
Implementing a Model Checker for

Performability Behaviour

�

Holger Hermanns

ay

, Joost-Pieter Katoen

a

,

Joachim Meyer-Kayser

bz

, Markus Siegle

b

a

Formal Methods and Tools Group, University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands

b

Lehrstuhl f�ur Informatik 7, University of Erlangen-N�urnberg

Martensstra�e 3, 91058 Erlangen, Germany

Abstract

We describe a novel model checking algorithm for analysing the behaviour of stochas-

tic systems with respect to their performability. Systems are modelled as action-

labelled CTMCs, and the properties to be veri�ed are speci�ed with the help of the

action-based temporal logic aCSL. The technique is currently being implemented in

our freely available prototype tool ETMCC.

1 Introduction

Performance and dependability analysis are crucial tasks during the design cycle of parallel

and distributed IT systems. The common approach to performability modelling is to use

some high-level formalism for model speci�cation (e.g. SPN [1] or SPA [6]), to derive a
at

CTMC from the model and to analyse the CTMC with numerical methods. The de�nition

of the aim of analysis, i.e. the speci�cation of the measures of interest, has not been

formalised in the past. Recently, temporal logics have been proposed for the speci�cation

of performability properties, and it has been shown how such properties can be veri�ed

with the help of model checking techniques [3].

Stochastic process algebra support compositional, behaviour-oriented performance and

reliability modelling. In a nutshell, a process algebra model speci�es sequences of actions

which a process may perform. With stochastic process algebra, actions are associated with

stochastic delays. Their behaviour-oriented view supports composition, and is in stark

contrast with the state-oriented view inherent in Petri nets or queueing networks, where

tokens or jobs
ow through some static structure, and where a state is naturally identi�ed

with a snapshot of the populations residing at di�erent locations of this structure.

Ironically, all standard analysis algorithms for stochastic models are purely state-based.

They compute interesting information about the model on the basis of state probabilities

derived by either transient or steady-state analysis [12]. As a consequence, there is a

disturbing shift of paradigms when it comes to the analysis of stochastic process alge-

bra models: While the model is speci�ed in a behaviour-oriented style, the performance

properties of interest are de�ned in terms of states, on a very di�erent level of abstraction.

�

supported by the DFG-NWO bilateral cooperation program (VOSS).

y

supported by the Netherlands Organisation for Scienti�c Research (NWO).

z

supported by the German Research Council DFG under HE 1408/6-1.

Similar to [4], we argue that a behaviour-oriented approach to the speci�cation and

analysis of performability properties is more appropriate for SPAs. To this aim, we have

developed an action-based, branching-time stochastic logic, called aCSL (action-based

Continuous Stochastic Logic) [9] that is inspired by the logic CSL [3]. The logic aCSL

provides means to reason about continuous-time Markov chains but, opposed to CSL, it

is not state-oriented. Its basic constructors are sets of actions, instead of atomic state

propositions. aCSL provides means to specify temporal and timed properties, and means

to quantify their probability. It allows one to specify properties such as \Once action

SEND has occured, there is at least a 30% chance that action ACK will be observed within

at most 4 time units".

The analysis of such properties can be entirely automated. We have implemented the

CSL model checker ETMCC [8] which is currently being extended so that it can also check

properties speci�ed in aCSL. This paper serves two purposes. On the one hand (Sec. 3)

we illustrate the use of a behaviour-oriented view by quoting from a case study (from [9]).

Furthermore we discuss how known model checking algorithms need to be adapted to the

behaviour-oriented setting (Sec. 4).

2 An action-based continuous stochastic logic

Stochastic process algebras can be used to generate CTMCs in a compositional manner.

More precisely, they generate action-labelled CTMCs, such as the one shown below in

Fig. 2, i.e. a directed graph whose transitions are labelled with tuples from the set Act�IR,

i.e. tuples of the form (action, rate).

We brie
y introduce the logic aCSL which allows one to specify performability prop-

erties. Let p 2 [0; 1] and ./ 2 f�; <;�; > g. The state-formulas � of aCSL are de�ned by

the grammar

� ::= true

�

�

�

� ^ �

�

�

�

:�

�

�

�

S

./p

(�)

�

�

�

P

./p

(')

where ' stands for a path-formula as de�ned below. A state formula is either the constant

true, the conjunction of two state formulas, the negation of a state formula, a steady-

state formula (S) or a probabilistically quanti�ed path formula (P). The other Boolean

connectives such as _ and) are derived in the obvious way. S

./p

(�) asserts that the

steady-state probability for a �-state meets the bound ./ p, and P

./p

(') asserts that the

probability measure of the paths satisfying ' meets the bound ./ p.

Let A;B � Act and t 2 IR

>0

[f1g. Path formulas ' are de�ned by the grammar

' ::= �

A

U

<t

�

�

�

�

�

A

U

<t

B

�

where U is to be read as \until". The path-formula �

1 A

U

<t

�

2

is satis�ed by a path

that visits only �

1

-states before it eventually reaches a �

2

-state, while taking only A-

transitions; in addition, the time until reaching the �

2

-state has to be less than t time

units. The formula �

1 A

U

<t

B

�

2

has a related meaning, but requires in addition that (i)

a transition to a �

2

-state is actually made and that (ii) this transition is labelled by an

action in B. Further operators can be derived, such as the operators \possibly" (h:i) and

\necessarily" ([:]) which are de�ned as follows:

hAi� = P

>0

(true

;

U

<1

A

�) and [A] � = :hAi :�:

Operator hAi� states that there is some A-transition from the current state to a �-state,

whereas [A] � states that for all A-transitions from the current state a �-state is reached.

Machine

finishUserJob

finishProgJob

Load

Load

Load

Load

level change c

R

Q

P

3

putProgJob

putUserJob

highest priority

lowest priority

Failure

User

Programmer

P

1

P

2

P

4

fail

getProgJob

getUserJob

Figure 1: Multiprocessor mainframe model structure

3 Application example: Multiprocessor mainframe

with failures

To illustrate the power of the behaviour-oriented logics approach, we consider a multi-

processor mainframe, see Fig. 1, which was �rst introduced in [10] and has since then

served as a standard SPA example, see e.g. [7, 5]. The multiprocessor mainframe serves

two purposes: It has to process database transactions submitted by users, and it provides

computing capacity to programmers maintaining the database. The system is subject to

software failures which are modelled as special jobs.

Component Load represents the system load caused by the database users, the pro-

grammers and the failures. The three di�erent system load components are modelled as

Markov modulated Poisson processes, such that the intensity of the load changes between

di�erent levels. The mainframe itself is modelled by the Machine component which con-

sists of two �nite queues and four identical processors. The queues bu�er incoming jobs.

They are controlled by a priority mechanism to ensure that programmer jobs have lowest

priority, while failures have highest priority. Each of the four processors executes user or

programmer jobs waiting in the respective queues, unless a failure occurs. As failures have

preemptive priority over the other two job classes, all processors stop working once action

fail has occured and then wait until the system will recover (via action repair). We refer

to [10] for details of the SPA speci�cation.

In order to illustrate the use of aCSL for specifying performance and reliability prop-

erties, we specify some properties of interest for the multiprocessor mainframe model. For

each property, a description in plain English, its aCSL formulation and some explana-

tion are given. For A � Act we let A denote Act n A, and we de�ne the set of actions

Fin := ffinishUserJob; finishProgJobg.

�

1

: In steady state, the probability that at least two processors are occupied by user jobs

is greater than 0.002.

S

>0:002

(hfinishUserJobi hfinishUserJobi true)

Thus, states where at least two processors are occupied by user jobs are characterised

by the ability to perform action finishUserJob twice.

�

2

: There is at least a 30% chance that some job will be �nished within at most 4 time

units.

P

�0:3

�

true

Fin

U

<4

Fin

true

�

This formula characterises paths on which an action from set Fin occurs within 4

time units, but may be preceded by an arbitrary number of actions from Fin.

�

3

: In steady state, the probability of the system being unavailable (i.e. waiting for repair)

is at most 0.05.

S

�0:05

�

P

>0

�

true

ffailg

U

frepairg

true

��

States where the system is unavailable are thus characterised by the fact that action

repair will eventually occur without action fail having to occur �rst.

�

4

: After a system failure, there is a chance of more than 90% that it will come up again

within the next 5 time units.

[fail] P

>0:9

�

true

frepairg

U

<5

frepairg

true

�

So, once action fail has occured, with probability greater than 0.9 action repair

must occur within 5 time units, but arbitrary other actions may occur in between.

4 Implementing a model checker for aCSL

The expressive power of the logic aCSL is paired with the possibility to fully automate the

model checking of aCSL properties (on �nite-state action-labelled CTMCs). In this way,

the analysis of involved performability properties (such as �

4

) becomes push-button tech-

nology. We employed our model checker ETMCC to check the above

1

and other properties

on di�erent instances of the multiprocessor mainframe model. We varied the size of the

queues, which led to di�erent state spaces of up to 110946 states and 761989 transitions.

The results are presented in [9]. As an example, for the largest model, checking �

1

took

18.814 seconds, while checking �

4

took 11.603 seconds on a standard SUN workstation.

We now brie
y sketch the di�erent algorithmic ingredients needed to check aCSL.

They are similar to theCSL setting, but the behaviour-oriented view requires some distinct

considerations. These di�erences are the focus of the discussion that follows. For a given

formula �, a parse tree is generated from the formula �rst. Then the model checker

recursively evaluates the parse tree, and subformulas are checked, starting at the leaves of

the tree and �nishing at the root. The subformulas are state formulas complying to the

above grammar. Checking of the Boolean connectives is standard. Checking of steady-state

properties requires the solving of a linear system of equations for which the tool ETMCC

employs the iterative schemes of either Jacobi or Gauss-Seidel. As a preprocessing step for

steady-state calculation, the strongly connected components of the CTMC are determined

with the help of a graph analysis algorithm. Checking time-bounded path formulas is the

most complicated. In the general case, a system of Volterra integral equations has to be

solved, for which the tool ETMCC o�ers two solution methods: (i) numerical integration,

working on discretised representations of distribution functions, and (ii) transient analysis

with the help of the uniformisation method, working on a modi�ed CTMC.

Due to limited space, we cannot present details of the model checking algorithms here.

Instead, we now discuss the particularities of the behaviour-oriented approach by means

of a small example. It illustrates the various steps that are carried out when checking an

until-formula, decorated with sets of actions. We discuss the checking of the aCSL formula

� = P

>0:5

�

�

1 fag

U

<t

fbg

�

2

�

for both the untimed case (i.e. t = 1) and the time-bounded

1

Since ETMCC does not yet support full aCSL, some properties were translated manually into CSL.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

(a) original (b) modified

Legend:

failure success

s

1

s

2

s

3

s

4

s

5

s

6

s

7

s

8

s

9

b; 7

a; 3

a; 1

b; 33

b; 71

a; 8

b; 4:3

c; 2:4

a; 2

a; 4

c; 5

b; 21

s

1

s

2

s

00

3

s

5

s

8

b; 7

a; 3

a; 1

b; 4:3

a; 2

a; 4

s

4

s

7

c; 5 b; 21

s

0

3

s

6

s

9

:�

1

^ :�

2

�

1

^ :�

2

:�

1

^�

2

�

1

^ �

2

a; 7

a; 8

Figure 2: Example action-labelled CTMC

case (i.e. for �nite t < 1). For checking this formula on the model shown in Fig. 2, the

following steps are performed mechanically:

1. Determine the set of states E from which there originates a path that functionally

satis�es �

1
fag

U

fbg

�

2

. The set E is initialised as ;. First, �

1

-states from which there

is a b-transition to a �

2

-state are added to E (in the example s

1

; s

3

; s

5

). Then those

�

1

-states are added to E which possess an a-transition to a state already in E (i.e.

s

2

and s

8

are added to E). So �nally E = fs

1

; s

2

; s

3

; s

5

; s

8

g.

2. For the untimed case, determine the set of states A � E whose outgoing paths all

satisfy �

1
fag

U

fbg

�

2

. Set A is computed by removing states from E . In the example,

s

2

is removed �rst, since it can can make a c-transition to s

4

. Afterwards, s

1

is

removed, since it can move to s

2

which is no longer in A. Furthermore, s

8

is removed

since it can make an a-transition to s

7

which is not a �

1

-state. So �nallyA = fs

3

; s

5

g.

Next, for all states, we determine the probability with which the state satis�es

�

1 fag

U

<1

fbg

�

2

, i.e. regardless of the time that passes until reaching the �

2

-state.

States not in E have probability 0. States from A have probability 1.0. In general,

the probabilities for the states from E n A (in the example, E n A = fs

1

; s

2

; s

8

g) are

determined by solving a linear system of equations for which the tool ETMCC again

uses Jacobi or Gauss-Seidel. In the example, the probability for state s

2

is simply

1=10 + 4=10 = 0:5, the probability for state s

8

is 2=10 = 0:2, and the probability for

state s

1

is 7/10 plus 3/10 times the probability which was just computed for s

2

, i.e.

7=10 + 3=10 � 0:5 = 0:85.

3. For the time-bounded case, the algorithm essentially follows the strategy of [2], but

the action-based view requires some modi�cations. When determining the set of

states that satisfy the original formula � = P

>0:5

�

�

1 fag

U

<t

fbg

�

2

�

for �nite t <1, it

is obvious that states not in E cannot satisfy �, so no numerical calculations will have

to be performed for states s

4

; s

6

; s

7

; s

9

. The CTMC is now modi�ed, such that states

which satisfy :�

1

^ :�

2

(that is states s

4

; s

7

) or :�

1

^ �

2

(that is states s

6

; s

9

) are

made absorbing, and states which satisfy �

1

^�

2

are duplicated, such that if reached

by a b-transition they are made absorbing, while if reached by an a-transition they

retain their original outgoing transitions (in the example, s

3

would be duplicated,

which yields s

0

3

and s

00

3

). All absorbing states which satisfy �

2

are collected in a

\success" macro state, while those absorbing states which satisfy neither �

1

nor �

2

are collected in a \failure" macro state. Then transient analysis (via uniformisation)

is performed on this modi�ed model. The probability with which a state s satis�es

�

1
fag

U

<t

fbg

�

2

is calculated as the probability of being in the \success" macro state

at time t, provided that the system started in state s at time 0. A clever cumulation

of intermediate numerical results [11] can be adopted to our case such that these

time-dependent probabilites are calculated for all states by a single uniformisation.

This cumulation is already implemented in ETMCC.

5 Conclusion

We presented a new method for the speci�cation of performability measures with the help

of the action-based stochastic temporal logic aCSL. This logic is well suited for specifying

requirements of SPA models. Their analysis via model checking can be fully automated.

We provided some example property speci�cations and discussed by example the particular

algorithmic steps needed to verify properties of type time-bounded until decorated with

action sets. These model checking algorithms are currently being implemented in our tool

ETMCC. We are also working on extensions of the logic in order to be able to specify an

even broader class of performability measures. For academic purposes the current version of

ETMCC can be downloaded free of charge via http://www7.informatik.uni-erlangen.

de/etmcc/. The extension to aCSL will be made available via this web-page.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.Modelling with generalized

stochastic Petri nets. Wiley, 1995.

[2] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model Checking Continuous Time Markov

Chains by Transient Analysis. In CAV'2000, pages 358{372. Springer LNCS 1855, 2000.

[3] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of continuous-time

Markov chains. In Concurrency Theory, pages 146{162. Springer LNCS 1664, 1999.

[4] G. Clark, S. Gilmore, and J. Hillston. Specifying performance measures for PEPA. In J.-P. Katoen,

editor, 5th Int. AMAST Workshop on Real-Time and Probabilistic Systems (ARTS'99), pages 211{

227. Springer LNCS 1601, 1999.

[5] P.R. D'Argenio, J.P. Katoen, and E. Brinksma. General purpose discrete{event simulation using

SPADES. In C. Priami, editor, 6th Int. Workshop on Process Algebras and Performance Modelling,

pages 85{102. Universita di Verona, 1998.

[6] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance evaluation. Th. Comp.

Sci., 2000. to appear.

[7] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras as a Tool for Perfor-

mance and Dependability Modelling. In Proc. of IEEE International Computer Performance and

Dependability Symposium, pages 102{111, Erlangen, April 1995. IEEE Computer Society Press.

[8] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov Chain Model Checker. In

S. Graf and M. Schwartzbach, editors, TACAS'2000, pages 347{362. Springer LNCS 1785, 2000.

[9] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. Towards model checking stochastic

process algebra. In W. Grieskamp, T. Santen, and B. Stoddart, editors, 2nd Int. Conference on

Integrated Formal Methods, pages 420{439, Dagstuhl, November 2000. Springer LNCS 1945.

[10] U. Herzog and V. Mertsiotakis. Applying Stochastic Process Algebras to Failure Modelling. In Proc.

of the 2nd Workshop on Process Algebras and Performance Modelling, pages 107{126. Arbeitsberichte

des IMMD, Universit�at Erlangen-N�urnberg, July 1994.

[11] J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and Symbolic CTMC Model

Checking. In PAPM/PROBMIV'01. Springer LNCS, 2001. to appear.

[12] W.J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University Press,

1994.

