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Abstract

Stochastic process algebras have been introduced in order to enable compositional performance analy-
sis. The size of the state space is a limiting factor, especially if the system consists of many cooperating
components. To fight state space explosion, various proposals for compositional aggregation have been
made. They rely on minimisation with respect to a congruence relation. This paper addresses the com-
putational complexity of minimisation algorithms and explains how efficient, BDD-based data structures
can be employed for this purpose.

Keywords: Stochastic Process Algebra, Binary Decision Diagram, Bisimulation, Performance Analysis,
Markov Chain.

1 Introduction

Compositional application of stochastic process algebras (SPA) is particularly successful if the system struc-
ture can be exploited during Markov chain generation. For this purpose, congruence relations have been
developed which justify minimisation of components without touching behavioural properties. Examples
of such relations are strong equivalence [13], (strong and weak) Markovian bisimilarity [11] and extended
Markovian bisimilarity [1]. Minimised components can be plugged into the original model in order to cir-
cumvent the state space explosion problem. This strategy, known as compositional aggregation has been
applied successfully to handle, for instance, a telephony system model [10]. Without compositional ag-
gregation, the state space turned out to consist of more than 10 million states, while only 720 states were
actually required using compositional aggregation.

Applicability of compositional aggregation relies on the existence of algorithms to compute minimised
components. In this paper, we discuss efficient algorithms for strong equivalence, and (strong and weak)
Markovian bisimulation. The algorithms are variants of well-known partition refinement algorithms [21, 9,
16]. They compute partitions of equivalent states of a given state space by iterative refinement of partitions,
until a fixed point is reached.

For the practical realisation of the algorithms we introduce BDD-based data structures. During the re-
cent years, BDDs [5] have been shown to enable an efficient, symbolic encoding of state spaces. In partic-
ular, the parallel composition operator can be defined on BDDs in a way which avoids the usually observed
exponential blow-up due to interleaving of causally independent transitions [8]. In this paper, we highlight
how parallel composition and compositional aggregation can both be performed symbolically in a stochastic
setting.

This paper is organised as follows: Sec. 2 contains the definition of the languages and of the bisimula-
tion relations which we consider. Sec. 3 presents the basic bisimulation algorithm for non-stochastic process
algebras. Sec. 4 and Sec. 5 do the same for the purely Markovian case and for the case where both Markov-
ian and immediate transitions are allowed. In Sec. 6, we focus on BDDs and introduce a novel stochastic
extension, DNBDDs. Furthermore, we show how algorithms for parallel composition and bisimulation can
benefit from the use of these data structures. The paper concludes with Sec. 7.

2 Basic definitions

In this section, we describe the scenario which we will consider in more detail. We define the language and
its operational semantics. In addition, we recall the definition of strong and weak Markovian bisimilarity.
For more details, the interested reader is referred to [11].
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Definition 2.1 Let Act be the set of valid action names and Pro the set of process names. We distinguish
the action i as an internal, invisible activity. Let a 2 Act , P , P

i

2 L, A � Act n fig, and X 2 Pro. The
set L of expressions consists of the following language elements:

stop inaction
a ; P action prefix (a; �) ; P Markovian prefix
P

1

[]P

2

choice P

1

j[A]j P

2

parallel composition
hide a in P hiding X process instantiation

A set of process definitions (of the form X := P ) constitutes a process environment.

The following operational semantic rules define a labelled transition system (LTS) containing action

transitions, a-----➤, and Markovian transitions,
a;�

�����

➤.

a;P

a------➤ P

P

a------➤ P

0

P []Q

a------➤ P

0

Q

a------➤ Q

0

P []Q

a------➤ Q

0

P

a;�

�����

➤
P

0

P []Q

a;�

�����

➤
P

0

Q

a;�

�����

➤
Q

0

P []Q

a;�

�����

➤
Q

0

(a;�);P

a;�

�����

➤
P

P

a------➤ P

0

P j[A]jQ

a------➤ P

0

j[A]jQ

a 62 A

Q

a------➤ Q

0

P j[A]jQ

a------➤ P j[A]jQ

0

a 62 A

P

a------➤ P

0

Q

a------➤ Q

0

P j[A]jQ

a------➤ P

0

j[A]jQ

0

a 2 A

P

a;�

�����

➤
P

0

P j[A]jQ

a;�

�����

➤
P

0

j[A]jQ

a 62 A

Q

a;�

�����

➤
Q

0

P j[A]jQ

a;�

�����

➤
P j[A]jQ

0

a 62 A

P

a;�

�����

➤
P

0

Q

a;�

�����

➤
Q

0

P j[A]jQ

a;��

������

➤
P

0

j[A]jQ

0

a 2 A

P

a------➤
P

0

hide a in P

i------➤ hide a in P

0

P

b-----➤
P

0

hide a in P

b-----➤ hide a in P

0

a 6= b

P

a------➤
P

0

X

a------➤
P

0

X := P

P

a;�

�����

➤
P

0

hide a in P

i;�
�����

➤
hide a in P

0

P

a;�

�����

➤
P

0

hide b in P

a;�

�����

➤
hide a in P

0

a 6= b

P

a;�

�����

➤
P

0

X

a;�

�����

➤
P

0

X := P

Strong and weak Markovian bisimilarity are defined in a variant of Larsen & Skou style [19], using the
function 
 : L� Act � 2

L

7! IR, often called the cumulative rate, defined as follows (we use fj and jg to
denote multiset brackets):


(P; a; C) :=

X

�2E(P;a;C)

� ; where E(P; a; C) := fj � j P

a;�

�����

➤
P

0

^ P

0

2 C jg:

Definition 2.2 An equivalence relation B is a strong Markovian bisimulation, if (P;Q) 2 B implies that
(i) P a-----➤

P

0 implies Q a-----➤
Q

0, for some Q0 with (P

0

; Q

0

) 2 B ,
(ii) for all equivalence classes C of B and all actions a it holds that


(P; a; C) = 
(Q; a;C):

Two expressions P andQ are strong Markovian bisimilar (written P � Q) if they are contained in a strong
Markovian bisimulation.

Weak bisimilarity is obtained from strong bisimilarity by basically replacing a-----➤ with a----------➤. Here,
a----------➤ denotes an observable a transition that is preceded and followed by an arbitrary number (including

zero) of invisible activities, i.e. a----------➤ :=

i�-------➤ a-----➤ i�-------➤. If a is internal (a = i), a----------➤ abbreviates
i�-------➤. As discussed in [11], the extension from strong to weak Markovian bisimilarity has to take into

account the interplay of Markovian and immediate transitions. Priority of internal immediate transitions
gives rise to the following definition [10].
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Definition 2.3 An equivalence relation B is a weak Markovian bisimulation, if (P;Q) 2 B implies that
(i) P a----------➤ P 0 implies Q a----------➤ Q

0, for some Q0 with (P

0

; Q

0

) 2 B ,

(ii) if P i------------➤ P

0

6

i------➤ then there exists Q0 such that Q i------------➤ Q

0

6

i------➤ and for all equivalence
classes C of B and all actions a


(P

0

; a; C) = 
(Q

0

; a; C):

Two expressions P and Q are weak Markovian bisimilar (written P � Q) if they are contained in a weak
Markovian bisimulation.

In this definition, P 6

i------➤ denotes that P does not possess an outgoing internal immediate transition. We
call such a state a tangiblestate, as opposed to vanishing states which may internallyand immediately evolve

to another behaviour (denoted P i------➤).
It can be shown that strong Markovian bisimilarity is a congruence with respect to the language opera-

tors. The same result holds for weak Markovian bisimilarity except for congruence with respect to choice,
see [10].

In the sequel, we consider two distinct sub-languages of L. The first, L
1

, arises by disallowing Markov-
ian prefix. This sub-language gives rise to an ordinary, non-stochastic process algebra, a subset of Basic
LOTOS [2] where only action transitions appear in the underlying LTS. On this language, strong and weak
Markovian bisimilarity coincide with Milner’s non-stochastic strong and weak bisimilarity [20]. The com-
plementary subset, L

2

, is obtained by disallowing the other prefix, action prefix. The resulting language
coincides with MTIPP à la [12], and both strong and weak Markovian bisimilarity coincide with Markov-
ian bisimilarity on MTIPP. Note that Markovian bisimilarity agrees with Hillston’s strong equivalence [13].
The semantics of L

2

only contains Markovian transitions, and we will refer to such a transition system as
a stochastic LTS (SLTS). The complete language, where both prefixes coexist involves both types of tran-
sitions, and we shall call such a transition system an extended SLTS (ESLTS).

3 Bisimulation minimisation in non-stochastic process algebras

In this section, we introduce the general idea of iterative partition refinement, working with the language
L

1

. We aim to set the ground for an understanding of the following sections. To illustrate the key ideas, we
use as an example a queueing system, consisting of an arrival process and a finite queue. First, we model
an arrival process as in infinite sequence of incoming arrivals (arrive), each followed by an enqueue action
(enq).

Arrival := arrive; enq; Arrival

The behaviour of the queue is described by a family of processes, one for each value of the current queue
population.

Queue

0

:= enq; Queue

1

Queue

i

:= enq; Queue

i+1

[] deq; Queue

i�1

1 � i < max

Queue

max

:= deq; Queue

max�1

These separate processes are combined by parallel composition in order to describe the whole queueing
system. Hiding is used to internalise actions as soon as they are irrelevant for further synchronisation.

System := hide enq in

�

Arrival j[enq]j Queue

0

�

Fig. 1 (top) shows the LTS associated with the System specified above for the case that the maximum
queue population is max = 3. The LTS has 8 states, the initial state being emphasised by a double cir-
cle. Fig 1 (bottom) shows an equivalent representation, minimised with respect to weak bisimilarity. The
original state space is reduced by replacing every class of weakly bisimilar states by a single state.

Algorithms for computing bisimilarity always require a finite state space. Traditionally, they follow an
iterative refinement scheme [21, 9, 16]. This means that starting from an initial partition of the state space
which consists of a single class (containing all states), classes are refined until the obtained partition cor-
responds to a bisimulation equivalence. The result thus obtained is the largest existing bisimulation, in a
sense the “best” such bisimulation, since it has a minimal number of equivalence classes.
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arrive

arrivearrive

deq deq deq

arrive

deq

i

arrive arrive arrive arrive

Queue

0

Queue

1

Queue

2

Queue

3

deq deq deq

deq deq deq

i i

Figure 1: LTS of the queueing system example, before and after applying weak bisimilarity

For the refinement of a partition, the notion of a “splitter” is very important. A splitter is a pair (a;C
spl

),
consisting of an action a and a class C

spl

. During refinement, a class C is split with respect to a splitter,
which means that subclasses C+ and C

� are computed, such that subclass C+ contains all those states
from C which can perform an a-transition leading to class C

spl

, and C� contains all remaining states.
In the following, an algorithm for strong bisimulation is presented. The algorithm uses a dynamic set

of splitters, denoted Splitters, which can be realised as a pointer structure. Note that here we only present
a basic version of the algorithm which can be optimised in many ways [9, 21]. By a deliberate treatment of
splitters, it is possible to obtain a time complexityO(m logn), where n is the number of states and m is the
number of transitions.

1. Initialisation
Partition := fSg

/* the initial partition consists of only one class which contains all states */
Splitters := Act� Partition

/* all pairs of actions and classes have to be considered as splitters*/

2. Main loop

while (Splitters 6= ;)
choose splitter (a;C

spl

)

forall C 2 Partition split(C; a;C

spl

)

/* all classes (includingC
spl

itself) are split */
Splitters := Splitters � (a;C

spl

)

/* the processed splitter is removed from the splitter set */

It remains to specify the procedure split. Its task is to split a class C, using (a;C

spl

) as a splitter. If
splitting actually takes place, the input class C is split into subclasses C+ and C�.

procedure split(C; a;C
spl

)

C

+

:= fP j P 2 C ^ 9Q : (P

a-----➤
Q ^ Q 2 C

spl

)g /* the subclass C+ is computed */
if (C+

= C or C

+

= ;) return /* only continue if class C actually needs to be split */
C

�

:= C � C

+ /* C� is the complement of C+ with respect to C */
Partition := Partition [ fC

+

; C

�

g � fCg

Splitters := Splitters [ (Act� fC

+

; C

�

g)�Act � fCg

/* the partition and the splitter set are updated */
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We illustrate the algorithm by means of the above queueing example. In fact, we shall compute weak
instead of strong bisimilarity. The only change that is necessarry for this purpose concerns the transition
relation a-----➤ used in procedure split, which is replaced by the weak relation a----------➤. However, this requires
the computation of a----------➤ during the initialisationphase. As a matter of fact, the computation of a----------➤ dom-

inates the complexity of partition refinement, basically because the reflexive and transitive closure i�-------➤
of internal moves has to be computed in order to build the weak transition relation. The usual way of com-
puting a transitive closure has cubic complexity. (Some slight improvements are known for this task, see
for instance [7]. In any case, this is the computationally expensive part.)

The LTS is depicted in Fig. 2 (top) where we have used a particular shading of states in order to visualize
the algorithm. In the beginning all states are assumed to be equivalent, and hence, all states are shaded with
the same pattern. We use

���
���
���

���
���
���

to refer to the set of states shaded like
��
��
��

��
��
��

. So, Partition := f

���
���
���

���
���
���

g, and
Splitters is initialised accordingly.

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
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���
���
���

���
���
���
���
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���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
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���
���
���

���
���
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���
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���
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���
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���

���
���
���

���
���
���

���
���
���

���
���
���

arrive

deq deq

deqdeq

arrive arrive arrive

deq

deq

i i i

split(

���
���
���
���

���
���
���
���

; deq; )

arrive

deq deq

deqdeq

arrive arrive arrive

deq

deq

i i i

arrive

deq deq

deqdeq

arrive arrive arrive

deq

deq

i i i

split(

���
���
���

���
���
���

; deq;

���
���
���

���
���
���

)

split( ; deq; ) and

Figure 2: Initialisation, �rst and second re�nement step of the algorithm

After computing the weak transition relation --------➤, we start After computing the weak transition
relation --------➤, we start partition refinement by choosing a splitter, say (deq;

���
���
���

���
���
���

) and computing

split(

���
���
���

���
���
���

; deq;

���
���
���

���
���
���

). The initial state has no possibility to perform a deq----------------➤ transition in contrast to

all other states. Therefore
���
���
���

���
���
���

+

=

���
���
���
���

���
���
���
���

and
���
���
���

���
���
���

�

= . As a consequence, Partition becomes

f ;

���
���
���
���

���
���
���
���

g and new splitters are added to Splitters while the currently processed one, (deq;
���
���
���

���
���
���

), is
removed. This completes the first iteration and leads to the situation depicted in Fig. 2 (middle).

By choosing a different splitter, say (deq; ), we start the next iteration. Since Partition now con-

tains two elements, we compute split( ; deq; ) and split(

���
���
���
���

���
���
���
���

; deq; ). cannot be split

any further, while splitting of
���
���
���
���

���
���
���
���

returns
���
���
���
���

���
���
���
���

+

=

���
���
���

���
���
���

and
���
���
���
���

���
���
���
���

�

=

�����
�����
�����

�����
�����
�����

. Updating Partition to

f ;

���
���
���

���
���
���

;

�����
�����
�����

�����
�����
�����

g and adding new splitters leads to the situation depicted in Fig. 2 (bottom). Subsequent

iterations of the algorithm will divide
�����
�����
�����

�����
�����
�����

further, leading to five partitions in total. The algorithm termi-
nates once the set Splitters is empty.
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4 The Markovian case

In this section, we consider the MTIPP-style language L

2

where all actions are associated with a delay
which is an exponentially distributed random variable. The semantic model of a process from the language

L

2

is an SLTS, only containing transitions
a;�

�����

➤ .
We return to our example of a queueing system. The arrival process is now modelled as follows, em-

ploying the Markovian action prefix:

Arrival := (arrive; �); (enq; 1); Arrival

Since every action has an exponential delay, every action must be associated with a rate. Action arrive

occurs with rate �, whereas for action enq we specified the (passive) rate 1. Its meaning will become clear
in connection with the specification of the queue process.

Queue

0

:= (enq; �); Queue

1

Queue

i

:= (enq; �); Queue

i+1

[] (deq; �); Queue

i�1

1 � i < max

Queue

max

:= (deq; �); Queue

max�1

Here, the rate � is assigned to action enq. In general, when two Markovian actions are synchronised, one
must specify a rule that determines how the resulting rate is to be calculated from the two individual rates.
For reasons discussed (for instance) in [11], it is mathematically convenient to use the product of the two
partner rates as the resulting rate. However, since it is physically counter-intuitive to consider the product
of two rates to be of type “rate” again, we will always make sure that exactly one of the two partner rates
is equal to 1, representing a passive participation in the synchronisation, while the other partner contributes
the actual rate which will also be the resulting rate.

Fig. 3 depicts the SLTS obtained from the parallel composition of processes Arrival and Queue
0

syn-
chronised over action enq.

(enq; �)

Queue

0

Queue

1

Queue

2

Queue

3

(arrive; �)

(deq; �) (deq; �)

(deq; �)(deq; �)

(arrive; �) (arrive; �) (arrive;�)

(deq; �)

(deq; �)

(enq; �) (enq; �)

Figure 3: Semantic model of the Markovian queueing system, isomorphic to a CTMC

From a given SLTS one can immediately construct a continuous time Markov chain (CTMC) [17]. The
arcs of the CTMC are given by the union of all the transitions joining the LTS nodes (regardless of their
labels), and the transition rate is the sum of the individual rates. This is justified by the properties of the
exponential distribution, in particular the fact that the minimum of two exponentially distributed random
variables with rates �

1

; �

2

is again exponentially distributed with rate �
1

+ �

2

. Transitions leading back
to the same node (loops) can be neglected, since they would have no effect on the balance equations of the
CTMC. The CTMC carries only the (cumulated) rate labels. Performance measures can then be derived by
calculating the steady-state or transient state probabilities of the CTMC.

As already mentioned, both strong and weak Markovian bisimilarity coincide with Markovian bisimi-
larity à la MTIPP on this language. The technical reason is that the first clauses of Definition 2.2 and De-
finition 2.3 are irrelevant, while the respective second clauses both boil down to 
(P; a; C) = 
(Q; a;C)

for all actions a and classes C. This equivalence notion has a direct correspondence to the notion of lumpa-
bility on CTMCs [17, 13]. As a consequence, the algorithm which we develop can be used to efficiently
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. . .
C




k

split tree




1




k

C




1

Figure 4: split tree used by procedure split0

compute lumpable partitions of an SPA description (as well as a CTMC in isolation). The basic bisimu-
lation algorithm is the same as in Sec. 3, only the procedure split needs to be modified. Procedure split0

now uses a data structure split tree which is shown in Fig. 4. It essentially sorts states according to their

-values. During refinement, when a class C is split by means of a splitter (a;C

spl

), possibly more than
one subclass C




1

; C




2

; : : : ; C




k

will be generated (k � 1). Input class C is split such that the cumulative
rate 
(P; a; C

spl

) = 


j

is the same for all the states P belonging to the same subclass C



j

, a leaf of the
split tree.

procedure split0(C; a;C
spl

)

forall P 2 C


 := 
(P; a; C

spl

)

/* the cumulative rate from state P to C
spl

is computed */
insert(split tree; P; 
)

/* state P is inserted into the split tree */
/* now, split tree contains k leaves C




1

; : : : ; C




k

*/
if (k > 1) /* if C has been split into k > 1 subclasses */

Partition := Partition [ fC




1

; C




2

; : : : ; C




k

g � fCg

Splitters := Splitters [ (Act� fC




1

; C




2

; : : : ; C




k

g)� Act� fCg

/* the partition and the splitter set are updated */

In the forall loop of procedure split0, the cumulative rate 
 is computed for every state P in class C,
and state P is inserted into the split tree such that states with the same cumulative rate belong to the same
leaf (procedure insert). The split tree has k leaves, i.e. k different values of 
 have appeared. If splitting
has taken place (i.e. if k > 1), the partition must be refined and the set of splitters has to be updated. As in
the non-stochastic case, this basic algorithm can be improved a lot, by essentially adopting the management
of splitters of [21] yielding the complexity result of strong bisimilarity.

Proposition 4.1 The above algorithm computes Markovian bisimilarity on a given SLTS. It can be imple-
mented such that the time complexity is of orderO(m logn) and the space complexity is of orderO(m+n),
where n is the number of states an m is the number of transitions.

The detailed proof is given in [10].

5 Markovian and immediate actions

In this section, we consider the complete language Lwhere both immediate and Markovian actions coexist.
Again, we return to our queueing system example. In the arrival process, action arrive has an exponential
delay, whereas action enq is immediate.

Arrival := (arrive; �); enq; Arrival
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The specification of the Queue is again modified with respect to Sec. 3, i.e. action enq is immediate and
action deq has exponential delay.

Queue

0

:= enq; Queue

1

Queue

i

:= enq; Queue

i+1

[] (deq; �); Queue

i�1

1 � i < max

Queue

max

:= (deq; �); Queue

max�1

The overall system is again given by the composition of Arrival and Queue
0

, where enq is hidden af-
ter synchronisation. The semantic model of such a specification from the language L is an ESLTS with two
types of transitions: Markovian transitions���➤, and action transitions ----➤. Fig. 5 (top) depicts the ESLTS
for the example queueing system. In the context of our complete language L, the notion of weak Markov-
ian bisimilarity is central for associating a CTMC to a given specification. The reason is that immediate
transitions do not have a counterpart on the level of the CTMC. Weak Markovian bisimilarity justifies to
eliminate internal immediate transitions such that a CTMC-like representation results. In order to illustrate
how the relation can be used to achieve this, the equivalence classes of weak Markovian bisimilarity are
indicated in Fig. 5 (bottom). Note, however, that this effect requires the absence of nondeterminism (after
applying weak Markovian bisimilarity) [10].
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serve; � serve; � serve; �

arrive; �arrive; � arrive; �

serve; �

arrive; �

i ii

deq; �

arrive; � arrive; � arrive; � arrive; �

Queue

0

Queue

1

Queue

2

Queue

3

deq; � deq; � deq; �

deq; � deq; �

Figure 5: ESLTS of the queueing system example, before and after applying weak Markovian bisimilarity

An algorithm to compute this relation is based on the one given in the previous section, but proceeds
in a different way. The technical reason is that, similar to the computation of branching bisimilarity [23],
refining a partition by means of a splitter might cause that the refinement with respect to already processed
splitters has to be repeated for this partition.1 This is a crucial difference with respect to the algorithms we
have described before. For branching bisimilarity, the problem is tackled in [15]. Bouali has adopted this
machinery to compute also weak bisimilarity [3]. Indeed our algorithm is based on this adaption.

We use P &

i
P

0 to indicate that P may internally and immediately evolve to a tangible state P 0, i.e.

where no further internal immediate transition is possible. Formally,P &

i
P

0 iffP i------------➤ P 0 and P 0 6 i------➤.
If there is at least one stable state P 0 that can be reached from P via internal immediate transitions we use
the predicate P &

i. The converse situation is denoted P 6&

i. For the latter states, the second condition
of Definition 2.3 needs not to be checked at all, while the first clause is still relevant. In the sequel, we
consider transition systems that do not contain states of this type. This is done for simplicity, the general
case is tackled in [10]. The basic algorithm is as follows.

1. Initialisationas before in Sec. 3. In addition, the weak transition relation --------➤ is computed from ----➤.

1In terms of [15], stability is not inherited under refinement.
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2. Main loop

while (Splitters 6= ;)
choose splitter (a;C

spl

)

forall C 2 Partition split(C; a;C

spl

)

/* all classes are split with respect to weak transitions */
forall C 2 Partition split

00

(C; a;C

spl

)

/* all classes are split with respect to Markovian transitions*/
Splitters := Splitters � (a;C

spl

)

/* the processed splitter is removed from the splitter set */

The main loop contains two different procedures, split and split

00 requiring further explanation. The
first, split(C; a;C

spl

), refines with respect to clause (i) of Definition 2.3. This is achieved using the proce-
dure split of Section 3, but applied on weak transitions, as in the example of Sec. 3. The second function,
split

00

(C; a;C

spl

), is more complicated. It refines with respect to the second clause of Definition 2.3. The
details are given below.

procedure split00(C; a;C
spl

)

forall P 2 C and P 6

i------➤ /* P is a tangible state */

 := 
(P; a; C

spl

)

/* the cumulative rate to C
spl

is computed */
insert(split tree; P; 
)

/* state P is inserted into the split tree */
/* now, split tree contains k leaves C




1

; : : : ; C




k

*/

forall P 2 C and P

i------➤ /* P is a vanishing state */
if there is 


j

such that P &

i
Q implies Q 2 C




j

insert(split tree; P; 


j

)

/* vanishing state P can internally and immediately evolve only to tangible states of class C



j

*/
Partition := Partition [ fC




1

; C




2

; : : : ; C




k

g � fCg

Splitters := Splitters [ (Act� fC




1

; C




2

; : : : ; C




k

g)� Act� fCg

/* the partition and the splitter set are updated */
if (C 6=

S

k

1

C




j

) /* some vanishing states have not been covered yet */
Partition := Partition [ fC �

S

k

1

C




j

g

Splitters := Splitters [ (Act� fC �

S

k

1

C




j

g)

/* all remaining vanishing states form a new class, since they can
internally and immediately evolve to tangible states from different classes */

The reader is invited to check the result depicted in Fig. 5 by means of this algorithm. In order to facil-
itate the inspection, tangible states are highlighted by bold circles in the figure. An implementation of this
algorithm, based on [15, 3] has a cubic complexity:

Proposition 5.1 The above algorithm computes weak Markovian bisimilarity on a given ESLTS not con-
taining states with P 6&

i. It can be implemented such that it requires O(n

3

) time andO(n

2

) space, where
n is the number of states.

The proof is given in [10], where also an adaption of the algorithm is presented that overcomes the re-
striction to 6&i-free ESLTSs. This adapted algorithm has the same time and space complexity. It is worth
pointing out that non-stochastic weak bisimulation essentially has the same complexity, due to the fact that
a transitive closure operation is needed to compute weak transitions --------➤ in either case.
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6 Symbolic representation with BDDs

In this section, we discuss details of a BDD-based implementation of the above algorithms. BDDs are spe-
cific representations of Boolean functions and have recently gained remarkable attention as efficient encod-
ings of very large state spaces. In a process algebraic context, this efficiency is mainly owed to the fact that
the parallel composition operator can be implemented on BDDs in such a way that the size of the data struc-
ture only grows linearly in the number of parallel components, especially for loosely coupled components.
This compares favourably to the exponential growth caused by the usual operational semantics, due to the
interleaving of causally independent transitions.

We explain how LTSs can be encoded as BDDs and illustrate a way to include the rate information of
(E)SLTS into this data structure and the bisimulation algorithms. To complete the picture, we also discuss
parallel composition on BDDs.

6.1 Binary Decision Diagrams and the encoding of LTSs

A Binary Decision Diagram (BDD) [5] is a symbolic representation of a Boolean function f : f0; 1g

n

!

f0; 1g. Its graphical interpretation is a rooted directed acyclic graph with one or two (terminal) leaf nodes.
The graph is essentially a collapsed binary decision tree in which isomorphic subtrees are merged and “don’t
care” nodes are skipped (“don’t care” nodes are those nodes where the truth value of the corresponding
variable is irrelevant for the truth value of the whole formula). As a simple example, Fig. 6 (left) shows the
BDD for the function a t + a s t. The function value for a given truth assignment can be determined by
following the correspondingedges (one-edges drawn solid, zero-edges dashed) from the root until a terminal
node is reached. In the graphical representation of a BDD, for reasons of simplicity, the terminal false-node
and its adjacent edges are usually omitted, see Fig. 6 (right).

1

a

s

t

0 1

Figure 6: BDD for a t + a s t, simplified graphical representation (right)

A BDD unambiguously defines a Boolean function, based on the so-called Shannon expansion:

f(v

1

; : : : ; v

n

) = v

1

� f(1; v

2

; : : : ; v

n

) + v

1

� f(0; v

2

; : : : ; v

n

)

It is known that BDDs provide a canonical representation for Boolean functions, i.e. a given Boolean func-
tion has a unique BDD representation, assuming a fixed ordering of the Boolean variables [5] (in Fig. 6,
the variable ordering is a < s < t). Algorithms for BDD construction from a Boolean expression and for
performing Boolean operations (and, or, not, ...) on BDD arguments basically follow a recursive scheme
according to the above Shannon expansion.

Next we will describe how a LTS can be represented symbolically by a BDD. For the moment, we look
at the non-stochastic case where it is not necessary to consider information about transition rates. The idea is
to encode states and actions by Boolean vectors. One transitionof the LTS then corresponds to a conjunction
of n

a

+ 2n

s

literals (a literal is either a Boolean variable or the negation of a Boolean variable)

a

1

: : :a

n

a

s

1

: : : s

n

s

t

1

: : : t

n

s

where literals a
1

: : : a

n

a

encode the action, vector s
1

: : : s

n

s

identifies the source state and t

1

: : : t

n

s

the
target state of the transition (we assume that the number of actions to be encoded is between 2

n

a

�1 and

10



2

n

a

+ 1, so that n
a

bits are suitable to encode them, and similarly for the number of states). The overall
LTS corresponds to the disjunction of the terms for the individual transitions.

The size of a BDD is highly dependent of the chosen variable ordering. In the context of transition
systems, experience has shown that the following variable ordering yields small BDD sizes [8]:

a

1

< : : : < a

n

a

< s

1

< t

1

< s

2

< t

2

< : : : < s

n

s

< t

n

s

i.e. the variables encoding the action come first, followed by the variables for source and target state inter-
leaved. In particular, this ordering is advantageous in view of the parallel composition operator discussed
below.

To illustrate the encoding, Fig. 7 (top) shows the LTS corresponding to theArrival process from Sec. 3,
the way transitions are encoded and the resulting BDD. Since there are only two different actions (arrive
and enq), one bit would be enough to encode the action. However, in view of the other action which will
be needed later (deq), we use two bits to encode the action, i.e. n

a

= 2. Since there are only two states in
the LTS of process Arrival, one bit is enough to encode the state. Fig. 7 (bottom) depicts the encoding of
the LTS of process Queue

0

(assuming, again, that max = 3). This LTS has four states, therefore two bits
are needed to represent the state. In this example, we can observe the interleaving of the Boolean variables
for the source and target state.

0
1

0 31 2

1

a

1

a

2

s

0

1

t

0

1

s

0

2

t

0

2

deq

1

s

t

a

1

a

2

a

1

; a

2

; s

0

1

; t

0

1

; s

0

2

; t

0

2

0

enq--------➤
1 ! (0; 1; 0; 0; 0; 1)

1

enq--------➤
2 ! (0; 1; 0; 1; 1; 0)

2

enq--------➤ 3 ! (0; 1; 1; 1; 0; 1)

1

deq--------➤
0 ! (1; 0; 0; 0; 1; 0)

2

deq--------➤
1 ! (1; 0; 1; 0; 0; 1)

3

deq--------➤
2 ! (1; 0; 1; 1; 1; 0)

a

1

; a

2

; s; t

0

arrive-----------➤
1 ! (0; 0; 0; 1)

1

enq--------➤
0 ! (0; 1; 1; 0)

arrive

enq

enq enq enq

deq deq

Figure 7: LTS, transition encoding and corresponding BDD
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6.2 Symbolic parallel composition and reachability analysis

The parallel composition operator algebra can be realised directly on the BDD representation of the two
operand processes. Consider the parallel composition of two processes, P = P

1

j[A]j P

2

, and assume that
the BDDs which correspond to processes P

1

and P

2

have already been generated and are denoted P
1

and
P

2

. The set A can also be coded as a BDD, namely A. The BDD P which corresponds to the resulting
process P can then be written as a Boolean expression:

P = (P

1

^A) ^ (P

2

^A)

_ (P

1

^A ^ Stab

P

2

)

_ (P

2

^A ^ Stab

P

1

)

The term on the first line is for the synchronising actions in which both P
1

and P
2

participate. The term
on the second (third) line is for those actions which P

1

(P

2

) performs independently of P
2

(P

1

) — these
actions are all from the complement of A. The meaning of Stab

P

2

(Stab
P

1

) is a BDD which expresses
stability of the non-moving partner of the parallel composition, i.e. the fact that the source state of process
P

2

(P

1

) equals its target state.
We illustrate parallel composition by means of our queueing example. Fig. 8 shows the intermediate

and final BDDs when performing BDD-based parallel composition of processes Arrival and Queue

0

. In
the second (third) BDD one can observe the parts which expresses stability of process Queue

0

(Arrival).

synchronising,
disjunction of previous three

overall result,

t

0

1

s

0

2

t

0

2

a

2

a

1

s

t

1

action enq

1

action arrive
Arrival moves,

s

0

1

1

action deq
Queue

0

moves,

1

Figure 8: Intermediate and final BDD results for parallel composition

The BDD resulting from the parallel composition,P, describes all transitions which are possible in the
product space of the two partner processes. Given a pair of initial states for P

1

and P

2

, only part of the
product space may be reachable due to synchronisation conditions. Reachability analysis can be performed
on the BDD representation, restricting P to those transitions which originate in reachable states.

6.3 Symbolic bisimulation

The basic bisimulation algorithm of Sec. 3 and its various optimisations can be realised efficiently using
BDD-based data structures. For convenience, the transition system is represented not by a single BDD, but

12



by a set of BDDs T
a

(s; t), one for each action a (here, s and t denote vectors of Boolean variables of length
n

s

). The current partition is stored as a set of BDDs fC
1

(s); C

2

(s); : : :g, one for each class. When classC is
split into subclasses C+ and C� during execution of procedure split, those subclasses are also represented
by BDDs. The dynamic set of splitters, Splitters, is realised as a pointer structure.

The computation of the subclass C+ in procedure split can be formulated as a Boolean expression on
BDD arguments.

C

+

(s) := C(s) ^ 9t(T

a

(s; t) ^ C

spl

(t))

The existential quantification used in this expression can be performed on BDDs.

6.4 BDDs with rate information

We will now discuss the important question of how to symbolically represent a stochastic LTS. Clearly,
pure BDDs are not capable of representing the numerical information about the transition rates. In the liter-
ature, several modifications of the BDD data structure have been proposed for representing functions of the
type f : f0; 1g

n

! IR. Most prominent among these are multi-terminal BDDs [6] and edge-valued BDDs
[18]. In all of these approaches, the basic BDD structure is modified. In particular, the efficiency of the data
structure, due to the sharing of isomorphic subtrees, is diminished. Based on this observation, we decided
to develop a different approach which we call decision-node BDD (DNBDD) [22]. The distinguishing fea-
ture of DNBDDs is that the basic BDD structure remains completely untouched when moving from an LTS
encoding to an SLTS encoding. The additional rate information is attached to specific edges of this BDD in
an orthogonal fashion.

In a BDD representing a LTS, a path from the root to the terminal true-node corresponds to 2

k transitions
of the transition system, where k is the number of “don’t care” variables on that path. Since these transitions
are labelled by 2

k distinct rates, we will attach a rate vector of length 2

k to that path.

Definition 6.1 A decision node BDD (DNBDD) is a BDD enhanced by a function

rates : Paths! (IR)

+

where Paths is the set of paths from the root node to the terminal true-node (and (IR)

+ is the set of finite
words over IR) such that for any such path p,

rates(p) 2 (IR)

2

k

if k is the number of “don’t cares” on path p.

In other words, rates(p) is a vector of real values (�

0

; : : : ; �

2

k

�1

) of length 2

k. The mapping from tran-
sitions to individual rates of such a vector is implicitely given by the valuation of the encoding of the tran-
sitions on “don’t care” nodes, which ranges from 0 to 2

k

� 1. For the practical realisation of this concept,
we must answer the question of where to store the rate vectors. This leads to the following consideration:
Instead of characterising a path by all its nodes, we observe that a path is fully characterised by its decision
nodes. Decision nodes are those nodes which have two successor nodes which are both different from the
terminal false-node. The idea is to attach the rate vectors to the outgoing edges of the last decision node of
a path, i.e. the decision node nearest to the terminal true-node.

This concept is illustrated in Fig. 9 (in the figure, decision nodes are drawn black). In this example, a
SLTS with four transitions is represented by a DNBDD, the number of Boolean variables is n

a

= n

s

= 1.
Each of the transition encodings is mapped onto a rate as shown in the middle part of the figure. The first
two transitions share the same path, a path which has a “don’t care” in the Boolean variable s. Therefore, the
corresponding rate list (�; �) has length two. The other two paths do not have any “don’t care” variables, so
they each correspond to exactly one transition of the SLTS and the corresponding rate lists both have length
one.

To give some more insight into the encoding, we return to our queueing example. Fig. 10 shows the
DNBDDs associated with processes Arrival, Queue

0

and Arrival j[enq]j Queue

0

. On the left, rates
� and 1 are attached to the outgoing edges of the (single) decision node of the BDD. In the middle, six
individual rates are attached to the appropriate edges. On the right hand side, up to three rate vectors, each
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a

s

t

1

(�; �)

b; �

(�)

(�)

0 1

(a; s; t) ! rate

(0; 0; 1) ! �

(0; 1; 1) ! �

(1; 0; 1) ! �

(1; 1; 0) ! �

a; �

a; �

b; �

Figure 9: Simple SLTS, mapping of Boolean assignments to rates and corresponding DNBDD

consisting of a single rate, are attached to BDD edges. For instance, the rate vectors (�)(�) specify the rates
of the two transitions encoded as bitstrings 10110010 and 10000010 whose paths share the last decision
node.

t

a

1

a

2

1

Arrival

(�) (1)

a

1

a

2

s

0

1

t

0

1

s

0

2

t

0

2

Queue

0

1

(�)

(�)(�)

(�)

(�) (�)

s

0

1

s

t

0

1

X

s

0

2

t

0

2

a

2

a

1

s

t

1

Arrival j[enq]j Queue

0

(�) (�)(�)

(�)(�)

(�)(�)

X

Figure 10: DNBDDs for the queueing example. Shorthand notation: X = (�)(�)(�)

In the case where several rate vectors are attached to the same BDD edge (because several paths share
their last decision node) it is important to preserve the one-to-one mapping between paths and rate lists. This
could simply be accomplished by the lexicographical ordering of paths. For algorithmic reasons, however,
we use a so-called rate tree, a pointer structure which makes it possible to access rate lists during recursive
descent through the BDD [22].

Parallel composition of two SLTSs based on their symbolic representation follows the same basic algo-
rithm as sketched in Sec. 6.2. Looking at the operational rules in Sec. 2, we use MTIPP-style synchroni-
sation by calculating the product of the individual rates as the rate of a synchronising transition. However,
the concept of DNBDDs is not bound to this decision, since any other arithmetic expression of the two in-
dividual rates can be equally employed. However, we remind that the decision should take into account
the algebraic properties of the calculus. In particular, the congruence property is a yardstick for a proper
decision [11].
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6.5 Symbolic Markovian bisimulation

We now discuss aspects of a DNBDD-based algorithm which computes Markovian bisimulation on SLTSs.
The basic bisimulation algorithm is the same as in Sec. 4, only the procedure split0 needs to be adapted.
When using DNBDDs, the cumulative rate of action a from state P to class C

spl

is computed in the follow-
ing way: We compute T

P

a

!C

spl

(s; t), the DNBDD which represents all a-transitions from state P to states

from class C
spl

. It can be obtained by restricting T
a

(s; t) to the single source state P and to target states
from class C

spl

(recall that the transition relation is represented by individual DNBDDs T
a

(s; t), one for
every action a, and that class C is represented by a BDD C(t)):

T

P

a

!C

spl

(s; t) := T

a

(s; t) ^ (s�=P )^ C

spl

(t)

We use the notation s�=P to denote that state P is encoded as Boolean vector s. The cumulative rate

(P; a; C

spl

) is then computed by applying the function soar (sum of all rates) toT
P

a

!C

spl

(s; t). This func-

tion simply sums up all the entries of all rate lists of a DNBDD. For example, application of the function
soar to the DNBDD in Fig. 9 yields �+�+�+�. Furthermore, in the split tree used by procedure split0

(Fig. 4) the subclasses C



1

; : : : ; C




k

are now also represented by BDDs.

procedure split0(C; a;C
spl

)

forall P 2 C

T

P

a

!C

spl

(s; t) := T

a

(s; t) ^ (s�=P )^ C

spl

(t)


 := soar(T

P

a

!C

spl

(s; t))

/* the cumulative rate from state P to C
spl

is computed */
insert(split tree; P; 
)

/* state P is inserted into the split tree */
/* now, split tree contains k leaves C




1

, ..., C



k

*/
if (k > 1) ... the remaining part of procedure split0 is as in Sec. 4,

(but Partition and Splitters are represented by BDDs)

6.6 BDDs with and without rate information

The semantics of the complete language L comprises both types of transitions, action transitions a-----➤

and Markovian transitions
a;�

�����

➤, in one transition system, an ESLTS. Using the knowledge developed
in the previous sections, an ESLTS can be encoded by means of two separate data structures, one BDD to
encode all action transitions and one DNBDD to encode all Markovian transitions. Also, during parallel
composition, the component BDDs are treated separately from the component DNBDDs. Therefore the
treatment of ESLTS does not pose specific problems. Furthermore, the computation of weak Markovian
bisimilarity (Sec. 5) can be lifted to this combination of BDD and DNBDD. Only the first part of function
split

00 requires the DNBDD information, in order to sort tangible markings in a split tree (the tangibility
predicate is encoded as a BDD as well), in analogy to the implementation of function split0 given in Sec. 6.5.
The subsequent steps work completely on BDDs.

7 Conclusion

In this paper, we have discussed efficient algorithmsto compute bisimulationstyle equivalences for Stochas-
tic Process Algebras. In addition, we have presented details of a BDD-based implementation of these algo-
rithms, introducing DNBDDs to represent the additional rate information which is relevant for the analysis
of the underlying Markov chain.

The complexity results established in this paper allow the following simple conclusion: the compu-
tational complexity of computing bisimulation equivalences does not increase when moving from a non-
stochastic to a stochastic setting. For Markovian bisimilarity this fact is also mentioned (in similar settings)
in [14] and in [1].
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The usefulness of BDDs to encode transition systems has been stressed by many authors. However,
we would like to point out that the myth, saying that BDDs always provide a more compact encoding than
the ordinary representation (as a list or a sparse matrix data structure), does not hold in general. A naı̈ve
encoding of transitionsystems as BDDs does not save space. Heuristics for encodings are needed, exploiting
the structure of the specification. The implementation of parallel composition on BDDs is indeed such a
heuristics, and a very successful one, since an exponential blow-up can be turned into a linear growth.

Apart from encoding transition systems as (DN)BDDs and parallel composition on (DN)BDDs, we have
described how bisimulation algorithms can be implemented on these data structures. As a consequence, all
the ingredients are at hand for carrying out compositional aggregation of SPA specifications in a completely
BDD-based framework. In this way, the state space explosion problem can be alleviated. We are currently
implementing all these ingredients in a prototypical tool written in C, based on our own DNBDD pack-
age [4]. However, in order to obtain performance results, the (minimised) BDD representation still has to
be converted back to the ordinary representation, since we do not have a Markov chain analyser which works
directly on DNBDDs. This would be a challenging task for future work.
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