Computing Bisimulationsfor Stochastic Process Algebras
using Symbolic Representations

H. Hermanns, M. Siegle
Universitat Erlangen-Niirnberg, IMMD 7, Martensstr. 3, 91058 Erlangen, Germany

Abstract

Stochastic process algebras have been introduced in order to enable compositional performance analy-
sis. Thesize of the state spaceis alimiting factor, especially if the system consists of many cooperating
components. To fight state space explosion, various proposals for compositional aggregation have been
made. They rely on minimisation with respect to a congruencerelation. This paper addresses the com-
putational complexity of minimisation algorithms and explains how efficient, BDD-based data structures
can be employed for this purpose.

Keywords: Stochastic Process Algebra, Binary Decision Diagram, Bisimulation, Performance Analysis,
Markov Chain.

1 Introduction

Compositional application of stochastic processalgebras (SPA) isparticularly successful if the system struc-
ture can be exploited during Markov chain generation. For this purpose, congruence relations have been
developed which justify minimisation of components without touching behavioural properties. Examples
of such relations are strong equivalence [13], (strong and weak) Markovian bisimilarity [11] and extended
Markovian bisimilarity [1]. Minimised components can be plugged into the original model in order to cir-
cumvent the state space explosion problem. This strategy, known as compositional aggregation has been
applied successfully to handle, for instance, a telephony system model [10]. Without compositional ag-
gregation, the state space turned out to consist of more than 10 million states, while only 720 states were
actually required using compositional aggregation.

Applicability of compositional aggregation relies on the existence of algorithmsto compute minimised
components. In this paper, we discuss efficient algorithms for strong equivalence, and (strong and weak)
Markovian bisimulation. The algorithmsare variants of well-known partition refinement algorithms[21, 9,
16]. They compute partitionsof equivalent states of agiven state space by iterative refinement of partitions,
until afixed point is reached.

For the practical realisation of the algorithmswe introduce BDD-based data structures. During the re-
cent years, BDDs[5] have been shown to enable an efficient, symbolic encoding of state spaces. In partic-
ular, the parallel composition operator can be defined on BDDsin away which avoids the usually observed
exponential blow-up dueto interleaving of causally independent transitions[8]. In this paper, we highlight
how parallel composition and compositional aggregation can both be performed symbolically inastochastic
Setting.

This paper is organised as follows: Sec. 2 contains the definition of the languages and of the bisimula-
tionrelationswhich we consider. Sec. 3 presentsthe basi ¢ bisimul ation algorithm for non-stochastic process
algebras. Sec. 4 and Sec. 5 do the same for the purely Markovian case and for the case where both Markov-
ian and immediate transitions are alowed. In Sec. 6, we focus on BDDs and introduce a hovel stochastic
extension, DNBDDs. Furthermore, we show how algorithmsfor parallel composition and bisimulation can
benefit from the use of these data structures. The paper concludes with Sec. 7.

2 Basicdefinitions

In this section, we describe the scenario which we will consider in more detail. We define the language and
its operational semantics. In addition, we recall the definition of strong and weak Markovian bisimilarity.
For more details, the interested reader isreferred to [11].

Definition 2.1 Let Act bethe set of valid action names and Pro the set of process names. We distinguish
theactioni asaninternal, invisibleactivity. Leta € Act, P, P, € £, A C Act\{i },and X € Pro. The
set £ of expressions consists of the following language el ements:

stop inaction

a; P action prefix (a,A); P Markovian prefix
P[] P choice Py |[A]| P, pardlel composition
hide ¢ in P hiding X process instantiation

A set of process definitions (of the form X := P) congtitutes a process environment.

The following operational semantic rules define a labelled transition system (LTS) containing action
transitions, --2-¢, and Markovian transitions, e

a f a f a, A f a, A f
P --=-0 P Q-8 Q P——oP Q——oQ
a;P-=0 P PQ-=s P PIQ-"9Q ppo22op ppog-25qQ (sP2op
p & p! ~fg Q! p &5 p! g
- y ag A @ = @ ; ag A a Q/ Q/ @€
P|[A]] Q =8 P"|[A]| Q P[A]lQ =2 P |[A]| Q P|[A]l Q =2 P"|[A]| Q
P 0o PP ap g g
ag A a g A a € A
a, A f a, A f a, A , ,
P Al Q —= P' 4]l Q P Al Q —— P |[4]| Q P|[A]l Q ——= P'|[4]l @
p-%ap! p-tap p-%a p!
- - . - a#b < - X:=P
hide @ in P --'--2 hide ¢ in P’ hide @ in P --2-0 hide a in P’ X =8P
P a,A P, P a, A Pl P a, A Pl
: A a#b A X:=P
a a,
hide @ in P — ¢ hide a in P’ hide b in P —2" < hide a in P’ x 220 pr

Strong and weak Markovian bisimilarity are defined in avariant of Larsen & Skou style[19], using the
functiony : £ x Act x 2% — IR, often called the cumulative rate, defined as follows (we use {| and [} to
denote multiset brackets):

¥(P,a,C) = X, where E(P,a,C) = A | P—2<P' AP €C|.

D

A€E(P,a,C)

Definition 2.2 An equivalencerelation 5 isa strong Markovian bisimulation, if (P,) € B impliesthat
(i) P --%-o P"implies@ --%-= @', for some @’ with (P", Q") € B,
(ii) for all equivalence classes C' of B and all actionsa it holdsthat

V(Pa a, C) = Py(Qa a, C)

Two expressions P and () are strong Markovian bisimilar (written P ~ Q) if they are containedin a strong
Markovian bisimulation.

e

Weak bisimilarity is obtained from strong bisimilarity by basically replacing --%-+ with =. Here,
==¢=5 denotes an observable ¢ transition tha; is precedeq and followed by an arbitrary number (including
zero) of invisible activities, i.e. . If aisinterna (a = i), ==4== abbreviates

=, Asdiscussed in [11], the extension from strong to wesk Markovian bisimilarity has to take into
account the interplay of Markovian and immediate transitions. Priority of internal immediate transitions
givesriseto the following definition [10].

.
N D

==g

=x

Definition 2.3 An equivalencerelation 5 isaweak Markovian bisimulation, if (P,)) € B impliesthat
(i) P ==4=x P’ implies @ ==4=x @', for some Q" with (P, Q') € B,

classes C' of B andall actionsa

V(P a,C)=v(Q a,C).

Two expressions P and () are weak Markovian bisimilar (written P ~ Q) if they are contained in a weak
Markovian bisimulation.

In this definition, P -/i---ﬂ denotes that P does not possess an outgoing internal immediate transition. We
call suchastateatangiblestate, as opposedto vanishing stateswhich may internally andimmediately evolve

to another behaviour (denoted P --1--ﬂ).

It can be shown that strong Markovian bisimilarity isa congruence with respect to the language opera-
tors. The same result holds for weak Markovian bisimilarity except for congruence with respect to choice,
see [10].

Inthe sequel, we consider two distinct sub-languagesof £. Thefirst, £, arisesby disallowing Markov-
ian prefix. This sub-language gives rise to an ordinary, non-stochastic process algebra, a subset of Basic
LOTOS [2] where only action transitionsappear in the underlying LTS. On thislanguage, strong and weak
Markovian bisimilarity coincidewith Milner’s non-stochastic strong and weak bisimilarity [20]. The com-
plementary subset, £, isobtained by disalowing the other prefix, action prefix. The resulting language
coincides with MTIPP ala[12], and both strong and weak Markovian bisimilarity coincide with Markov-
ian bisimilarity on MTIPP. Notethat Markovian bisimilarity agreeswith Hillston’sstrong equivaence[13].
The semantics of £ only contains Markovian transitions, and we will refer to such atransition system as
astochastic LTS (SLTS). The complete language, where both prefixes coexist involves both types of tran-
sitions, and we shall call such atransition system an extended SLTS (ESLTS).

3 Bisimulation minimisation in non-stochastic process algebras

In this section, we introduce the general idea of iterative partition refinement, working with the language
L1. Weamto set the ground for an understanding of thefollowing sections. Toillustratethe key ideas, we
use as an example a queueing system, consisting of an arrival process and afinite queue. First, we model
an arrival process asininfinitesequence of incoming arrivals (arrive), each followed by an enqueue action
cng).

(ena) Arrival = arrive; enq; Arrival

The behaviour of the queueisdescribed by afamily of processes, onefor each value of the current queue
population.

Queueg = eng; Queuey
Queue; = eng; Queue;yq [] deq; Queue;_ 1<i< max
Queteyae = deq; Queuege_1

These separate processes are combined by parallel compositionin order to describe the whole queueing
system. Hidingisused to internalise actions as soon as they are irrelevant for further synchronisation.

System := hide eng in (Arrival [[enq]| Queueo)

Fig. 1 (top) showsthe LTS associated with the System specified above for the case that the maximum
gueue populationis mar = 3. The LTS has 8 dtates, theinitia state being emphasised by a double cir-
cle. Fig 1 (bottom) shows an equivalent representation, minimised with respect to weak bisimilarity. The
origina state space isreduced by replacing every class of weakly bisimilar states by a single state.

Algorithmsfor computing bisimilarity always require afinite state space. Traditionally, they follow an
iterative refinement scheme [21, 9, 16]. This means that starting from an initial partition of the state space
which consists of a single class (containing al states), classes are refined until the obtained partition cor-
responds to a bisimulation equivalence. The result thus obtained is the largest existing bisimulation, in a
sense the “best” such bisimulation, since it has aminimal number of equivalence classes.

Figure 1: LTS of the queueing system example, before and after applying weak bisimilarity

For the refinement of a partition, thenotion of a“ splitter” isvery important. A splitterisapair (a, Cspr),
consisting of an action « and a class C,;. During refinement, a class C' is split with respect to a splitter,
which means that subclasses C'+ and €'~ are computed, such that subclass C* contains al those states
from C' which can perform an a-transition leading to class C.,,;, and C'~ contains al remaining states.

In the following, an algorithm for strong bisimulation is presented. The a gorithm uses a dynamic set
of splitters, denoted Splitters, which can be realised as a pointer structure. Note that here we only present
abasic version of the agorithm which can be optimised in many ways[9, 21]. By adeliberate treatment of
splitters, it is possibleto obtain atime complexity O(m log n), where n isthenumber of statesand m isthe

| |
arreve SO arreve
| N |

arr‘rive ~o arr:z’ve
‘ \\\\\\ : ‘\\\ | ‘\\\ |
O T Om-erger0
)

arrive

number of transitions.

1. Initidisation

Partition := {S}
/* the initial partition consists of only one class which contains all states */
Splitters := Act x Partition
/* dl pairs of actions and classes have to be considered as splitters*/

2. Mainloop

while (Splitters # ()
choose splitter (a, Cypr)

foral C € Partition split(C,a, Cspr)
* @l classes (including C,,; itself) are split */
:= Splitters — (a, Cspi)

Splitters

) £
arrives '\

/* the processed splitter isremoved from the splitter set */

It remains to specify the procedure split. Itstask isto splitaclass C, using (a, C;p;) as asplitter. If

splitting actually takes place, theinput class ' is split into subclasses C+ and C'—.

procedure split(C, a, Cspi)

Ct={P|PeCAIQ:(P-22Q A QeCy)}
if(C-I- —C or ¢t =) return

C:=C-C*

Partition := Partition U {Ct C~} - {C}

/* C'~ isthe complement of C+ with respect to C */

Splitters := Splitters U (Act x {CF,C~}) — Act x {C'}

/* the partition and the splitter set are updated */

/* the subclass C'* iscomputed */
/* only continueif class C' actually needs to be split */

We illustrate the a gorithm by means of the above queueing example. In fact, we shall compute weak
instead of strong bisimilarity. The only change that is necessarry for this purpose concerns the transition
relation --%-+ used in procedure splst, whichis replaced by thewesak relation ==¢-=. However, thisrequires
the computation of ==¢== during theinitiaisationphase. Asamatter of fact, the computation of ==¢=5 dom-

inates the complexity of partition refinement, basically because the reflexive and transitive closure ------]
of internal moves has to be computed in order to build the weak transition relation. The usua way of com-
puting a transitive closure has cubic complexity. (Some dight improvements are known for this task, see
for instance [7]. In any case, thisisthe computational ly expensive part.)

TheLTSisdepictedin Fig. 2 (top) wherewe have used a particular shading of statesin order tovisuaize
the algorithm. Inthebeginning al states are assumed to be equivalent, and hence, al states are shaded with
the same pattern. We use o refer to the set of states shaded like So, Partition = {
Splitters isinitialised accordingly.

arreve arrive arnfive arnive

split(Cb7 deq, Cb) and
s’plit(%7 deq, Cb)

arreve arrive arnfive arnive

degq degq

Figure 2: Initialisation, first and second refinement step of the algorithm

After computing the weak transition relation ====, we start After computing the weak transition
relation ====, we start partition refinement by choosing a splitter, say (degq, and computing

deq . Theinitia state has no possibility to perform a ==&-% transition in contrast to

al other states. Therefore @iy = E= and ¢

{5, &=} and new splitters are added to Splitters while the currently processed one, (deq,
removed. This completesthefirst iteration and leads to the situation depicted in Fig. 2 (middle€).
By choosing adifferent splitter, say (deq, (")), we start the next iteration. Since Partition now con-

tains two elements, we compute split((—), deq, (") and split(E=, deq, ("7)). (-7 cannot be split
any further, while splitting of &= returns %Jr = Qpad&E = Q3. Updating Partition to
{Co), Qy, B3y} and adding new splittersleads to the situation depicted in Fig. 2 (bottom). Subsequent

iterations of the algorithmwill divide 27 further, leading to five partitionsin total. The algorithm termi-
nates oncethe set Splitiers isempty.

4 TheMarkovian case

In this section, we consider the MTIPP-style language L. where all actions are associated with a delay
which isan exponentially distributed random variable. The semantic model of a process from the language

£, isan SLTS, only containing transitions — = .
We return to our example of a queueing system. The arriva process is now modelled as follows, em-
ploying the Markovian action prefix:

Arrival = (arrive, X); (eng, 1); Arrival

Since every action has an exponentia delay, every action must be associated with arate. Action arrive
occurswith rate A, whereas for action eng we specified the (passive) rate 1. I1ts meaning will become clear
in connection with the specification of the queue process.

Queuey = (eng,n); Queue;
Queue; = (engq,n); Queue;yq [] (deq, 8); Queue;_q 1<i< max
Queuemax = (d@q, 6)a Queuemax—l

Here, the rate i is assigned to action enq. In general, when two Markovian actions are synchronised, one
must specify arulethat determines how the resulting rate isto be calculated from the two individual rates.
For reasons discussed (for instance) in [11], it is mathematically convenient to use the product of the two
partner rates as the resulting rate. However, sinceit is physically counter-intuitiveto consider the product
of two rates to be of type “rate” again, we will always make sure that exactly one of the two partner rates
isequal to 1, representing a passive participation in the synchronisation, while the other partner contributes
the actua rate which will aso be the resulting rate.

Fig. 3 depictsthe SLTS obtained from the parallel composition of processes Arrival and Queuey Syn-
chronised over action eng.

Queueq Queuey Queues Queues
(deq, 8) (deq, 6)

: (eng,n)
(arripe, A) ; (arrive, A)

(deq, §) (deq, §) (deq, §)

Figure 3: Semantic model of the Markovian queueing system, isomorphictoaCTMC

From agiven SLTS one can immediately construct a continuoustime Markov chain (CTMC) [17]. The
arcs of the CTMC are given by the union of al the transitionsjoining the LTS nodes (regardless of their
labels), and the transition rate is the sum of the individua rates. Thisisjustified by the properties of the
exponential distribution, in particular the fact that the minimum of two exponentially distributed random
variables with rates A1, A» is again exponentialy distributed with rate A; + A,. Transitionsleading back
to the same node (loops) can be neglected, since they would have no effect on the balance equations of the
CTMC. The CTMC carries only the (cumul ated) rate |abels. Performance measures can then be derived by
calculating the steady-state or transient state probabilitiesof the CTMC.

As already mentioned, both strong and weak Markovian bisimilarity coincide with Markovian bisimi-
larity ala MTIPP on thislanguage. The technical reason isthat the first clauses of Definition 2.2 and De-
finition 2.3 are irrelevant, while the respective second clauses both boil down to y(P, a, C) = 4(Q, a, C)
for al actionsa and classes C'. This equivalence notion has adirect correspondence to the notion of lumpa-
bility on CTMCs [17, 13]. As a consequence, the algorithm which we develop can be used to efficiently

split_tree ”\

Y1 Ok

Figure 4: split_tree used by procedure split’

compute lumpable partitions of an SPA description (as well as a CTMC in isolation). The basic bisimu-
lation algorithm is the same as in Sec. 3, only the procedure split needs to be modified. Procedure split’
now uses a data structure split _tree which isshown in Fig. 4. It essentially sorts states according to their
y-values. During refinement, when aclass C' is split by means of a splitter (a, C.,;), possibly more than
onesubclass C.,,, C,,, ..., C,, will begenerated (k > 1). Input class C' is split such that the cumulative
rate y(P, a,Csp1) = v; isthe same for dl the states P belonging to the same subclass C, ;, aleaf of the
split tree.

procedure split' (C, a, Cspr)

fordl P € C
v =P a, Copr)
I* the cumulative rate from state P to C,; is computed */
insert(split_tree, P,)
[* state P isinserted into the split _tree */

I* now, split_tree containsk leaves C.,, , ..., C.y, */

if (k> 1)/*if C hasbeen splitinto £ > 1 subclasses */
Partition := Partition U {C,,,C,,,...,Cy, } —{C}
Splitters := Splitters U (Act x {C,,,C,,...,Cy, }) — Act x {C}
/* the partition and the splitter set are updated */

In the forall loop of procedure split’, the cumulative rate v is computed for every state P in class C,
and state P isinserted into the split_tree such that states with the same cumul ative rate belong to the same
lesf (procedureinsert). The split_tree has k leaves, i.e. k different values of 4 have appeared. If splitting
has taken place (i.e. if £ > 1), the partition must be refined and the set of splittershasto be updated. Asin
the non-stochastic case, thisbasic agorithm can beimproved alot, by essentially adopting the management
of splittersof [21] yielding the complexity result of strong bisimilarity.

Proposition 4.1 The above algorithm computes Markovian bisimilarity on a given SLTS. It can beimple-
mented such that the time complexity isof order O(m log n) and the space complexity isof order O(m+n),
where n isthe number of states an m isthe number of transitions.

The detailed proof isgiven in[10].

5 Markovian and immediate actions

In thissection, we consider the complete language £ where both immediate and Markovian actions coexist.
Again, wereturn to our queueing system example. Inthearrival process, action arrive has an exponential
delay, whereas action eng isimmediate.

Arrival = (arrive, A); eng; Arrival

The specification of the Queueis again modified with respect to Sec. 3, i.e. action eng isimmediate and
action deq has exponentia delay.

Queueg = eng; Queuey
Queue; = eng; Queue;tq [] (deq,d); Queue;_4 1 <i< max
Queuemax = (d@q, 6)a Queuemax—l

The overall system isagain given by the composition of Arrival and Queueg, where eng ishidden af -
ter synchronisation. The semantic model of such a specification from the language £ isan ESLTS withtwo
types of transitions: Markovian transitions—=, and action transitions---«. Fig. 5 (top) depictsthe ESLTS
for the example queueing system. In the context of our complete language £, the notion of weak Markov-
ian bisimilarity is central for associating a CTMC to a given specification. The reason is that immediate
transitions do not have a counterpart on the level of the CTMC. Weak Markovian bisimilarity justifies to
eliminate internal immediate transitionssuch that a CTM C-like representation results. In order toillustrate
how the relation can be used to achieve this, the equivalence classes of weak Markovian bisimilarity are
indicated in Fig. 5 (bottom). Note, however, that this effect requires the absence of nondeterminism (after
applying weak Markovian bisimilarity) [10].

Queueg Queue; Queues Queues
degq, § degq, § degq, §

arrive, A S~ arripe, A \\\
N
degq, § o degq, §
arrive, A arrive, A
@ \/®/\
serve, ji serve, ji serve, ji

Figure5: ESLTS of the queueing system example, before and after applying weak Markovian bisimilarity

An agorithm to compute this relation is based on the one given in the previous section, but proceeds
in a different way. The technical reason isthat, similar to the computation of branching bisimilarity [23],
refining a partition by means of a splitter might cause that the refinement with respect to aready processed
splitters has to be repeated for this partition.! Thisisacrucia difference with respect to the algorithmswe
have described before. For branching bisimilarity, the problem istackled in [15]. Bouali has adopted this
machinery to compute also weak bisimilarity [3]. Indeed our algorithmis based on this adaption.

If thereisat least one stable state P’ that can be reached from P viainternal immediate transitionswe use
the predicate P \. The converse situation is denoted P .. For the latter states, the second condition
of Definition 2.3 needs not to be checked at al, while the first clause is still relevant. In the sequel, we
consider transition systems that do not contain states of thistype. Thisis done for simplicity, the general
caseistackled in [10]. The basic algorithmisas follows.

1. Initidisationas beforein Sec. 3. In addition, theweak transitionrelation ==== iscomputed from ---«.

TIn terms of [15], stability is not inherited under refinement.

2. Mainloop

while (Splitters # ()
choose splitter (a, Cpi)
foral C € Partition split(C,a, Cspr)
/* dl classes are split with respect to weak transitions™/
foral C € Partition split"(C,a,Cspr)
/* dl classes are split with respect to Markovian transitions*/
Splitters := Splitters — (a, Cspr)
[* the processed splitter isremoved from the splitter set */

The main loop contains two different procedures, spliit and split’’ requiring further explanation. The
first, split(C, a, Csp1), refines with respect to clause (i) of Definition 2.3. Thisisachieved using the proce-
dure split of Section 3, but applied on weak transitions, as in the example of Sec. 3. The second function,
split" (C, a, Cspr), ismore complicated. It refines with respect to the second clause of Definition 2.3. The
details are given below.

procedure split” (C, a, Cspi)
foral P € C'and P -/ﬁl--ﬂ /* P isatangiblestate */
Y= V(P’ a, Cspl)
* the cumulativerate to C,,,; is computed */
insert(split_tree, P,)
[* state P isinserted into the split _tree */
I* now, split_tree containsk leaves C.,, , ..., C.y, */
forall P € C and P --!--o ~ [* Pisavanishing state */
if thereisy; suchthat P N\ @ implies@ € C.,,
insert(split_tree, P, v;)
/* vanishing state P can internaly and immediately evolve only to tangible states of class ', */
Partition := Partition U {C,,,C,,,...,Cy, } —{C}
Splitters := Splitters U (Act x {C,,,C,,...,Cy,}) — Act x {C}
/* the partition and the splitter set are updated */
if (C# U’f C,,) I* some vanishing states have not been covered yet */
Partition := Partition U {C — Ulf Cy,}
Splitters := Splitters U (Act x {C — Ullc Cy, 1)
/* dl remaining vanishing states form anew class, since they can
internally and immediately evolve to tangible states from different classes */

The reader isinvited to check the result depicted in Fig. 5 by means of thisalgorithm. In order to facil-
itate the inspection, tangibl e states are highlighted by bold circlesin the figure. Animplementation of this
algorithm, based on [15, 3] has a cubic complexity:

Proposition 5.1 The above algorithm computes weak Markovian bisimilarity on a given ESLTS not con-
taining stateswith P .. It can be implemented such that it requires O(n?) time and O(n?) space, where
n isthe number of states.

The proof isgivenin [10], where also an adaption of the algorithm is presented that overcomes the re-
gtriction to W, -free ESLTSs. This adapted algorithm has the same time and space complexity. It is worth
pointing out that non-stochastic weak bisimulation essentially has the same complexity, due to thefact that
atransitive closure operation is needed to compute weak transitions ==== in either case.

6 Symbolicrepresentation with BDDs

In this section, we discuss detail s of a BDD-based implementation of the above algorithms. BDDs are spe-
cific representations of Boolean functionsand have recently gained remarkable attention as efficient encod-
ings of very large state spaces. In aprocess a gebraic context, this efficiency ismainly owed to the fact that
the parallel composition operator can beimplemented on BDDsin such away that the size of the data struc-
tureonly grows linearly in the number of parallel components, especialy for loosely coupled components.
This compares favourably to the exponentia growth caused by the usual operational semantics, due to the
interleaving of causally independent transitions.

We explain how LTSs can be encoded as BDDs and illustrate a way to include the rate information of
(E)SLTS into this data structure and the bisimul ation a gorithms. To complete the picture, we also discuss
paralel composition on BDDs.

6.1 Binary Decison Diagrams and the encoding of LTSs

A Binary Decision Diagram (BDD) [5] is a symbolic representation of a Boolean function f : {0, 1}" —
{0, 1}. Itsgraphical interpretationis arooted directed acyclic graph with one or two (terminal) leaf nodes.
Thegraphisessentially acollapsed binary decision treeinwhichisomorphic subtrees are merged and “don’t
care’ nodes are skipped (“don’'t care” nodes are those nodes where the truth value of the corresponding
variableisirrelevant for thetruth value of thewholeformula). Asasimple example, Fig. 6 (Ieft) showsthe
BDD for thefunction@ ¢ 4+ a s . The function vaue for a given truth assignment can be determined by
following the corresponding edges (one-edges drawn solid, zero-edges dashed) from theroot until aterminal
nodeisreached. Inthegraphical representation of aBDD, for reasons of simplicity, theterminal false-node
and its adjacent edges are usually omitted, see Fig. 6 (right).

Figure6: BDD for@ ¢t + a s T, simplified graphical representation (right)

A BDD unambiguously defines a Boolean function, based on the so-called Shannon expansion:
flor, .. .;on) =01 - f(Lva, . oy00) + 07 - f(O,02, ..., 0p)

It isknown that BDDs provide a canonical representation for Boolean functions, i.e. agiven Boolean func-
tion has a unique BDD representation, assuming a fixed ordering of the Boolean variables [5] (in Fig. 6,
thevariableorderingisa < s < t). Algorithmsfor BDD construction from a Boolean expression and for
performing Boolean operations (and, or, not, ...) on BDD arguments basically follow arecursive scheme
according to the above Shannon expansion.

Next wewill describe how aLTS can berepresented symbolicaly by aBDD. For the moment, we look
at thenon-stochasti c case whereit isnot necessary to consider informationabout transitionrates. Theideais
to encode states and actionsby Bool ean vectors. Onetransitionof the LTS then correspondsto aconjunction
of n, + 2n, literals (alitera is either aBoolean variable or the negation of a Boolean variable)

aj...0n, 81 ...5,,01...1,

s

where literals a; . . . a,,, encode the action, vector s; ... s, identifies the source state and ¢, . . .¢,,, the
target state of the transition (we assume that the number of actions to be encoded is between 27<~1 and

10

2"« 4 1, so that n, bits are suitable to encode them, and similarly for the number of states). The overall
LTS corresponds to the digjunction of the terms for the individua transitions.

The size of a BDD is highly dependent of the chosen variable ordering. In the context of transition
systems, experience has shown that the following variable ordering yields small BDD sizes [8]:

ap < ...<dap, <S8 <t1<52<t2<~~~<5n5<tn5

i.e. the variables encoding the action come firgt, followed by the variables for source and target state inter-
leaved. In particular, this ordering is advantageous in view of the parallel composition operator discussed
bel ow.

Toillustratetheencoding, Fig. 7 (top) showsthe LTS correspondingto the Arrival processfrom Sec. 3,
the way transitions are encoded and the resulting BDD. Since there are only two different actions (arrive
and eng), one bit would be enough to encode the action. However, in view of the other action which will
be needed later (deq), we use two bitsto encode the action, i.e. n, = 2. Since there are only two statesin
the LTS of process Arrival, one bit is enough to encode the state. Fig. 7 (bottom) depicts the encoding of
the LTS of process Queueq (assuming, again, that max = 3). ThisLTS has four states, therefore two bits
are needed to represent the state. In thisexample, we can observe the interleaving of the Boolean variables
for the source and target state.

ay

as ,
arrive o 2,30 |
00 o O 021 — (0,0,0,1) s
_ 1 __f_n_(l_.ﬂ 0 — (0, 1, 1, 0)
eng

0
/O\>

O ---O .

o~

ay
alaa2a5/17t/1’5/2’t/2 2
0--51 — (0,1,0,0,()’ 1) :
0 g Y o eng g 1-n2 — (0,1,0,1,1,0) 51 Q
O w\//() 2__?.”.‘1_4.—13 — (0,1,1,1a0a 1) /:
deq deq deq 100 — (1,0,0,0,1,0) t
2___d_€_‘1__+—1 1 — (1,0,1,0a0a 1)
de
3 --c 1a9 — (1,0;1a1a1’0) 5/2
&

Figure7: LTS, transition encoding and corresponding BDD

11

6.2 Symbolic parallel composition and reachability analysis

The parale composition operator algebra can be realised directly on the BDD representation of the two
operand processes. Consider the parallel composition of two processes, P = P |[A]| P-, and assume that
the BDDs which correspond to processes P; and P; have aready been generated and are denoted P; and
P>. The set A can adso be coded as a BDD, namely .4. The BDD ‘P which corresponds to the resulting
process P can then be written as a Bool ean expression:

P = (7?1/\./4)/\(7?2/\./4)
V. (P1AANStabp,)
V(P2 AAA Stabp,)

Theterm on thefirst lineisfor the synchronising actionsin which both P; and P, participate. Theterm
on the second (third) lineisfor those actions which P, (P») performs independently of P, (P,) — these
actions are al from the complement of A. The meaning of Stabp, (Stabp,) isaBDD which expresses
stability of the non-moving partner of the parallel composition, i.e. the fact that the source state of process
P, (P) equasitstarget state.

We illustrate parallel composition by means of our queueing example. Fig. 8 shows the intermediate
and final BDDs when performing BDD-based parallel composition of processes Arrival and Queueg. In
the second (third) BDD one can observe the parts which expresses stability of process Queueg (Arrival).

synchronising, Arrival moves, Queueg MOVES, overall result,
action eng action arrive action deq digiunction of previous three
a1 @ @
1 1
ao Q

O
O

O
O

t Q><\© O\ O Q. A
52 Q I /O\ Q
t ®) g o ®)

Figure8: Intermediate and final BDD results for parallel composition

The BDD resulting from the parallel composition, P, describes all transitionswhich are possiblein the
product space of the two partner processes. Given a pair of initia states for P; and P, only part of the
product space may be reachabl e due to synchronisation conditions. Reachability analysis can be performed
on the BDD representation, restricting P to those transitionswhich originatein reachabl e states.

6.3 Symbolic bismulation

The basic bisimulation algorithm of Sec. 3 and its various optimisations can be realised efficiently using
BDD-based data structures. For convenience, the transition system isrepresented not by asingleBDD, but

12

by aset of BDDs Ty (s, t), onefor each action « (here, s and ¢ denote vectors of Boolean variables of length
ns). Thecurrent partitionisstored asaset of BDDsS{C'(s), Ca(s), . . .}, onefor each class. WhenclassC'is
splitinto subclasses C'+ and C'~ during execution of procedure split, those subclasses are al so represented
by BDDs. The dynamic set of splitters, Splitiers, isredised as a pointer structure.
The computation of the subclass C'* in procedure split can be formulated as a Boolean expression on
BDD arguments.
Ct(s) := C(s) ATt(Tu(s,) A Cspi())

The exigtential quantification used in this expression can be performed on BDDs.

6.4 BDDswith rateinformation

We will now discuss the important question of how to symbolically represent a stochastic LTS. Clearly,
pure BDDs are not capabl e of representing the numerical information about thetransitionrates. Intheliter-
ature, severa modificationsof the BDD data structure have been proposed for representing functionsof the
type f : {0,1}" — IR. Most prominent among these are multi-terminal BDDs [6] and edge-valued BDDs
[18]. Inal of these approaches, the basic BDD structureismodified. In particular, theefficiency of thedata
structure, due to the sharing of isomorphic subtrees, is diminished. Based on this observation, we decided
to devel op a different approach which we call decision-nodeBDD (DNBDD) [22]. The distinguishing fea-
ture of DNBDDsisthat the basic BDD structure remains compl etely untouched when moving froman LTS
encoding to an SLTS encoding. The additional rate informationis attached to specific edges of thisBDD in
an orthogonal fashion.

InaBDD representingaL TS, apathfrom theroot tothe terminal true-node correspondsto 2* transitions
of thetransition system, where k; isthe number of “don’t care” variablesonthat path. Sincethesetransitions
are labelled by 2* distinct rates, we will attach arate vector of length 2% to that path.

Definition 6.1 A decision node BDD (DNBDD) isa BDD enhanced by a function
rates : Paths — (IR)t

where Paths isthe set of paths from the root node to the terminal true-node (and (/R)* isthe set of finite
wordsover JR) such that for any such path p,

rates(p) € (R)Zk
if & isthe number of “ don't cares’ on path p.

In other words, rates(p) isavector of real values (Ao, . .., Ao« _;) of length 2%, The mapping from tran-
sitionsto individua rates of such avector isimplicitely given by the valuation of the encoding of the tran-
sitionson “don’'t care” nodes, which ranges from 0 to 2% — 1. For the practical redisation of this concept,
we must answer the question of where to store the rate vectors. This leads to the following consideration:
Instead of characterising apath by al its nodes, we observe that a path is fully characterised by itsdecision
nodes. Decision nodes are those nodes which have two successor nodes which are both different from the
terminal false-node. The ideaisto attach the rate vectors to the outgoing edges of thelast decision node of
apath, i.e. the decision node nearest to the terminal true-node.

This concept isillustrated in Fig. 9 (in the figure, decision nodes are drawn black). In thisexample, a
SLTS with four transitionsis represented by a DNBDD, the number of Boolean variablesisn, = n, = 1.
Each of the transition encodings is mapped onto arate as shown in the middle part of the figure. The first
two transitionssharethe same path, apath which hasa“don’t care”’ intheBoolean variable s. Therefore, the
corresponding ratelist (A, ;) haslengthtwo. The other two paths do not have any “don’t care” variables, so
they each correspond to exactly onetransition of the SLTS and the corresponding rate lists both have length
one.

To give some more insight into the encoding, we return to our queueing example. Fig. 10 shows the
DNBDDs associated with processes Arrival, Queuey and Arrival |[eng]| Queuey. On the l€ft, rates
A and 1 are attached to the outgoing edges of the (single) decision node of the BDD. In the middle, six
individual rates are attached to the appropriate edges. On theright hand side, up to three rate vectors, each

13

(a,s,t) — rate K
oo (0,0,1) A o)
aA > - ’I/(a)
0 . 1 (0,1,1) — p ;
b (1,0,1) — «a ‘
“H (1,,0) — 73 ‘

Figure 9: Simple SLTS, mapping of Boolean assignments to rates and corresponding DNBDD

consisting of asinglerate, are attached to BDD edges. For instance, therate vectors (6)(8) specify therates
of the two transitions encoded as bitstrings 10110010 and 10000010 whose paths share the last decision
node.

Arrival Queueg Arrival |[eng]| Queueg

a1 .
ai Q //
|
|

Figure 10: DNBDDs for the queueing example. Shorthand notation: X = (1)(4)(6)

In the case where severa rate vectors are attached to the same BDD edge (because severa paths share
their last decision node) it isimportant to preserve the one-to-one mapping between pathsand ratelists. This
could simply be accomplished by thelexicographical ordering of paths. For agorithmic reasons, however,
we use a so-called rate tree, a pointer structure which makes it possibleto access rate lists during recursive
descent through the BDD [22].

Parallel composition of two SLTSs based on their symbolic representation followsthe same basic algo-
rithm as sketched in Sec. 6.2. Looking at the operationa rulesin Sec. 2, we use MTIPP-style synchroni-
sation by calculating the product of the individual rates as the rate of a synchronising transition. However,
the concept of DNBDDs is not bound to this decision, since any other arithmetic expression of the two in-
dividual rates can be equally employed. However, we remind that the decision should take into account
the algebraic properties of the calculus. In particular, the congruence property is ayardstick for a proper
decision [11].

14

6.5 Symbolic Markovian bismulation

We now di scuss aspects of a DNBDD-based a gorithm which computes Markovian bisimulation on SLTSs.
The basic bisimulation agorithm is the same as in Sec. 4, only the procedure split’ needs to be adapted.
When using DNBDDs, the cumul ative rate of action « from state P to class C,,,; iscomputed in thefollow-
ing way: We compute Tpicsm (s,t), the DNBDD which represents al a-transitionsfrom state P to states

from class C,,,;. It can be obtained by restricting 7, (s, ¢) to the single source state P and to target states
from class C,; (recall that the transition relation is represented by individual DNBDDs T, (s, t), one for
every action a, and that class C' isrepresented by aBDD C'(t)):

T

pec,, (51) = Ta(s, 1) A(s=P) A Copi(t)

We use the notation s=P to denote that state P is encoded as Boolean vector s. The cumulative rate
v(P, a, C,pr) isthen computed by applyingthefunction soar (sum of all rates) to Tpicm (s,t). Thisfunc-
tion simply sums up all the entries of al rate lists of a DNBDD. For example, application of the function
soar totheDNBDD inFig. 9yields A + u + o + 3. Furthermore, inthe split _tree used by procedure split’
(Fig. 4) thesubclasses C,,, . . ., C, arenow also represented by BDDs.

procedure split’ (C, a, Cspr)
fordl P ¢ C
TPiCSpl (s,1) :=Tu(s,t) A (s=P) A Cspi(2)
v = SOar(TPicsp,(S’t))
I* the cumulative rate from state P to C,; is computed */
insert(split_tree, P,)
[* state P isinserted into the split _tree */
I* now, split_tree containsk leaves C.,, ..., Cy, */
if (k> 1) ... theremaining part of procedure split’ isasin Sec. 4,
(but Partition and Splitters are represented by BDDs)

6.6 BDDswith and without rate infor mation

The semantics of the complete language £ comprises both types of transitions, action transitions --%-o

and Markovian trmgtionsLm, in one transition system, an ESLTS. Using the knowledge developed
in the previous sections, an ESLTS can be encoded by means of two separate data structures, one BDD to
encode al action transitions and one DNBDD to encode al Markovian transitions. Also, during parallel
composition, the component BDDs are treated separately from the component DNBDDs. Therefore the
treatment of ESLTS does not pose specific problems. Furthermore, the computation of weak Markovian
bisimilarity (Sec. 5) can be lifted to this combination of BDD and DNBDD. Only thefirst part of function
split” requiresthe DNBDD information, in order to sort tangible markingsin a split _tree (thetangibility
predicateisencoded asaBDD aswell), inana ogy totheimplementation of function split’ givenin Sec. 6.5.
The subsequent steps work completely on BDDs.

7 Conclusion

Inthispaper, we have discussed efficient algorithmsto compute bisimulation styleequival encesfor Stochas-
tic Process Algebras. In addition, we have presented details of a BDD-based implementation of these algo-
rithms, introducing DNBDDs to represent the additional rate information which isrelevant for the analysis
of the underlying Markov chain.

The complexity results established in this paper alow the following simple conclusion: the compu-
tational complexity of computing bisimulation equivalences does not increase when moving from a non-
stochastic to astochastic setting. For Markovian bisimilarity thisfact isaso mentioned (in similar settings)
in[14] and in[1].

15

The usefulness of BDDs to encode transition systems has been stressed by many authors. However,
we would liketo point out that the myth, saying that BDDs always provide a more compact encoding than
the ordinary representation (as a list or a sparse matrix data structure), does not hold in general. A naive
encoding of transition systemsas BDDsdoes not save space. Heuristicsfor encodingsare needed, exploiting
the structure of the specification. The implementation of parallel composition on BDDs is indeed such a
heuristics, and a very successful one, since an exponential blow-up can be turned into alinear growth.

Apart from encoding transition systemsas (DN)BDDsand parallel compositionon (DN)BDDs, we have
described how bisimul ation a gorithms can beimplemented on these data structures. As a conseguence, al
theingredientsare at hand for carrying out compositional aggregation of SPA specificationsin acompletely
BDD-based framework. In thisway, the state space explosion problem can be alleviated. We are currently
implementing all these ingredientsin a prototypical tool written in C, based on our own DNBDD pack-
age [4]. However, in order to obtain performance results, the (minimised) BDD representation till hasto
be converted back to the ordinary representation, since we do not have aMarkov chain analyser which works
directly on DNBDDs. Thiswould be a challenging task for future work.

References

[1] M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism,
Priorities, Probabilities and Time. Theoretical Computer Science, 1998. to appear.

[2] T.Bolognesi and E. Brinksma. Introduction to the SO Specification Language LOTOS. In PH.J. van Eijk, C.A.
Vissers, and M. Diaz, editors, The Formal Description Technique LOTOS, Amsterdam, 1989. North-Holland.

[3] A.Bouali. Weak and branching bisimulation in FCTOOL . Rapportsde Recherche1575, INRIA SophiaAntipolis,
Valbonne Cedex, France, 1992.

[4] H. Bruchner. Symbolische Manipulation von stochastischen Transitionssystemen. Internal study, Universitét
Erlangen—Nurnberg, IMMD VII, 1998. in German.

[5] R.E.Bryant. Graph-based Algorithmsfor Boolean Function Manipulation. |EEE ToCS, C-35(8):677—691, August
1986

[6] E.M.Clarke, M. Fujita, P.McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-terminal Binary Decision Diagrams:
An efficient datastructure for matrix representation. In IWLS: Inter national Workshop on Logic Synthesis, Tahoe
City, May 1993.

[7] D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions. In Proc. 19th ACM Sym-
posiumon Theory of Computing, 1987.

[8] R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic model checking in CCS. Distributed
Computing, 6:155-164, 1993.

[9] J.C. Fernandez. AnImplementation of an Efficient Algorithm for Bisimulation Equivalence. Science of Computer
Programming, 13:219-236, 1989.

[10] H. Hermanns. Interactive Markov Chains. PhD thesis, Universitat Erlangen-Niirnberg, 1998. to appear.

[11] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras - Between LOTOS and Markov
Chains. Computer Networks and ISDN Systems, 30(9-10):901-924, 1998.

[12] H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for MTIPP. In U. Herzog and
M. Rettelbach, editors, Proceedingsof the 2nd Workshop on Process Algebra and Performance Modelling. Uni-
versity of Erlangen-Nuirnberg, IMMD, November 1994.

[13] J. Hillston. A Compositional Approachto Performance Modelling. Cambridge University Press, 1996.

[14] T.Huynhand L. Tian. On some Equivalence Relations for Probabilistic Processes. Fundamenta |nformaticae,
17:211-234, 1992.

[15] J.F.Groote and FW.Vaandrager. An efficient algorithm for branching bisimulation and stuttering equivalence. In
M. S. Paterson, editor, Seventeenth Colloquium on Automata, Languages and Programming (ICALP) (Warwick,
England), volume 443 of Lecture Notes in Computer Science, pages 626—638. Springer, 1990.

[16] P. Kanellakisand S. Smolka. CCS Expressions, Finite State Processes, and Three Problems of Equivalence. In-
formation and Computation, 86:43-68, 1990.

[17] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.

[18] Y.-T.La andS. Sastry. Edge-Valued Binary Decision Diagramsfor Multi-Level Hierarchical Verification. In 29th
Design Automation Conference, pages 608-613. ACM/IEEE, 1992.

[19] K. Larsenand A. Skou. Bisimulation through Probabilistic Testing. Information and Computation, 94(1), 1991.

[20] R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

[21] R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of Computing, 16(6):973-989,
1987.

[22] M. Siegle. Technique and tool for symbolic representation and manipulation of stochastic transition sys-
tems. TR IMMD 7 2/98, Universitdt Erlangen-Nirnberg, March 1998. http://www?7.informatik.uni-
erlangen.de/~siegle/own.html.

[23] R.J.van Glabbeek and W. Weijland:. Branching Time and Abstraction in Bisimulation Semantics. Journal of the
ACM, 43(3):555-600, 1996.

16

