
Markov chains with perturbed rates to absorption:

Theory and application to model repair

Alexander Gouberman, Markus Siegle, Bharath Tati

Informatik III, Universität der Bundeswehr München

Abstract

This work investigates properties of continuous-time Markov chains with ab-
sorbing states, where there is no restriction on the structure of the set of
transient states. The paper studies the behaviour of the hitting probabilities,
as the rates from transient to absorbing states are perturbed by a common
factor. New results about monotonicity and asymptotic limits of those hit-
ting probabilities are established. The theoretical findings are applied to an
instance of a model repair problem on a fairly general class of Markov chains,
which appears frequently when modelling technical systems subject to ageing
and failure.
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1. Introduction

This paper investigates properties of continuous-time Markov chains (CTMC)
with at least two absorbing states, no other recurrent classes, and a set of
transient states. There is no restriction on the set of transient states, i.e.
the transient states may be partitioned into more than one communication
class. In particular, we study such CTMCs where all rates into the absorbing
states are multiplied by a small perturbation factor. We analyze in detail the
behaviour of the hitting probabilities (also known as trapping probabilities)
– seen as functions of the perturbation factor – from the individual transient
states to the different absorbing states. As a major result, we show that the
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individual hitting probabilities are not necessarily monotonic with respect
to the perturbation factor, but, interestingly, their enveloping functions are
indeed monotonic. Our further attention is on the limit of the hitting prob-
abilities as the perturbation factor goes to zero. We show how for a given
transient state as initial state, this limit can be calculated from the station-
ary distribution among transient states (when transitions to absorbing states
are ignored) and the rates from transient to absorbing states. We also show
that the limits of the hitting probabilities for all transient states belonging
to the same bottom communication class1 (within the set of transient states)
coincide. In order to prove these facts, we use properties of M-matrices and
the concept of the Drazin inverse, which allows us to perform the analysis
in terms of simpler algebraic manipulations. The so-called exitpoint Markov
chain, a DTMC associated with the transient states of the original CTMC,
which characterizes absorbing paths, also plays an important role in our ar-
gumentations.

It is important to point out that the methods presented in this paper
cannot only be applied to Markov chains which are absorbing a priori, but to
general Markov chains, where one is interested in the question of eventually
hitting certain sets of good or bad states.

For us, the question of monotonicity of hitting probabilities arose while
we developed an algorithm to solve a particular instance of model repair.
In general, the model repair problem is to fix a system (or rather a model
thereof) in case it does not satisfy some desirable property. Earlier work
on model repair of probabilistic systems can be found, e.g., in [1, 2, 3]. We
are interested in model repair problems arising in the context of CTMCs la-
belled with state properties, where requirements are expressed with the help
of continuous stochastic logic (CSL) [4], a temporal logic that has become
very popular and can be automatically checked with tools such as PRISM
[5] or Storm [6]. In Sec. 5 of this paper, we look at a special (but still quite
general and widely applicable) class of Markov chains, representing systems
that pursue a mission while being subject to ageing and risky activities,
which might lead to failure. This has numerous applications, for instance in
reliability and risk analysis of spaceborne systems. For this class of Markov
chain, we look at a typical time-bounded reach-avoid requirement, asserting
that with high probability the system should be continuously operational

1A communication class is called bottom if there are no transitions leaving the class.
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for a given minimum time span, eventually terminating its mission success-
fully. This requirement is expressed by the CSL until operator with lower
time bound and lower probability bound. For the case that the requirement
is violated, the paper proposes an algorithm how to repair the model, by
uniformly reducing certain subsets of its transition rates. Depending on the
case at hand, either one or two reduction factors are employed. It is exactly
the monotonicity property derived in the earlier sections which ensures that
our model repair strategy will be always successful, i.e. it is shown that the
proposed algorithm will always succeed in repairing the model.

Related work: Absorbing Markov chains, also known as lossy Markov
chains, have received much attention for a long time, see e.g. [7] for an early
paper. One of the interesting issues about them is their quasi-stationary
distribution, i.e. the kind of equilibrium attained after a long time, provided
that absorption has not yet happened. From a different point of view, an
absorbing Markov chain can also be seen as a phase-type distribution [8, 9],
a powerful class of probability distributions frequently used for the fitting of
traffic traces [10], where the matching of moments [11] and finding canon-
ical representations [12] are prime concerns. In that context, the focus is
on the distribution of the time to absorption, and there is usually only a
single absorbing state. However, our concern is neither the quasi-stationary
distribution nor the time to absorption, but the hitting behaviour in case of
perturbation of the absorption rates. To the best of our knowledge, the ques-
tion of monotonicity of hitting probabilities, in the context of perturbed ab-
sorbing Markov chains with more than one absorbing state, has not received
any attention in the literature, apart from our recent conference paper [13].
However, the present paper generalizes the results of [13] since it drops the
restrictive assumption that the transient states of the CTMC form a single
communication class.

Among related research, it is important to mention the large body of work
on parametric Markov chains and parametric Markov decision processes,
which has varying goals and focus. In such parametric models, transition
probabilities or transition rates are commonly given by polynomials or ratio-
nal functions of real-valued parameters. Approaches to parameter synthesis
can be found, e.g., in [14, 15] and the recent paper [16], where strategies
have been proposed to find valid parameter values in a multi-dimensional
search space. A method for analyzing parametric Markovian models was
described in [17], building on the pioneering work [18]. It computes a closed-
form rational function for the desired reachability probability, following a
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state-elimination strategy, and is also able to deal with rewards and non-
determinism. These algorithms are implemented in several tools such as
PARAM [19], the parametric extension of PRISM [5] and PROPhESY [20].
Improved implementation strategies for those algorithms have recently been
presented in [21]. Our focus in this paper is different: Rather than syn-
thesizing satisfying parameter values or calculating reachability probabilities
in symbolical form, we wish to show some general properties of a class of
Markov chains with perturbed rates to absorption, those properties being
interesting on their own and useful for, among others, certain problems of
model repair.

Structure of the paper: Sec. 2 introduces the necessary terminology
and notation, Sec. 3 derives the main monotonicity result for the perturbed
Markov chains, and Sec. 4 is devoted to the analysis of the asymptotic limit
of the hitting probabilities as the perturbation factor goes to zero. In Sec. 5,
an algorithm for the model repair problem is presented and its correctness is
proven with the help of the results from Sec. 3 and 4. In order to illustrate
the algorithm, that section also contains an application example from the
area of software version release management. Conclusions and future work
are discussed in Sec. 6.

2. Preliminaries

Positivity. For a matrix A = (Aij) ∈ Rn×m write A ≥ 0 if Aij ≥ 0 for
all i, j and A � 0 if Aij > 0 for all i, j. A matrix A ∈ Rn×n is a (i) Z-
matrix if Aij ≤ 0 for i 6= j, (ii) an L-matrix if it is a Z-matrix with positive
diagonal (Aii > 0 for all i) and (iii) an M-matrix if A = sI − B for some
B ≥ 0 and s ≥ ρ(B) where ρ(B) is the spectral radius of B. An M-matrix
A is nonsingular if and only if A = sI − B for some B ≥ 0 and s > ρ(B)
or equivalently if A is a Z-matrix and every eigenvalue of A has (strictly)
positive real part [22, Chapter 6]. A nonsingular M-matrix A is an L-matrix
and it holds A−1 ≥ 0. If A is an irreducible nonsingular M-matrix then
A−1 � 0 [22, Theorem 6.2.7].

For a square matrix A ∈ Rn×n its i-th row is weakly diagonally dominant
if |Aii| ≥

∑
j 6=i |Aij| and strongly diagonally dominant if |Aii| >

∑
j 6=i |Aij|.

The matrix A is called weakly (resp. strongly) diagonally dominant if all its
rows are weakly (resp. strongly) diagonally dominant. A matrix A ∈ Rn×n is
weakly chained diagonally dominant if A is weakly diagonally dominant and
for each row i there is a path i =: i0 → i1 → · · · → il in the directed graph
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of |A| = (|Aij|)ij (meaning that |Aik,ik+1
| > 0 for all k = 0, . . . , l − 1) such

that the il-th row of A is strongly diagonally dominant. Any weakly chained
diagonally dominant matrix is nonsingular. For us of interest is the following
important theorem: a matrix A is a weakly chained diagonally dominant
L-matrix if and only if A is a nonsingular weakly diagonally dominant M -
matrix [23, Theorem 2.24].

Drazin inverse. For A ∈ Cn×n denote by N (A) and R(A) the nullspace and
range of A, by ind(A) := min{k ∈ N | N (Ak) = N (Ak+1)} < ∞ the index
of A and by AD ∈ Cn×n the Drazin inverse of A, i.e. the unique matrix
satisfying Aν+1AD = Aν for ν = ind(A), ADAAD = AD and AAD = ADA.
If A is invertible (i.e. ind(A) = 0) then AD = A−1 and if A is nilpotent then
AD = 0. If ind(A) ≤ 1 then it also holds that AADA = A (since in this case A
is group invertible and the group inverse coincides with AD). For any matrix
A ∈ Cn×n we can decompose Cn = N (Aν) ⊕R(Aν) where ν := ind(A) and
the matrices AAD and I −AAD are the corresponding (spectral) projections
to R(Aν) along N (Aν) resp. vice versa. For any projection P it holds
PD = P . If A,B ∈ Cn×n commute then (AB)D = BDAD. For a matrix
A ∈ Cn×n we also denote the spectral projection as Aπ := I − AAD 2.

Stability. A matrix A ∈ Cn×n is stable if every eigenvalue of A has strictly
negative real part or equivalently if eAt converges to 0 as t → ∞. Every
stable matrix A is nonsingular and

∫∞
0
eAt dt = A−1. A matrix A ∈ Cn×n

is semistable if ind(A) ≤ 1 (i.e. A is group invertible) and the non-zero
eigenvalues of A have strictly negative real part [26, p. 87]. Equivalently, A
is semistable if and only if eAt converges as t→∞ and in this case the limit
is given by limt→∞ e

At = I − AAD = Aπ.

Markov chains. Let 1 ∈ Rn denote the column vector with values 1i = 1. A
matrix P ∈ Rn×n is stochastic if P ≥ 0 and P1 = 1. A matrix Q ∈ Rn×n is
a generator if Qij ≥ 0 for all i 6= j and Q1 = 0. There are several ways to

2For any matrix A the matrix Aπ is the unique matrix P satisfying AP = PA, P 2 = P ,
AP is nilpotent and A+ P is invertible. A is group invertible if and only if AP = 0. The
Drazin inverse AD and the spectral projection Aπ are closely related to each other: any
of the matrices A, AD and Aπ can be computed from the other two. See [24] and [25] for
more information and further references.

5



convert a stochastic matrix into a generator and vice versa3. Any stochas-
tic matrix P defines a discrete-time Markov chain (DTMC) with P as its
transition matrix and we sometimes refer to P as the DTMC. Similarly, any
generator Q defines a continuous-time Markov chain (CTMC) with Q as the
generator matrix of its transition function P (t) = eQt and we sometimes refer
to Q as the CTMC. Every generator Q is semistable and the limiting matrix
limt→∞ e

Qt = I −QQD = Qπ is also called the ergodic projection of Q. The
i-th row of Qπ is the limiting distribution of the corresponding CTMC with
initial state i. The convex hull of the rows of Qπ forms a simplex in R1×n

and its extreme points are the limiting distributions corresponding to the
recurrent classes of the CTMC.
Throughout this paper, we are mostly interested in the distributions of
CTMCs and DTMCs (or equivalently in properties of generator matrices
and stochastic matrices) and less in their trajectory behaviour, so that most
of the time we omit the concrete stochastic processes and underlying prob-
ability spaces. An exception is made when we talk about the probabilistic
interpretation of a certain stochastic matrix.

3. Perturbed Hitting Probabilities and Monotonicity

3.1. Setting

Consider a CTMC with m absorbing states (and no other recurrent
classes) and n transient states4. Then the generator Q ∈ R(n+m)×(n+m) of
the Markov chain can be decomposed as Q = Q1 +Q2 with

Q1 =

(
E 0
0 0

)
and Q2 =

(
D F
0 0

)
(1)

where F ∈ Rn×m comprises the rates for transitions from transient states
to absorbing states and D := − diag(F1) ∈ Rn×n is the diagonal matrix

3If Q is a generator and D a non-singular matrix such that P := DQ+ I ≥ 0 then P is
stochastic. The uniformization and the embedding of a generator correspond to choosing
D as a suitable diagonal matrix.

4 Note that for the purpose of analysis and computation of hitting probabilities for
an arbitrary CTMC it is enough to restrict one’s consideration to the class of absorbing
CTMCs. For applications, where one is given a set of goal states and a disjoint set of
taboo states, m = 2 absorbing states are sufficient: one can lump the goal states into one
absorbing state and the taboo states including the (remaining) recurrent classes into a
second absorbing state.
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comprising the negative row sums of F on its diagonal. The matrix E ∈
Rn×n contains as its off diagonal entries the rates for transitions between
the transient states and E has row sums 0. In particular, E is a generator
matrix of some CTMC, namely the CTMC that arises from Q by removing
the absorbing states (including the transitions leading into them).

Consider the ergodic projection Qπ = limt→∞ e
Qt ∈ R(n+m)×(n+m) of Q

and the canonical decomposition Qπ = RL into a matrix R ∈ R(n+m)×m

which contains the hitting probabilities into the recurrent classes of Q and
L ∈ Rm×(n+m) which contains the stationary distributions of Q. Since we
supposed that Q is absorbing and has m absorbing states, it follows that Q
has m recurrent classes, each consisting of a single state. Therefore L and R
are of the form

L =
(
0 I

)
and R =

(
R̃
I

)
so that Qπ =

(
0 R̃
0 I

)
(2)

where I ∈ Rm×m is the identity matrix, 0 a zero matrix (of appropriate

size) and R̃ ∈ Rn×m comprises the hitting probabilities from each of the n
transient states into each of the m recurrent classes.

3.2. Hitting Probabilities and the associated exitpoint DTMC

In this section, we first establish an explicit expression for the hitting
probabilities R̃ of an absorbing CTMC with generator Q. We then associate
to the CTMC Q a particular DTMC D̂ (the exitpoint DTMC) and prove

some relationships between properties of D̂ and Q. This is slightly technical
but it will be helpful in deducing the limiting probabilities in Sec. 4. Let us
first show the following

Proposition 3.1. The matrix −(E +D) is a nonsingular M -matrix.

Proof. In order to prove that A := −(E + D) is a nonsingular M -matrix
it is enough to show that A is a weakly chained diagonally dominant L-
matrix. First, observe that since −E is a weakly diagonally dominant Z-
matrix (because E is a generator) it follows that A is also a weakly diagonally
dominant Z-matrix (because D is diagonal and D ≤ 0). Moreover, A is an
L-matrix since its diagonal entries Aii = −Qii, i = 1, . . . , n are positive
because Qii ≤ 0 and Qii 6= 0 because i is not an absorbing state for Q. Now
let us also show that A is weakly chained diagonally dominant. For this,
let i ∈ {1, . . . , n}. Since Q is absorbing, there is a path i =: i0 → i1 →
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· · · → il → il+1 (l ≥ 0) in the directed graph of Q (i.e. Qik,ik+1
> 0 for

all k = 0, . . . , l) with il+1 ∈ {n + 1, . . . , n + m} and ik ∈ {1, . . . , n} for all
k = 0, . . . , l. Then i = i0 → i1 → · · · → il is a path in the directed graph of
−A because −Aik,ik+1

= Qik,ik+1
> 0 for k = 0, . . . , l − 1. Since we also have

Qil,il+1
> 0 it follows from −Qil,il =

∑
j∈{1,...,n+m}\{il,il+1}Qil,j +Qil,il+1

that

|Ail,il | = −Qil,il >
∑

j∈{1,...,n}\{il}

Qil,j =
∑

j∈{1,...,n}\{il}

|Ail,j|.

In other words, the il-th row of A is strongly diagonally dominant and we
have found a path from i to il in the directed graph of A.

Remark 3.2. An alternative proof of Proposition 3.1 (without relying on
properties of weakly chained diagonally dominant matrices) can be given as
follows. The communication equivalence relation onQ partitions {1, . . . , n+m}
into k +m equivalence classes S1, . . . , Sk, {1}, . . . , {m} with 0 ≤ k ≤ n. Ob-
serve that the transient classes S1, . . . , Sk of Q are precisely the communi-
cation classes of E. Writing Q in canonical form as a corresponding block
(upper) triangular matrix, the submatrix E + D also has block triangular
form and each of its diagonal blocks forms an irreducible subgenerator5: if
Si is a recurrent class of E then there is a transition in Q from Si to some
absorbing state (so that D contains at least one negative entry in the diag-
onal block of E corresponding to Si) whereas if Si is a transient class of E
then there is a transition in E from Si to some other class Sj. It follows by
[13, Corollary 3.3] that each diagonal block of −(E + D) is a nonsingular
M -matrix. Therefore, −(E + D) is a nonsingular M -matrix, because each
eigenvalue of −(E + D) is an eigenvalue of some of its diagonal blocks and
has therefore positive real part.

Proposition 3.3. The hitting probabilities are given by

R̃ = −(E +D)−1F.

Proof. Recall that since Q is semistable its ergodic projection Qπ is given by
Qπ = I − QQD. In the following, we are going to compute QD. Instead of
the decomposition Q = Q1 + Q2 as in Eq. (1) consider the decomposition

5A square matrix A is a subgenerator if Aij ≥ 0 for i 6= j and
∑
j Aij ≤ 0 for all i.
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Q = B +N where

B :=

(
E +D 0

0 0

)
and N :=

(
0 F
0 0

)
.

Note that NB = 0 and N is nilpotent of index 2 (since N 6= 0 and N2 = 0).
With this decomposition we can apply [27, Corollary 2.3] (or [28, Corollary
2.1 (iv)]) which results in

QD = (B +N)D = BD + (BD)2N.

It follows that

Qπ = I −QQD = I − (BBD +NBD +B(BD)2N +N(BD)2N)

= I −BBD(I +BDN)

where we have applied that NBD = NBDBBD = NB(BD)2 = 0 since
NB = 0. Since E +D is invertible by Proposition 3.1 we have

BD =

(
(E +D)−1 0

0 0

)
.

It follows

Qπ =

(
I 0
0 I

)
−
(
I 0
0 0

)((
I 0
0 I

)
+

(
0 (E +D)−1F
0 0

))
=

(
0 −(E +D)−1F
0 I

)
.

Thus when comparing with Qπ as in Eq. (2) we get R̃ = −(E +D)−1F .

Similarly to the matrix (E + D)−1F from Proposition 3.3 let us also
consider the matrices

D̂ := (E +D)−1D and Ê := (E +D)−1E. (3)

These two matrices play a key role in the following sections. In Remark 3.5
and Proposition 3.8 we describe in which way these matrices are related to
the CTMC with generator Q. But let us first state the following

Lemma 3.4. The matrix D̂ is stochastic and −Ê = D̂ − I is a generator.
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Proof. The identity Ê + D̂ = I is clear. Since −(E + D) is a nonsingular
M -matrix by Proposition 3.1, it is in particular inverse-positive, meaning
that −(E+D)−1 ≥ 0 and from D ≤ 0 it follows D̂ ≥ 0. From E1 = 0 we get

(E +D)1 = D1 and thus D̂1 = (E +D)−1D1 = 1 from which we conclude

that D̂ is stochastic (and therefore −Ê = D̂ − I a generator).

Remark 3.5. The matrix −(E + D)−1 has the following probabilistic in-
terpretation [7, Eq. (2.2)]. Let (Xt)t≥0 be a CTMC (as a stochastic process)
with generator Q and state space {1, . . . , n+m} and for every i = 1, . . . , n+m
denote by Pi and Ei the probability measure resp. the expectation with i
as initial state. For a transient state j denote by Tj the total sojourn time
of (Xt)t≥0 in state j (until absorption) so that Tj =

∫∞
0
1{Xt=j} dt where 1A

denotes the indicator of an event A. Then for every transient state i it holds

Ei(Tj) =

∫ ∞
0

Ei(1{Xt=j}) dt =

∫ ∞
0

Pi(Xt = j) dt =

∫ ∞
0

Pij(t) dt

where P (t) = eQt is the transition function of (Xt)t≥0. From the block
decomposition Eq. (1) and

∫∞
0
e(E+D)t dt = −(E + D)−1 (the matrix E + D

is stable6) it follows for all i, j = 1, . . . , n(
−(E +D)−1

)
ij

= Ei(Tj). (4)

In particular, the hitting probabilities R̃ik from i into an absorbing state k can
be represented by R̃ik =

∑
j Ei(Tj)Fjk. Eq. (4) also provides a probabilistic

interpretation of the matrix D̂: each component D̂ij = Ei(Tj)(−Djj) is the
expected total sojourn time in state j weighted by the rate −Djj =

∑
k Fjk

to absorption from j (see Figure 1). In particular, in D̂ there is a transition

from i to j (i.e. D̂ij > 0) if and only if j is reachable from i in Q (i.e.
Ei(Tj) > 0) and there is a direct transition from j to some absorbing state (i.e.

−Djj > 0). In probabilistic terms, a transition from i to j in D̂ represents
the event Bj that the CTMC (Xt)t≥0 with initial state i gets absorbed from

state j. In other words, D̂ij is the probability of the set of paths from i to
some absorbing state where the absorption takes place from j. Indeed, since
Bj represents the event to find the system in state j at some point in time t

6Since −(E +D) is a nonsingular M-matrix its eigenvalues have positive real parts.

10



and from there to get absorbed with rate
∑m

k=1 Fjk = −Djj we get

Pi(Bj) =

∫ ∞
0

Pij(t)(−Djj) dt = Ei(Tj)(−Djj) = D̂ij.

Remark 3.6. Proposition 3.3 as well as the identities (−(E + D)−1)ij =

Ei(Tj) and D̂ij = Pi(Bj) in the previous remark can also be proven by means
of a uniformization of the CTMC (Xt)t≥0 to a DTMC with transition prob-

ability matrix 1
µ
Q + I =

(
U V
0 I

)
with U := 1

µ
(E + D) + I and V := 1

µ
F

for some µ ∈ (0,∞) large enough (so that P ≥ 0) 7. To deduce the con-
clusion of Proposition 3.3 one can appeal to the well known facts that (i)
Q and P have the same absorbing states, (ii) the absorption probabilities
are the same and (iii) that they can be computed by [29, Theorem 3.3.7]

as R̃ = (I − U)−1V = −(E + D)−1F . In our proof of Proposition 3.3, we
follow a different strategy to directly compute the Drazin inverse QD and the
spectral projection Qπ = I −QQD. This proof is of rather algebraic nature
and it can also be applied in a similar way in more general setups, such as for
certain non-uniformizable absorbing Markov chains on a countably infinite
state space or even certain Markov processes on more general state spaces
[30].

Definition 3.7. For a generator Q we refer to the DTMC with transition
matrix D̂ as the exitpoint DTMC associated with Q.

In [13, Lemma 3.4] it was shown that if E is irreducible (i.e. Q has a single

transient class) then D̂ has a single recurrent class, namely {j | Djj < 0}
(but D̂ need not be irreducible). The following proposition generalizes this
result to our setup (i.e. for a general transient class structure of Q) and

hereby also provides additional information on the state classification of D̂.
One can write down a proof in matrix-theoretic terms similar to the proof
of the result in [13] by decomposing D̂ = (E + D)−1D into block triangular
form. But this may get quite cumbersome and possibly unclear. In contrast,
we decided to use the information given in Remark 3.5 since this allows us
to provide a more illustrative proof in purely graph-theoretic terms8.

7This was suggested to us by an anonymous reviewer.
8 In this graph-theoretic proof we employ probabilistic terminology for the state clas-
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Figure 1: Left: A CTMC with generator Q and two absorbing states. The transient
states of Q form a CTMC on their own with generator E. All the rates for transitions
are assumed to be identical, e.g. 2.0. Right: The exitpoint DTMC with transition matrix
D̂ = (E +D)−1D.

Proposition 3.8. The exitpoint DTMC with transition matrix D̂ and the
CTMC with generator −Ê = D̂ − I have the same state classification. Fur-
thermore, it holds that:

(i) A state j is recurrent for D̂ if and only if j is recurrent for E and
there is a transition in Q from j to some absorbing state (Djj < 0).

Equivalently, j is transient for D̂ if and only if j is transient for E or
if there is no transition in Q from j to some absorbing state.

(ii) Each communication class of D̂ is contained in a communication class
of E. In other words, the communication classes of E split into com-
munication classes of D̂. In more detail,

• each transient class of E splits into transient classes of D̂ and

• each recurrent class of E splits into a single recurrent class of D̂
and transient classes of D̂ each consisting of a single state.

sification (transient and recurrent states) instead of corresponding graph-theoretic termi-
nology ((bottom) strongly connected components).
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Proof. Note that the DTMC that arises as the uniformization of the CTMC
with generator −Ê (with uniformization rate 1) coincides with the DTMC

with transition matrix D̂. Therefore, both processes give rise to the same
state classification.
(i) “⇐”: Let j be a state that is recurrent for E and such that there is a
transition in Q from j to some absorbing state. Assume that j is transient
for D̂. Then there is state k recurrent for D̂ and a path from j to k in D̂.
This implies that there is a path from j to k in E. Since j is recurrent for E
it follows that k and j belong to the same recurrence class in E. Since there
is a path from k to j in Q and a transition in Q from j to some absorbing
state it follows that there is a transition from k to j in D̂. Therefore, k and
j belong to the same communication class for D̂ and therefore j is recurrent
for D̂, contradiction.
“⇒”: Let j be recurrent for D̂. There is a state k0 that is recurrent for E
and reachable from j in E. Then there is a state k in the recurrence class of
k0 for E from which there is a transition in Q to some absorbing state. In
particular, there is a path from j to k in Q. Hence, there is a transition from
j to k in D̂. Since j is recurrent in D̂ it follows that k is also recurrent in
D̂ and both states belong to the same communication class in D̂. Therefore,
there is also a path from k to j in D̂ which implies that there is a path from
k to j in Q and a transition from j in Q to some absorbing state. Now,
since k and j communicate in Q they also communicate in E and since k is
recurrent for E it follows that j is recurrent for E.
(ii) If two states i and j are communicating in D̂, then j is reachable from i
in E and i is reachable from j in E, hence i and j are communicating in E.
Therefore, each communication class of D̂ is contained in a communication
class of E. By (i), every recurrent state for D̂ is also recurrent for E. There-
fore, every transient class for E does not contain any of the recurrent classes
for D̂ and hence splits into transient classes for D̂.
Assume that there is a recurrent class R for E that contains two disjoint re-
current classes R̂1 and R̂2 for D̂. There are states j1 ∈ R̂1 and j2 ∈ R̂2 from
which there is a transition in Q to some absorbing state. Since j1, j2 ∈ R,
they communicate in E and hence in Q. This implies that they also com-
municate in D̂, contradiction. Therefore, each recurrent class of E contains
exactly one recurrent class of D̂. Now let us also show that each transient
class T̂ of D̂ that is contained in a recurrent class R of E consists only of a
single state. Let i ∈ T̂ and assume that there is i′ ∈ T̂ with i 6= i′. Since i
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and i′ communicate in D̂, there is a path from i′ to i in D̂. But this implies
that there is a transition in Q from i to some absorbing state. Let R̂ denote
the (unique) recurrent class for D̂ that is contained in R and let j ∈ R̂.
Since R is a recurrent class of E and j, i ∈ R, there is a path in E from j
to i. Now since there is a transition in Q from i to some absorbing state it
follows that there is a transition in D̂ from j to i. Hence, i is recurrent for
D̂, contradiction.

By Proposition 3.8, we can order the states in such a way that the canon-
ical block decomposition of E provides also a block decomposition of Ê such
that both matrices are of the form

E =


E00 E01 . . . E0r

E1

. . .

Er

 and Ê =


Ê00 Ê01 . . . Ê0r

Ê1

. . .

Êr


where r is the number of recurrent classes of E (and of Ê). Let T denote
the set of transient states of E and Rk the k-th recurrent class of E for
k = 1, . . . , r. The matrix Ek, k = 1, . . . r comprises the rates for transitions
between states in Rk (hence Ek is an irreducible generator), whereas E0k

comprises the rates for transitions from states in T to T (k = 0) or to Rk

(k = 1, . . . , r). Let T̂ denote the set of transient states of −Ê and R̂k the k-th

recurrent class of −Ê, k = 1, . . . , r. Recall that Rk can be decomposed into
Rk = R̂k ∪ T̂k where T̂k := T̂ ∩ Rk comprises those states that are transient
for −Ê and contained in Rk. (Note that T̂ = T ∪

⋃r
i=1 T̂k.) Hence, the states

in Rk can be further reordered such that the matrix Êk can be written in the
block form

Êk =

(
0 Ê∗k
0 Ê ′k

)
(5)

where−Ê ′k is the irreducible generator that comprises the rates for transitions

between states in R̂k and −Ê∗k comprises the rates for transitions from T̂k to

R̂k. The upper left block of Êk is 0 because there are no transitions of −Ê
between states in T̂k.

These joint block representations of E and Ê allow us also to relate the
stationary behaviour of the DTMC with transition matrix D̂ (or equivalently
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of the CTMC with generator −Ê) to that of the CTMC with generator E.

Consider the ergodic projections Eπ = I −EED of E and Êπ = I − ÊÊD of
−Ê and for better readability in the following denote these by Π := Eπ and
Π̂ := Êπ. Then with respect to the above given ordering of the states we can
jointly decompose Π and Π̂ into

Π =


0 Π01 . . . Π0r

Π1

. . .

Πr

 and Π̂ =


0 Π̂01 . . . Π̂0r

Π̂1

. . .

Π̂r


Since Ei is irreducible (i = 1, . . . , r), it has a unique stationary distribution

πi � 0 so that Πi = 1πi has equal rows πi. Similarly, since −Êi has only
one recurrent class (it need not be irreducible), there is a unique stationary

distribution π̂i ≥ 0 for −Êi of the form π̂i =
(
0 π̂′i

)
where π̂′i � 0 so that

Π̂i = 1π̂i =
(
0 1π̂′i

)
. Let us also decompose D = diag(D0, D1, . . . , Dr) into

corresponding diagonal blocks Dk (each Dk is diagonal).

Example: For the generators E and −Ê = D̂ − I from Figure 1, their block
matrix representations are immediately observable from the figure. Their
ergodic projections Π = Eπ = I − EED and Π̂ = (−Ê)π = Êπ = I − ÊÊD

(the latter being the same as the limiting matrix of the exitpoint DTMC D̂)
are given by

Π =


0 0 1

4
1
4

1
4

1
4

0 0 1
4

1
4

1
4

1
4

0 0 1
2

1
2

0 0
0 0 1

2
1
2

0 0
0 0 0 0 1

2
1
2

0 0 0 0 1
2

1
2

 and Π̂ =


0 0 1

2
0 1

4
1
4

0 0 1
2

0 1
4

1
4

0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 1

2
1
2

0 0 0 0 1
2

1
2

 .

Proposition 3.9. It holds
Π̂ = ΠW

where W := diag(0,W1, . . . ,Wr) and Wk := 1
‖πkDk‖1

(−Dk). In other words,

since W is diagonal, Π̂ arises from Π by suitably weighting the columns of
Π. The identity Π̂ = ΠW reads blockwise as

Π̂k = ΠkWk and Π̂0k = Π0kWk.
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Proof. Since Π and Π̂ are the ergodic projections of E resp. of −Ê it follows
ΠE = 0 and Π̂Ê = 0. From ΠE = 0 we can also deduce that ΠDÊ = 0 since

ΠDÊ = ΠD(E +D)−1E = Π(E +D)(E +D)−1E = ΠE = 0.

Let us compare the matrices Π̂ and ΠD. Consider first the diagonal blocks
Π̂k of Π̂ for k = 1, . . . , r. From Π̂Ê = 0 and ΠDÊ = 0 it follows Π̂kÊk = 0
and ΠkDkÊk = 0. From Πk = 1πk and Π̂k = 1π̂k we deduce that πkDkÊk = 0
and π̂kÊk = 0. Consider the decomposition of Êk as in Eq. (5) and corre-
spondingly decompose π̂k =

(
0 π̂′k

)
where π̂′k � 0 and Dk = diag(D∗k, D

′
k).

Then D∗k = 0 because from such transient states for D̂ there is no transition
in Q to an absorbing state. From Dk < 0 it follows that D′k < 0. Since

−Ê ′k is irreducible, the Perron-Frobenius theorem tells us that every positive

solution x > 0 of x(−Ê ′k) = 0 is a positive multiple of π̂′k. From πkDkÊk = 0

it follows that π′kD
′
kÊ
′
k = 0 and since π′k(−D′k) > 0 (because π̂′k � 0 and

−D′k > 0) we deduce that

πk(−Dk) =
(
0 π′k(−D′k)

)
=
(
0 ckπ̂

′
k

)
= ckπ̂k

for some ck ∈ R, ck > 0. Taking 1-norms on both sides we deduce that
‖πkDk‖1 = ck‖π̂k‖1 = ck and therefore π̂k = 1

‖πkDk‖1
πk(−Dk). Setting Wk :=

1
‖πkDk‖1

(−Dk) we observe that π̂k = πkWk and hence Π̂k = ΠkWk.

Now let us consider the off-diagonal blocks Π̂0k of Π̂ for k = 1, . . . , r. Let us
show that Π̂0k1 = Π0k1 by a probabilistic argument. Denote by T the set of
transient states of E and for i ∈ T set pik := (Π0k1)i and p̂ik := (Π̂0k1)i. The
value pik is the probability that the CTMC with generator E and initial state
i eventually hits the k-th recurrent class Rk of E. This value pik coincides
with the probability that the CTMC with generator Q and initial state i
hits the set Rk (which is a transient class for Q) without getting into any
of the absorbing states of Q before hitting Rk (almost surely). By Remark

3.5 the value p̂ik is the probability that the DTMC with transition matrix D̂
performs a single transition from i to some state in Rk. Moreover, since a
transition from i to some state j of D̂ represents the set of paths in Q of the
form i→ · · · → j → a where a is some absorbing state of Q in the sense that
both events have the same probability, it follows that p̂ik is the probability
that Q hits Rk from i (without getting absorbed before hitting Rk). In other
words, we have shown that p̂ik = pik as required. Now from Π2 = Π and
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Π̂2 = Π̂ together with Π̂0k1 = Π0k1 and π̂k = πkWk it follows that

Π̂0k = Π̂0kΠ̂k = Π̂0k (1π̂k) = (Π0k1) (πkWk) = Π0kΠkWk = Π0kWk

for each k = 1, . . . , r. Setting W := diag(W0,W1, . . . ,Wr) (where W0 is an

arbitrary |T | × |T |-matrix, e.g. W0 := 0) it follows that Π̂ = ΠW .

3.3. Perturbation of rates for transitions to absorbing states

Let us now scale the rates of the transitions of Q to absorption with a
small factor ε > 0, i.e. consider the family of generators Qε := Q1+εQ2 with
Q1 and Q2 as in Sec. 3.1. The generator εQ2 can be regarded as an additive
perturbation to the generator Q1 and Qε as a generator of some perturbed
Markov chain. Note that the number of recurrent classes of Qε is m for ε > 0
(i.e. the m absorbing states) and it is strictly larger than m for ε = 0 (the
m absorbing states plus the recurrent classes of E (which are transient for
ε > 0)). When we substitute Q2 by εQ2 for ε > 0 then by Proposition 3.3

we get that the hitting probabilities R̃(ε) are also perturbed by ε and given
by

R̃(ε) = −(E + εD)−1εF.

Note that for any ε > 0 the matrix E+εD is nonsingular while for ε = 0 it is
singular. The matrix function (E+εD)−1 is the restriction of the generalized
resolvent (E+λD)−1 (which is defined for all those λ ∈ C for which E+λD
is nonsingular) to the positive real line (0,∞).

Figure 2 shows an example of such a perturbed CTMC and the hitting
probabilities R̃(ε)i2 from all transient states i = 1, . . . , 6 to the absorbing
state 8 (transitions to state 8 correspond to the 8-th column of Qε ∈ R8×8

and to the 2-nd column of R̃(ε) ∈ R6×2, see Eq. (2)). The functions R̃(ε)i2 are
rational in ε and they were computed and plotted by Wolfram Mathematica.
These rational functions can also be computed by a parametric CTMC model
in the PRISM model checker [5].

In the following, we are going to analyze the behaviour of the hitting
probabilities R̃(ε). While for a fixed transient state i the hitting probability

R̃(ε)ik into the absorbing state k is not necessarily monotonic, we prove the

monotonicity of their enveloping functions maxi R̃(ε)ik and mini R̃(ε)ik for
every absorbing state k. Following Campbell [26], it turns out to be helpful
to consider the transformations as in Eq. (3) and define for ε > 0 the matrix
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Figure 2: Left: an absorbing Markov chain with rates to absorption scaled by ε > 0.
Right: the corresponding hitting probabilities R̃(ε)i2 into state 8 (the second column of

R̃(ε) ∈ R6×2) for i = 1, . . . , 6. The function R̃(ε)22 is non-monotonic, but the enveloping

functions maxi R̃(ε)i2 and mini R̃(ε)i2 are monotonic.

functions 9

Êε := (E + εD)−1E and D̂ε := (E + εD)−1D.

Before establishing the monotonicity of the enveloping functions, we first
state some helpful facts and identities involving the matrices Êε and D̂ε.

Lemma 3.10. (i) For any ε > 0 and δ > 0 the matrix Êε + δD̂ε is
invertible and

Êδ = (Êε + δD̂ε)
−1Êε and (Êε + δD̂ε)

−1 = Êδ + εD̂δ.

(ii) For 0 < ε ≤ δ it holds

Êε + δD̂ε ≥ I and Êε + εD̂ε = I.

(iii) For ε > 0 and δ > 0 the matrices Êε, Ê
D
ε , D̂ε, D̂

D
ε , Êδ, Ê

D
δ , D̂δ and

D̂D
δ commute pairwise.

(iv) For ε > 0 the matrix εD̂ε is stochastic and−Êε = εD̂ε−I is a generator.

9It is possibly more natural to define D̂ε by (E + εD)−1(εD) (i.e. substituting εD for
D in Eq. (3)) but we decided to stay with the notation as in [26].
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Proof. (i) Since E+ εD is invertible for any ε > 0 it follows that Êε + δD̂ε =
(E + εD)−1(E + δD) is also invertible and its inverse is given by

(Êε + δD̂ε)
−1 = (E + δD)−1(E + εD) = Êδ + εD̂δ.

The other identity follows from

Êδ = (E + δD)−1E = (E + δD)−1(E + εD)(E + εD)−1E

= ((E + εD)−1(E + δD))−1(E + εD)−1E = (Êε + δD̂ε)
−1Êε.

(ii) The identity Êε + εD̂ε = I is clear. Since D ≤ 0 and −(E + εD) is a
nonsingular M -matrix by Proposition 3.1 it follows that (E + εD)−1 ≤ 0 and

hence D̂ε ≥ 0. Thus, if δ ≥ ε then Êε + δD̂ε ≥ Êε + εD̂ε = I.
(iii) Since Êε + εD̂ε = I by (ii) it follows that the four ε-matrices Êε, Ê

D
ε ,

D̂ε and D̂D
ε commute pairwise. By (i), Êδ is expressible in terms of Êε (as a

power series in Êε for a fixed δ). Therefore, Êδ commutes with the ε-matrices

and it then follows that ÊD
δ = ÊD

ε (Êε+δD̂ε), D̂δ and D̂D
δ also commute with

the ε-matrices.
(iv) This follows from Lemma 3.4.

Remark 3.11. As in Remark 3.5, the entries in εD̂ε for a fixed ε > 0 can
be interpreted in terms of the expected total sojourn time in transient states
of the CTMC with generator Qε = Q1 + εQ2. In addition, observe that the
state classification of εD̂ε (and hence of −Êε) does not depend on ε > 0. In

fact, by Proposition 3.8 the state classification of εD̂ε depends only on the
state classification of Qε and the latter does not depend on ε > 0.

We are now ready to establish the monotonicity of the enveloping func-
tions. This will allow us to compare the hitting probabilities R̃(ε) for different
perturbation values ε.

Theorem 3.12. Fix an absorbing state 1 ≤ k ≤ m and consider the per-
turbed hitting probabilities R̃(ε)ik from all transient states 1 ≤ i ≤ n to k
for ε > 0. Define the functions

Mk(ε) := max
i=1,...,n

R̃(ε)ik and mk(ε) := min
i=1,...,n

R̃(ε)ik .

Then Mk(ε) is monotonically increasing and mk(ε) is monotonically decreas-
ing.
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Proof. Consider the k-th column of R̃. We show that for all transient states
i ∈ {1, . . . , n}, for all δ > 0 and for all 0 < ε ≤ δ the i-th component R̃(ε)ik
is a convex combination of all the R̃(δ)jk, j = 1, . . . , n. It then follows that

mk(δ) = min
j
R̃(δ)jk ≤ R̃(ε)ik ≤ max

j
R̃(δ)jk = Mk(δ).

Since these inequalities hold for an arbitrary transient state i it follows that

mk(δ) ≤ mk(ε) = min
i
R̃(ε)ik ≤ max

i
R̃(ε)ik = Mk(ε) ≤Mk(δ)

and the conclusion follows. So let δ > 0 and 0 < ε < δ. Then

R̃(ε) = −(E + εD)−1εF = (E + εD)−1(E + δD)(E + δD)−1(−εF )

= (Êε + δD̂ε)
ε

δ
R̃(δ).

Now note that P (ε, δ) := (Êε + δD̂ε)
ε
δ

is stochastic. Indeed, since 0 < ε ≤ δ

we get by Lemma 3.10(ii) that Êε + δD̂ε ≥ I ≥ 0 and thus P (ε, δ) ≥ 0 and

moreover P (ε, δ)1 = ε
δ
Êε1+εD̂ε1 = 1 where we applied that εD̂ε is stochastic

by Lemma 3.10(iv) and Êε1 = (E + εD)−1E1 = 0 since E1 = 0. Therefore

R̃(ε)ik =
∑

j P (ε, δ)ijR̃(δ)jk is a convex combination of all the R̃(δ)jk for any
i.

Remark 3.13. 1. We recall that in contrast to the enveloping functions
mk(ε) and Mk(ε), a fixed component function R̃(ε)ik of R̃(ε) need not
be increasing or decreasing (Figure 2).

2. The lower bound Êε+δD̂ε ≥ I from Lemma 3.10(ii) provides additional

information on the behaviour of the hitting probabilities R̃(ε): from

R̃(ε) = (Êε + δD̂ε)
ε
δ
R̃(δ) and R̃(δ) ≥ 0 it follows that R̃(ε) ≥ ε

δ
R̃(δ)

for 0 < ε ≤ δ. In other words, any component of 1
ε
R̃(ε) is decreasing

in ε and by differentiating it we deduce that d
dε
R̃(ε) ≤ 1

ε
R̃(ε) for each

ε > 0. The inequality R̃(ε) ≥ ε
δ
R̃(δ) for 0 < ε ≤ δ also implies that for

any δ > 0 the graph of R̃(ε)ik in the interval (0, δ] is always above the

line connecting the origin with the point (δ, R̃(δ)ik).
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4. Asymptotic Limit of Hitting Probabilities

In this section we analyze the limiting behaviour of the perturbed hitting
probabilities R̃(ε), i.e. we establish the limit of R̃(ε) as ε → 0. We begin
with the following

Lemma 4.1. Fix ε > 0. Then

(i) ÊεÊ
D
ε and D̂εÊ

D
ε do not depend on ε.

(ii) ind(Êε) = 1 and thus ÊεÊ
D
ε Êε = Êε.

(iii) εD̂ε(I − ÊεÊD
ε ) = I − ÊεÊD

ε

(iv) (I + εÊD
ε D̂ε)

−1ÊD
ε = ÊεÊ

D
ε

Proof. (i) can be found in [26, Theorem 3.1.2, p. 36].

(ii) By Lemma 3.10(iv), −Êε is a generator matrix. Such matrices are

semistable and singular and hence ind(Êε) = 1. Therefore, ÊD
ε is the group

inverse of Êε and thus ÊεÊ
D
ε Êε = Êε.

(iii) By applying Lemma 3.10(ii, iii) and this lemma (ii) we compute

εD̂ε(I−ÊεÊD
ε ) = (I−Êε)(I−ÊεÊD

ε ) = I−ÊεÊD
ε −Êε+Ê2

ε Ê
D
ε = I−ÊεÊD

ε .

(iv) From Lemma 3.10(ii, iii) and this lemma (ii) it follows that

Êε(I + εÊD
ε D̂ε) = Êε(I + ÊD

ε (I − Êε)) = Êε + ÊεÊ
D
ε − Ê2

ε Ê
D
ε = ÊεÊ

D
ε .

Since Êε and D̂ε commute it follows that

(I + εÊD
ε D̂ε)

−1ÊD
ε = (Êε(I + εÊD

ε D̂ε))
D = (ÊεÊ

D
ε )D = ÊεÊ

D
ε

where in the last step we used that ÊεÊ
D
ε is a projection.

In order to establish the limit of R̃(ε) as ε→ 0 we show that R̃(ε) can be
extended to an analytic function on (−ε0,∞) for some ε0 > 0 and establish
its power series expansion at ε = 0. For this purpose, we first state the
following
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Proposition 4.2. The generalized resolvent (E + εD)−1 satisfies

(E + εD)−1 =

(
(I − Π̂)(Êδ + εD̂δ)

−1 + Π̂
δ

ε

)
(E + δD)−1 (6)

where δ > 0 is arbitrary and Π̂ := I − ÊδÊD
δ (independent of δ).

Proof. First write

(E + εD)−1 = (E + εD)−1(E + δD)(E + δD)−1

= ((E + δD)−1(E + εD))−1(E + δD)−1

= (Êδ + εD̂δ)
−1(E + δD)−1.

Decompose (Êδ + εD̂δ)
−1 with respect to the projection Π̂ = I − ÊδÊD

δ :

(Êδ + εD̂δ)
−1 = (I − Π̂)(Êδ + εD̂δ)

−1 + Π̂(Êδ + εD̂δ)
−1.

Simplify the right hand side as required by applying Lemma 3.10(i) which
gives

Π̂(Êδ + εD̂δ)
−1 = Π̂(Êε + δD̂ε) = δD̂εΠ̂ =

δ

ε
Π̂

where in the last two steps we also applied Lemma 3.10(iii) and Lemma 4.1(ii,
iii).

Remark 4.3. In [26, Proof of Theorem 4.2.1, p. 80] one can also find the
Laurent series expansion at 0 of the generalized resolvent (E + εD)−1 which
takes the form

(E + εD)−1 =

(
ÊD
δ

∞∑
k=0

(−ÊD
δ D̂δ)

kεk + D̂D
δ Π̂

1

ε

)
(E + δD)−1.

This expansion can be also deduced from Eq. (6) by using the identities

D̂D
δ Π̂ = δΠ̂ (which follows from Lemma 4.1(iii)) together with (I − Π̂)(Êδ +

εD̂δ)
−1 = ÊD

δ (I + εÊD
δ D̂δ)

−1 (see proof of Theorem 4.4) and its Neumann
series expansion.

In the following, we are going to apply the preceding proposition in order
to establish the power series expansion at 0 of the hitting probabilities R̃(ε)
which can then be used to compute their asymptotic behaviour as ε→ 0.
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Theorem 4.4. The hitting probabilities R̃(ε) are given for ε > 0 by

R̃(ε) =
(
ÊD
δ (I + εM̂)−1ε+ Π̂δ

)
·
(

1

δ
R̃(δ)

)
(7)

where δ > 0 is arbitrary and M̂ := ÊD
δ D̂δ (independent of δ).

By expanding the term (I + εM̂)−1 =
∑∞

n=0(−M̂)nεn into its Neumann
series (which converges for all ε ∈ (−ε0, ε0) for some ε0 > 0 small enough),
we observe that the right-hand side of Eq. (7) can be extended to a power

series that converges for ε ∈ (−ε0, ε0). This provides an extension of R̃(ε) to
an analytic function on (−ε0,∞).

Proof. From Proposition 4.2 we have

R̃(ε) = −(E + εD)−1εF

= −
(

(I − Π̂)(Êδ + εD̂δ)
−1 + Π̂

δ

ε

)
(E + δD)−1εF

=
(

(I − Π̂)(Êδ + εD̂δ)
−1ε+ Π̂δ

) 1

δ
R̃(δ).

We show that

(I − Π̂)(Êδ + εD̂δ)
−1 = ÊD

δ (I + εÊD
δ D̂δ)

−1.

For this purpose, note that

ÊD
δ (I + εÊD

δ D̂δ)
−1 = ÊD

δ ÊδÊ
D
δ (I + εÊD

δ D̂δ)
−1

= ÊD
δ ÊεÊ

D
ε (I + εÊD

ε D̂ε)
−1

= ÊD
δ ÊεÊεÊ

D
ε = ÊD

δ Êε

where we used Lemma 4.1(i, iv, ii). In order to show ÊD
δ Êε = (I − Π̂)(Êδ + εD̂δ)

−1

we show that I − Π̂ = ÊD
δ Êε(Êδ + εD̂δ):

ÊD
δ Êε(Êδ + εD̂δ) = Êε(Ê

D
δ Êδ + εÊD

δ D̂δ) = Êε(Ê
D
ε Êε + εÊD

ε D̂ε)

= ÊD
ε Êε(Êε + εD̂ε) = ÊεÊε = I − Π̂

where we applied Lemma 3.10(ii, iii) and Lemma 4.1(i). Finally, the desired
identity in Eq. (7) follows.
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Corollary 4.5. The componentwise limit of R̃(ε) as ε → 0 exists and is
given by

R̃(0+) := lim
ε→0

R̃(ε) = ΠNF

whereN is the diagonal matrix with block structureN = diag(0, 1
c1
I, . . . , 1

cr
I)

and ck := ‖πkDk‖1.

Proof. Letting ε → 0 in Eq. (7) then as (I + εM̂)−1 is bounded in a neigh-

borhood of 0 the componentwise limit R̃(0+) of R̃(ε) as ε→ 0 exists and is

given by R̃(0+) = Π̂R̃(1) where we have chosen δ := 1 and Π̂ = I − Ê1Ê
D
1 .

By Proposition 3.9 it holds Π̂ = ΠW and moreover W = −ND = −DN
(N and D are diagonal). Therefore R̃(0+) = ΠND(E +D)−1F . Since each
diagonal block of N is a multiple of the identity and ΠE = 0 it follows by
looking at the joint block structures of Π, N and E that ΠNE = ΠEN = 0.
We conclude that

R̃(0+) = ΠND(E +D)−1F = (ΠNE + ΠND)(E +D)−1F = ΠNF.

Example: In order to provide some more intuition to the expression of
R̃(0+) in Corollary 4.5 let us return to the example from Figure 2 and com-

pute the limiting probabilities R̃(0+)i2 into state 8 (second column of R̃(0+))
in a more intuitive way. The Markov chain E of the transient states 1, . . . , 6
of Q has two recurrent classes {3, 4}, {5, 6} and one transient class {1, 2}.
The ergodic projection Π = I − EED = limt→∞ e

Et containing the limiting
distributions for the states 1, . . . , 6 of E can be computed to

Π =


0 0 4

15
8
15

2
35

1
7

0 0 1
5

2
5

4
35

2
7

0 0 1
3

2
3

0 0
0 0 1

3
2
3

0 0
0 0 0 0 2

7
5
7

0 0 0 0 2
7

5
7


For the recurrent states i = 3, 4 the limits R̃(0+)i2 are equal and given by

R̃(0+)32 = R̃(0+)42 =
1
3
· 0 + 2

3
· 1

1
3
· (1 + 0) + 2

3
· (0 + 1)

=
2

3
.

Similarly, for the recurrent states i = 5, 6 we get

R̃(0+)52 = R̃(0+)62 =
2
7
· 1 + 5

7
· 0

2
7
· (0 + 1) + 5

7
· (2 + 0)

=
1

6
.
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In order to compute the limiting probabilities R̃(0+)i2 for the transient states
i = 1, 2 first observe that for small ε > 0 the transitions from i to an absorbing
state in Q can be neglected as ε → 0. Hence, we only have to take into
account the absorbing transitions from recurrent states j = 3, . . . 6 and the
limiting probability to find the system in state j (when started in i) from
which it potentially may get absorbed. As an example, for i = 1 we get

R̃(0+)12 =

(
4

15
+

8

15

)
· 2

3
+

(
2

35
+

1

7

)
· 1

6
=

17

30
≈ 0.567

R̃(0+)22 =

(
1

5
+

2

5

)
· 2

3
+

(
4

35
+

2

7

)
· 1

6
=

7

15
≈ 0.467.

5. Application to Model Repair

In this section, we study a class of systems which is characterized as fol-
lows: The system performs some regular task, but every now and then it
needs to enter some special situation (such as service, update, repair, refuel-
ing, . . . ) during which time it is vulnerable and may fail. The system should
remain active for at least some minimum time t, and the goal is that it should
eventually terminate successfully (instead of failing). Modelled as an absorb-
ing CTMC, the general structure of such systems is shown in Figure 3. The
model has two absorbing states, labelled success and failed. The transient
states are either regular or vulnerable states, with transitions between them,
and for convenience we define the abbreviation work = regular∨vulnerable.
Another characteristic is that the system suffers from ageing, i.e. it moves
from higher levels to lower levels, where typically vulnerable states will be
visited more frequently with growing age and the failure rates also increase
with growing age. Concrete examples of such systems are:

• A spacecraft which needs to survive at least a minimum mission time.
At certain intervals it needs to perform a docking manoeuvre which
is dangerous. With growing age, the docking manoeuvre may become
even more risky.

• A submarine on a secret mission which needs to surface every now and
then, during which time it is vulnerable because it can be detected
more easily.
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• A system for Software Version Release Management (SVRM), described
in more detail below in Sec. 5.2.

Note that, in the generic CTMC depicted in Figure 3, depending on the
modelled application, the “diagonal” transitions (like 2→ 3) need not exist,
and that in some applications additional transitions (like 1→ 4) might make
sense, but this does not affect the validity of our approach.

The general requirement for such systems can be expressed with the help
of the logic CSL [4] as the following time-bounded Until formula, with lower
probability bound b and lower time bound t:

Φ = P≥b(work U≥t success) (8)

This requirement states that the probability should be at least b that the
system spends at least t time units in the regular or vulnerable states (i.e.
it does not get absorbed for at least t time units) before eventually entering
the success state. This implies, of course, that the absorbing failed state
should never be entered.

Note that, in order to apply the method described in this section, the
CTMC under investigation does not have to be absorbing a priori. It could be
a non-absorbing CTMC with some of its states labelled by regular, vulnerable
or success, where some states should satisfy the requirement of Eq. (8). For
analyzing (and potentially repairing) the CTMC, the behaviour after enter-
ing a success state or otherwise entering any state not satisfying work (i.e.
regular∨ vulnerable) is irrelevant, thus those states can be made absorbing,
leading to a situation as depicted in Figure 3.

5.1. An algorithm for model repair

We consider a CTMC with generator Q, with n transient states and
m = 2 absorbing states {failed , success} which are both reachable from all the
transient states. As explained in the previous section, the CTMC represents
a system that performs useful work for some time (all transient states carry
the label work) and – if all goes well – eventually finishes by moving to the
state success . We consider the CSL time-bounded Until formula given above
in Eq. (8) with lower probability bound 0 < b < 1 and lower time bound
t > 0. For now we assume that it is required that each transient state should
satisfy Φ. In a concrete application, though, it may be sufficient that only a
proper subset of the transient states, e.g. the initial state, satisfies Φ, which
makes the process of model repair easier.
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Figure 3: General structure of considered class of Markov chains

If some of the transient states violate requirement Φ, the system should
be “repaired”, i.e. modified according to some strategy. Among the many
possible approaches to model repair, such as adding / removing states or
transitions, we advocate a scheme where the structure of the CTMC remains
untouched, but transition rates may be reduced. The rationale behind rate
reduction is that in most real systems, slowing down a process (a processor,
a machine, etc.) is possible, while acceleration may not be feasible. However,
rate reduction still leaves many degrees of freedom. For example, each tran-
sition could be reduced by its individual reduction factor, which could lead
to good solutions but would open a possibly huge multidimensional search
space. Therefore we restrict ourselves further by only allowing for common
reduction factors applied to sets of transitions.

Basically, for a transient state s, there can be two reasons for violating
requirement Φ:

(1) The hitting probability from s to state success is too low (in other
words, the hitting probability to state failed is too high).

(2) The hitting probability to state success is high enough, but the time
to absorption (starting from s) is too short.

We propose a general solution which takes into account (1) and (2) and is
guaranteed to lead to a solution for all transient states.

(I) We first try to deal with both (1) and (2) at the same time by applying
the common reduction factor 0 < η ≤ 1 to all transitions from the
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transient class to state failed . As η is reduced, the probability of getting
absorbed in state success can be made arbitrarily close to 1, and at the
same time the system will become “slower”, since the exit rates of the
transient states are reduced. Depending on the case at hand, it may
be possible to find some 0 < η ≤ 1 such that Φ will be satisfied for all
transient states, in which case we are done. But it is also possible that
no such η exists (since the system goes to absorption too early, even
though some rates were reduced), in which case we need to proceed.

Note that, in practice, it can be checked in advance whether step (I)
will lead to a solution. For this it is enough to set η = 0, thereby
making the hitting probability to success equal to 1, and then check
whether all transient states satisfy Φ in the thus modified CTMC (i.e.
whether they satisfy the time bound).

(IIa) If step (I) was not successful, we first concentrate on the time-unbound-
ed problem, i.e. we deal exclusively with issue (1). The weakened re-
quirement for this step is Φ′ = P>b(work U success), where the time
bound has been removed and the probability bound has been changed
from ≥ b to > b. As shown in [31], one can always find a common reduc-
tion factor ηut (applied simultaneously to all transitions from transient
states to state failed) such that all transient states satisfy the time-
unbounded requirement Φ′. After step (IIa) we always move to (IIb).

(IIb) In this final step, we deal with issue (2). We keep factor ηut fixed and
return to the original time-bounded requirement Φ. We now introduce
a second common reduction factor 0 < ε ≤ 1 to all transitions from
transient states to all absorbing states (failed and success). The pur-
pose is to slow down the system, such that absorption before t becomes
less likely. It is essential that this perturbation by factor ε does not
cause the hitting probabilities, which were already fixed in step (IIa), to
violate the bound b. This is where we need Theorem 3.12 from Sec. 3.3,
which guarantees that during this slow-down the hitting probabilities
are preserved in the admissible range.

Proposition 5.1. The procedure described in steps (I), (IIa) and (IIb)
solves the model repair problem for the given requirement Φ = P≥b(work U≥t success),
for all transient states.

Proof. The goal is that all transient states s should satisfy P≥b(work U≥t success),
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where b and t are fixed. As already observed in [31], it is clear that one can
find a solution for the corresponding time-unbounded problem, i.e. one can
find a reduction factor ηut s.t. s |= P>b(work U success) for all 0 < η ≤ ηut, or
in other words, that b < Prηut(s,work U success) (the superscript indicates
the probability measure for the Markov chain modified according to (IIa)).
Keeping ηut fixed, we know by Theorem 3.12, shown in Sec. 3.3, that for all
transient states s of the CTMC in which all rates to absorption are further
reduced by the common reduction factor 0 < ε ≤ 1 according to (IIb) the
following inequality also holds:

b < Prηut,ε(s,work U success)

As ε→ 0, the right hand side converges to some value ps ≥ b (Corollary 4.5),
and this limit is the same for all transient states s belonging to the same
bottom communication class of E. Since mins Pr

ηut,ε(s,work U success)
(taken over all transient states s) is decreasing in ε it actually follows that
ps > b for all s. Now, for any Markov chain it trivially holds that

Pr(s,work U success) = Pr(s,work U<t success) + Pr(s,work U≥t success).

We apply this to the Markov chain modified by both reduction factors ηut
and ε and combine it with the previous inequality:

b < Prηut,ε(s,work U success)
= Prηut,ε(s,work U<t success) + Prηut,ε(s,work U≥t success).

Since as ε → 0 the first term of the sum vanishes, the second term of the
sum converges to ps. From ps > b it follows that there is ε > 0 for which the
second term is ≥ b for all transient states s.

5.2. Model repair of a SVRM system

In order to show the effectiveness and usability of our model repair al-
gorithm, we now consider as a use-case the problem of Software Version
Release Management (SVRM) from the software engineering domain. The
SVRM model is given in Figure 4, which is a concretisation of Figure 3. It
consists of 8 states, two of which are absorbing. According to the setting in
Sec. 3 that means n = 6 and m = 2, where the transient states corresponding
to the generator matrix E are {1, 2, 3, 4, 5, 6}. These transient states form
k = 3 communication classes, namely {1, 2}, {3, 4} and {5, 6}. Only r = 1 of
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Labels Legend
nr  - new release

wk  - work

pa  - patching

fa  - failed

Figure 4: SVRM model

these classes is recurrent (i.e. bottom) for E, namely the class {5, 6}, whereas
the set of states {1, 2, 3, 4} is transient for E. In Figure 4, states are labeled
with atomic propositions whose meaning is explained in the legend. At the
time of a new release, the software system starts in state 1. The transition
chain 1→ 3→ 5 corresponds to ageing of the software. In states 2, 4 and 6,
patching takes place, which may cause a failure, represented by the absorbing
state 8. From the non-patching states, it is possible that a new release of the
software is ready for issue, which will take the system to the absorbing state
7 which marks the end of the current software cycle. The basic time unit for
this model is one month, so for example the mean sojourn time (per visit)
of state 1, which has exit rate 3.1, is 0.323 months, which is approximately
10 days. Starting from state 1, the mean time to absorption of the model is
1.862 months (approx. 56 days), and the hitting probability in the desired
state 7 is 81%. Note that the the mean duration of patching goes up as
the system ages (the exit rates of states 2, 4, 6 decrease, in that order), and
the failure probability during patching also increases with growing age (from
5

105
via 5

95
to 5

85
), which is what operators of software systems experience in

practice. Figure 4 also depicts the two reduction factors, η and ε, which are
employed by the model repair algorithm. In real life, factor η can be influ-
enced by making the patching process less error-prone, and factor ε could
be decreased by again improving the patching process and at the same time
reducing the issue rate of new releases. In practice, the latter two effects
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could be jointly achieved by reassigning software developers from the new
release team to the patch development team (which would delay the issuing
of new releases and at the same time improve the quality of the patches).
It should be pointed out that the model in Figure 4 represents only a single
cycle of the software, i.e. after installing a new release the system will restart
in state 1.

Distribution and installation of a new release is expensive, so this should
not take place too often, i.e. not too soon after having started a new cycle.
Therefore, the user property that needs to be verified on the model is given
in Eq. (9).

Φ = P≥b(work U≥t newrelease) (9)

This user property seeks that the probability should be at least b that the
system will be working beyond the time point t before a new release is issued
(which implies that the system should never move to the failed state).

For this example, it is sufficient that the starting state 1 satisfies require-
ment (9), because state 1 represents the beginning of a software release cycle.
Therefore we now perform model repair for state 1. For this purpose, we set
the time-bound as t = 1 and the probability bound as b = 0.85. The actual
probability of state 1 to satisfy Φ is found to be 0.58835. So, in order to
make the probability to reach the bound b, according to step (I) of our algo-
rithm, one needs to reduce η. But as η → 0, the maximum probability that
can be obtained is only 0.765, which is less than required. Therefore, the
two step procedure explained above needs to be deployed: For the untimed
requirement Φ′, in order to make the probability for state 1 higher than 0.85,
the value of ηut in step (IIa) of the algorithm is computed as ηut ≈ 0.751.
Thereafter, in step (IIb), by fixing η = ηut, and then reducing reduction
factor ε, the satisfying value for the original time-bounded requirement Φ is
found to be ε = 0.178, which solves the model repair problem for state 1. In
Figure 5, probability curves for state 1 and requirement Φ are plotted against
reduction factor ε (all for fixed ηut = 0.751), to illustrate the behavior for
different time-bounds. One can see that the red curve, related to time-bound
t = 1, indeed crosses the 0.85 level at the value ε = 0.178.

Having successfully performed model repair for state 1, we also wish to
show that our algorithm is able to perform model repair for all transient
states of this type of model (even though this is not required by this SVRM
application). Therefore, we will now use our algorithm to repair the model
for the full set of transient states {1, 2, 3, 4, 5, 6}, such that they all satisfy
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Figure 5: Probability of state 1 to satisfy Φ depending on ε for different values of time-
bound t

State Timed Φ Timed Φ
original prob. at η = 0.821

1 0.58835 0.61464
2 0.56291 0.59307
3 0.41342 0.42977
4 0.39524 0.41474
5 0.29980 0.31146
6 0.28584 0.30009

Table 1: Probabilities for each state to satisfy Φ for t = 1 (the goal is to exceed probability
bound b = 0.3)

requirement Φ given in Eq. (9). Let the value for the time and probability
bounds be t = 1 (i.e. one month) and b = 0.3 (this latter value would, of
course, not be of practical interest). The results of this verification are given
in the second column of Table 1. From those values, we can see that states 5
and 6 violate the requirement, since their satisfaction probabilities are below
0.3, so the model should be repaired. According to step (I) of our algorithm,
the strategy is to reduce η, and Figure 6 shows how the probabilities to satisfy
Φ increase as η is reduced. The satisfying solution is found to be η = 0.821,
and the repaired probabilities for each state are shown in the third column
of Table 1.

As a second scenario, in order to demonstrate the two step model repair
procedure, the same property Φ is now verified with the modified time and

32



Figure 6: Probability of different states to satisfy Φ for t = 1 while reducing factor η

probability bounds again given as t = 1 and b = 0.85. This is the same
problem as earlier, but this time the goal is to make all states from the
set {1, 2, 3, 4, 5, 6} satisfying. The actual probabilities are already computed
and are shown in the second column of Table 1. Applying step (I) of our
algorithm, it turns out that by reducing only the factor η, the probability of
state 6 reaches a maximum of 0.382 and state 5 reaches a maximum of 0.377
as η → 0 (which can also be observed from Figure 6). Therefore, step (I)
does not lead to a solution. So we need to apply step (IIa), which means we
determine the satisfying ηut value for the untimed property Φ′. This value is
found to be ηut = 0.605, and the probabilities for each state are given in the
third column of Table 2. Note that this also helped to move the probabilities
to satisfy the original time-bounded requirement Φ in the right direction
(column four of Table 2), although not far enough. Keeping this ηut fixed,
we then proceed with step (IIb), where we find that reducing the factor ε to
the value 0.0835 will cause all the six states to satisfy Φ (see last column of
Table 2 and Figure 7).

As Prop. 5.1 states, the algorithm presented in Sec. 5.1 is guaranteed
to find a feasible solution, such that Φ is satisfied for all transient states.
However, this solution is not unique, and the values of η (or ηut and ε)
determined by the algorithm are not claimed to be optimal in any way. In
Figure 8, the satisfying region is shown, where the solution found by our
algorithm is marked by the black dot very close to its boundary10 (note that
the border curve is not linear). As we can see, for this particular combination

10In fact, it is assured by the algorithm that the solution lies within the satisfying region
and is very close to its boundary, as determined by a precision predefined by the user.
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State Untimed Φ′ Untimed Φ′ Timed Φ Timed Φ
(η = 1) (ηut = 0.605) (ηut = 0.605, ε = 1) (ηut = 0.605, ε = 0.0835)

1 0.81059 0.87600 0.64911 0.90008
2 0.77199 0.85028 0.63284 0.89818
3 0.86885 0.91504 0.45108 0.87390
4 0.82312 0.88529 0.44030 0.87214
5 0.89473 0.93207 0.32665 0.85185
6 0.84210 0.89811 0.31877 0.85010

Table 2: Probabilities for each state to satisfy Φ′, resp. Φ for t = 1 (the goal is to exceed
probability bound b = 0.85)

Figure 7: Probability for patching states to satisfy Φ while reducing ε (for fixed ηut =
0.605)

of probability bound b = 0.85 and time bound t = 1, even reducing ε alone
would lead to a solution. However, for other combinations (e.g. b = 0.9, t =
1), reducing only ε would not lead to a solution. In general, exploring the
satisfying region for a given model repair problem is an interesting topic for
future work.

We close this section with a note on the computational aspects: All cal-
culations made in Sec. 5 (except Fig. 8, which was prepared using Wolfram
Mathematica), were made with the help of the model checker PRISM [5].
Satisfying values for the parameters η, ηut and ε were found by binary search
in the interval (0, 1] with a predefined precision of 10−4, similarly as in [32].
That means, the models were re-evaluated for different values of the param-
eters, using PRISM’s standard algorithms for solving linear systems (in the
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Figure 8: Region where requirement Φ is satisfied (shaded area)

case of ηut) and uniformization (for η and ε). Finding the reduction fac-
tors with the specified precision, and even computing all the graphs in the
figures, is a matter of a few seconds on a standard laptop. This approach
scales well to much larger models as long as PRISM (or an alternative tool)
can handle the system of equations. Using the parametric analysis methods
mentioned in the introduction (such as [17, 19]), one could only tackle the
linear system (i.e. not the time-bounded case which requires uniformization),
and for large models that approach suffers from the symbolic blow-up of the
resulting rational function.

6. Conclusion and Future Work

From a theoretical point of view, this paper has closed a gap in the lit-
erature about absorbing Markov chains, where all rates to absorption are
perturbed by a common factor ε. The paper has studied the absorption
probabilities from transient states to a particular absorbing state, seen as a
function of the perturbation factor ε. It has been found that the absorption
probability from a certain transient state is not necessarily monotonic, as an
illustrating example has demonstrated. However, if we do not concentrate on
a single transient state but look at at the envelope for all transient states, i.e.
the minimum or maximum of the hitting probabilities over all transient states
to a particular absorbing state, that function is indeed monotonic. This fact
has been proven in Theorem 3.12, the central result of this paper. This gen-
eralizes the results of the earlier conference paper [13] in that the restrictive
assumption that all transient states need to be in the same communication
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class has been dropped. In addition, the paper has also established impor-
tant results about the exitpoint Markov chain and the asymptotic limit of
the hitting probabilities.

As a practical contribution, the paper has proposed an algorithm for
repairing a CTMC model in case it violates a requirement given in the form
of a CSL Until formula with lower time bound and lower probability bound.
This algorithm employs up to two reduction factors, one for biasing the
hitting probability, and the other one for slowing down the absorption process
in order to meet the time bound. With the help of the theoretical results from
the earlier sections, it has been shown that the algorithm will always find a
solution to this type of model repair problem. The article has presented a
class of CTMC models where such an algorithm can be useful, and it has
discussed in depth a particular case study from the domain of software version
release management.

Future work on the theoretical side will address the question of how the
theory in Sec. 3 and 4 could be extended if also transitions between transient
states are perturbed. On the practical side, we are planning to develop our
model repair algorithm further. As proven, the presented algorithm always
finds a feasible solution, but the future goal will be to find a solution which
is optimal with respect to some criterion yet to be defined. As we saw in
Figure 8, there can be a whole satisfying region, and this picture would
become even more differentiated if one allowed more than two reduction
factors to be employed, which opens up an interesting search field.
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