=1

(P − P ∗)n
)

R =

( ∞∑

n=0

(P − P ∗)n − P ∗
)

R =
(
(I − (P − P ∗))−1 − P ∗)R = HR = h.

Therefore, the bias h(s) is exactly the long-term deviation between VN (s) and
GN (s) as N → ∞. This means that the value h(s) is the excess in the accumu-
lation of rewards beginning in state s until the system reaches its steady-state.
Remember that g is constant on recurrent classes. Thus, for a recurrent state s

it holds that GN (s) = Es

[∑N
i=1 g(Xi)

]
= g(s)N is linear in N and g(s)N+h(s)

is a linear asymptote for VN (s) as N → ∞, i.e. VN (s)− (g(s)N + h(s)) → 0 (see
Fig. 2.6). The matrix H is often called the deviation matrix for the DTMRM
since it maps any reward function R to the corresponding long-term deviation
represented by the bias h = HR.
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Fig. 2.6. Interpretation of the bias h(s) as the limit of the deviation VN(s) − GN (s)
as N → ∞. For a recurrent state s it holds that GN (s) = g(s)N .

Another characterization for the bias can be given by considering ΔN as a
finite-horizon total value function for the average-corrected rewards R − g, i.e.
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ΔN (s) = Es

[∑N
i=1 (R(Xi)− g(Xi))

]
. For this reason the bias h is a kind of

infinite-horizon total value function for the model (S, P,R − g) 1.
In the above considerations we have assumed that ΔN converges (for any

reward function R), which is guaranteed if the DTMRM is aperiodic [33]. On
the other hand, one can also construct simple periodic DTMRMs for which ΔN

is oscillating. For this reason, there is a similar interpretation of the bias h if
the periodicity of P is averaged out (by the Cesàro limit). This is related to
the distinction between the two limiting matrices P∞ and P ∗ from Definition
2.9 and goes beyond the scope of this tutorial. In Sect. 4 we will introduce the
average reward for continuous-time models (where periodicity is not a problem)
and define the deviation matrix H by a continuous-time analogon of the discrete
representation H =

∑∞
n=0(P

n − P ∗).

Remark 2.3. In the Laurent series expansion of V γ respectively V γ(ρ) as in (2.15)
the vector value Hn+1R for n ≥ 0 is often called the n-bias of V γ and therefore
the bias h = HR is also called the 0-bias. We will see in Sect. 3.4 (and especially
Remark 3.6) that these values play an important role in the optimization of
MDPs with respect to the average reward and the n-bias measures.

We now provide some methods for computing the average reward based on the
bias h of a DTMRM M = (S, P,R). If M is ergodic then from Proposition 2.2 it
holds that P ∗ = 1ρ and thus the average reward g = P ∗R = 1(ρR) is constantly
ρR for each state. In the general case (e.g. M is multichain or periodic), the
following theorem shows how the bias h can be involved into the computation
of g. The proof is based on the following equations that reveal some further
connections between P ∗ and H :

P ∗ = I − (I − P )H and HP ∗ = P ∗H = 0. (2.17)

These equations can be deduced from the defining equation for H in Lemma 2.2
together with (2.13).

Theorem 2.4 (Evaluation of the Average Reward Measure). The av-
erage reward g and the bias h satisfy the following system of linear equations:

(
I − P 0
I I − P

)(
g
h

)
=

(
0
R

)
. (2.18)

Furthermore, a solution (u, v) to this equation implies that u = P ∗R = g is the
average reward and v differs from the bias h up to some w ∈ ker(I − P ), i.e.
v − w = h.

1 Note that in Definition 2.5 we restricted the existence of the infinite-horizon total
value function to an absolute convergence of the finite-horizon total value function
ΔN . By Proposition 2.1 this is equivalent to the fact that the rewards are zero on
recurrent states. For the average-corrected model this restriction is in general not
satisfied. The reward function R − g can take both positive and negative values on
recurrent states which are balanced out by the average reward g such that ΔN is
converging (at least as a Cesàro limit).
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Proof. We first show that g and h are solutions to (2.18). From PP ∗ = P ∗ it
follows that Pg = PP ∗R = P ∗R = g and from (2.17) we have

(I − P )h = (I − P )HR = (I − P ∗)R = R − g

and thus (g, h) is a solution to (2.18). Now for an arbitrary solution (u, v) to
(2.18) it follows that

(I−P+P ∗)u=(I−P )u+P ∗u+P ∗(I−P )v=(I−P )u+P ∗(u+(I−P )v) = 0+P ∗R.

Since I − P + P ∗ is invertible by Lemma 2.2, we have

u = (I − P + P ∗)−1P ∗R =
(
(I − P + P ∗)−1 − P ∗ + P ∗)P ∗R = HP ∗R+ P ∗R.

From (2.17) it holds that HP ∗ = 0 and thus u = P ∗R = g. Furthermore, since
both h and v fulfill (2.18) it follows that

(I − P )v = R− g = (I − P )h

and thus w := v − h ∈ ker(I − P ), such that h = v − w. ��

From (2.18) it holds that h = (R− g)+Ph, which reflects the motivation of the
bias h as a total value function for the average-corrected model (S, P,R − g).
Furthermore, the theorem shows that the equation h = (R − u) + Ph is only
solvable for u = g. This means that there is only one choice for u in order to
balance out the rewards R such that the finite-horizon total value function ΔN

for the model (S, P,R − u) converges (as a Cesàro limit).

Remark 2.4. Assume that S =
⋃k

i=1 S
r
i ∪St is the splitting of the state space of

M into closed recurrent classes Sr
i and transient states St.

(i) As we saw from (2.12) and (2.14) one can directly compute g from the
splitting of S. Equation (2.18) shows that such a splitting is not really
necessary. However, performing such a splitting (e.g. by the Fox-Landi al-
gorithm [15]) for the computation of g by P ∗R can be more efficient than
simply solving (2.18) [33].

(ii) In order to compute g from (2.18) it is enough to compute the bias h up to
ker(I − P ). The dimension of ker(I − P ) is exactly the number k of closed
recurrent classes Sr

i . Hence, if the splitting of S is known, then v(s) can be
set to 0 for some arbitrary chosen state s in each recurrent class Sr

i (leading
to a reduction in the number of equations in Theorem 2.4).

(iii) In order to determine the bias h, it is possible to extend (2.18) to
⎛

⎝
I − P 0 0

I I − P 0
0 I I − P

⎞

⎠

⎛

⎝
u
v
w

⎞

⎠ =

⎛

⎝
0
R
0

⎞

⎠ . (2.19)

It holds that if (u, v, w) is a solution to (2.19) then u = g and v = h [33].
In a similar manner, one can also establish a system of linear equations in
order to compute the n-bias values (see Remark 2.3), i.e. the coefficients in
the Laurent series of the discounted value function V γ(ρ).
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The following corollary drastically simplifies the evaluation of the average reward
for the case of unichain models M = (S, P,R). In this case, the state space can
be split to S = Sr ∪ St and consists of only one closed recurrent class Sr.

Corollary 2.1. For a unichain model (S, P,R) the average reward g is constant
on S. More precisely, g = g01 for some g0 ∈ R and in order to compute g0 one
can either solve

g01+ (I − P )h = R (2.20)

or compute g0 = ρR, where ρ is the unique stationary distribution of P .

The proof is obvious and we leave it as an exercise to the reader.

Note that (2.20) is a reduced version of (2.18) since (I−P )g = 0 for all constant
g. Many models in applications are unichain or even ergodic (i.e. irreducible and
aperiodic), thus the effort for the evaluation of the average reward is reduced
by (2.20). If it is a priori not known if a model is unichain or multichain, then
either a model classification algorithm can be applied (e.g. Fox-Landi [15]) or
one can directly solve (2.18). In the context of MDPs an analogous classification
into unichain and multichain MDPs is applicable. We will see in Sect. 3.4 that
Theorem 3.8 describes an optimization algorithm, which builds upon (2.18). In
case the MDP is unichain, this optimization algorithm can also be built upon
the simpler equation (2.20), thus gaining in efficiency. However, the complexity
for the necessary unichain classification is shown to be NP-hard [39]. We refer
for more information on classification of MDPs to [19].

Example 2.4. We want to finish this section by showing an example with multi-
chain structure based on the queuing model from Example 2.1. Assume a queue
with capacity size k in which jobs are enqueued with probability q and a server
with the processing states “idle” and “busy” (with no vacation state). Once
again, an accomplished job is rewarded Racc = $100 and a discarded job costs
Closs = −$1000. Additional to the processing behavior a server can also occupy
one of the following modes: “normal”, “intense” or “degraded” (see Fig. 2.7).

In normal mode the server accomplishes a job with probability pd,n = 0.5.
From every normal state the server degrades with probability rd = 0.01. In this
degraded mode jobs are accomplished with a lower probability pd,d = 0.25. If
the system is in normal mode, the queue is full and a job enters the system, then
the server moves from the normal mode to the intense mode. This move can
only happen, if the system does not degrade (as in state (1, 1, normal, busy)). In
the intense mode the processing probability increases to pd,i = 1.0 but with the
drawback that a job can be served not correctly with probability 0.1. A non-
correctly served job behaves as if it would be lost, i.e. the job involves a cost
of Closs = −$1000. Being in intense mode or degraded mode, there is no way
to change to any other mode. This means that both the intense mode and the
degraded mode represent closed recurrent classes in the state space and thus the
model is multichain.
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Fig. 2.7. Queueing model with queue capacity k = 1 and a service unit with process-
ing behavior idle or busy and processing modes normal, intense or degraded. State
(0, 1, normal,busy) represents 0 jobs in the queue, 1 job served, server is busy and in
normal mode. The parameter values are q = 0.25, pd,n = 0.5, pd,i = 1.0 and pd,d = 0.25
and rd = 0.01. Probabilities for self-loops complete all outgoing probabilities to 1.0.

By solving (2.18) with P as in Fig. 2.7 and

R =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0
Raccpd,n
Raccpd,n

0
Raccpd,i · 0.9 + Closspd,i · 0.1
Raccpd,i · 0.9 + Closspd,i · 0.1

0
Raccpd,d
Raccpd,d

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0
0

Clossqpd,n
0
0

Clossqpd,i
0
0

Clossqpd,d

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0
50
−75
0

−10
−10
0
25

−162.5

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

the average reward can be computed to

g ≈ (−25.8,−24.8,−19.8 − 2.5,−2.5,−2.5 − 50,−50,−50)T .

As we see the average reward is constant on recurrent classes, i.e. −2.5 in the in-
tense mode and −50 in the degraded mode. For the transient states (represented
by the normal mode) the average reward is a state-dependent convex combina-
tion of the average rewards for the recurrent classes, since the probability to
leave the normal mode to one of the recurrent classes depends on the particular
transient state. The bias h can be determined from (2.19) to

h ≈ (1853.3, 1811.3, 1213.9 2.5,−7.5,−17.5 363.6, 163.6,−436.364) .

This means that if (0, 0, normal, idle) is the initial state then the reward accu-
mulation process of the finite-horizon total value function VN follows the linear
function −25.8 ·N + 1853.3 asymptotically as N → ∞ (see Fig. 2.6). ��
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3 Markov Decision Processes

This section is devoted to Markov Decision Processes with discrete time. Section
3.1 provides the necessary definitions and terminology, and Sect. 3.2 introduces
the discounted reward measure as the first optimization criterion. We present
its most important properties and two standard methods (value iteration and
policy iteration) for computing the associated optimal value function. Depend-
ing on the reader’s interest, one or both of the following two subsections may be
skipped: Stochastic Shortest Path Problems, the topic of Sect. 3.3, are special
MDPs together with the infinite-horizon total reward measure as optimization
criterion. The final subsection (Sect. 3.4) addresses the optimization of the aver-
age reward measure for MDPs, where we involve the bias into the computation
of the average-optimal value function.

3.1 Preliminaries

We first state the formal definition of an MDP and then describe its execution
semantics. Roughly speaking, an MDP extends the purely stochastic behavior of
a DTMRM by introducing actions, which can be used in order to control state
transitions.

Definition 3.1. A discrete-time Markov Decision Process (MDP) is a
structure M = (S,Act, e, P,R), where S is the finite state space, Act �= ∅ a finite
set of actions, e : S → 2Act \ ∅ the action-enabling function, P : S×Act → D(S)
an action-dependent transition function and R : S × Act × S → R the action-
dependent reward function. We denote P (s, a, s′) := (P (s, a))(s′).

From a state s ∈ S an enabled action a ∈ e(s) must be chosen which induces
a probability distribution P (s, a) over S to target states. If a transition to s′

takes place then a reward R(s, a, s′) is gained and the process continues in s′.
In analogy to DTMRMs we denote R(s, a) :=

∑
s′∈S P (s, a, s′)R(s, a, s′) as the

expected reward that is gained when action a has been chosen and a transition
from state s is performed. The mechanism which chooses an action in every state
is called a policy. In the theory of MDPs there are several possibilities to define
policies. In this tutorial, we restrict to the simplest type of policy.

Definition 3.2. A policy is a function π : S → Act with π(s) ∈ e(s) for all
s ∈ S. Define Π ⊆ ActS as the set of all policies.

A policy π of an MDP M resolves the non-deterministic choice between actions
and thus reduces M into a DTMRM Mπ := (S, P π, Rπ), where

P π(s, s′) := P (s, π(s), s′) and Rπ(s, s′) := R(s, π(s), s′).

Remark 3.1. In the literature one often finds more general definitions of policies
in which the choice of an action a in state s does not only depend on the current
state s but also
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– on the history of both the state process and the previously chosen actions
and

– can be randomized, i.e. the policy prescribes for each state s a probability
distribution π(s) ∈ D(e(s)) over all enabled actions and action a is chosen
with probability (π(s))(a).

The policy type as in Definition 3.2 is often referred to “stationary Markovian
deterministic”. Here, deterministic is in contrast to randomized and means that
the policy assigns a fixed action instead of some probability distribution over
actions. A policy is Markovian, if the choice of the action does not depend on the
complete history but only on the current state and point in time of the decision.
A Markovian policy is stationary, if it takes the same action a everytime it visits
the same state s and is thus also independent of time. For simplicity we stick to
the type of stationary Markovian deterministic policies as in Definition 3.2 since
this is sufficient for the MDP optimization problems we discuss in this tutorial.
The more general types of policies are required if e.g. the target function to be
optimized is of a finite-horizon type or if additional constraints for optimization
are added to the MDP model (see also Remark 3.3).

Example 3.1 (Queueing model). We consider the queueing model introduced in
Example 2.4. Assume that the server can be either idle or busy and operate in
normal or intense mode. Figure 3.1 shows an MDP for queue capacity size k = 2
and the two actions “keep” and “move”, which enable swichting between the
processing modes.

Fig. 3.1. An excerpt of the MDP queueing model with queue capacity k = 2, a service
unit with processing behavior idle or busy and processing modes normal or intense.
In each state the “keep” action keeps the current processing mode, while the “move”
action changes the mode. State (0, 1, normal,busy) represents 0 jobs in the queue, 1
job served, server is busy and in normal mode. The parameter values are q = 0.25,
pd,n = 0.5 and pd,i = 1.0. For better overview transitions from normal mode are bold,
whereas transitions from intense mode are dashed.

A job enters the system with probability q = 0.25. If the queue is full then the
system refuses the job, which causes a cost of Closs = −$1000. A normal operat-
ing server accomplishes the job with probability pd,n = 0.5, whereas in intense
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mode the server succeeds with probability pd,i = 1.0. If a job is accomplished
the system is rewarded with Racc = $100. In contrast to the normal mode, in
intense mode the system raises a higher operating cost of Cint = −$10 per time
step. Furthermore a change from normal to intense mode causes additionally
Cmove = −$50. All together the rewards can be represented by

Rkeep =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0
Raccpd,n
Raccpd,n

Raccpd,n + Clossqpd,n
Cint

Raccpd,i + Cint

Raccpd,i + Cint

Raccpd,i + Clossqpd,i + Cint

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

, Rmove = Rkeep +

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

Cmove

Cmove

Cmove

Cmove

0
0
0
0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

. (3.1)

��

3.1.1 Classification of MDPs
The state classification introduced in Sect. 2.1.2 for DTMRMs also implies a
classification of MDP models. An MDP M is called unichain, if for all policies
π ∈ Π the induced DTMRM Mπ is unichain. Otherwise, if there is a policy
π, for which Mπ has at least two closed recurrent classes, then M is called
multichain. As for DTMRMs, this classification will be mainly used for the
analysis and optimization of the average reward in Sect. 3.4. There are also other
classification criteria possible, e.g. regarding the reachability under policies [33].
However, in this tutorial, we only need the above described classification with
respect to the chain structure of the MDP.

3.1.2 Reward Measure and Optimality
As in Sect. 2.1.3 we choose a reward measure R (see Definition 2.4) which will
be applied to the MDP M. For a policy π ∈ Π let V π ∈ V denote the value of
R for the induced DTMRM Mπ (if it is defined). In this section, we will only
work with V = R

S . This allows us to define a value function V ∗ ∈ V of R for
the complete MDP model M.

Definition 3.3. Let M be an MDP with reward measure R. Define the (opti-
mal) value function V ∗ of M by

V ∗(s) := sup
π∈Π

V π(s), (3.2)

if V ∗(s) is finite for all s. A policy π∗ ∈ Π is called optimal if V π∗
is defined

and
∀s ∈ S ∀π ∈ Π : V π∗

(s) ≥ V π(s). (3.3)

Note that in the definition of V ∗ the supremum is taken in a state-dependent
way. Furthermore, since the state and action spaces are finite, the policy space
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Π is finite as well. Therefore, the supremum in the above definition is indeed a
maximum. It follows that if for all π ∈ Π the value V π(s) is defined and finite
then V ∗(s) is also finite for all s.

In case R is the infinite-horizon total reward measure, we allow in contrast
to Definition 2.5 the value V π(s) to converge improperly to −∞. Taking the
supremum in (3.2) doesn’t care of this kind of convergence, if there is at least
one policy providing a finite value V π(s). The same holds for (3.3) since here
V π∗

has to exist in the sense of Definition 2.5 (and thus be finite).
Note further that through the definition of an optimal policy it is not clear if

an optimal policy π∗ exists, since π∗ has to fulfill the inequality in (3.3) uniformly
over all states. Definition 3.3 gives rise to the following natural question: Under
which conditions does an optimal policy π∗ exist and how is it related to the
optimal value V ∗? These questions will be answered in the following subsections.

3.2 Discounted Reward Measure

We first address the above mentioned questions in the case of the discounted
reward measure with discount factor γ ∈ (0, 1), since this measure is analytically
simpler to manage than the infinite-horizon or the average reward measure.
For motivation, let us first provide some intuition on the optimization problem.
Assume we have some value function V : S → R and we want to check whether V
is optimal or alternatively in what way can we modify V in order to approach the
optimal value V ∗. When in some state s one has a choice between enabled actions
a ∈ e(s), then for each of these actions one can perform a look-ahead step and
computeQ(s, a) := R(s, a)+γ

∑
s′∈S P (s, a, s′)V (s′). The valueQ(s, a) combines

the reward R(s, a) gained for the performed action and the expectation over the
values V (s′) for the transition to the target state s′ induced by action a. If now
Q(s, a′) > V (s) for some a′ ∈ e(s) then clearly one should improve V by the
updated value V (s) := Q(s, a′) or even better choose the best improving action
and set V (s) := maxa∈e(s) Q(s, a). This update procedure can be formalized by
considering the Bellman operator T : RS → R

S which assigns to each value
function V ∈ R

S its update T V := T (V ) ∈ R
S defined by

(T V )(s) := max
a∈e(s)

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)V (s′)

}

.

Note that T is a non-linear operator on the vector space R
S , since it involves

maximization over actions. If we proceed iteratively, a sequence of improving
value functions V is generated and the hope is that this sequence convergences
to the optimal value function V ∗. In case V is already optimal, there should be
no strict improvement anymore possible. This means that for every state s the
value V (s) is maximal among all updates Q(s, a), a ∈ e(s) on V (s), i.e.

V (s) = max
a∈e(s)

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)V (s′)

}

. (3.4)
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This non-linear fixed-point equation V = T V is also known as the Bellman
optimality equation and we have to solve it, if we want to detemine V ∗.
The following Theorem 3.1 establishes results on existence and uniqueness of
solutions to this equation. Furthermore, it also creates a connection between the
optimal value function V ∗ and optimal policies π∗.

Theorem 3.1 (Existence Theorem). Consider an MDP (S,Act, e, P,R) and
the discounted reward measure with discount factor γ ∈ (0, 1).

(i) There exists an optimal value (V γ)
∗
which is the unique fixed point of T ,

i.e. the Bellman optimality equation holds:

(V γ)
∗
= T (V γ)

∗
. (3.5)

(ii) There exists an optimal policy π∗ and it holds that (V γ)
π∗

= (V γ)
∗
.

(iii) Every optimal policy π∗ can be derived from the optimal value (V γ)
∗
by

π∗(s) ∈ argmax
a∈e(s)

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′) (V γ)
∗
(s′)

}

.

The complete proof can be found in [33]. The key ingredient for this proof relies
on the following lemma, which provides an insight into the analytical properties
of the Bellman operator T .

Lemma 3.1. (i) T is monotonic, i.e. if U(s) ≤ V (s) for all s ∈ S then
(T U)(s) ≤ (T V )(s) for all s.

(ii) T is a contraction with respect to the maximum norm ||V || := maxs∈S |V (s)|,
i.e. there exists q ∈ R with 0 ≤ q < 1 such that

||T U − T V || ≤ q||U − V ||.

The constant q is called Lipschitz constant and one can choose q := γ.

Remark 3.2. Lemma 3.1(ii) allows to apply the Banach fixed point theorem on
the contraction T which ensures existence and uniqueness of a fixed point Vfix.
Furthermore the sequence

Vn+1 := T Vn (3.6)

converges to Vfix for an arbitrary initial value function V0 ∈ R
S . From the mono-

tonicity property of T it can be shown that the sequence in (3.6) also converges
to the optimal value (V γ)

∗
and thus Vfix = (V γ)

∗
.

Writing (3.5) in component-wise notation yields exactly the Bellman optimality
equation (3.4) as motivated, for which (V γ)∗ is the unique solution. Note that
(V γ)

∗
is defined in (3.2) by a maximization over the whole policy space Π , i.e.

for each state s all policies π ∈ Π have to be considered in order to establish
the supremum. In contrast, the Bellman optimality equation reduces this global
optimization task into a local state-wise optimization over the enabled actions
a ∈ e(s) for every s ∈ S. Note also that from Theorem 3.1 one can deduce that
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T ((V γ)
π∗
) = (V γ)

π∗
, such that an optimal policy π∗ can be also considered as

a “fixed-point” of the Bellman operator T . However, an optimal policy does not
need to be unique.

From the Bellman equation (3.4) several algorithms based on fixed-point itera-
tion can be derived which can be used in order to compute the optimal policy
together with its value function. The following value iteration algorithm is based
on (3.6). Its proof can be found in the Appendix on page 236.

Theorem 3.2 (Value Iteration). For an arbitrary initial value function V0 ∈
R

S define the sequence of value functions

Vn+1(s) := (T Vn) (s) = max
a∈e(s)

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)Vn(s
′)

}

.

Then Vn converges to (V γ)∗. As a termination criterion choose ε > 0 and con-
tinue iterating until ||Vn+1 − Vn|| < 1−γ

2γ ε and let

πε(s) ∈ argmax
a∈e(s)

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)Vn+1(s
′)

}

. (3.7)

Then ||V πε − (V γ)
∗ || < ε.

The value iteration algorithm iterates on the vector space RS of value functions.
From an arbitrary value function an improving policy can be generated by (3.7).
In contrast, the following policy iteration algorithm iterates on the policy space
Π . From a policy π its value can be generated the other way round by solving a
system of linear equations.

Theorem 3.3 (Policy Iteration). Let π0 ∈ Π be an initial policy. Define the
following iteration scheme.

1. Policy evaluation: Compute the value V πn of πn by solving

(I − γP πn)V πn = Rπn

and define the set of improving actions

An+1(s) := argmax
a∈e(s)

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)V πn(s′)

}

.

Termination: If πn(s) ∈ An+1(s) for all s then πn is an optimal policy.
2. Policy improvement: Otherwise choose an improving policy πn+1 such

that πn+1(s) ∈ An+1(s) for all s ∈ S.

The sequence of values V πn is non-decreasing and policy iteration terminates
within a finite number of iterations.
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Proof. By definition of πn+1 it holds for all s that

V πn+1(s) = max
a∈e(s)

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)V πn(s′)

}

≥ R(s, πn(s)) + γ
∑

s′∈S

P (s, πn(s), s
′)V πn(s′) = V πn(s).

Since there are only finitely many policies and the values V πn are non-decreasing,
policy iteration terminates in a finite number of iterations. Clearly, if πn(s) ∈
An+1(s) for all s then πn is optimal, since

V πn(s) = max
a∈e(s)

{

R(s, a) + γ
∑

s′∈S

P (s, a, s′)V πn(s′)

}

= (T V πn) (s).

The conclusion follows by Theorem 3.1. ��

Both presented algorithms value iteration and policy iteration create a converg-
ing sequence of value functions. For value iteration we mentioned in Remark 3.2
that the generated sequence Vn+1 = T Vn converges to the fixed point of T which
is also the global optimal value (V γ)

∗
of the MDP since T is monotonic. Same

holds for the sequence V πn in policy iteration, since V πn is a fixed-point of T
for some n ∈ N and thus V πn = (V γ)

∗
. The convergence speed of these algo-

rithms is in general very slow. Value iteration updates in every iteration step the
value function Vn on every state. This means especially that states s that in the
current iteration step do not contribute to a big improvement |Vn+1(s)− Vn(s)|
in their value will be completely updated like every other state. However, it can
be shown that convergence in value iteration can also be guaranteed, if every
state is updated infinitely often [37]. Thus, one could modify the order of up-
dates to states regarding their importance or contribution in value improvement
(asynchronous value iteration).

Policy iteration on the other hand computes at every iteration step the ex-
act value V πn of the current considered policy πn, by solving a system of linear
equations. If πn is not optimal, then after improvement to πn+1 the effort for the
accurate computation of V πn is lost. Therefore, the algorithms value iteration
and policy iteration just provide a foundation for potential algorithmic improve-
ments. Examples for such improvements are relative value iteration, modified
policy iteration or action elimination [33]. Of course, heuristics which use model-
dependent meta-information can also be considered in order to provide a good
initial value V0 or initial policy π0.

Note that MDP optimization underlies the curse of dimensionality: The explo-
sion of the state space induces an even worse explosion of the policy space since
|Π | ∈ O

(
|Act||S|). There is a whole branch of Artificial and Computational

Intelligence, which develops learning algorithms and approximation methods
for large MDPs (e.g. reinforcement learning [37], evolutionary algorithms [29],
heuristics [28] and approximate dynamic programming [8, 10, 26, 27, 32]).
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Example 3.2. We now want to optimize the queueing model MDP from Example
3.1 by applying both algorithms value iteration and policy iteration. Table 3.1
shows a comparison between values for the initial state sinit = (0, 0, normal, idle)
under the policies πnormal (respectively πintense) which keeps normal (intense)
mode or moves to normal (intense) mode and the discount-optimal policy π∗ for
γ = 0.99, i.e.

πnormal =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

keep
keep
keep
keep
move
move
move
move

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

, πintense =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

move
move
move
move
keep
keep
keep
keep

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

, π∗ =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

keep
keep
keep
move
move
move
keep
keep

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

Table 3.1. Discounted values with γ = 0.99 for different policies from initial state
sinit = (0, 0, normal, idle).

policy
(
V 0.99

)π
(sinit)

πnormal 1952.36
πintense 1435.00
π∗ 2220.95

The optimal policy was computed by policy iteration with initial policy πnormal

and converged after 3 iterations. In each iteration a system of linear equations
with |S| = 8 variables had to be solved and

∑
s∈S |e(s)| = 16 updates (sets of

improving actions) computed. With standard algorithms like Gaussian elimina-
tion for solving the system of linear equations the worst-case complexity in each
iteration is O(|S|3 + |Act||S|). Note that the number of all available policies is
|Π | = |S||Act| = 256. Thus policy iteration is a huge gain in efficiency in contrast
to the brute-force method, which computes the values V π for every policy π ∈ Π
in order to establish the global maximum V ∗(s) = maxπ∈Π V π(s).

The value iteration algorithm with initial value function constantly 0, ε = 0.1
and maximum norm ||.|| converged after 1067 iterations to the value V 0.99

1067 (sinit) =
2220.90 and the value-maximizing policy πε = π∗. In each iteration the values
Vn(s) for all states s have to be updated, thus the worst-case complexity for
one iteration is O(|Act||S|). Also note that value iteration already finds π∗ after
only 6 iterations with value V 0.99

6 (sinit) = 89.08 – all the other remaining steps
just solve the linear equation V 0.99 = Rπ∗

+ 0.99P π∗
V 0.99 for π∗ by the itera-

tive procedure V 0.99
n+1 = Rπ∗

+ 0.99P π∗
V 0.99
n . Nevertheless, value iteration in its

presented form has to run until it terminates, in order to find a value function
which can be guaranteed to be close to the optimal value (distance measured in
maximum norm). Furthermore, it is a priori not known at which iteration step
the optimization phase stops, i.e. the actions not improvable anymore. ��
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Remark 3.3. (i) One of the main theorems in Markov Decision Theory states
(at least for the models we consider in this tutorial) that if one searches
for an optimal value function within the broader space of randomized and
history-dependent policies, then an optimal policy is still stationary Marko-
vian deterministic, i.e. lies within Π (see also Remark 3.1). This is the reason
why we stick in this introductory tutorial from beginning to the smaller pol-
icy space Π .

(ii) An MDP problem can also be transformed to a linear programming problem,
such that methods coming from the area of linear optimization can be applied
to solve MDPs [33]. In its generality, a linear optimization formulation also
allows to add further constraints to the set of linear constraints induced
by the Bellman equation. An MDP model with an additional set of linear
constraints is also known as a Constrained MDP [1]. It can be shown that in
this case stationary Markovian deterministic policies π ∈ Π can indeed be
outperformed in their value by randomized and history-dependent policies.
Also note that history-dependent policies can also be better then stationary
Markovian deterministic policies in the finite-horizon case.

3.3 Stochastic Shortest Paths

We now address the problem of optimizing MDPs with respect to the infinite-
horizon total reward measure. In contrast to the discounted case, the existence
of an optimal value in general can not be guaranteed. In case it exists, it is
difficult to provide convergence criteria for dynamic programming algorithms.
Therefore, in literature one finds existence results and convergence criteria only
for special classes of MDPs with respect to this measure. In the following, we
show only one frequently used application for this type of measure.

Definition 3.4. A stochastic shortest path problem (SSP) is an MDP
(S,Act, e, P,R) with an absorbing and reward-free state goal ∈ S, i.e. for all
policies π ∈ Π it holds

P π(goal, goal) = 1 and Rπ(goal) = 0.

Typically, in SSPs the goal is to minimize costs and not to maximize rewards
(see Definition 3.3). Of course, maximization of rewards can be transformed to
a minimization of costs, where costs are defined as negative rewards. Note that
we allow for rewards (and therefore also for costs) to have both a positive and a
negative sign. In order to be consistent with the rest of this tutorial, we stick in
the following to the maximization of rewards. For being able to provide results
on the existence of optimal solutions, we have to define the notion of a proper
policy.

Definition 3.5. A policy π is called proper if there is m ∈ N such that under
π the goal state can be reached from every state with positive probability within
m steps, i.e.

∃m ∈ N ∀s ∈ S : (P π)m(s, goal) > 0.

A policy is called improper if it is not proper.
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Define the Bellman operator T : RS → R
S by

(T V )(s) := max
a∈e(s)

{

R(s, a) +
∑

s′∈S

P (s, a, s′)V (s′)

}

.

In analogy to the discounted case it holds that T is monotonic (see Lemma 3.1).
But the contraction property with respect to the maximum norm is in general not
satisfied. However, Bertsekas and Tsitsiklis proved for typical SSPs the existence
and uniqueness of optimal values and the existence of optimal policies [9, 10].

Theorem 3.4 (Existence Theorem). Consider an SSP M = (S,Act, e, P,R)
with infinite-horizon total reward measure. Further assume that there exists a
proper policy πp ∈ Π and for every improper policy πi there exists s ∈ S such
that V πi∞ (s) = −∞.

(i) There exists an optimal value V ∗∞ which is the unique fixed point of T , i.e
T V ∗

∞ = V ∗
∞.

(ii) There exists an optimal policy π∗ and it holds that V π∗
∞ = V ∗

∞.
(iii) Every optimal policy π∗ can be derived from the optimal value V ∗∞ by

π∗(s) ∈ argmax
a∈e(s)

{

R(s, a) +
∑

s′∈S

P (s, a, s′)V ∗
∞(s′)

}

.

The dynamic programming algorithms value iteration and policy iteration as
presented for discounted MDPs (Theorems 3.2 and 3.3) can be applied for SSPs
in an analogous way and are shown in Theorems 3.5 and 3.6. The most important
difference is the termination criterion in value iteration, which in contrast to the
discounted case uses a weighted maximum norm in order to measure the distance
between the iterated values and the optimal value. The proofs for both theorems
can be found in [8, 10].

Theorem 3.5 (Value Iteration). Consider an SSP M with the assumptions
from Theorem 3.4. Let V0(s) be an arbitrary value function with V0(goal) = 0.
Define the sequence

Vn+1(s) := (T Vn) (s) = max
a∈e(s)

{

R(s, a) +
∑

s′∈S

P (s, a, s′)Vn(s
′)

}

.

(i) Vn converges to V ∗.
(ii) If every policy is proper, then there exists ξ ∈ R

S with ξ(s) ≥ 1 for all s ∈ S,
such that T is a contraction with respect to the ξ-weighted maximum norm
||.||ξ defined by

||V ||ξ := max
s∈S

|V (s)|
ξ(s)

.

As Lipschitz constant q for contraction of T choose q := maxs∈S
ξ(s)−1
ξ(s) . For

a given ε > 0 stop value iteration when ||Vn+1 − Vn||ξ < 1−q
2q ε and choose

πε(s) ∈ argmax
a∈e(s)

{

R(s, a) +
∑

s′∈S

P (s, a, s′)Vn+1(s
′)

}

.
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Then ||V πε − V ∗||ξ < ε.

In the following, we want to briefly outline, how ξ(s) can be determined. Consider
an arbitrary policy π. Since π is proper by assumption, the expected number of
transitions t(s) from s to goal is finite. If π is the single available policy, then
take ξ(s) := t(s). In case there are more policies available, it could be the case,
that there exists another policy which enlarges for some state s the expected
number of transitions towards goal. Thus ξ(s) can be chosen as the maximal
expected number of transitions to goal among all policies. In order to compute
ξ exactly, a modified SSP can be considered: Define a reward R(s, a) which acts
as a counter for the number of transitions to goal, i.e. each state s �= goal is
rewarded R(s, a) := 1 independent of a ∈ e(s) and the goal state is rewarded 0.
Choose ξ as the optimal solution to the induced Bellman equation:

ξ(s) = 1 + max
a∈e(s)

{
∑

s′∈S

P (s, a, s′)ξ(s′)

}

for s �= goal and ξ(goal) = 0. (3.8)

Note that if we allow improper policies πi in the termination check of Theorem
3.5 then by definition of πi there is some state si from which goal is reached with
probability 0. In this case the Bellman equation (3.8) is not solvable, since any
solution ξ would imply that ξ(si) = ∞. The proof for the termination criterion
in Theorem 3.5 is completely analogous to the proof of Theorem 3.2 (see Ap-
pendix, page 236). It holds that for every policy π the linear operator T π defined
by T πV = Rπ + P πV is also a contraction with respect to ||.||ξ and Lipschitz
constant q as defined in Theorem 3.5.

For completeness we also state the policy iteration algorithm which is directly
transfered from the discounted case as in Theorem 3.3 by setting the discount
factor γ := 1. We omit the proof since it is analogous.

Theorem 3.6 (Policy Iteration). Let π0 ∈ Π an arbitrary initial policy. De-
fine the following iteration scheme.

1. Policy evaluation: Compute the value V πn of πn by solving

(I − P πn)V πn = Rπn with V πn(goal) = 0

and define the set of improving actions

An+1(s) := argmax
a∈e(s)

{

R(s, a) +
∑

s′∈S

P (s, a, s′)V πn(s′)

}

.

Termination: If πn(s) ∈ An+1(s) for all s then πn is an optimal policy.
2. Policy improvement: Otherwise choose an improving policy πn+1(s) such

that πn+1(s) ∈ An+1(s).

The sequence of values V πn is non-decreasing and policy iteration terminates in
a finite number of iterations.
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Example 3.3. Coming back to our queueing model from Example 3.1, we are
now interested in the following two SSP problems:

(i) M1: the total expected profit up to first loss and
(ii) M2: the total expected number of accomplished jobs up to first loss.

For both models we add to M from Fig. 3.1 a reward-free goal state and redirect
from the states representing a full queue into goal the probability mass for the
job loss event (i.e. qpd,n respectively qpd,i). Since by Definition 3.1 every state
must have at least one action, we add an artificial action idle for looping in
goal with probability 1.0. For model M1 and s �= goal the rewards Rkeep

1 (s) and
Rmove

1 (s) are given as in (3.1) with Closs = $0. For model M2 the rewards Rmove
2

and Rkeep
2 are independent of the action and equal to 1 · pd,n in normal mode

and 1 · pd,i in intense mode. We set all the rewards for both models to 0 in state
goal when taking action idle.

If we set the completion probability pd,i = 1.0 in the intense mode, it is ob-
vious that going to intense mode would be optimal, since the expected reward
for accomplishing a job is greater than the running costs in intense mode. Fur-
thermore, no jobs would be lost in intense mode and thus the total value would
diverge to ∞ for all states. Comparing this fact to the assumptions of Theorem
3.4, it holds that pd,i = 1.0 implies the existence of an improper policy (moving
respectively keeping in intense mode) which does not diverge to −∞. There-
fore, we set in the following pd,i = 0.6. Now, every policy is proper, since the
probability to be absorbed in goal is positive for all states and all policies. The
following optimal policies π∗

i for model Mi and values V ∗
i were computed by

policy iteration.

π∗
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

keep
keep
move
move
keep
keep
keep
keep
idle

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

, V ∗
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

11447.5
11447.5
11047.5
8803.75
11450.0
11490.0
11170.0
9230.0
0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

, π∗
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

move
move
move
move
keep
keep
keep
keep
idle

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

, V ∗
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

193.5
193.25
186.13
148.06
193.5
193.5
187.5
154.5
0.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

Note also that if value iteration is applied, then the maximal expected number
ξ(s) of transitions from s to goal is given as the optimal solution of the SSP in
(3.8) by

ξ = (790.0, 785.0, 752.5, 596.25, 790.0, 786.0, 758.0, 622.0, 0.0) .

Therefore, the Lipschitz constant q = 0.9988 can be chosen, which is very high
and makes value iteration in the ξ-weighted maximum norm terminating very
late. Thus, the termination criterion in the ξ-weighted norm is a theoretical
guarantee, but in general not applicable in practice. ��
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We finish the section on the infinite-horizon total reward measure with an out-
look to other typical total value problems discussed in [33].

Remark 3.4. Beside SSPs one also often considers the following model types:

(i) Positive models: For each state s there exists a ∈ e(s) with R(s, a) ≥ 0
and for all policies π the value V π(s) < ∞ (this assumption can be relaxed).

(ii) Negative models: For each state s all rewards R(s, a) ≤ 0 and there exists
a policy π with V π(s) > −∞ for all s.

In a positive model the goal is to maximize the accumulation of positive rewards
towards∞. The model assumptions make this possible, since in every state there
is at least one non-negative reward available and the accumulation does not
diverge to ∞. In contrast, the goal in a negative model is to maximize negative
rewards, i.e. to minimize costs towards 0. The value iteration algorithm for both
models is the same as in Theorem 3.5, but without convergence criteria. The
policy iteration algorithm however differs from the policy iteration for SSPs. In
a positive model, the initial policy π0 has to be chosen suitable with Rπ0(s) ≥ 0.
Furthermore, in the policy evaluation phase the solutions to the linear equation
V = Rπ+P πV for a policy π spans up a whole subspace of RS . In this subspace
a minimal solution Vmin ≥ 0 has to be chosen in order to perform the policy
improvement phase on Vmin. In contrast, in a negative model, the initial policy
π0 has to fulfill V π0 > −∞ and in the policy evaluation phase the maximal
negative solution has to be computed. Puterman shows in [33] that for both
model types value iteration converges for V0 = 0, but convergence of policy
iteration is only assured for positive models.

3.4 Average Reward Measure

We now come to the final part of the MDP section, which is devoted to the
optimization of the average reward measure. As a reminder, let us consider for the
moment a discrete-time Markov Reward Model M = (S, P,R). From Theorem
2.4 we know that if g is the average reward of M then g = Pg. On the other
hand, the average reward cannot be uniquely determined by this single equation.
Any solution u to u = Pu defines a further linear equation u+ (I − P )v = R in
v. If this additional equation is solvable, then and only then u = g is the average
reward. In this case the bias h is one of the possible solutions to the second
equation (and unique modulo ker(I − P )). We write both of these equations in
the fixed-point form

g = Pg and h = (R+ Ph)− g. (3.9)

Also remember, that ifM is unichain, then by Corollary 2.1 the equation g = Pg
can be simplified to “g is constant”.

We are concerned in this section with the optimization of the average reward
for an MDP M = (S,Act, e, P,R). Surely, every policy π ∈ Π of M induces a
DTMRM Mπ = (S, P π, Rπ) and we can compute for each π the average reward
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gπ as described above. By Definition 3.3 the optimal average value function is
g∗(s) = supπ∈Π gπ(s) and in case an optimal policy π∗ exists then gπ

∗
(s) ≥ gπ(s)

for all s and all π. In analogy to the previous sections, it is possible to establish
Bellman equations which reduce the global optimization task over all policies
π ∈ Π to a local state-wise search over actions e(s) for all states s. Since the
formal derivation of these Bellman equations is slightly involved, we just state
them and refer for proof to [33]. Define for each of the two linear fixed-point
equations in (3.9) the Bellman operators Tav : RS → R

S and T g
bias : R

S → R
S

(parametrized by g ∈ R
S) as follows:

(Tavg)(s) := max
a∈e(s)

{
∑

s′∈S

P (s, a, s′)g(s′)

}

(3.10)

(T g
biash)(s) := max

a∈eg(s)

{

R(s, a) +
∑

s′∈S

P (s, a, s′)h(s′)

}

− g(s) (3.11)

where eg(s) :=

{

a ∈ e(s) | g(s) =
∑

s′∈S

P (s, a, s′)g(s′)

}

.

The corresponding Bellman optimality equations for the average reward are just
the fixed-point equations of these operators and read as

g(s) = max
a∈e(s)

{
∑

s′∈S

P (s, a, s′)g(s′)

}

(3.12)

h(s) = max
a∈eg(s)

{

R(s, a) +
∑

s′∈S

P (s, a, s′)h(s′)

}

− g(s). (3.13)

Equations (3.12) and (3.13) are referred to as the first and the second optimality
equation. In order to provide an intuition for these equations, assume for the
moment that there is an optimal policy π∗ with gπ

∗
= g∗ and moreover that

the MDP M is unichain. In this case, the average reward gπ(s) is a constant
function for any policy π and thus the first optimality equation does not yield
any further restriction since it is satisfied for every constant function g. Only the
second equation takes the reward values R(s, a) into account that are needed in
order determine their average. For each policy π the average reward gπ and the
bias hπ satisfy

hπ(s) = (Rπ(s)− gπ(s)) +
∑

s′∈S

P π(s, s′)hπ(s′),

i.e. the bias hπ is the total value function for the DTMRM with average-corrected
rewards Rπ(s) − gπ(s). Since this holds especially for π = π∗, the second op-
timality equation can be seen as a Bellman equation for maximizing the total
value function for the MDP model with rewards R(s, a)− g∗(s). In other words,
if π is an arbitrary policy then the DTMRM with rewards R(s, π(s)) − g∗(s)
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has a total value function if and only if g∗(s) is the average reward for the
DTMRM (S, P π, Rπ) and this holds especially for π = π∗. In case M is mul-
tichain, then gπ

∗
(s) is only constant on recurrent classes of Mπ∗

, whereas if
s is transient then gπ

∗
(s) is a weighted sum over all those average rewards on

recurrent classes. This means that gπ
∗
has to fulfill gπ

∗
= P π∗

gπ
∗
in addition

and thus gπ
∗
is a solution to the first optimality equation. Since both Bellman

equations are nested and have to be satisfied simultaneously, it is possible to
reduce the set of actions e(s) in the second equation to the maximizing ac-
tions eg(s) = argmaxa∈e(s)

{∑
s′∈S P (s, a, s′)g(s′)

}
for a solution g of the first

equation. Note that in case of unichain models it holds that eg(s) = e(s) for all s.

The following theorem formalizes the explanations in the motivation above and
connects the Bellman equations to the optimal value and optimal policies. We
refer for proof to [33].

Theorem 3.7 (Existence Theorem). Consider an MDP M=(S,Act, e, P,R)
with average reward measure.

(i) The average optimal value function g∗ is a solution to (3.12), i.e g∗ =

Tavg∗. For g = g∗ there exists a solution h to (3.13), i.e. h = T g∗
biash. If g

and h are solutions to (3.12) and (3.13) then g = g∗.
(ii) There exists an optimal policy π∗ and it holds that gπ

∗
= g∗.

(iii) For any solution h to (3.13) with g = g∗ an optimal policy π∗ can be derived
from

π∗(s) ∈ argmax
a∈eg∗ (s)

{

R(s, a) +
∑

s′∈S

P (s, a, s′)h(s′)

}

.

As a special case of part (iii) in this theorem it holds that if for a policy π the
average reward gπ and the bias hπ solve the Bellman optimality equations, then
π is optimal. In contrast to the discounted and total reward cases, the converse
does not hold. This means that if a policy π is optimal then gπ and hπ are not
necessary solutions to the Bellman equations.
The following policy iteration algorithm, can be applied in order to compute the
optimal average reward g∗ as well as an optimal policy π∗. A proof can be found
in [33].

Theorem 3.8 (Policy Iteration). Let π0 ∈ Π be an initial policy. Define the
following iteration scheme:

1. Policy evaluation: Compute a solution (gπn , hπn , w)
T
to

⎛

⎝
I − P πn 0 0

I I − P πn 0
0 I I − P πn

⎞

⎠

⎛

⎝
gπn

hπn

w

⎞

⎠ =

⎛

⎝
0

Rπn

0

⎞

⎠ . (3.14)

Define

Gn+1(s) := argmax
a∈e(s)

{
∑

s′∈S

P (s, a, s′)gπn(s′)

}

.
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2. Policy improvement: If πn(s) �∈ Gn+1(s) for some s then choose an im-
proving policy πn+1 with πn+1(s) ∈ Gn+1(s) and go to the policy evaluation
phase. Otherwise if πn(s) ∈ Gn+1(s) for all s then define

Hn+1(s) := argmax
a∈egπn (s)

{

R(s, a) +
∑

s′∈S

P (s, a, s′)hπn(s′)

}

.

If πn(s) �∈ Hn+1(s) for some s then choose an improving policy πn+1 such
that πn+1(s) ∈ Hn+1(s) and go to the policy evaluation phase.
Termination: If πn(s) ∈ Hn+1(s) for all s then πn is an optimal policy.

The values gπn are non-decreasing and policy iteration terminates in a finite
number of iterations with an optimal policy πn and optimal average value gπn .

Note that (3.14) corresponds to (2.19) instead of (2.18) for the following reason:
For each policy π (2.18) provides a unique solution gπ to the average reward, but
in general the bias hπ cannot be uniquely determined. Policy iteration can be
assured to converge if the bias hπn is computed for each iterated policy πn [33].
As described in Remark 2.4(iii) this can be done by solving (2.19), i.e. the equa-
tion v + (I − P πn)w = 0 in addition to (2.18) for which v = hπn is the unique
solution. There are also other possibilities to assure convergence of policy it-
eration by solving only (2.18) and fixing a scheme that chooses a solution v to
g+(I−P )v = R in order to prevent cycles in policy iteration (see Remark 2.4(ii)).

Before showing the application of policy iteration on our queueing model running
example, we first state the following remark regarding some algorithmic aspects.

Remark 3.5. (i) During policy iteration the action set eg
πn(s)

can be replaced
by the whole action set e(s) – this leads to the so-called modified optimal-
ity equations. The convergence and the optimality of the solution in policy
iteration are not influenced by this replacement.

(ii) In the policy improvement phase, there are two jumps to the policy evalua-
tion phase, which represent two nested cycles of evaluation and improvement
phases. First, a policy πn has to be found, which solves the first optimality
equation. Then in a nested step, πn is tested on the second optimality equa-
tion. If πn can be improved by a better policy πn+1 with actions from Hn+1

then πn+1 has to be sent back to the first evaluation and improvement cycle
until it again solves the first optimality equation, and so on.

(iii) As already mentioned in the introducing motivation, if it is a priori known
that the MDP is unichain, i.e. for all policies there is only one closed re-
current class of states, then the optimal average reward is constant and the
first optimality equation is automatically satisfied (see Corollary 2.1). This
reduces the complexity of policy iteration, since only the second optimality
equation has to be considered for optimization.

(iv) We skip the value iteration algorithm in this tutorial since it is exactly
the same as for the discounted case (Theorem 3.2) with γ := 1. It can be
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proven that the sequence Vn+1−Vn converges to the optimal average reward
g∗, if for every (optimal) policy the transition matrix is aperiodic [33]. The
aperiodicity constraint is not a restriction, since every periodic DTMRM can
be made aperiodic, by inserting self-loops with strictly positive probability
for every state. (The reward function has to be transformed accordingly.)
However, [33] presents a termination criterion for value iteration only for
models with g∗(s) constant for all s (e.g. unichain models).

Example 3.4. Consider the queueing MDP model from Example 3.1. We want
to compute the optimal average value function for the queueing model with
parameters q = 0.25, pd,n = 0.5 and pd,i = 1.0 and the reward structure as
specified in (3.1). Note that the model is multichain, since the policy that takes
the action keep in every state induces a DTMRM with two recurrent classes.
Policy iteration converges after three iterations (with initial policy π0 which
keeps in normal mode or moves to it from intense mode) and results in the
following optimal policy π∗, optimal average value g∗ = gπ

∗
and bias hπ∗

:

π∗ =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

keep
keep
keep
move
move
move
keep
keep

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

, gπ
∗
=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

22.7
22.7
22.7
22.7
22.7
22.7
22.7
22.7

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

, hπ∗
=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

−49.4
41.3
95.3
38.7
−59.4
40.6
130.3
220.0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Thus, the optimal policy induces a DTMRM that is unichain with constant
optimal average reward 22.7. The finite-horizon total value function V π∗

N from
state (0, 0, normal, idle) increases asymptotically with 22.7 ·N−49.4 as N → ∞.

��

We conclude the MDP section by a further remark, which presents a short out-
look on other optimization criteria that are applicable for MDPs.

Remark 3.6. The average reward considers reward accumulation in the long-
run. Therefore, it is not very sensitive in the selection between policies with the
same average reward: If two policies have the same long-run average reward but
different short-run rewards, then one would prefer among all policies with the
same average reward such a policy that also maximizes the short-run reward
accumulation. This idea leads to the so-called bias (or more general n-bias
or n-discount) optimization criteria, which belongs to the class of sensitive
discount optimality criteria. In more detail, policies π ∈ Π are compared
regarding their Laurent series expansions (2.15)

(V γ)
π
= a−1g

π + a0H
πRπ + a1 (H

π)
2
Rπ + . . . ,
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where ai are constants (depending only on γ) and HπRπ = hπ is the bias,
which represents the excess in reward accumulation up to steady-state. Now if a
subset of policies Π∗−1 ⊆ Π maximize gπ then this subset can be further refined
to a reduced subset Π∗

0 ⊆ Π∗
−1 by maximizing the bias hπ for π ∈ Π∗

−1 in
addition to the average reward gπ. If Π∗

0 still consists of more then one policy,
then one can proceed iteratively and compare the higher order n-bias terms
sequentially. Note that the n-bias reward measure specifies the vector space
V of value functions as V =

{
V : S → R

n+1
}
and values can be compared in

Definition 3.3 by lexicographic order.
The most sensitive optimization criterion is the Blackwell optimality cri-

terion, which selects a policy π∗, such that the entire Laurent series expansion
(i.e. the complete discounted value) is maximal among the discounted values for
all policies and for all discount factors high enough, i.e.

∃γ∗ ∈ [0, 1) ∀γ ∈ [γ∗, 1) ∀π ∈ Π : (V γ)π
∗
≥ (V γ)π .

It can be shown, that Blackwell optimal policies exist and a Blackwell optimal
policy is n-bias optimal for all n [33]. Furthermore, such a policy can be computed
by proceeding with the policy space reduction as described above until some Π∗

n

consists of only one policy, which is Blackwell optimal (or if n ≥ |S|− 2 then Π∗
n

is a set of Blackwell optimal policies).

4 Continuous Time Markov Reward Models

In both DTMRMs and MDPs time is discrete, i.e. it proceeds in a step by step
manner. However, this is unrealistic for many applications – one rather wishes
to work with a continuous notion of time. Therefore, in this and the following
section, we study continuous-time models. Since we stick to the principle of mem-
orylessness, it will turn out that the state sojourn times follow an exponential
distribution (as opposed to the geometrically distributed sojourn times in the
discrete-time setting).

4.1 Preliminaries

Definition 4.1. A continuous-time Markov chain (CTMC) is a structure
M = (S,Q) with finite state space S and generator function Q : S×S → R such
that Q(s, s′) ≥ 0 for s′ �= s and

∑
s′∈S Q(s, s′) = 0 for all s. A continuous-

time Markov Reward Model (CTMRM) is a structure (S,Q, i, r) which
enhances a CTMC (S,Q) by a reward structure consisting of an impulse reward
function i : S × S → R for transitions with i(s, s) = 0 for all s ∈ S and a rate
reward function r : S → R for states.

From state s ∈ S each quantity Q(s, s′) with s′ �= s defines an event which occurs
after a random amount of time τs,s′ ∈ R ∪ {∞} to trigger. If Q(s, s′) > 0 then
τs,s′ is exponentially distributed with rate Q(s, s′) and otherwise if Q(s, s′) = 0
then we set τs,s′ := ∞. For a fixed s ∈ S all these times τs,s′ are independent and



198 A. Gouberman and M. Siegle

concurrently enabled. Therefore, they define a race among each other and only
that τs,s′0 which triggers first, within a finite amount of time (i.e. τs,s′0 ≤ τs,s′

for all s′ ∈ S), wins the race. In this case the system performs a transition
from s to s′0 �= s and collects the impulse reward i(s, s′0) ∈ R. The time τs
that the system resides in state s (up to transition) is called the sojourn time
and fulfills τs = min {τs,s′ | s′ �= s}. While the system is in state s the rate
reward r(s) is accumulated proportionally to the sojourn time τs. Thus, the
accumulated reward in s for the sojourn time including the transition to state
s′0 is given by R(s) := i(s, s′0) + r(s)τs. The quantity E(s) :=

∑
s′ 	=s Q(s, s′) is

called the exit rate in state s and by definition of the generator function Q it
holds that E(s) = −Q(s, s) ≥ 0. If E(s) > 0 then there is some state s′ with
Q(s, s′) > 0 and due to the race condition it holds that τs is exponentially dis-
tributed with rate E(s). The transition probability P (s, s′) is the probability

that τs,s′ wins the race and is given by P (s, s′) = P (τs,s′ = τs) =
Q(s,s′)
E(s) . Oth-

erwise, if E(s) = 0 (or all Q(s, s′) = 0) then τs = ∞ and state s is absorbing.
In this case we set P (s, s′) := δs,s′ , i.e. P (s, s′) = 1 if s′ = s and P (s, s′) = 0 if
s′ �= s. The function P : S → D(S) with (P (s))(s′) := P (s, s′) is called the em-
bedded transition probability function. The model (S, P ) can be considered
as a discrete-time Markov chain, which models the transitions of the underlying
CTMC and abstracts from the continuous time information. Similarly to DT-
MRMs, i(s) :=

∑
s′ 	=s P (s, s′)i(s, s′) will denote the state-based version of the

transition-based impulse reward i(s, s′), i.e. i(s) is the expected impulse reward
from state s to some other state s′ �= s.

Example 4.1 (WSN node model). A wireless sensor network (WSN) consists of
nodes that have to observe their environment by sensing activities and transmit
information towards a destination. Each node consists of a battery unit with
some initial capacity, a sensor and a transmitter. Furthermore, environmental
events occur randomly. For the purposes of this section and in order to show
how CTMRMs can be modelled, we assume a very simple WSN node model (see
Fig. 4.1), which consists only of

– one sensor node, which randomly switches between “idle” and “listen” states
after an exponentially distributed time and does not transmit any informa-
tion and

– the environment, in which activities occur and endure in a memoryless way.

For simplicity we further assume that the node has infinite energy supply and
does not consume any energy in idle mode. In case an environmental activity
takes place and the node is listening, it must observe the activity at least until it
stops. When the sensor switches from idle to listen it consumes instantaneously
5 energy units. While if the sensor is listening it consumes energy with rate 10.
We want to measure the energy consumption in this model. Suitable measures
could be the average energy consumption (per time unit) or some discounted
energy consumption. ��
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Fig. 4.1. A simple WSN node model, which consists of a single node which can listen to
activities in the environment. The transition rates are λ = 2, μ = 4, λs = 4, μs = 30. If
the sensor is listening, it uses 10 energy units per time. For every activation to “listen”
or deactivation to “idle” an impulse energy of 5 units is employed.

Remark 4.1. Puterman [33] allows impulse rewards which are state-based and
are gained in a state s if s is the initial state or when s is reached after some
transition from s′ to s (“arrival” point of view). In contrast, we have defined
transition-based impulse rewards i(s, s′) that are gained when state s is left, i.e.
a transition from s to s′ is performed (“departure” point of view). Therefore,
the impulse reward can be considered state-based as the expectation i(s) =∑

s′ 	=s i(s, s
′)P (s, s′) over transition probabilities. When considering the infinite-

horizon total reward measure or the average reward measure, then both points of
view lead to the same value functions and thus their distinction doesn’t matter
in this case. However, this difference is important when we are dealing with the
finite-horizon total reward measure and the discounted reward measure.

Before being able to define and evaluate reward measures for the continuous-
time case, we have to provide more theoretical background. The next section is
devoted to this.

4.2 Probability Space for CTMCs

In the following, we want to formalize the transition behavior of a CTMC M =
(S,Q) that we have informally introduced in Sect. 4.1. For this reason, we first
define a suitable sample space Ω together with a Borel σ-algebra B(Ω) consisting
of those measurable events for which we will assign probabilities. Subsequently,
we will define several stochastic processes upon Ω that are all induced by the
CTMC M. These processes will allow us to define a time-dependent transition
probability matrix, which in turn will play an important role for the definition
of reward measures for a CTMRM.

4.2.1 Sample Space
Since continuous time plays a role for these measures, we put this information
along with the state space S into the sample space. Define the sample space Ω ⊆
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(S× (0,∞])N as the set of infinite paths of the form ω = (s0, t0, s1, t1, s2, t2, . . . )
such that for all i ∈ N:

(E(si) > 0 ⇒ Q(si, si+1) > 0 ∧ ti < ∞) ∨ (E(si) = 0 ⇒ si+1 = si ∧ ti = ∞) .

Roughly speaking, ω represents a sample path, where ti < ∞ is the finite sojourn
time in a non-absorbing state si or otherwise if si is absorbing then for all j ≥ i
it holds that tj = ∞ and sj = si. A sample path ω = (s0, t0, s1, t1, . . . ) can also
be considered as a jump function ω : [0,∞) → S that is constantly s0 for all
t ∈ [0, t0) and if t0 �= ∞ then ω jumps to state s1 �= s0 at t0 and ω(t) = s1
for all t ∈ [t0, t0 + t1). If t1 �= ∞ then ω has a next jump to state s2 �= s1
at t0 + t1 and so on, until there is eventually a first index i with ti = ∞ and
therefore ω(t) = si for all t ≥

∑i−1
k=0 tk. In order to define a probability space

over Ω we transform Ω to the set Path of finite absorbing and infinite paths as
defined in [3]. Let ψ : Ω → Path be the transformation that drops the artificial
repetitions of absorbing states, i.e.

ψ(s0, t0, s1, t1, . . . ) :=

{
(s0, t0, s1, t1, . . . ), if ∀k ∈ N : tk < ∞
(s0, t0, s1, t1, . . . , sl), l := min {k | tk = ∞} < ∞

where min ∅ := ∞. Note that in the definition of ψ the two cases are disjoint.
Since ψ is bijective the probability space (Path,F(Path),Prα) as defined in [3]
(where α ∈ D(S) is a distribution over initial states) induces for each s ∈ S a
probability space (Ω,B(Ω), Ps) in a canonical way:

B(Ω) := {A ⊆ Ω | ψ(A) ∈ F(Path)} and Ps := Prδs ◦ ψ,

where we choose α := δs with δs(s
′) := δs,s′ (i.e. s is the initial state). Before

moving on, we want to mention that both sample spaces Ω and Path are equiv-
alent, since ψ is bijective (and measurable by definition of B(Ω)). The sample
space Path allows for an intuitive interpretation of sample paths ω regarded as
jump functions ω : [0,∞) → S as described above. Every jump function that is
constant on intervals of positive length has at most a finite or countably infinite
number of jumps – this distinction is encoded in the sample paths of Path. How-
ever, this differentiation of cases would directly be transferred to a corresponding
differentiation in the definition of stochastic processes that we will introduce in
the sequel. For this reason, we have chosen Ω as the sample space which em-
bedds these cases already in its definition and thus does not lead to an overload
of notation in the definition of these processes.

4.2.2 Induced Stochastic Processes
The CTMC M = (S,Q) induces a number of stochastic processes over Ω. For
ω = (s0, t0, s1, t1, . . . ) ∈ Ω define the

(i) discrete-time state process (Xn)n∈N by

Xn(ω) := sn
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(ii) sojourn time (τn)n∈N, where

τn(ω) := tn ≤ ∞

(iii) total elapsed time (Tn)n∈N for the first n transitions as

Tn(ω) :=

n−1∑

i=0

τi(ω)

(iv) number of transitions (Nt)0≤t<∞ up to time t as

Nt(ω) := max {n | Tn(ω) ≤ t} ∈ N

(note that with probability 1 the maximum is taken over a finite set and
thus Nt is almost surely finite, i.e. P (Nt < ∞) = 1)

(v) continuous-time state process (Zt)0≤t<∞, where

Zt(ω) := XNt(ω)(ω),

i.e. Zt is the state of the system at point in time t ≥ 0.

Remark 4.2. For all t ∈ [0,∞) and n ∈ N the following equalities of events hold:

{Nt = n} = {Tn ≤ t < Tn+1} and {Nt ≥ n} = {Tn ≤ t} .

The discrete-time state process Xn represents the n-th visited state (or an ab-
sorbing state) and it fulfills the discrete-time Markov property as in (2.4), i.e.
for all s, s0, s1, . . . sk ∈ S and 0 < n1 < · · · < nk < n

Ps0(Xn = s | Xn1 = s1, . . . , Xnk
= sk) = Ps0 (Xn = s | Xnk

= sk).

From Zt(ω) = XNt(ω)(ω) and Nt(ω) non-decreasing for all ω it follows that the
continuous-time state process Zt also fulfills the Markov property, which reads
as a continuous time version:

Ps0(Zt = s | Zt1 = s1, . . . , Ztk = sk) = Ps0(Zt = s | Ztk = sk)

for all s, s0, s1, . . . sk ∈ S and 0 ≤ t1 < · · · < tk < t. Thus given knowledge
about the state Ztk = sk of the process for any arbitrary point in time tk < t,
then the process Zt does not depend on its history comprising the visited states
before time tk. It further holds that Zt is homogeneous in time, i.e. the following
property holds:

Ps0(Zt+t′ = s′ | Zt = s) = Ps(Zt′ = s′).

As in Sect. 2 we fix a representation of the state space S through indices
{1, 2, . . . , n} , n := |S| such that functions S → R can be represented by vec-
tors in R

n and functions S × S → R as matrices in R
n×n. Define the transient

probability matrix P (t) as

P (t)(s, s′) := Ps(Zt = s′). (4.1)
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The matrix P (t) is stochastic for all t ≥ 0 and fulfills the property

P (t+ t′) = P (t)P (t′) ∀t, t′ ≥ 0,

which reads componentwise as P (t+ t′)(s, s′) =
∑

u P (t)(s, u) ·P (t′)(u, s′). This
means that from state s the probability to be in state s′ after t+ t′ time units is
the probability to be in some arbitrary state u ∈ S after t time units and traverse
from there within further t′ time units to state s′. It can be shown that all entries
of P (t) are differentiable for all t ≥ 0 and P (t) is related to the generator matrix
Q of the CTMC by the Kolmogorov differential equations

d

dt
P (t) = QP (t) and

d

dt
P (t) = P (t)Q, (4.2)

which read in componentwise notation as

d

dt
(P (t)(s, s′)) =

∑

u

Q(s, u) · P (t)(u, s′) =
∑

v

P (t)(s, v) ·Q(v, s′).

All solutions to these equations are of the form P (t) = eQt since P (0) = I is
the identity matrix, where for a matrix A the quantity eA denotes the matrix
exponential that is given by eA =

∑∞
k=0

1
k!A

k.

4.2.3 State Classification
As in Sect. 2.1.2 there is also a classification of states in case of continuous time
Markov chains. Since this taxonomy is almost the same as in the discrete-time
case, we only present it very briefly. The most important difference is that in
the continuous-time setup there is no notion for periodicity of states and it can
be shown that the matrix P (t) converges as t → ∞ (for finite state spaces). We
denote the limit by P ∗ := limt→∞ P (t). Note that in Definition 2.9 we denoted
the corresponding discrete-time limiting matrix as P∞ and its time-averaged
version as P ∗ and mentioned in Proposition 2.2 that they both coincide if P∞

exists. Since the existence of this limit in the continuous-time case is always
guaranteed, we call this limit directly P ∗ instead of P∞ in order to use similar
notation. One can show that P ∗ is stochastic and fulfills the invariance conditions

P ∗P (t) = P (t)P ∗ = P ∗P ∗ = P ∗.

Therefore, the probability distribution P ∗(s, ·) ∈ D(S) in each row of P ∗ is a
stationary distribution and since P (t)(s, ·) → P ∗(s, ·) as t → ∞ it is also the
limiting distribution from state s. Furthermore, it holds that

P ∗Q = QP ∗ = 0,

which can be derived from (4.2) and d
dtP (t) → 0 as t → ∞.

Let the random variable Ms ∈ (0,∞] denote the point in time when the
state process Zt returns to s for the first time (given Z0 = s). A state s is
transient if Ps(Ms = ∞) > 0 or equivalently P ∗(s, s) = 0. In the other case,
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if Ps(Ms < ∞) = 1 then s is called recurrent and it holds equivalently that
P ∗(s, s) > 0. It can be shown that there is always at least one recurrent state
if the state space is finite. A state s′ is reachable from s if P (t)(s, s′) > 0 for
some t ≥ 0. The states s and s′ are communicating if s′ is reachable from s and s
is reachable from s′. This communication relation is an equivalence relation and
partitions the set of recurrent states into closed recurrent classes. Therefore,
the state space partitions into S =

⋃k
i=1 S

r
i ∪ St, where St denotes the set

of transient states and Sr
i is a closed recurrent class for all i = 1, . . . , k. For

s, s′ ∈ Sr
i in the same recurrent class it holds that P ∗(s, s′) > 0. As in the

discrete-time case P ∗ can be represented by

P ∗ =

⎛

⎜
⎜
⎜
⎜⎜
⎝

P ∗
1 0 0 . . . 0 0
0 P ∗

2 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0 . . . P ∗
k 0

P̃ ∗
1 P̃ ∗

2 P̃ ∗
3 . . . P̃ ∗

k 0

⎞

⎟
⎟
⎟
⎟⎟
⎠

(4.3)

where P ∗
i has identical rows for the stationary distribution in class Sr

i and P̃ ∗
i

contains the trapping probabilities from transient states St into Sr
i . If a closed

recurrent class consists of only one state s, then s is called absorbing. A CTMC
is unichain if k = 1 and multichain if k ≥ 2. A unichain CTMC is called
irreducible or ergodic if St = ∅.

4.3 Model Transformations

In this section we present a set of model transformations, which will allow us to

– unify the different types of rewards (impulse reward and rate reward) in the
reward accumulation process (“Continuization”) and

– relate some continuous-time concepts to discrete-time Markov Reward Mod-
els from Sect. 2 (“Embedding” and “Uniformization”).

These transformations simplify the evaluation process of all the reward measures
and map the computation of the value functions for continuous-time models to
the discrete-time case.

4.3.1 Embedding
As mentioned in Sect. 4.1, a CTMC (S,Q) defines for all states s, s′ ∈ S the
embedded transition probabilities P (s, s′). The structure (S, P ) can be con-
sidered as a discrete-time Markov chain and it induces on the sample space
Ω′ :=

{
(s0, s1, s2, . . . ) ∈ SN | P (si−1, si) > 0 for all i ≥ 1

}
as in (2.3) the state

process X ′
n (by Definition 2.3) given by X ′

n(s0, s1, . . . ) = sn. This stochastic
process is related to the discrete-time state process Xn : Ω → S by abstracting
away from the time information, i.e. for all n ∈ N

Xn(s0, t0, s1, t1, . . . ) = X ′
n(s0, s1, . . . ).
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This equation establishes the connection to DTMCs and thus Xn can be con-
sidered as the state process of the DTMC (S, P ). Therefore, (S, P ) is also called
the embedded discrete-time Markov chain and Xn is the embedded state
process of the CTMC (S,Q).

Now consider a CTMRM (S,Q, i, r) and define a function R : S×S → R where
R(s, s′) denotes the expected accumulated rate reward r(s) in state s over time
including the impulse reward i(s, s′) gained for transition from s to some other
state s′ �= s (as in Sect. 4.1). If s is non-absorbing, then the sojourn time τs in s
is exponentially distributed with rate E(s) > 0 and R(s, s′) is given by

R(s, s′) := i(s, s′) +
r(s)

E(s)
. (4.4)

Otherwise, if s is absorbing, the embedding is only possible if r(s) = 0 and in
this case we define R(s, s′) := 0 for all s′.

It is very important to note that if we consider a reward measure on the
CTMRM with value function V and a corresponding reward measure on the
transformed DTMRM with value function V ′, then it is of course desirable that
V = V ′, i.e. the transformation should be value-preserving. This allows to
compute the value V by applying the theory and algorithms for the discrete-
time models as presented in Sect. 2. However, as we will see, such a model
transformation needs in general the reward measure itself as input in order to be
value-preserving. As an example, the integration of the rate reward r(s) into the
reward R(s, s′) is performed by total expectation over an infinite time-horizon,

which gives the term r(s)
E(s) . If one considers a finite horizon for the continuous-

time model, then R(s, s′) as defined is obviously not the appropriate reward
gained in state s in the embedded discrete-time model.

4.3.2 Uniformization
We have seen in Sect. 4.1 that the quantities Q(s, s′) for s′ �= s can be re-
garded as rates of exponentially distributed transition times τs,s′ . All these
transition events define a race and only the fastest event involves a transi-
tion to another state s′ �= s. We can manipulate this race, by adding to the
set of events {τs,s′ | s′ �= s} of a state s an auxiliary exponentially distributed
event τs,s with an arbitrary positive rate L(s) > 0 that introduces a self-loop
(i.e. a transition from s to s), if it wins the race. The time up to transition is
τs := min {τs,s′ | s′ ∈ S} and it is exponentially distributed with increased exit

rate Ẽ(s) := E(s) + L(s). The probability that τs,s wins the race can be com-

puted to P (τs,s ≤ τs,s′ ∀s′ ∈ S) = L(s)
˜E(s)

= 1 + Q(s,s)
˜E(s)

and for all s′0 �= s it holds

that P (τs,s′0 ≤ τs,s′ ∀s′ ∈ S) = Q(s,s′)
˜E(s)

. We can add such events τs,s to a set

of states s and thus increase the exit rates for all these states simultaneously.
Moreover, we can choose an arbitrary μ > 0 with max {E(s) | s ∈ S} ≤ μ < ∞
(called uniformization rate) such that Ẽ(s) ≡ μ is constant for all s ∈ S. The
uniformization rate μ allows to define a transformation to the μ-uniformized
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DTMRM Mμ := (S, Pμ, Rμ) where a transition from s to s′ in Mμ captures
the event that τs,s′ wins the race and thus

Pμ(s, s′) := δs,s′ +
Q(s, s′)

μ
. (4.5)

Note that the probability to eventually leave state s to a state s′ �= s is exactly
the embedded transition probability P (s, s′) =

∑∞
i=0 P

μ(s, s)iPμ(s, s′). The re-
ward Rμ(s, s′) combines the accumulated rate reward in state s and the impulse
reward up to transition to some state s′. In the CTMRM the rate reward r(s)
is accumulated for the complete sojourn time in s. Since self-loops are possible
in the uniformized DTMRM the accumulation process stops when an arbitrary
transition occurs. The expected value of the accumulated rate reward up to tran-
sition is given by r(s) · 1

μ . Furthermore, the impulse reward i(s, s′) is only gained

if a transition to another state s′ �= s takes place. But since i(s, s) = 0 for all
s ∈ S by Definition 4.1 it follows that for all s, s′ ∈ S the total uniformized
reward Rμ(s, s′) is given by

Rμ(s, s′) := i(s, s′) +
r(s)

μ
. (4.6)

This equation is similar to (4.4) with the difference that the exit rate E(s) is
replaced by the uniformization rate μ ≥ E(s). A further difference comes into
the picture when considering the accumulation of these rewards. Both rewards
R(s, s) and Rμ(s, s) for self-loops are possibly non-zero. In case of the embed-
ded DTMRM the probability P (s, s) for self-loops is 0 in non-absorbing states s
and thus R(s, s) is not accumulated, in contrast to the uniformized model where
Pμ(s, s) > 0 is possible.

So far we have defined the two transformations “Embedding” and “Uniformiza-
tion” both discretizing the continuous time of a CTMRM and the accumulation
of the rate reward over time. In contrast, the upcoming third transformation does
not modify the time property itself, but rather merges the impulse rewards into
the rate reward. In this way, the CTMRM model has no discrete contributions
in the reward accumulation process, which allows to simplify the evaluations of
the reward measures (as we will see in the upcoming sections).

4.3.3 Continuization
Let M = (S,Q, i, r) be a CTMRM and for a non-absorbing state s denote
R(s) :=

∑
s′ 	=s P (s, s′)R(s, s′), where R(s, s′) is as in (4.4) and P (s, s′) is the

embedded transition probability. Thus

R(s) =
∑

s′ 	=s

P (s, s′)i(s, s′) +
r(s)

E(s)

is the expected accumulated rate reward r(s) in state s including the expected
impulse reward

∑
s′ 	=s P (s, s′)i(s, s′) = i(s) gained for transition from s to
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some other state s′ �= s. Consider for the moment that i(s, s′) = 0 for all
s, s′, i.e. there are no impulse rewards defined. Then r(s) = R(s)E(s), which
means that the rate reward r(s) is the same as the expected reward R(s)
accumulated in s weighted by the exit rate E(s). More generally, if the im-

pulse rewards i(s, s′) were defined then from P (s, s′) = Q(s,s′)
E(s) it follows that

R(s)E(s) =
∑

s′ 	=s i(s, s
′)Q(s, s′) + r(s). This means that we can transform the

original CTMRM M with impulse rewards into a CTMRM M = (S,Q, r) with-
out impulse rewards by integrating the original impulse rewards into a new rate
reward

r(s) :=
∑

s′ 	=s

i(s, s′)Q(s, s′) + r(s).

We call r the continuized rate reward since in the continuized model M there
is no discrete contribution to the reward accumulation process. As we will see
in Theorem 4.1 this (rather heuristically deduced) transformation preserves the
finite-horizon total reward measure and thus all the reward measures that are
derived from the finite-horizon case.

Figure 4.2 shows a diagram with all the presented transformations and also some
relations between them. It is interesting to note that this diagram commutes.

Fig. 4.2. Commuting model transformations

This means that instead of computing the embedded or uniformized DTMRM
from the CTMRM (S,Q, i, r) it is possible to continuize the model before per-
forming such a transformation and the resulting DTMRM is the same. We show
the commutation of the transformation only for the μ-uniformization, since anal-
ogous arguments can be employed for the embedding. When performing the μ-

uniformization on (S,Q, i, r) then Rμ(s, s′) = i(s, s′)+ r(s)
μ by (4.6). Also denote

R
μ
(s) as the μ-uniformization of the continuized rate reward r(s). Due to the

absence of impulse rewards in the continuized model it follows for all s ∈ S that

R
μ
(s) =

r(s)

μ
=

1

μ

⎛

⎝
∑

s′ 	=s

i(s, s′)Q(s, s′) + r(s)

⎞

⎠ =
∑

s′ 	=s

i(s, s′)Pμ(s, s′) +
1

μ
r(s)
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by definition of Pμ as in (4.5). Furthermore, since i(s, s) = 0 it follows

R
μ
(s) =

∑

s′∈S

i(s, s)Pμ(s, s′) +
1

μ
r(s) =

∑

s′∈S

Rμ(s, s′)Pμ(s, s′) = Rμ(s).

Thus, the μ-uniformization of the continuized rate reward R
μ
(s) is exactly the

state-based view on the μ-uniformized reward Rμ(s, s′). Also note that the def-
inition of recurrency and reachability in the discrete-time and continuous-time
cases are similar. For this reason the classification of states into closed recurrent
classes Sr

i and transient states St is invariant under the model transformations,
since the directed graph structure of the model does not change.

In the following we are going to provide natural definitions for the value functions
of the reward measures that we have also considered in the discrete-time case
in Sect. 2. The most important question that we will consider is whether the
transformations we have presented in this section are value-preserving. More
clearly, let R be a reward measure with value function V on the CTMRM M.
We can also evaluate R on one of the transformed models, e.g. on Mμ which
gives a value function V μ. Under what circumstances is V = V μ? This question
will be answered in the forthcoming sections.

4.4 Total Reward Measure

With all the definitions and tools introduced in the preceding sections we are
now set to define the total reward measure. We write Es for the expectation
operator if X0 = s (or Z0 = s) is the initial state. For a random variable Y we
also write E[Y ] for the function s �→ Es [Y ] ∈ R, respectively for the vector in
R

|S| consisting of the expected values Es[Y ].

Definition 4.2. Let T ∈ R, T ≥ 0 be some finite real time horizon and NT the
random number of transitions up to time T . The finite-horizon total value
function is defined as

VT (s) := Es

[
NT∑

k=1

i(Xk−1, Xk)

]

+ Es

[∫ T

0

r(Zt) dt

]

, (4.7)

if both expectations exist. If furthermore the expectations Es

[∑NT

k=1 |i(Xk−1, Xk)|
]

and Es

[∫ T

0
|r(Zt)| dt

]
converge as T → ∞, then we also define the (infinite-

horizon) total value function as

V∞(s) := lim
T→∞

VT (s).

In (4.7) the rate reward r(Zt) in state Zt is continuously accumulated over the
time interval [0, T ] by integration, whereas the impulse rewards i(Xk−1, Xk) for
the NT transitions from states Xk−1 to Xk for k = 1, . . . , NT are discretely ac-
cumulated via summation. Note that the upper bound NT = max {n | Tn ≤ T }
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in the summation is random. If ω = (s0, t0, s1, t1, . . . ) ∈ Ω then NT (ω) ∈ N and

the random variable
∑NT

k=1 i(Xk−1, Xk) takes the value
∑NT (ω)

k=1 i(sk−1, sk) ∈ R.
Furthermore, NT has finite expectation (see Lemma A.3 in the Appendix). Since
the state space is finite there exists C ≥ 0 such that |r(s)| ≤ C and |i(s, s′)| ≤ C
for all s, s′ ∈ S. Therefore

Es

[∣∣
∣
∣∣

∫ T

0

r(Zt) dt

∣
∣
∣
∣∣

]

≤ C ·T < ∞ and Es

[∣∣
∣
∣∣

NT∑

k=1

i(Xk−1, Xk)

∣
∣
∣
∣∣

]

≤ C ·E [NT ] < ∞

such that VT (s) is defined for all T ≥ 0. In the prerequisites for the definition
of the total value function V∞ we require a more restrictive absolute conver-
gence. However, this property is quite natural since it is equivalent to the (joint)
integrability of the function r(Zt) : [0,∞) × Ω → R with respect to the prob-
ability measure Ps on Ω for the expectation Es and the Lebesgue measure for
the integral over [0,∞).

Note that Es [r(Zt)] =
∑

s′ Ps(Zt = s′)r(s′) is the s-th row of the vector
P (t)r. If we assume that i(s, s′) = 0 for all s, s′ ∈ S then the finite-horizon total
value function VT ∈ R

S regarded as a vector in R
|S| can be computed by

VT = E

[∫ T

0

r(Zt) dt

]

=

∫ T

0

P (t)r dt. (4.8)

The following theorem generalizes this computation for the case with impulse
rewards i(s, s′). Furthermore, it explains why the continuization transformation
as defined in Sect. 4.3.3 preserves the finite-horizon total reward measure. There-
fore, this can be considered as the main theorem in the section on CTMRMs.

Theorem 4.1 (Value Preservation of Continuization).
For a CTMRM M = (S,Q, i, r) let M = (S,Q, r) be its continuization with

r(s) =
∑

s′ 	=s

i(s, s′)Q(s, s′) + r(s).

For the finite-horizon total value function it holds that

VT (s) = Es

[∫ T

0

r(Zt) dt

]

.

VT can be computed by

VT =

∫ T

0

P (t)r dt,

which reads in componentwise notation as

VT (s) =
∑

s′∈S

r(s′)
∫ T

0

P (t)(s, s′) dt.
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Proof. In (4.8) we have already shown the statement for the integral term in the
definition of VT in (4.7). It remains to show the statement for the summation
term. We have already mentioned that NT has finite expectation. By Lemma
A.1 in the Appendix and the law of total expectation it follows for an arbitrary
initial state s0 ∈ S that

Es0

[
NT∑

k=1

i(Xk−1, Xk)

]

=

∞∑

k=1

Es0 [i(Xk−1, Xk)]Ps0 (NT ≥ k) =

∞∑

k=1

∑

s,s′
i(s, s′)Ps0 (Xk−1 = s,Xk = s′)Ps0 (NT ≥ k) =

∑

s,s′
i(s, s′)nT (s, s

′),

where

nT (s, s
′) :=Es0

[
NT∑

k=1

�{Xk−1=s,Xk=s′}

]

=

∞∑

k=1

Ps0(Xk−1 = s,Xk = s′)Ps0(NT ≥ k)

is the expected number of transitions from s to s′ up to time T from initial state
s0. If we can show that

nT (s, s
′) = Q(s, s′) ·

∫ T

0

Ps0(Zt = s) dt

then we are done. The proof for this equation is outsourced to the Appendix.
There, in Lemma A.2 we present a proof which uses the uniformization method
and in Remark A.2 we sketch a more direct proof without the detour with
uniformization which relies on facts from queueing theory. ��

Example 4.2. We come back to our WSN node model introduced in Example
4.1 and assume λ = 2 activities per hour and an average duration of 15 minutes,
i.e. μ = 4 and for the sensor λs = 4 and μs = 30. Figure 4.3 shows the transient
probabilities P (t)(sinit, s) for the initial state sinit = (silence, idle) and the finite-
horizon total value function

VT (sinit) = (1, 0, 0, 0)

∫ T

0

eQtr dt = (4.9)

220

7
T +

10

49
+

5

833
e−22T

((
13

√
51− 17

)
e−2

√
51T −

(
13

√
51 + 17

)
e2

√
51T

)

indicating the total energy consumption up to time T . The continuized rate
reward is given by

r = (5λs, 5λs, 10 + 5μs, 10)
T = (20, 20, 160, 10)T . ��

In the following we provide methods for the evaluation of the infinite-horizon
total reward measure V∞. We also show that the model transformations embed-
ding, uniformization and continuization are value-preserving with respect to this
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Fig. 4.3. Left: Transient probability functions for initial state sinit = (silence, idle)
converging to the limiting distribution. Right: Total energy consumption during the
first hour given by the finite-horizon total value function VT (sinit) as a function of T .

measure. This enables us to provide several methods for the evaluation of V∞.
Before presenting Theorem 4.2, we start with an important proposition about
the relation between the existence of the infinite-horizon total value function and
the model data Q, i and r of a CTMRM. A proof can be found in the Appendix
on page 237.

Proposition 4.1. For a CTMRM (S,Q, i, r) let S =
⋃k

i=1 S
r
i ∪ St be the parti-

tioning of S into the k closed recurrent classes Sr
i and transient states St. The

infinite-horizon total value function V∞ exists if and only if for all i = 1, . . . , k
and for all s, s′ ∈ Sr

i it holds that

r(s) = 0 and i(s, s′) = 0.

Theorem 4.2 (Total Reward Measure – Direct Evaluation and Em-
bedding). If for a CTMRM (S,Q, i, r) the total value function V∞ exists, then
it is the unique solution to the system of linear equations

V∞(s) = R(s) +
∑

s′ 	=s

P (s, s′)V∞(s′) for s ∈ St

V∞(s) = 0 for s ∈ S \ St.

(4.10)

Here, P (s, s′) are the embedded transition probabilities and R(s) is the state-
based embedded reward, i.e. R(s) =

∑
s′∈S R(s, s′)P (s, s′) (see (4.4)). In vector

notation this system of equation reads as

(I − P )V∞ = R with V∞(s) = 0 ∀s ∈ S \ St.

If the impulse reward function i is represented as a matrix with entries i(s, s′)
then this system of equations can be written in vector notation as

−QV∞ = diag(iQT ) + r, (4.11)

where QT is the transpose of the matrix Q and diag(iQT ) is the diagonal of the
matrix iQT . This equation represents the direct evaluation of the total reward
measure (without performing the embedding).
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Proof. In Sect. 4.5 on the discounted reward measure we establish similar equa-
tions to (4.10) which involve a discount rate parameter α. By setting α to 0 and
noting that all occuring expectations exist (4.10) can be derived analogously.
By multiplying (4.10) with E(s) and rearranging terms one can directly deduce
(4.11). The uniqueness holds since the (|St| × |St|)-submatrix of Q with entries
Q(s, s′) for transient states s, s′ ∈ St has full rank. ��

Corollary 4.1 (Total Reward Measure – Continuization).
Let M = (S,Q, i, r) be a CTMRM and M = (S,Q, r) its continuization. If the
total value function V∞ for M exists then it also exists for M and in this case
they are equal, i.e. V∞ is the unique solution to the system of linear equations

QV∞ = −r (4.12)

with V∞(s) = 0 for all recurrent states s.

Proof. Let Sr
i ⊆ S be a closed recurrent class of S and consider a recurrent state

s ∈ Sr
i . If V∞ exists for M, then by Proposition 4.1 it holds that r(s) = 0 and

i(s, s′) = 0 for all s′ ∈ Sr
i in the same recurrent class. Furthermore, if s′ ∈ S \Sr

i

then Q(s, s′) = 0 and therefore r(s) =
∑

s′ 	=s i(s, s
′)Q(s, s′) + r(s) = 0. Thus,

the total value function for M denoted by V ∞ is also defined and it solves (4.11)
which reads as −QV∞ = r. In order to show that V∞ = V ∞ note that the s-th
diagonal entry of the matrix iQT is

∑
s′∈S i(s, s′)Q(s, s′) =

∑
s′ 	=s i(s, s

′)Q(s, s′)
since i(s, s) = 0. Therefore, diag(iQT )+r = r is the continuized rate reward and
the conclusion follows since both V∞ and V ∞ solve −QX = r and the solution
is unique (with the property that both are 0 on recurrent states). ��

Corollary 4.2 (Total Reward Measure – Uniformization).
Let M = (S,Q, i, r) be a CTMRM and Mμ = (S, Pμ, Rμ) the μ-uniformized
DTMRM. If the total value function V∞ for M exists then it also exists for Mμ

and in this case they are equal, i.e. V∞ is the unique solution to

(I − Pμ)V∞ = Rμ

with V∞(s) = 0 for all recurrent states s.

Proof. From (4.5) and (4.6) it holds that Rμ(s, s′) = i(s, s′) + r(s)
μ and Pμ =

I + 1
μQ. If s and s′ are communicating recurrent states (i.e. in the same closed

recurrent class) then r(s) = 0 and i(s, s′) = 0 by Proposition 4.1 and therefore
Rμ(s, s′) = 0. If V μ∞ denotes the total value function for the μ-uniformized model
Mμ then V μ

∞ exists by Proposition 2.1 since Rμ(s, s′) = 0 for all states s and s′

in the same closed recurrent class and by Theorem 2.1 V μ
∞ is also a solution of

(I − Pμ)V μ∞ = Rμ. It follows from (4.12) that

(I − Pμ)V∞ = − 1

μ
QV∞ =

1

μ
r = Rμ

and since V∞ and V μ
∞ are 0 on recurrent states, it follows that V∞ = V μ

∞. ��
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4.5 Horizon-Expected and Discounted Reward Measure

In analogy to Sect. 2.3 we want to introduce the discounted reward measure in
the continuous-time case. This reward measure can be formally deduced from
the horizon-expected reward measure, which we are going to define first.

Definition 4.3. Let M = (S,Q, i, r) be a CTMRM and consider a random
horizon length T for M, i.e. T is a non-negative continuous random variable
that is independent of the state process Zt of M. Let V(T ) denote the random

finite-horizon total value function that takes values in
{
Vt ∈ R

S | t ∈ [0,∞)
}
.

Define the horizon-expected value function as

V (s) := E
[
V(T )(s)

]
,

if the expectation exists for all s ∈ S, i.e. |V(T )(s)| has finite expectation.

The random variable V(T )(s) can be regarded as the conditional expectation

V(T )(s) = Es

[
NT∑

k=1

i(Xk−1, Xk) +

∫ T

0

r(Zt) dt | T
]

= Es

[∫ T

0

r(Zt) dt | T
]

that takes the value Vt(s) if T = t. Let PT denote the probability measure of T .
Due to the law of total expectation the horizon-expected value function V (s) is
the joint expectation with respect to the probability measures PT of T and Ps

of all the Zt, i.e.

V (s) = E

[

Es

[∫ T

0

r(Zt) dt | T
]]

= Es

[∫ T

0

r(Zt) dt

]

, (4.13)

where Es on the right hand side denotes the joint expectation.

Lemma 4.1. Let T be a random horizon length with E [T ] < ∞ and probability
measure PT . Then the horizon-expected value function V (s) exists and is given
by

V (s) = Es

[∫ ∞

0

r(Zt)PT (T ≥ t) dt

]
= Es

[ ∞∑

n=0

r(Xn)

∫ Tn+1

Tn

PT (T ≥ t) dt

]

.

The proof can be found in the Appendix on page 237. Note that V (s) can also be
represented directly in terms of the impulse reward i and rate reward r (instead
of the continuized rate reward r) as

V (s) = Es

[ ∞∑

n=0

(

i(Xn, Xn+1) · PT (T ≥ Tn+1) + r(Xn)

∫ Tn+1

Tn

PT (T ≥ t) dt

)]

.

In this equation, one can also see that an impulse reward i(Xn, Xn+1) for the
(n + 1)-st transition is only accumulated if the time horizon T is not exceeded
by the total elapsed time Tn+1 up to this transition.
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Definition 4.4. Let the horizon length T be exponentially distributed with rate
α > 0. In this case the horizon-expected reward measure is called discounted
reward measure with discount rate α (or just α-discounted reward measure)
and its value function will be denoted by V α(s).

The discounted value function V α represented as a vector in R
|S| is given by

V α =

∫ ∞

0

e−αtP (t)r dt. (4.14)

This follows directly from Lemma 4.1 together with PT (T ≥ t) = e−αt and
E [r(Zt)] = P (t)r. As in Sect. 2.3 in the discrete-time setting we can also derive a
system of linear equations which allows to compute the discounted value function
V α. The proof can be found in the Appendix on page 238.

Theorem 4.3 (Discounted Reward Measure – Continuization).
The discounted value function with discount rate α > 0 is the unique solution to
the system of linear equations

V α(s) =
r(s)

α+ E(s)
+
∑

s′ 	=s

Q(s, s′)
α+ E(s)

V α(s′). (4.15)

In vector notation this system of equations reads as

(Q− αI)V α = −r. (4.16)

Note that in case the total value function V∞ exists (and is thus finite) it is the
limit of the α-discounted value function as α decreases to 0, i.e. for all s ∈ S it
holds that

V∞(s) = lim
α↘0

V α(s). (4.17)

Example 4.3. Figure 4.4 shows the α-discounted value function V α(sinit) for the
initial state sinit = (silence, idle) of the WSN node model from Example 4.1
dependent on the discount rate α. By solving (4.16) we get

V α(sinit) =
20
(
α2 + 72α+ 440

)

α (α2 + 44α+ 280)
.

Clearly, for increasing α the expected horizon length E [T ] = 1
α decreases and

thus the discounted value representing the expected energy consumption up to
time T also decreases. On the other hand, if α decreases towards 0, then the
discounted value increases and in our case it diverges to ∞. Note that the total
value function V∞ does not exist for this model. ��

Remember that one of our main goals in this section is to check, whether all the
model transformations in Fig. 4.2 are value-preserving. For a CTMRM (S,Q, r)
with α-discounted value function V α consider its μ-uniformization (S, Pμ, Rμ)
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Fig. 4.4. The discounted value V α(sinit) for the initial state sinit = (silence, idle) as a
function of the discount rate α

with γ-discounted value function V γ . We show that there is no choice of γ ∈ (0, 1)
such that V α = V γ . Thus the μ-uniformization is not value-preserving with
respect to the discounted reward measure. (As a special case it also follows, that
the embedding is not value-preserving as well.)
Assume that there exists γ ∈ (0, 1) such that V α = V γ . On the one hand V α

is the unique solution to (Q − αI)V α = −r and thus QV γ = αV γ − r. On the
other hand, V γ is by Theorem 2.2 the unique solution to (I − γPμ)V γ = Rμ

where Pμ = I + 1
μQ and Rμ = 1

μr. Thus

Rμ = (I − γPμ)V γ =

(
I − γ

(
I +

1

μ
Q

))
V γ = (1− γ)V γ − γ

1

μ
(αV γ − r) .

By rearranging terms it follows that
(
1− γα

(1− γ)μ

)
V γ = Rμ,

which means that V γ is a multiple ofRμ and is thus independent of the transition
probabilities Pμ! However, we can save the value-preserving property by observ-
ing the following link between the discounted and the total reward measure in
analogy to the discrete-time case as shown in Remark 2.1.

Remark 4.3. If M = (S,Q, i, r) is a CTMRM then extend M to a CTMRM
M′ = (S′, Q′, i′, r′) with an artificial absorbing reward-free state abs that is
reachable with rate α > 0 from every other state in S, i.e.

S′ := S ∪ {abs} , Q′ :=
(
Q− αI α1

0 0

)
, i′ :=

(
i 0
0 0

)
and r′ :=

(
r
0

)
.

Since abs is the single recurrent state inM′ it follows that the total value function
V ′
∞ for M′ with V ′

∞(abs) = 0 is a solution to (4.12), i.e.

Q′V ′
∞ = −r′,
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where r′ is the continuized rate reward of M′. By definition of M′ it holds for
all s ∈ S′ \ {abs} = S that i′(s, abs) = 0 and r′(s) = r(s) and it follows that

r′(s) =
∑

s′∈S′
s′ �=s

i′(s, s′)Q′(s, s′) + r′(s) =
∑

s′∈S
s′ �=s

i(s, s′)Q(s, s′) + r(s) = r(s).

Since V α is the α-discounted value function for M it is the unique solution to
(Q− αI)V α = −r and thus

Q′
(
V α

0

)
=

(
Q− αI α1

0 0

)(
V α

0

)
= −

(
r
0

)
= −r′.

Since V ′
∞ is also a solution to Q′V ′

∞ = −r′ and also unique with the property
V ′
∞(abs) = 0 it follows that V α(s) = V ′

∞(s) for all s ∈ S.

This remark allows to provide a further method for the evaluation of the dis-
counted value function by means of uniformization. Note that if μ ≥ E(s) for
all s ∈ S is a uniformization rate for the original model M then μ + α is a
uniformization rate for the extended model M′ = (S′, Q′, i′, r′). The following
theorem states that the rates and the rewards have to be uniformized differ-
ently in order to be able to establish a connection between the α-discounted
value function and a γ-discounted value function for some suitable DTMRM.
For this reason, we refer to the transformation to that DTMRM as separate
uniformization.

Theorem 4.4 (Discounted Reward Measure – separate Uniformiza-
tion). Let M = (S,Q, i, r) be a CTMRM, μ > 0 a uniformization rate for
M and α > 0 a discount rate. Then V α is the unique solution to the system of
linear equations

(I − γPμ) V α = Rμ+α,

where Pμ = I + 1
μQ is the μ-uniformized transition probability matrix, Rμ+α =

1
μ+αr is the (μ+α)-uniformized reward vector and γ = μ

μ+α ∈ (0, 1) is a discount
factor. In other words the α-discounted value function V α for the CTMRM M is
precisely the γ-discounted value function for the DTMRM M̃ := (S, Pμ, Rμ+α)

denoted by Ṽ γ , i.e.
V α = Ṽ γ .

The proof is straightforward and integrated in the following discussion on several
relationships between models and value functions that can occur by the model
transformations. Figure 4.5 shows transformations between Markov chains with-
out rewards. A CTMC (S,Q) is uniformized into a DTMC (S, Pμ) and afterwards
the model is extended with an auxiliary absorbing state abs as described in Re-
mark 2.1 which leads to a DTMC (S′, (Pμ)′) with S′ = S ∪{abs} (γ-extension).
On the other hand, (S,Q) can be directly extended with abs as described in
Remark 4.3 to the model (S′, Q′) and then uniformized with rate μ + α (α-
extension). This diagram commutes, since
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(Pμ)′ =
(
γPμ (1 − γ)1
0 1

)
=

( μ
μ+α (I +

1
μQ) α

μ+α1

0 1

)

=

(
I 0
0 1

)
+

1

μ+ α

(
Q − αI α1

0 0

)
= (P ′)μ+α.

Fig. 4.5. Commuting model transformations on discrete-time and continuous-time
Markov chains

In contrast, Fig. 4.6 shows the same transformations applied to (continuized)
Markov reward models. This diagram does not commute, since in general

(Rμ)′ =
1

μ

(
r
0

)
�= 1

μ+ α

(
r
0

)
= (R′)μ+α.

However, due to (P ′)μ+α = (Pμ)′ it is possible to compute the infinite-horizon
total value function V∞ on the DTMRM (S′, (P ′)μ+α, (R′)μ+α). Let us call its

restriction on S as Ṽ γ . Since the uniformization is value-preserving with re-
spect to the infinite-horizon total reward measure (see Corollary 4.2) and due to

Remark 4.3 it follows that V α = Ṽ γ , which concludes the proof of Theorem 4.4.

4.6 Average Reward Measure

In Sect. 2.4 we defined the discrete-time average reward by considering a se-
quence of finite-horizon value functions VN which were averaged over the hori-
zon length N and the limit as N → ∞ was considered. In complete analogy we
define the average reward in the continuous-time case.

Definition 4.5. Let M = (S,Q, i, r) be a CTMRM with finite-horizon total
value function VT . The average reward value function is defined as

g(s) = lim
T→∞

1

T
VT (s),

if the limit exists for all s ∈ S.
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Fig. 4.6. Model transformations (big arrows) on discrete-time and continuous-time
reward models that do not commute. A small arrow indicates an evaluation of a reward
measure on a model. The dashed lines connect value functions that are related by
equality. The value function Ṽ γ is not directly evaluated on (S′, (Pμ)′, (R′)μ+α) but is

induced by V∞ (feathered arrow) as a restriction from S′ to S and it holds V α = Ṽ γ .

Example 4.4. In the WSN node model from Example 4.1 we saw in (4.9) that

VT (sinit) =
220
7 T +f(T ) with some function f(T ) such that f(T )

T → 0 as T → ∞.
This result means, that on average over infinite time the energy consumption is
g(s) = 220

7 per hour (compare this with the slope of VT (sinit) in Fig. 4.3). ��

In the following we want to provide methods for the computation of the average
reward that do not rely on an explicit representation of VT which is computed
by integration over the transient probability matrix P (t) = eQt as in Theorem
4.1. In Sect. 4.2.3 we mentioned that P (t) converges to the limiting matrix P ∗.
Remind that P ∗ fulfills the properties

P (t)P ∗ = P ∗P (t) = P ∗P ∗ = P ∗ and P ∗Q = QP ∗ = 0.

Proposition 4.2. Let r be the continuized rate reward of a CTMRM (S,Q, i, r).
Then the average reward can be computed by

g = P ∗r.

Proof. By Theorem 4.1 it holds that

g = lim
T→∞

1

T
VT = lim

T→∞
1

T

∫ T

0

P (t)r dt.

Fix two states s and s′ and consider the monotonically increasing function

h(T ) :=
∫ T

0
P (t)(s, s′) dt ≥ 0. If h(T ) is unbounded it follows by the rule of

l’Hospital that

lim
T→∞

h(T )

T
= lim

T→∞
P (T )(s, s′) = P ∗(s, s′).
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In the other case if h(T ) is bounded then clearly P (t)(s, s′) converges to 0. But
this is only the case if either s and s′ are in different closed recurrent classes or
s′ is transient and in both cases it holds that P ∗(s, s′) = 0. Thus from

lim
T→∞

h(T )

T
= 0 = P ∗(s, s′)

the conclusion follows. ��

As in Sect. 2.4 we also show another possibility to evaluate the average reward
which does not rely on the computation of P ∗ and will be used in the subsequent
section on CTMDPs. For this reason we define the notion of a deviation matrix
H and a bias h in the continuous-time case.

Definition 4.6. For a CTMRM M = (S,Q, i, r) define the deviation matrix
H as

H :=

∫ ∞

0

(P (t)− P ∗) dt,

where integration is performed componentwise. Further define

h := Hr =

∫ ∞

0

(P (t)r − g) dt

as the bias of M.

Note that Q, H and P ∗ satisfy the following equations:

QH = HQ, P ∗ = I +QH and HP ∗ = P ∗H = 0. (4.18)

That can be easily derived by the Kolmogorov equations (4.2).
In the following, we connect the discounted and the average reward measures.
Consider for a fixed s ∈ S the discounted value V α(s) as a function of α ≥ 0.
Then V α(s) might have a pole at α = 0 and can be extended as a Laurent series
in α. For more information on the Laurent series expansion in continuous time
we refer to Theorem A.1 in the Appendix. This theorem directly induces the
Laurent series decomposition of the α-discounted value function as is stated in
the following corollary.

Corollary 4.3 (Laurent Series of the Discounted Value Function). The
Laurent series expansion of V α is given by

V α = α−1g +

∞∑

n=0

αnHn+1r.

Recall (4.17): In case the infinite-horizon total value V∞ exists it follows for the
average reward g and the bias h from the Laurent expansion for α → 0 that
g = 0 and h = V∞. Thus on average no reward is gained over the infinite horizon
which can also be seen by Proposition 4.1 since there are no rewards in recurrent
states. By Definition 4.6 the bias h measures the total long-term deviation of the
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accumulated rewards from the average reward, i.e. h = limT→∞ (VT − g · T ). As
in the discrete-time setting, the bias can also be seen as the excess of rewards r
until the system reaches its steady-state. Moreover, h is also the infinite-horizon
total value function for the CTMRM with average-corrected rewards r − g (if
we also allow for non-absolute convergence in Definition 4.2). Thus, if g = 0 it
follows that h = V∞.

Example 4.5. If we decompose the rational function for V α(sinit) in Example 4.3
into a Laurent series at α = 0 then

V α(sinit) =
20
(
α2 + 72α+ 440

)

α (α2 + 44α+ 280)
=

220

7α
+

10

49
− 25α

343
+

103α2

9604
+O

(
α3
)
.

We see that the average reward g for sinit is
220
7 and the bias h is 10

49 . Compare
these values also with (4.9). ��
In the following we show two possibilities to compute the average reward by
a system of linear equations. The first is a direct evaluation which uses the
CTMRM model data Q, r and i and the second system of linear equations relies
on the uniformized DTMRM.

Theorem 4.5 (Average Reward Measure – Direct Evaluation). The av-
erage reward g and the bias h fulfill the following system of linear equations:

(
−Q 0
I −Q

)(
g
h

)
=

(
0
r

)
. (4.19)

Furthermore, a solution (u, v) to this equation implies that u = P ∗r = g is the
average reward and there exists w ∈ ker(I −P ∗) such that v−w = h is the bias.

Proof. Let g = P ∗r be the average reward and h = Hr the bias. From QP ∗ = 0
it follows that Qg = 0 and by using the Kolmogorov equations (4.2) it holds
that

Qh = Q

∫ ∞

0

(P (t)− P ∗)r dt =
∫ ∞

0

P ′(t)r dt = (P ∗ − I)r = g − r

and thus (4.19) follows. Now let (u, v) be a solution to (4.19). Then clearly

0 = Qu = P (t)Qu = P ′(t)u and by integrating
∫ t

0
P ′(τ)u dτ = 0 and using

P (0) = I it follows that P (t)u = u for all t ≥ 0. Therefore, if t → ∞ together
with u = r + Qv and P ∗Q = 0 it follows u = P ∗u = P ∗(r + Qv) = P ∗r = g.
Now

(I − P ∗)v = −
∫ ∞

0

P ′(t)v dt P (0) = I

=−
∫ ∞

0

P (t)Qv dt = −
∫ ∞

0

P (t)(g − r) dt (4.2), u−Qv = r, u = g

=

∫ ∞

0

(P (t)r − g) dt =

∫ ∞

0

(P (t)− P ∗)r dt P (t)g = g ∀t ≥ 0

=Hr = (H − P ∗H)r = (I − P ∗)h. (4.18), h = Hr

Therefore, v = h+ w for some w ∈ ker(I − P ∗). ��
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In the special case, if M is unichain then ker(Q) = 1R is one-dimensional and
therefore g = g01 ∈ ker(Q) is constant with g0 ∈ R. This value can be computed
by finding a solution to g01−Qh = r. Alternatively, in a unichain CTMRM the
unique stationary distribution ρ fulfills ρQ = 0 and ρ1 = 1 and thus g0 = ρr.

Theorem 4.6 (Average Reward Measure – Uniformization). Consider
a CTMRM M = (S,Q, i, r) with average reward g and let μ be a uniformization
rate. Then g is the unique solution to the system of equations

(
I − Pμ 0
μI I − Pμ

)(
g
h

)
=

(
0
Rμ

)
.

If Mμ = (S, Pμ, Rμ) is the μ-uniformized model and gμ the average reward of
the DTMRM Mμ then

g = μgμ.

The statement of this theorem can be interpreted as follows: In the continuous-
time model g(s) is the average reward per time from initial state s, while in the
corresponding μ-uniformized discrete-time model gμ(s) is the average reward
per transition. In the uniformized model the expected number of transitions per
time unit is exactly the rate μ (which corresponds to Little’s law) and thus
g(s) = μgμ(s). Note also that one can assume without loss of generality that all
exit rates E(s) satisfy E(s) ≤ 1 by changing the time scale. In this case, one
can choose μ := 1 and it follows that g = gμ. For this reason, the uniformiza-
tion transformation (with μ = 1 expected number of transitions per time unit)
preserves the average reward measure.

Proof. We first show that g = μgμ. Theorem 4.4 allows to link for each dis-
count rate α > 0 the α-discounted continuous-time value V α to the γ-discounted
discrete-time value Ṽ γ of the separate uniformized DTMRM (S, Pμ, Rμ+α) with
discount factor γ = μ

μ+α . From the continuous-time Laurent series in Corollary

4.3 it follows that g = limα→0 αV
α. On the other hand, since limα→0 R

μ+α =
Rμ it follows from the discrete-time Laurent series in Theorem 2.3 that gμ =
limρ→0

ρ
1+ρ Ṽ

γ , where ρ = 1−γ
γ = α

μ . Combining both gives

gμ = lim
ρ→0

ρ

1 + ρ
Ṽ γ = lim

α→0

α

μ+ α
V α =

1

μ
g

and the conclusion follows. The system of the linear equations can be directly
established from Theorem 2.4 with Pμ = I + 1

μQ and Rμ = 1
μr. ��

4.7 Big Picture – Model Transformations

We summarize all the transformations and evaluation methods presented in this
section in Fig. 4.7. Theorem 4.1 allows to continuize a CTMRM (S,Q, i, r) into
a CTMRM (S,Q, r) and hereby preserving all considered value functions. For



Markov Reward Models and Markov Decision Processes 221

Fig. 4.7. Big Picture: Value-preserving transformations from the continuization
(S,Q, r) of a CTMRM (S,Q, i, r)

this reason, we omit the model (S,Q, i, r) in the figure. The embedded DTMRM
(S, P,R) is defined by

P = I + E−1Q and R = diag(iPT ) + E−1r ∈ R
|S|,

where E−1 is defined as a diagonal matrix with entries 1
E(s) if E(s) �= 0 and 0

otherwise. The vector diag(iPT ) is the state-based view on the impulse rewards
i(s, s′) collected in a matrix i. The μ-uniformized DTMRM (S, Pμ, Rμ) is defined
by

Pμ = I +
1

μ
Q and Rμ = diag

(
i (Pμ)T

)
+

1

μ
r ∈ R

|S|.

The total reward measure is value-preserving for both transformations embed-
ding and uniformization. Therefore, all presented methods for computation of
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V∞ in continuous and discrete time can be used. In order to transform the dis-
counted reward measure with discount rate α we need to consider an extended
model (see Remark 4.3). The evaluation of the total reward measure on the ex-
tended model is equivalent to the evaluation of the discounted reward measure
on the original model. For the average reward model, there is in general no simple
direct method to compute the average reward g via embedding, since continuous
time and the transition-counting time are not compatible when building aver-
ages over time.

We want to conclude this section with a remark on more general reward
structures. Beyond impulse rewards or rate rewards as we defined, the authors
of [22], [23] and [35] also analyze rewards that can vary over time. This varia-
tion can be homogeneous (depending on the length of a time interval) or non-
homogeneous (depending on two points in time). These reward structures are
mostly accompanied by the more general model class of Semi-Markov Reward
Processes. Furthermore, [30] defines path-based rewards which can be analyzed
by augmenting the model with special reward variables, such that the state space
does not need to be extended for path information.

5 Continuous Time Markov Decision Processes

In this section we merge both model types MDP and CTMRM together into a
CTMDP model. This section is rather short, because all of the necessary work
has been already done in the preceding sections. For this reason, we establish
connections to the previous results. Moreover, we also present an additional
method for the computation of the average reward which directly works on
CTMDPs.

5.1 Preliminaries and Retrospection

Definition 5.1. A continuous-time Markov Decision Process (CTMDP)
is a structure M = (S,Act, e,Q, i, r), where S is a finite state space, Act a finite
set of actions, e : S → 2Act \∅ the action-enabling function, Q : S×Act×S → R

an action-dependent generator function, i : S×Act×S → R the action-dependent
impulse reward function with i(s, a, s) = 0 for all a ∈ e(s) and r : S × Act → R

the action-dependent rate reward function.

Completely analogous to Sect. 3 we define the set of policies

Π := {π : S → Act | π(s) ∈ e(s)} .

Applying π to a CTMDP M induces a CTMRM Mπ = (S,Qπ, iπ, rπ), where

Qπ(s, s′) := Q(s, π(s), s′), iπ(s, s′) := i(s, π(s), s′) and rπ(s) := r(s, π(s)).

A reward measure R for the CTMDP M induces for each policy π a value V π

for Mπ.



Markov Reward Models and Markov Decision Processes 223

Definition 5.2. Let M be a CTMDP with reward measure R and for each
π ∈ Π let V π be the value of π with respect to R. The value V ∗ of M is defined
as

V ∗(s) := sup
π∈Π

V π(s).

A policy π∗ ∈ Π is called optimal if

∀s ∈ S ∀π ∈ Π : V π∗
(s) ≥ V π(s).

In order to optimize the CTMDP we can transform M by embedding or uni-
formization into an MDP and by continuization into another CTMDP. The trans-
formations follow the Big Picture as presented in Sect. 4.7 (Fig. 4.7) with the
difference that all action-dependent quantities (i.e. Q, i and r) are transformed in
an action-wise manner. The following theorem states that these transformations
preserve both the optimal value and the optimal policies.

Theorem 5.1. Let M be a CTMDP with policy space Π, optimal value V ∗ and
a set of optimal policies Π∗ ⊆ Π. Further let M̂ be a transformed model (MDP

or CTMDP) as in Fig. 4.7 with policy space Π̂, value V̂ ∗ and optimal policies

Π̂∗ ⊆ Π̂. Then
V ∗ = V̂ ∗ and Π∗ = Π̂∗.

Proof. Note that V ∗ and V̂ ∗ are defined over policies, i.e.

V ∗ = sup
π∈Π

V π and V̂ ∗ = sup
π∈ ̂Π

V̂ π.

All the transformations in Fig. 4.7 do not transform S, Act and e, thus Π = Π̂ .
Furthermore, for each π ∈ Π the transformations preserve the value V π, i.e.
V π = V̂ π and thus V ∗ = supπ∈Π V π = supπ∈ ̂Π V̂ π = V̂ ∗. In order to show that

Π∗ = Π̂∗ let π∗ ∈ Π∗. Then for all s and for all π ∈ Π by definition of π∗ it
holds that

V π∗
(s) ≥ V π(s) = V̂ π(s) and V π∗

(s) = V̂ π∗
(s).

and therefore π∗ is optimal for M̂ , i.e. π∗ ∈ Π̂∗. In complete analogy it follows
that Π̂∗ ⊆ Π∗ and the equality for the sets of optimal policies follows. ��

5.2 Average Reward Measure

All the necessary work has already been done for analyzing CTMDPs by trans-
formation to MDPs. It remains to provide optimality equations for the average
reward and algorithms which can be used directly on CTMDPs. Consider a
CTMDP (S,Act, e,Q, i, r) with average reward measure and let

r(s, a) =
∑

s′ 	=s

i(s, a, s′)Q(s, a, s′) + r(s, a)
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denote the continuized rate reward. Define the Bellman operators Bav : R
S → R

S

and Bg
bias : R

S → R
S (parametrized by g ∈ R

S) as follows:

(Bavg)(s) := max
a∈e(s)

{
∑

s′∈S

Q(s, a, s′)g(s′)

}

(Bg
biash)(s) := max

a∈eg(s)

{

r(s, a) +
∑

s′∈S

Q(s, a, s′)h(s′)

}

− g(s)

where eg(s) :=

{

a ∈ e(s) |
∑

s′∈S

Q(s, a, s′)g(s′) = 0

}

These operators look similar to the Bellman operators (3.10) and (3.11) in the
discrete-time case. The difference is that instead of searching for fixed-points we
need to search for zeros of Bav and Bg

bias (see (4.19)). This gives the first and the
second Bellman optimality equations

max
a∈e(s)

{
∑

s′∈S

Q(s, a, s′)g(s′)

}

= 0 (5.1)

max
a∈eg(s)

{

r(s, a) +
∑

s′∈S

Q(s, a, s′)h(s′)

}

− g(s) = 0. (5.2)

The following existence theorem is the analogue version of Theorem 5.2 for
discrete-time MDPs.

Theorem 5.2 (Existence Theorem).

(i) The average optimal value function g∗ is a solution to (5.1), i.e Bavg
∗ = 0.

For g = g∗ there exists a solution h to (5.2), i.e. Bg∗
biash = 0. If g and h are

solutions to (5.1) and (5.2) then g = g∗.
(ii) There exists an optimal policy π∗ and it holds that gπ

∗
= g∗.

(iii) For any solution h to (5.2) with g = g∗ an optimal policy π∗ can be derived
from

π∗(s) ∈ argmax
a∈eg∗ (s)

{

r(s, a) +
∑

s′∈S

Q(s, a, s′)h(s′)

}

.

For a direct proof we refer to [17]. We propose here another proof sketch based
on uniformization and its value-preserving property.

Proof. Without loss of generality we assume that E(s, a) ≤ 1 and set the uni-
formization rate μ := 1 such that the uniformization is value-preserving. The
μ-uniformized MDP is given by Mμ = (S,Act, e, Pμ, Rμ) where

Pμ(s, a, s′) = δs,s′ +Q(s, a, s′) and Rμ(s, a) = r(s, a).

If (gμ)∗ denotes the optimal average reward for Mμ then by Theorem 5.1 it holds
that g∗ = (gμ)∗. Since finding a fixed point of some operator T is equivalent to
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finding a zero of the operator B = T − id, where id is the identity operator, part
(i) follows. Furthermore, Theorem 3.7 guarantees the existence of an optimal
policy for Mμ and by Theorem 5.1 also for M such that parts (ii) and (iii)
follow. ��

We restate the policy iteration algorithm from [17] since our CTMDP model as
introduced in Definition 5.1 allows also impulse rewards.

Theorem 5.3 (Policy Iteration). Let M = (S,Act, e,Q, i, r) be a CTMDP
and r(s, a) the continuized rate reward. For an initial policy π0 ∈ Π define the
following iteration scheme:

1. Policy evaluation: Compute a solution (gπn , hπn , w)T to

⎛

⎝
−Qπn 0 0

I −Qπn 0
0 I −Qπn

⎞

⎠

⎛

⎝
gπn

hπn

w

⎞

⎠ =

⎛

⎝
0
rπn

0

⎞

⎠

2. Policy improvement: Define for each state s the set of improving actions

Bn+1(s) :=

⎧
⎨

⎩
a ∈ e(s) |

∑
s′ Q(s, a, s′)gπn(s′) > 0 ∨

(
∑

s′ Q(s, a, s′)gπn(s′) = 0
⇒ r(s, a) +

∑
s′ Q(s, a, s′)hπn(s′) > gπn(s))

⎫
⎬

⎭

and choose an improving policy πn+1 such that

πn+1(s) ∈ Bn+1(s) if Bn+1(s) �= ∅ or πn+1(s) := πn(s) if Bn+1(s) = ∅.

Termination: If πn+1 = πn then πn is an optimal policy. Otherwise go to the
policy evaluation phase with πn+1.

The values gπn are non-decreasing and policy iteration terminates in a finite
number of iterations with an optimal policy πn and optimal average reward gπn.

The policy evaluation phase in this algorithm can be derived from the evaluation
phase of the policy iteration algorithm in Theorem 3.8 for the uniformized model.
However, the main difference between these algorithms is the policy improvement
phase. Here Bn+1(s) provides all actions which lead to at least some improvement
in the policy πn whereas in Theorem 3.8 a greedy maximal improving policy is
chosen: Gn+1(s) respectively Hn+1(s). Note that Gn+1(s)∪Hn+1(s) ⊆ Bn+1(s).
Of course, the choice of πn+1 in Theorem 5.3 can also be established by the
greedy improving policy.

Example 5.1 (Bridge circuit). Consider a brige circuit as outlined in the relia-
bility block diagram in Fig. 5.1.

The system is up, if there is at least one path of working components from
s to t and it is down if on every path there is at least one failed component.
Each working component C ∈ {L1, L2, B,R1, R2} can fail after an exponentially
distributed time with rate λC and there is a single repair unit, which can fix
a failed component C after an exponentially distributed time with rate μC .
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Fig. 5.1. The reliability block diagram of the bridge circuit system. An edge represents
a component, which can be working or failed.

We assume that the components L1 and L2 (respectivelyR1 andR2) are identical
and the parameter values for all components are

λLi = 1.0 λB = 0.1 λRi = 2.0

μLi = 10.0 μB = 100.0 μRi = 10.0.

The action model allows the repair unit to be assigned to a failed component
or to decide not to repair. We further assume that repair is preemptive, i.e. if
during repair of a failed component another component fails, then the repair
unit can decide again which component to repair. Note that due to the memory-
less property of the exponential repair distribution, the remaining repair time in
order to complete the repair does not depend on the elapsed time for repair. We
want to find optimal repair policies, in order to pursue the following two goals:

(G1): maximize the MTTF (mean time to failure)
(G2): maximize the availability (i.e. the fraction of uptime in the total time).

Figure 5.2 shows an excerpt of the state space (with 32 states), which we apply
to both goals (G1) and (G2). Note that for both measures (MTTF and avail-
ability) we define the reward structure which consists only of the rate reward r,
which is 1 on up states and 0 on down states. The difference between both goals
affects the state space as follows: For (G1) the 16 down states are absorbing
(for every policy), while for (G2) a repair of failed components is also allowed in
down system states.

We optimize (G1) by transforming the CTMDP by embedding into a discrete-
time SSP (S, P,R) (cf. Definition 3.4 and Fig. 4.7) and hereby aggregate all
absorbing down states to the goal state for the SSP. By embedding transforma-
tion, the reward R(s, a) is the expected sojourn time in state s under action a
in the CTMDP model, i.e. for all a ∈ e(s)

R(s, a) =

{
1

E(s,a) , for s �= goal

0, for s = goal
,

where E(s, a) is the exit rate. Table 5.1 shows the resulting optimal policy and
its corresponding maximal MTTF value function.
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Fig. 5.2. State space of the bridge circuit CTMDP model. State encoding 01011 repre-
sents (from left to right) that L1 has failed, L2 is working, B has failed, R1 is working
and R2 is working. From every state where at least some component has failed, there
are repair actions and from each state there is also the idle action indicating that the
repair unit can choose not to repair. Shadowed states represent down system states.

Table 5.1. Optimal policy and maximal MTTF value function of the bridge ciruit
system (Example 5.1)

11111 11110 11101 11011 11010 11001 10111 10110 10101
idle repR2 repR1 repB repB repB repL2 repR2 repR1
1.449 1.262 1.262 1.448 1.234 1.234 1.324 1.095 1.087

10011 10010 01111 01110 01101 01011 01001 goal
repB repB repL1 repR2 repR1 repB repB idle
1.291 1.073 1.324 1.087 1.095 1.291 1.073 0.000

Problem (G2) is optimized by applying the CTMDP policy iteration algo-
rithm for the average reward as outlined in Theorem 5.3. Beginning with the
initial policy constantly idle, policy iteration converged in 6 iteration steps to
the optimal policy given in Table 5.2.

Note that for (G2) the model can be shown to be unichain. Thus, the average
reward gπ is constant for all policies π such that Qπgπ = 0. For this reason, the
policy evaluation and improvement phases in the policy iteration algorithm can
be simplified. ��
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Table 5.2. Optimal policy for the availability of the bridge ciruit system (Example
5.1). The maximal availability is 0.917757 independent of the initial state.

11111 11110 11101 11100 11011 11010 11001 11000 10111 10110 10101
idle repR2 repR1 repR1 repB repR2 repR1 repR1 repL2 repR2 repR1

10100 10011 10010 10001 10000 01111 01110 01101 01100 01011 01010
repR1 repB repR2 repB repR1 repL1 repR2 repR1 repR2 repB repB

01001 01000 00111 00110 00101 00100 00011 00010 00001 00000
repR1 repR2 repL1 repL1 repL2 repL1 repL1 repL1 repL2 repL2

6 Conclusion and Outlook

In this tutorial, we presented an integrated picture of MRMs and MDPs over
finite state spaces for both discrete and continuous time. The theory and appli-
cation area for this kind of models is very popular and broad. For this reason, we
just focussed on the fundamentals of the theory. We reviewed the most impor-
tant basic facts from literature, which are inevitable for a deeper understanding
of Markovian models. Furthermore, we set up the theory step by step from
discrete-time MRMs up to continuous-time MDPs and pointed out important
links between these theories. We also connected these models by a number of
model transformations and highlighted their properties. In order to show the ap-
plicability of these models, we introduced small prototypical examples, coming
from the domain of performance and dependability evaluation and optimization.
Of course, many current applications in the optimization of dependable systems
suffer from the curse of dimensionality. However, there are established tech-
niques which can be used in order to overcome this curse and make evaluation
and optimization for large practical models accessible, e.g. approximate solutions
(e.g. approximate dynamic programming), simulative approaches (reinforcement
learning) or the use of structured models. There are also several important ex-
tensions to the Markov model types we could not address in this introductory
tutorial, such as partially observable MDPs (used especially in the area of AI),
denumerable state and action spaces (e.g. for queueing systems) or even contin-
uous state and action spaces (leading directly to control theory).

A Appendix

A.1 Lemmata and Remarks

Lemma A.1.

(i) Let N be a non-negative discrete random variable with expected value and
(an)n∈N a bounded sequence. Then

E

[
N∑

n=0

an

]

=

∞∑

n=0

anP (N ≥ n).
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(ii) Let T be a non-negative continuous random variable with expected value and
a : [0,∞) → R an integrable and bounded function. Then

E

[∫ T

0

a(t) dt

]

=

∫ ∞

0

a(t)P (T ≥ t) dt.

Proof. We show only (i) – the proof for (ii) is analogous when summation is
replaced by integration. Since an is bounded and E [N ] =

∑∞
n=0 P (N ≥ n) < ∞

it follows that
∑∞

n=0 anP (N ≥ n) converges absolutely. From

∞∑

n=0

anP (N ≥ n) =
∞∑

n=0

∞∑

k=n

anP (N = k) =
∞∑

n=0

∞∑

k=0

anP (N = k)�{k≥n}(n, k)

we can interchange both infinite summations by the Fubini theorem. It follows

∞∑

n=0

anP (N ≥ n) =

∞∑

k=0

∞∑

n=0

anP (N = k)�{n≤k}(n, k)

=
∞∑

k=0

k∑

n=0

anP (N = k) = E

[
N∑

n=0

an

]

. ��

Remark A.1. As presented in Sect. 4.2.2 a CTMC M = (S,Q) induces the
stochastic processes Xn, τn, Tn, Nt and Zt. If we fix a uniformization rate μ >
0 then M also induces the uniformized stochastic processes X̃n, τ̃n, T̃n,
Ñt and Z̃t over Ω = (S × (0,∞])N. Here X̃n is the n-th visited state in the

uniformized DTMC and τ̃n is the time up to transition in state X̃n, i.e. all τ̃n
are independent and exponentially distributed with rate μ. Moreover, the total
elapsed time T̃n :=

∑n−1
k=0 τ̃k for the first n transitions is Erlang distributed with

n phases and rate μ and the number Ñt := max{n | T̃n(ω) ≤ t} of (uniformized)
transitions up to time t ≥ 0 is Poisson distributed with parameter μt. Note
also that Z̃t := X̃

˜Nt
= XNt = Zt for all t ≥ 0. Thus, when uniformization is

considered as adding exponentially distributed self-loop transitions to states of
the CTMC M, then the continuous-time state process Zt is not modified at
all. Therefore, the probability measures Ps of the CTMC for all s ∈ S are left
invariant under uniformization and especially the transient probability matrix
P (t) as defined in (4.1). ��
Lemma A.2. Consider a CTMC M=(S,Q) with discrete-time and continuous-
time state processes Xn and Zt. Let

nT (s, s
′) := Es0

[
NT∑

k=1

�{Xk−1=s,Xk=s′}

]

be the expected number of transitions from state s to state s′ �= s within the time
interval [0, T ] from a fixed initial state X0 = s0. Then

nT (s, s
′) = Q(s, s′)

∫ T

0

Ps0 (Zt = s) dt. (A.1)
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Proof. If s is absorbing then clearly (A.1) holds and we can assume in the fol-
lowing that E(s) > 0. We abbreviate in the following the notation by E := Es0

and P := Ps0 . Define

nT (s) :=
∑

s′ 	=s

nT (s, s
′) = E

[
NT∑

k=1

�{Xk−1=s}

]

=

∞∑

k=1

P (Xk−1 = s)P (NT ≥ k)

as the number of complete visits to state s, such that s has been left before time
T . From P (Xk−1 = s,Xk = s′) = P (Xk = s′|Xk−1 = s)P (Xk−1 = s) it follows
that

nT (s, s
′) = P (s, s′)

∞∑

k=1

P (Xk−1 = s)P (NT ≥ k) = P (s, s′)nT (s),

where P (s, s′) = δs,s′ +
Q(s,s′)
E(s) is the embedded transition probability. We use

uniformization as means for proof with a uniformization rate μ ≥ maxs∈S E(s).

Let X̃k, τ̃k, T̃k and Ñt be the uniformized stochastic processes as defined in

Remark A.1. Then T̃k is Erlang distributed with density f
˜Tk
(t) = e−μt μ

ktk−1

(k−1)! for

t ≥ 0 and Ñt has the Poisson probabilities P (Ñt = k) = e−μt (μt)
k

k! . The total
accumulated time for complete visits in s up to time T fulfills

1

E(s)
E

[
NT∑

k=1

�{Xk−1=s}

]

=
1

μ
E

⎡

⎣
˜NT∑

k=1

�{ ˜Xk−1=s}

⎤

⎦

and therefore

nT (s) =
E(s)

μ
E

⎡

⎣
˜NT∑

k=1

�{ ˜Xk−1=s}

⎤

⎦

is a fraction of the number of uniformized transitions up to time T from state s
to some arbitrary state s′. It follows that

nT (s) =
E(s)

μ
E

⎡

⎣
˜NT∑

k=1

�{ ˜Xk−1=s}

⎤

⎦ =
E(s)

μ

∞∑

k=1

P (X̃k−1 = s)P (ÑT ≥ k)

=
E(s)

μ

∞∑

k=0

P (X̃k = s)P (T̃k+1 ≤ T )

=
E(s)

μ

∞∑

k=0

P (X̃k = s)

∫ T

0

e−μtμ
k+1tk

k!
dt

= E(s)

∫ T

0

e−μt
∞∑

k=0

P (X̃k = s)
(μt)k

k!
dt = E(s)

∫ T

0

P (Zt = s) dt

since

P (Zt = s) =

∞∑

k=0

P (Zt = s | Ñt = k)P (Ñt = k) =

∞∑

k=0

P (X̃k = s)e−μt (μt)
k

k!
.
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Thus, (A.1) follows from P (s, s′) = Q(s,s′)
E(s) for s′ �= s and nT (s, s

′) =P (s, s′)nT (s).
��

Remark A.2. In the proof of Lemma A.2, we have applied uniformization as a
detour in order to show that

nT (s, s
′) = Q(s, s′)

∫ T

0

Ps0 (Zt = s) dt.

There is also a more direct way to show this equation by an argument that is used
in the proof of the PASTA property (“Poisson Arrivals See Time Averages”) [41].
The PASTA property is a tool that is frequently used in the theory of queueing
systems. Consider a system that is represented by the Markov chain M = (S,Q)
with state process Zt for t ≥ 0 and fix two states s and s′ with Q(s, s′) > 0.
Let τs,s′ be the exponentially distributed time with rate Q(s, s′) that governs
the transition from s to s′ as shown in Sect. 4.1. Further define an independent

sequence of such random variables τ
(n)
s,s′ , n ∈ N with same distribution as τs,s′ .

Then the process At := max
{
n |

∑n−1
k=0 τ

(k) ≤ t
}
is a Poisson process with rate

Q(s, s′) and is regarded as a stream of arriving jobs to the system. Since τs,s′
is memoryless it holds that when the system is in state s and an arrival occurs
then the system performs a transition to s′. Therefore, the counting process
Yt :=

∑Nt

k=1 �{Xk−1=s,Xk=s′} is precisely the number of arrivals of At to the
system (up to time t) that find the system in state s. Further let Ut := �{Zt=s}
be the process that indicates whether the system is in state s at time t. It
holds that Yt can be represented as a stochastic Riemann-Stiltjes integral of the
process Ut with respect to the arrival process At, i.e. for all T ≥ 0 it holds

that YT =
∫ T

0 Ut dAt with probability 1. Note that for each t ≥ 0 the set of
future increments {At+s −As | s ≥ 0} and the history of the indicator process
{Us | 0 ≤ s ≤ t} are independent. Thus the “lack of anticipation assumption” as
needed for [41] is satisfied and it follows that

nT (s, s
′) = Es0 [YT ] = Q(s, s′) · Es0

[∫ T

0

Ut dt

]

= Q(s, s′)
∫ T

0

Ps0(Zt = s) dt.

��

Lemma A.3. Let T be a non-negative continuous random horizon length for a
CTMRM M = (S,Q, i, r) and independent of the state process Zt of M. Further
let NT = max {n | Tn ≤ T } be the random number of transitions up to time T .
If the k-th moment of T exists, then it also exists for NT .

In order to prove this theorem we need the following definition.

Definition A.1. For two random variables X and Y with distributions FX and
FY we say that X is stochastically smaller then Y (denoted by X � Y ) if
FX(x) ≥ FY (x) for all x ∈ R.

It follows that if X � Y then E [g(X)] ≤ E [g(Y )] for a monotonically increasing
function g.
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Proof. Let Xn, τn, Tn andNt be the stochastic processes as defined in Sect. 4.2.2.
Further choose μ := max {E(s) | s ∈ S} as a uniformization rate and X̃n, τ̃n, T̃n

and Ñt the uniformized processes as in Remark A.1. First we show thatNT � ÑT :
From μ ≥ E(s) for all s it follows that τ̃n � τn for all n and thus T̃n � Tn.
Therefore

NT = max{n | Tn ≤ T } � max{n | T̃n ≤ T } = ÑT

and thus E[Nk
T ] ≤ E[Ñk

T ]. In order to show that E[Nk
T ] is finite we show E[Ñk

T ] <

∞. It holds that P (ÑT = n) = P (T̃n ≤ T < T̃n+1) and therefore

E[Ñk
T ] =

∞∑

n=0

nkP (T̃n ≤ T < T̃n+1).

We show that the sequence P (T̃n ≤ T < T̃n+1) is decreasing fast enough.

P (T̃n ≤ T < T̃n+1) =

∫ ∞

z=0

fT (z)

∫ z

v=0

f
˜Tn
(v)

∫ ∞

u=z−v

fτ̃n(u) du dv dz =

∫ ∞

z=0

fT (z)

∫ z

v=0

f
˜Tn
(v)e−μ(z−v) dv dz =

∫ ∞

z=0

fT (z)e
−μz

∫ z

v=0

μnvn−1

(n− 1)!
dv dz =

∫ ∞

z=0

fT (z)
e−μz(μz)n

n!
dz.

Therefore

E[Ñk
T ] =

∞∑

n=0

nk

∫ ∞

z=0

fT (z)
e−μz(μz)n

n!
dz =

∫ ∞

z=0

fT (z)E[Ñ
k
z ] dz,

where Ñz is the number of uniformized transitions up to time z which is Pois-
son distributed with parameter μz. Now the k-th moment g(z) := E[Ñk

z ] is a
polynomial in z of degree k and therefore

E[Ñk
T ] =

∫ ∞

z=0

g(z)fT (z) dz < ∞,

as a polynomial of degree k in the moments of T . ��

Remark A.3. In the case k = 1 it holds that E[ÑT ] = μE [T ] represents exactly
Little’s law: If jobs enter a queue at rate μ and if their mean residence time in
the queue is E [T ], then there are on average μE [T ] jobs in the queue. For k ≥ 2

the theorem generalizes Little’s law and allows to compute E[ÑT ] analytically
since the coefficients of g can be computed analytically.

A.2 Laurent Series Expansion for Continuous Time Models

Proposition A.1. Let Q ∈ R
n×n be the generator matrix of a CTMC over

a finite state space and P (t) = eQt the transient probability matrix. Then the
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CTMC is exponentially ergodic, i.e. there exists δ > 0 and L > 0, such that

||P (t)− P ∗|| ≤ Le−δt

for all t ≥ 0, where ||A|| := maxi
∑

j |Ai,j | is the matrix maximum norm.

In [18] an equivalent statement is described for finite state DTMCs. We transfer
and modify the proof to the continuous-time case.

Proof. Since Pi,j(t) → P ∗
i,j for all i, j, it follows that for an arbitrary fixed ε > 0

there exists T > 0, such that for all i

∑

j

|Pi,j(T )− P ∗
i,j | ≤ e−ε < 1

and therefore ||P (T ) − P ∗|| ≤ e−ε. Now split t = ntT + st with nt ∈ N and
st ∈ [0, T ).

||P (t)− P ∗|| = ||P (T )ntP (st)− P ∗|| P (s+ t) = P (s)P (t)

= || (P (T )nt − P ∗) (P (st)− P ∗) || P (t)P ∗ = P ∗, P ∗P ∗ = P ∗

≤ ||P (T )nt − P ∗|| · ||P (st)− P ∗|| subadditivity of norm

= || (P (T )− P ∗)nt || · ||P (st)− P ∗||
≤ ||P (T )− P ∗||nt · ||P (st)− P ∗||
≤ e−εnt ||P (st)− P ∗||
= e−εt/T eεst/T ||P (st)− P ∗||.

Defining

δ :=
ε

T
and L := sup

s∈[0,T )

(
eεs/T ||P (s)− P ∗||

)
< ∞

gives ||P (t)− P ∗|| ≤ Le−δt. ��

Define the transient deviation matrix Δ(t) := P (t)−P ∗ and the total deviation
matrix H :=

∫∞
0

Δ(t) dt (componentwise integration). From Proposition A.1 it

follows that the integral defining H converges since ||Δ(t)|| ≤ Le−δt.

Theorem A.1. For α > 0 let W (α) :=
∫∞
0

e−αtP (t) dt be the Laplace transform
of P (t). Then there exists δ > 0, such that for all 0 < α < δ the Laurent series
of W (α) is given by

W (α) = α−1P ∗ +
∞∑

n=0

(−α)nHn+1.
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Proof. Since P (t)P ∗ = P ∗P (t) = P ∗P ∗ = P ∗ it follows thatΔ(t+s) = Δ(t)Δ(s)
for all s, t ≥ 0. Now

W (α) =

∫ ∞

0

e−αt(P (t)− P ∗ + P ∗) dt

= α−1P ∗ +
∫ ∞

0

e−αtΔ(t) dt

= α−1P ∗ +
∫ ∞

0

( ∞∑

n=0

(−αt)n

n!

)

Δ(t) dt

= α−1P ∗ +
∞∑

n=0

(−α)n
∫ ∞

0

tn

n!
Δ(t) dt,

where the last equality follows from Lebesgue’s dominated convergence theorem,

since for all i, j the sequence
∑N

n=0
(−αt)n

n! Δi,j(t) can be dominated by the inte-

grable function Ce(α−δ)t (for δ > 0 from Proposition A.1 and some C > 0) for
all 0 < α < δ. We show by induction that

∫ ∞

0

tn

n!
Δ(t) dt = Hn+1. (A.2)

For n = 0 this is true by definition of H . Let (A.2) be true for an arbitrary
n ∈ N. Then

∫ ∞

0

tn+1

(n+ 1)!
Δ(t) dt =

∫ ∞

0

(∫ t

0

sn

n!
ds

)
Δ(t) dt =

∫ ∞

0

sn

n!

∫ ∞

s

Δ(t) dt ds

=

∫ ∞

0

sn

n!

∫ ∞

0

Δ(s+ t) dt ds =

∫ ∞

0

sn

n!
Δ(s)

∫ ∞

0

Δ(t) dt ds

=

(∫ ∞

0

sn

n!
Δ(s) ds

)
H = Hn+1

and the Laurent series follows. ��

A.3 Collection of Proofs

Proof (of Theorem 2.1). (i) For an arbitary s0 ∈ S it holds

VN (s0) = Es0

[
N∑

i=1

R(Xi−1, Xi)

]

=
∑

s1,...,sN

((
N∑

i=1

R(si−1, si)

)
N∏

i=1

P (si−1, si)

)

=
∑

s1

P (s0, s1)

(

R(s0, s1)
∑

s2,...,sN

N∏

i=2

P (si−1, si) +

∑

s2,...,sN

N∑

i=2

R(si−1, si)

N∏

i=2

P (si−1, si)

)

.
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Now since
∑

s1
R(s0, s1)P (s0, s1) = R(s0) and for each s1 ∈ S it holds that

∑

s2,...,sN

N∏

i=2

P (si−1, si) = 1 and

∑

s2,...,sN

(
N∑

i=2

R(si−1, si)

)
N∏

i=2

P (si−1, si) = Es1

[
N∑

i=2

R(Xi−1, Xi)

]

= VN−1(s1)

it follows that
VN (s0) = R(s0) +

∑

s1

P (s0, s1)VN−1(s1).

In case V∞ exists then V∞(s) = limN→∞ VN (s) for all s ∈ S and statement (ii)
follows from (i) by taking the limit on both sides. ��
Proof (of Proposition 2.1). We are going to sketch a proof for this fact in case
the Markov chain is aperiodic. Since V∞ exists for the model (S, P,R) if and
only if it exists for (S, P, |R|) we can assume without loss of generality that
R(s, s′) ≥ 0 for all s, s′ ∈ S. Note that here |R| has to be interpreted as the
transition-based reward function with |R|(s, s′) := |R(s, s′)|. The reason is that
the state-based view on the absolute reward values

∑
s′∈S P (s, s′)|R(s, s′)| in

general differs from |
∑

s′∈S P (s, s′)R(s, s′)| which is the absolute value of the
state-based view on the reward values!
“⇒”: Assume that V∞ exists and R(s̃, s̃′) > 0 for some states s̃, s̃′ ∈ Sr

i and thus
R(s̃) =

∑
s′∈S P (s̃, s′)R(s̃, s′) > 0. For all k ∈ N it holds that Es [R(Xk−1, Xk)]

is the reward gained for the k-th transition when starting in s. Therefore

Es̃ [R(Xk−1, Xk)] =
∑

s′∈S

P k−1(s̃, s′)
∑

s′′∈S

P (s′, s′′)R(s′, s′′)

=
∑

s′∈S

P k−1(s̃, s′)R(s′) ≥ P k−1(s̃, s̃)R(s̃).

Since P is aperiodic and s̃ is recurrent it follows that P k−1(s̃, s̃) converges to
ρs̃(s̃) > 0, where ρs̃ is the limiting distribution from s̃ (see Sect. 2.1.2). Therefore

the sequence Es̃

[∑N
k=1 |R(Xk−1, Xk)|

]
≥

∑N
k=1 P

k−1(s̃, s̃)R(s̃) is unbounded,

which is a contradiction to the existence of V∞.
“⇐”: Assume that R(s, s′) = 0 for all s, s′ ∈ Sr

i and all i = 1, . . . , k. We
anticipate a result from Proposition 2.2 in Sect. 2.4, which states that the limiting
matrix P∞ := limn→∞ Pn exists since P is aperiodic. In [18] it is shown that P
is geometric ergodic, i.e. there exists n0 ∈ N, c > 0 and β < 1 such that

||Pn − P∞|| ≤ cβn

for all n ≥ n0, where ||.|| is the maximum norm. (This result as stated holds for
unichain models, but it can also be directly extended to the multichain case).
First of all, we want to show that P∞R = 0, i.e. for all s ∈ S it holds that

(P∞R)(s) =
∑

s′∈S

P∞(s, s′)
∑

s′′∈S

P (s′, s′′)R(s′, s′′) = 0.
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If s ∈ Sr
i is recurrent then we only have to consider those terms in the summation

for which s′ and s′′ are in the same closed recurrent class Sr
i . But since both

s′, s′′ ∈ Sr
i it follows that R(s′, s′′) = 0 and thus (P∞R)(s) = 0. On the other

hand if s ∈ St is transient then P∞(s, s′) = 0 for all s′ ∈ St and otherwise if s′ is
recurrent then again P (s′, s′′) = 0 or R(s′, s′′) = 0 dependent on whether s′ and
s′′ are in the same closed recurrent class. (Compare this also to the representation
of P∞ = P ∗ in (2.14).) Combining together it follows for all s ∈ S and k ≥ n0+1
that

Es [R(Xk−1, Xk)] =
∑

s′∈S

P k−1(s, s′)
∑

s′′∈S

P (s′, s′′)R(s′, s′′) =
∑

s′∈S

P k−1(s, s′)R(s′)

≤ max
s∈S

{
∑

s′∈S

P k−1(s, s′)R(s′)

}

= ||P k−1R|| = ||P k−1R− P∞R|| ≤ cβk−1||R||.

Therefore

Es

[
N∑

k=1

R(Xk−1, Xk)

]

≤
N∑

k=1

cβk−1||R||

converges as N → ∞ since β < 1. ��
Proof (of Theorem 3.2). The convergence of Vn to (V γ)

∗
has been already re-

marked in Remark 3.2. It further holds

||V πε − (V γ)
∗ || ≤ ||V πε − Vn+1||+ ||Vn+1 − (V γ)

∗ ||.

From (2.11) it follows that for every policy π the linear operator T π defined
by T πV := Rπ + γP πV is also a contraction with the same Lipschitz constant
q := γ < 1 as for T . Let V πε = T πεV πε be the fixed point of T πε . By definition of
πε in (3.7) (i.e. πε(s) is a maximizing action) it follows that T πεVn+1 = T Vn+1.
Thus, for the first term it holds

||V πε − Vn+1|| ≤ ||V πε − T Vn+1||+ ||T Vn+1 − Vn+1||
= ||T πεV πε − T πεVn+1||+ ||T Vn+1 − T Vn||
≤ q||V πε − Vn+1||+ q||Vn+1 − Vn||.

Therefore
||V πε − Vn+1|| ≤

q

1− q
||Vn+1 − Vn||.

In analogy it follows for the second term

||Vn+1 − (V γ)
∗ || ≤ q||Vn − (V γ)

∗ || ≤ q
(
||Vn − Vn+1||+ ||Vn+1 − (V γ)

∗ ||
)

and thus
||Vn+1 − (V γ)

∗ || ≤ q

1− q
||Vn+1 − Vn||.

By combining the inequalities together it follows that

||V πε − (V γ)∗ || ≤ 2q

1− q
||Vn+1 − Vn||.

Hence the conclusion follows from ||Vn+1 − Vn|| < 1−γ
2γ ε for q = γ. ��
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Proof (of Proposition 4.1). The proof is analogous to the proof of Proposition 2.1
in the discrete-time setting. By Definition 4.2 the value function V∞ is defined

if and only if it holds for all s ∈ S that both terms Es

[∑NT

k=1 |i(Xk−1, Xk)|
]
and

Es

[∫ T

0 |r(Zt)| dt
]
converge as T → ∞. For simplicity, we only sketch the proof

for the rate reward. Without loss of generality we assume that r(s) ≥ 0 for all
s ∈ S.
“⇒”: V∞ is defined if and only if

∫ T

0 Es [r(Zt)] dt converges with T → ∞ and
thus Es [r(Zt)] → 0 as t → ∞. But if s is recurrent then limt→∞ P (t)(s, s) =
P ∗(s, s) > 0 and from Es [r(Zt)] =

∑
s′∈S P (t)(s, s′)r(s′) ≥ P (t)(s, s)r(s) it

follows that r(s) = 0.
“⇐”: Let r(s) = 0 for all recurrent states s. As in the discrete-time case, one can
show that the transient probability matrix P (t) of the finite-state CTMC (S,Q)
is exponentially ergodic, i.e. there exists L > 0 and δ > 0 such that ||P (t)−P ∗|| ≤
Le−δt for all t ≥ 0 where ||.|| is the maximum norm (see Proposition A.1). We
first show that

(P ∗r)(s) =
∑

s′∈S

P ∗(s, s′)r(s′) = 0

for all s ∈ S (see also the representation of P ∗ in (4.3)). If s ∈ Sr
i is recurrent

then P ∗(s, s′) = 0 if s′ ∈ S \ Sr
i and r(s′) = 0 if s′ ∈ Sr

i . Otherwise, if s ∈ St is
transient then P ∗(s, s′) = 0 for all transient states s′ ∈ St and r(s′) = 0 for all
recurrent states s′ ∈ S \ St. It follows for all s ∈ S that

Es

[∫ T

0

r(Zt) dt

]

=

∫ T

0

∑

s′∈S

P (t)(s, s′)r(s′) dt ≤
∫ T

0

||P (t)r|| dt

=

∫ T

0

||P (t)r − P ∗r|| dt ≤
∫ T

0

Le−δt||r|| dt

converges as T → ∞. ��

Proof (of Lemma 4.1). We show the first equality by regarding the representa-
tion of V (s) in (4.13) as a total expectation. We can interchange both expecta-
tions in the middle term by the Fubini theorem (or law of total expectation),
i.e.

V (s) = E

[

Es

[∫ T

0

r(Zt) dt | T
]]

= Es

[

E

[∫ T

0

r(Zt) dt | Zt

]]

.

Here E

[∫ T

0 r(Zt) dt | Zt

]
is a conditional expectation given knowledge of all

the Zt for t ≥ 0, i.e. it is a random variable over Ω that takes the values

E

[∫ T

0
r(Zt(ω)) dt

]
for ω ∈ Ω. Since the state space is finite it holds that the

map t �→ r(Zt(ω)) is bounded for all ω ∈ Ω and it follows by Lemma A.1 that

V (s) = Es

[∫ ∞

0

r(Zt)PT (T ≥ t) dt

]
.
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For the second equality of V (s) in Lemma 4.1 note that Zt(ω) = XNt(ω)(ω) and
Nt(ω) piecewise constant in t for all ω ∈ Ω. Therefore r(Zt(ω)) = r(Xn(ω)) for
all t ∈ [Tn(ω), Tn+1(ω)) and it follows that

Es

[∫ ∞

0

r(Zt)PT (T ≥ t) dt

]
= Es

[ ∞∑

n=0

r(Xn)

∫ Tn+1

Tn

PT (T ≥ t) dt

]

. ��

Proof (of Theorem 4.3). Equation (4.16) can be established by multipliying
(4.15) with α + E(s) and using E(s) = −Q(s, s) when rearranging terms.
Thus we only have to show (4.15). If s is absorbing then Q(s, s′) = 0 for all
s′, E(s) = 0 and P (t)(s, s′) = δs,s′ . The conclusion follows from (4.14) since

V α(s) =
∫∞
0 r(s)e−αt dt = r(s)

α . Assume in the following that s is non-absorbing
and thus E(s) > 0. From Lemma 4.1 it holds that

V α(s) = Es

[ ∞∑

n=0

r(Xn)

∫ Tn+1

Tn

e−αt dt

]

= Es

[ ∞∑

n=0

e−αTnr(Xn)

∫ τn

0

e−αt dt

]

,

since Tn+1 = Tn + τn. Define R(Xn, τn) := r(Xn)
∫ τn
0 e−αt dt. Because τ0 given

X0 = s is exponentially distributed with rate E(s) > 0 it follows by Lemma A.1
that

Es [R(X0, τ0)] =
r(s)

α+ E(s)

and thus

V α(s) = Es

[ ∞∑

n=0

e−α
∑n−1

k=0 τkR(Xn, τn)

]

= Es [R(X0, τ0)] + Es

[

e−ατ0

∞∑

n=1

e−α
∑n−1

k=1 τkR(Xn, τn)

]

=
r(s)

α+ E(s)
+ Es

[

e−ατ0

∞∑

n=0

e−α
∑n−1

k=0
τk+1R(Xn+1, τn+1)

]

=
r(s)

α+ E(s)
+ E

[
e−ατ0V α(X1) | X0 = s

]
,

where V α(X1) is the random variable representing the discounted value when
the process starts in X1. Now since V α(X1) is independent of τ0 (given X0 = s)
it follows that

E
[
e−ατ0V α(X1) | X0 = s

]
= E

[
e−ατ0 | X0 = s

]
E [V α(X1) | X0 = s]

=

∫ ∞

0

e−αt · E(s)e−E(s)t dt ·
∑

s′ 	=s

V α(s′)P (s, s′) =
E(s)

α+ E(s)

∑

s′ 	=s

V α(s′)P (s, s′)

=
∑

s′ 	=s

Q(s, s′)
α+ E(s)

V α(s′),

where the last equation follows from Q(s, s′) = P (s, s′)E(s). ��
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