
Markovian Performance Modelling
of Parallel Systems

Markus Siegle

Computer Science Department (IMMD VII), University of Erlangen-Nürnberg
Martensstraße 3, D-8520 Erlangen, Germany, email: siegle@informatik.uni-erlangen.de

Abstract: Techniques for the efficient modelling of modern parallel systems are discussed.
Structured modelling and the use of tensor algebra make it possible to analyze models which
are otherwise not tractable. A key point is the exploitation of model symmetries and its relation
to the SRG technique developed in the field of coloured stochastic Petri nets.

1. Introduction

Parallel systems have a high complexity and are therefore often difficult for human users to
understand. The complexity is due to the high number of concurrently active and mutually
dependent hardware and software components in today’s parallel computers. Event-based
models help humans to understand the dynamic behaviour of parallel systems by abstracting
the overwhelming number of details of the real world to essentials. Timed models are especially
useful for predicting the performance of not yet implemented systems, which helps to avoid
expensive implementation work. Models assist application programmers in writing more efficient
parallel code. With the advent of modern parallel systems, modelling theory has an increased
practical relevance. The development of efficient techniques for the modelling of parallel systems
is therefore an important contribution to the understanding and acceptance of such systems.

Markovian models (restricted to memoryless service time distributions) are widely used for
the modelling of parallelism because they are amenable to numerical analysis. For their
specification, such different modelling paradigms as stochastic automata, stochastic Petri nets,
queueing networks and stochastic graph models can be used. Tools exist [1, 2, 3] to support the
generation of high-level models which are then transformed into an underlying continuous time
Markov chain (CTMC). The steady-state solution of the Markov chain yields probability values
from which performance measures of the modelled system can be derived. Reliability measures
are obtained from the transient solution of the Markov chain.

The major problem in Markovian modelling of complex real systems is the high number of
model states. Memory space needed for the model’s stochastic generator matrix often exceeds
the capacity of today’s computers, and computation time for model analysis can make the
solution prohibitively expensive. Techniques to overcome this state space explosion problem
include model decomposition, model transformation for the sake of simplification, and structured
modelling. This paper is focussed on the latter.

2. Structured Modelling

In contrast to model decomposition, where an overall model is decomposed into submodels whose
identification often constitutes a serious problem, structured modelling is based on knowledge
given a priori by the modular structure of the real system. Therefore the question how to



decompose the overall model never arises. It is implicitly answered by the structure of the real
system. During model analysis, the structure of the model is exploited, making it possible to
analyze complex models whose solution would otherwise not be feasible.

Structured modelling has two main advantages: First, the explicit construction of the model’s
state space may be avoided, thereby saving the memory space for the (potentially very large)
stochastic generator matrix. The solution of the model can be carried out in adistributed fashion
by applying iterative methods involving only small submodel generator matrices [4]. Second, the
cardinality of the state space may be reduced drastically by taking advantage ofsymmetries in
the model (see Section 3). This is an important feature when modelling today’s parallel systems
with a high number of identical components.

The concept of structured modelling will now be demonstrated by a simple example. In Figure 1
two stochastic Petri net submodels and their corresponding reachability graphs are shown. For
the scope of this example, there is no particular meaning associated with the Petri net submodels
— the reader may think of them as two interacting components of some real system. Submodel
X1 has two reachable markings (states), whereas submodelX2 has three states (beware of the
arc multiplicities). Transition firing times are exponentially distributed with ratesrij and sij.
Assuming infinite-server behaviour for transitionT22, the relations12 = 2s23 holds. Submodel
X1 is independent of submodelX2, but not vice versa. TransitionT21 of X2 is only enabled if
there is a token in the lower place ofX1, i.e. its firing is dependent on the conditionhX1 = 2i.

1 2

2

2

1

2

3

r12

r21

s12

s23
s31

X1 X 2

T11
T12

T21 T22

<X1=2>

Figure 1: Two dependent Petri net submodels

The overall model, resulting from the combination of submodelsX1 andX2, has a state space
equal to the Cartesian product of the submodel state spaces. For the computation of its steady-
state probabilities, a linear homogeneous system of equationspT = 0 has to be solved, where
T denotes the stochastic generator matrix of the overall model.T can be expressed in terms of
smaller matrices: generator, indicator and transition matrices associated with submodelsX1 and
X2. The stochastic generator matrixR of X1 and the matrixS, which contains those transitions
in X2 which are independent of the state ofX1, are given by (asterisks denote 0 entries)

R =

��r12 r12
r21 �r21

�
S =

24�s12 s12 �
� �s23 s23
� � �

35
The dependence of the transition from state 3 to state 1 in submodelX2 is expressed by the
two following matricesRa andSa. Ra indicates that the condition for the dependent transition



in X2 is fulfilled in state 2, andSa contains the rate of the dependent transition and a negative
entry in the diagonal to compensate the row sum accordingly.

Ra =

�
0 0

0 1

�
Sa =

24 � � �
� � �
s31 � �s31

35
The overall stochastic process has2 � 3 = 6 states. Its stochastic generator matrix, with the help
of matricesR;S;Ra andSa associated with the submodelsX1 andX2, and the use of the tensor
operations� (tensor sum) and
 (tensor product) [5], can be expressed as

T = (R� S) + (Ra 
 Sa)

=

26666664

� s12 r12
� s23 r12

� r12
r21 � s12

r21 � s23
r21 �

37777775+

26666664

�
�

�
�

�
s31 �s31

37777775
The entries in the diagonal denoted by� represent the negative row sum, i.e.� =

P
j 6=i tij

in row i.

In our small example there is a dependence of one submodel’s behaviour on the state of another
submodel. However, different types of dependences are possible, such as the synchronization
of state transitions in different submodels, or the flow of a token from one Petri net submodel
to another, thereby changing simultaneously the states of both submodels involved. In [4,
6, 7] the concept of structured modelling with the help of tensor algebra is discussed in the
special contexts of stochastic automata, hierarchical multi-paradigm models (queueing network
and stochastic Petri net submodels) and superposed stochastic automata. In a general context, the
generator matrix of an overall model consisting ofn interdependent submodels can be written as

T =

n

�
i=1

Ri +
P
a

n



i=1

Ria �
P
a

n



i=1

R
0
ia

where the summations are over all dependencesa. For the solution of the linear homogeneous
system of equationspT = 0, direct methods are usually not appropriate because of the sparsity
of the matrixT and the fill-in arising during modification ofT . Therefore iterative methods are
applied. It is known that the structure ofT allows a very efficient implementation of iterative
methods. We will demonstrate this with a brief discussion of the power method. For this method,
the continuous time Markov process is discretized, resulting in the iteration scheme

pk+1 = pk(Id+ �T ) ;
1

�
> max

i

fjtiijg

whereId is an identity matrix of appropriate size. In each step of the iteration the following
expression has to be evaluated

�pkT = �pk

0@ n

�
i=1

Ri +
P
a

n



i=1

Ria �
P
a

n



i=1

R
0
ia

1A



The product of the vectorpk and the tensor sum can be computed efficiently by writing the
tensor sum as an ordinary matrix sum of tensor products and expressing each element of the
sum as a permutation of a so-called normal factor.

pk

n

�
i=1

Ri = pk

nP
i=1

Idli 
Ri 
 Idui = pk

nP
i=1

P T
�i(Idliui 
Ri)P�i

=

nP
i=1

p
�T
i

k

266664
Ri

Ri

:

:

Ri

377775P�i

Normal factors consist of one block which is replicated along the diagonal of the matrix. The
multiplication of a vector with a normal factor only requires the combination of subvectors
with the diagonal blocks of the matrix. Furthermore, permutations can be realized by address
transformation. The multiplication of the vectorpk and the tensor products can also be done
efficiently by writing the tensor product as an ordinary matrix product of permuted normal
factors.

pk

n



i=1

Ria = pk

n

�
i=1

Idli 
Ria 
 Idui = . . . =

= pkP
T
�1(Idl1u1 
R1a)P�1P

T
�2(Idl2u2 
R2a)P�2 . . .P

T
�n(Idlnun 
Rna)P�n

It is an important advantage of this method that the generator matrixT of the overall model
never needs to be generated explicitly. Since this matrix can be extremely large, the method
has a potential to save a lot of memory space. Models whose solution is not practicable due
to memory limitations, may be analyzed with this method. During the iteration, different terms
of the sums involved can be evaluated independently of each other. This makes it possible to
parallelize the scheme.

3. Symmetries

Many modern parallel systems consist of a large number of identical components which operate
largely independently of each other but observe the same stochastic rule. The explicit modelling
of each individual component often increases the overall number of states in such a way that
the model is no longer tractable, i.e. its solution is no longer feasible on today’s computer
equipment because of the combinatorial state space explosion. However, it is possible to take
advantage of the symmetrical properties of such systems as shown in this section.

The example from Section 2 is now continued by adding a third submodelX3 which is similar
to X2. Figure 2 shows the three submodels represented by their state transition diagrams, two
of which are identical. The naı̈ve way of building the generator matrix would be to apply the
relation

T = (R � SX2 � SX3) +
�
Ra 
 Sa;X2 
 Id3

�
+
�
Ra 
 Id2 
 Sa;X3

�
with SX2 = SX3 = S and Sa;X2 = Sa;X3 = Sa, whereR; S; Ra and Sa are defined as in
Section 2. The middle term of the sum represents the dependence betweenX2 andX1, and the



2X1X 3X

11

12

22

13

23

33

2s12

2s31

2s23

s31s12
s12

s23

s23

s31

<X1=2>

<X1=2>

<X1=2>

1 2

r12

r21

1

2

3

s12

s23
s31

<X1=2>

1

2

3

s12

s23
s31

<X1=2>

Figure 2: Identical submodels X2 and X3 and their combination

third term represents the dependence betweenX3 andX1. This approach would result in an
overall number of2 � 3 � 3 = 18 states. We note that, from a global point of observation, due to
the similarity ofX2 andX3, there is no need to distinguish between the ordering of the states
of submodelsX2 andX3. For example, states(1; 1; 2) and(1; 2; 1) can be regarded as identical.
Representing such pairs of states by a single state results in a reduction of the combined number
of states of submodelsX2 andX3 from 3�3 = 9 to 6, as illustrated in the lower part of Figure 2.

In the reduced model, matrixSX23 describes the independent state transitions within the
combination ofX2 and X3, and Sa;X23 contains the transitions which are dependent on the
state ofX1.

SX23 =

26666664

� 2s12
� s23 s12

� s12
� 2s23

� s23
�

37777775 Sa;X23 =

26666664

�
�

s31 �s31
�

s31 �s31
2s31 �2s31

37777775

The generator of the overall model now has the form

T = (R � SX23) +
�
Ra 
 Sa;X23

�
with only 12 states, as opposed to 18. It is important to note that the method is exact, i.e. the
reduction of the state space leads to exactly the same steady-state probabilities and does not
involve any approximation.

4. Symmetry Exploitation in Coloured Stochastic Petri Nets

The automation of symmetry detection and exploitation techniques is an important research
issue. Presently, no formal approach to the exploitation of symmetries in structured modelling



is known. However, in the field of coloured generalized Petri nets such formal methods have
been developed [8]. We suggest the translation of these methods to the domain of structured
modelling.

In the context of generalized stochastic Petri nets (GSPNs), identical subnets can be folded,
thereby obtaining a concise coloured GSPN representation. Tokens circulating in the coloured
Petri net belong to different classes (colours), and places and transitions of the net are associated
with colour domains. Classes may be either unstructured or ordered, in which latter case there
is a successor-predecessor relationship between tokens of the same class.

Tokens of the same class exhibit a similar behaviour which is one source of symmetry. The
permutation of tokens within one class leads to a marking which is stochastically equivalent.
Moreover, different colour classes may not have to be distinguished in certain circumstances.
This allows the definition of an equivalence relation on the model’s state space, such that the
set of permutable markings is represented by one symbolic marking (a representative marking
is chosen according to lexicographical ordering). This concept yields a symbolic reachability
graph (SRG) instead of an ordinary reachability graph. The SRG consists of symbolic markings
and transitions between them, thereby reducing the number of model states. The SRG is then
transformed into the underlying CTMC whose solution yields the steady-state probabilities of
the symbolic markings. The steady-state probability of an ordinary marking is equal to the
steady-state probability of the respective symbolic marking divided by the cardinality of its
equivalence class.

References

[1] B. Plateau, J.-M. Fourneau, and K.-H. Lee. PEPS: A Package for Solving Complex Markov Models of Parallel
Systems. InProceedings of the 4th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 341–360, Palma (Mallorca), September 1988.

[2] G. Ciardo and J. Muppala.Manual for the SPNP Package Version 3.1. Duke University, October 1991.

[3] P. Dauphin, F. Hartleb, M. Kienow, V. Mertsiotakis, and A. Quick. PEPP: Performance Evaluation of Parallel
Programs — User’s Guide – Version 3.1. Technical Report 5/92, Universität Erlangen–Nürnberg, IMMD VII,
April 1992.

[4] B. Plateau. On the Synchronization Structure of Parallelism and Synchronization Models for Distributed
Algorithms. In Proceedings of the ACM Sigmetrics Conference on Measurement and Modeling of Computer
Systems, pages 147–154, Austin, TX, August 1985. ACM.

[5] M. Davio. Kronecker Products and Shuffle Algebra.IEEE Transactions on Computers, C-30(2):116–125,
February 1981.

[6] P. Buchholz. Numerical Solution Methods Based on Structured Descriptions of Markovian Models. In G. Balbo
and G. Serazzi, editors,5th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 242–258, Torino, February 1991.

[7] S. Donatelli. Superposed Stochastic Automata: a class of Stochastic Petri Nets amenable to parallel solution.
In Proceedings of the Fourth International Workshop on Petri Nets and Performance Models, pages 54–63,
Melbourne, December 1991.

[8] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed Coloured Nets and their Symbolic
Reachability Graph. InProceedings of the 11th International Conference on Application and Theory of Petri
Nets, pages 387–410, Paris, June 1990. reprinted in High-level Petri Nets.


