Computing Bisimulations for Stochastic Process Algebras using Symbolic Representations

H. Hermanns, M. Siegle
Universität Erlangen-Nürnberg, IMMD 7, Martensstr. 3, 91058 Erlangen, Germany

Abstract

Stochastic process algebras have been introduced in order to enable compositional performance analysis. The size of the state space is a limiting factor, especially if the system consists of many cooperating components. To fight state space explosion, various proposals for compositional aggregation have been made. They rely on minimisation with respect to a congruence relation. This paper addresses the computational complexity of minimisation algorithms and explains how efficient, BDD-based data structures can be employed for this purpose.

Keywords: Stochastic Process Algebra, Binary Decision Diagram, Bisimulation, Performance Analysis, Markov Chain.

1 Introduction

Compositional application of stochastic process algebras (SPA) is particularly successful if the system structure can be exploited during Markov chain generation. For this purpose, congruence relations have been developed which justify minimisation of components without touching behavioural properties. Examples of such relations are strong equivalence [13], (strong and weak) Markovian bisimilarity [11] and extended Markovian bisimilarity [1]. Minimised components can be plugged into the original model in order to circumvent the state space explosion problem. This strategy, known as compositional aggregation has been applied successfully to handle, for instance, a telephony system model [10]. Without compositional aggregation, the state space turned out to consist of more than 10 million states, while only 720 states were actually required using compositional aggregation.

Applicability of compositional aggregation relies on the existence of algorithms to compute minimised components. In this paper, we discuss efficient algorithms for strong equivalence, and (strong and weak) Markovian bisimulation. The algorithms are variants of well-known partition refinement algorithms [21, 9, 16]. They compute partitions of equivalent states of a given state space by iterative refinement of partitions, until a fixed point is reached.

For the practical realisation of the algorithms we introduce BDD-based data structures. During the recent years, BDDs [5] have been shown to enable an efficient, symbolic encoding of state spaces. In particular, the parallel composition operator can be defined on BDDs in a way which avoids the usually observed exponential blow-up due to interleaving of causally independent transitions [8]. In this paper, we highlight how parallel composition and compositional aggregation can both be performed symbolically in a stochastic setting.

This paper is organised as follows: Sec. 2 contains the definition of the languages and of the bisimulation relations which we consider. Sec. 3 presents the basic bisimulation algorithm for non-stochastic process algebras. Sec. 4 and Sec. 5 do the same for the purely Markovian case and for the case where both Markovian and immediate transitions are allowed. In Sec. 6, we focus on BDDs and introduce a novel stochastic extension, DNBDDs. Furthermore, we show how algorithms for parallel composition and bisimulation can benefit from the use of these data structures. The paper concludes with Sec. 7.

2 Basic definitions

In this section, we describe the scenario which we will consider in more detail. We define the language and its operational semantics. In addition, we recall the definition of strong and weak Markovian bisimilarity. For more details, the interested reader is referred to [11].

Definition 2.1 Let Act be the set of valid action names and Pro the set of process names. We distinguish the action i as an internal, invisible activity. Let $a \in$ Act, $P, P_{i} \in \mathcal{L}, A \subseteq$ Act $\backslash\{\mathrm{i}\}$, and $X \in$ Pro. The set \mathcal{L} of expressions consists of the following language elements:

stop	inaction		
$a ; P$	action prefix	$(a, \lambda) ; P$	Markovian prefix
$P_{1}[] P_{2}$	choice	$P_{1}\|[A]\| P_{2}$	parallel composition
hide a in P	hiding	X	process instantiation

A set of process definitions (of the form $X:=P$) constitutes a process environment.
The following operational semantic rules define a labelled transition system (LTS) containing action transitions, $--\stackrel{a}{\longrightarrow}$, and Markovian transitions, $\xrightarrow{a, \lambda}$.

Strong and weak Markovian bisimilarity are defined in a variant of Larsen \& Skou style [19], using the function $\gamma: \mathcal{L} \times$ Act $\times 2^{\mathcal{L}} \mapsto \mathbb{R}$, often called the cumulative rate, defined as follows (we use $\{\mid$ and $\mid\}$ to denote multiset brackets):

$$
\gamma(P, a, C):=\sum_{\lambda \in E(P, a, C)} \lambda, \text { where } E(P, a, C):=\left\{|\lambda| P \xrightarrow{a, \lambda} P^{\prime} \wedge P^{\prime} \in C \mid\right\} .
$$

Definition 2.2 An equivalence relation \mathcal{B} is a strong Markovian bisimulation, if $(P, Q) \in \mathcal{B}$ implies that (i) $P \xrightarrow{-a} P^{\prime}$ implies $Q \xrightarrow{-a} Q^{\prime}$, for some Q^{\prime} with $\left(P^{\prime}, Q^{\prime}\right) \in \mathcal{B}$,
(ii) for all equivalence classes C of \mathcal{B} and all actions a it holds that

$$
\gamma(P, a, C)=\gamma(Q, a, C)
$$

Two expressions P and Q are strong Markovian bisimilar (written $P \sim Q$) if they are contained in a strong Markovian bisimulation.

Weak bisimilarity is obtained from strong bisimilarity by basically replacing $\rightarrow \stackrel{a}{\rightarrow}$ with $==\underline{\underline{a}}=\rightarrow$. Here, $==\underline{\underline{a}}=\Rightarrow$ denotes an observable a transition that is preceded and followed by an arbitrary number (including
 $\xrightarrow{\mathrm{i}^{*}} \rightarrow$. As discussed in [11], the extension from strong to weak Markovian bisimilarity has to take into account the interplay of Markovian and immediate transitions. Priority of internal immediate transitions gives rise to the following definition [10].

Definition 2.3 An equivalence relation \mathcal{B} is a weak Markovian bisimulation, if $(P, Q) \in \mathcal{B}$ implies that (i) $P=\stackrel{a}{=} \rightarrow P^{\prime}$ implies $Q=\stackrel{a}{=} Q^{\prime}$, for some Q^{\prime} with $\left(P^{\prime}, Q^{\prime}\right) \in \mathcal{B}$,
(ii) if $P \stackrel{i}{i}=\rightarrow P^{\prime} \xrightarrow{i} \rightarrow$ then there exists Q^{\prime} such that $Q \Rightarrow \stackrel{i}{i}==Q^{\prime} \xrightarrow{i} \xrightarrow{\rightarrow}$ and for all equivalence classes C of \mathcal{B} and all actions a

$$
\gamma\left(P^{\prime}, a, C\right)=\gamma\left(Q^{\prime}, a, C\right)
$$

Two expressions P and Q are weak Markovian bisimilar (written $P \approx Q$) if they are contained in a weak Markovian bisimulation.

In this definition, $P \xrightarrow{\underline{i}}$ denotes that P does not possess an outgoing internal immediate transition. We call such a state a tangible state, as opposed to vanishing states which may internally and immediately evolve to another behaviour (denoted $P \rightarrow--{ }_{-\rightarrow}$).

It can be shown that strong Markovian bisimilarity is a congruence with respect to the language operators. The same result holds for weak Markovian bisimilarity except for congruence with respect to choice, see [10].

In the sequel, we consider two distinct sub-languages of \mathcal{L}. The first, \mathcal{L}_{1}, arises by disallowing Markovian prefix. This sub-language gives rise to an ordinary, non-stochastic process algebra, a subset of Basic LOTOS [2] where only action transitions appear in the underlying LTS. On this language, strong and weak Markovian bisimilarity coincide with Milner's non-stochastic strong and weak bisimilarity [20]. The complementary subset, \mathcal{L}_{2}, is obtained by disallowing the other prefix, action prefix. The resulting language coincides with MTIPP à la [12], and both strong and weak Markovian bisimilarity coincide with Markovian bisimilarity on MTIPP. Note that Markovian bisimilarity agrees with Hillston's strong equivalence [13]. The semantics of \mathcal{L}_{2} only contains Markovian transitions, and we will refer to such a transition system as a stochastic LTS (SLTS). The complete language, where both prefixes coexist involves both types of transitions, and we shall call such a transition system an extended SLTS (ESLTS).

3 Bisimulation minimisation in non-stochastic process algebras

In this section, we introduce the general idea of iterative partition refinement, working with the language \mathcal{L}_{1}. We aim to set the ground for an understanding of the following sections. To illustrate the key ideas, we use as an example a queueing system, consisting of an arrival process and a finite queue. First, we model an arrival process as in infinite sequence of incoming arrivals (arrive), each followed by an enqueue action (enq).

$$
\text { Arrival }:=\text { arrive; enq; Arrival }
$$

The behaviour of the queue is described by a family of processes, one for each value of the current queue population.

$$
\begin{array}{rll}
\text { Queue }_{0} & :=\text { enq;Queue }{ }_{1} \\
\text { Queue }_{i} & :=\text { enq;Queue }{ }_{i+1}[] \text { deq; Queue }{ }_{i-1} & 1 \leq i<\max \\
\text { Queue }_{\text {max }} & :=\text { deq; Queue } \text { max }-1
\end{array}
$$

These separate processes are combined by parallel composition in order to describe the whole queueing system. Hiding is used to internalise actions as soon as they are irrelevant for further synchronisation.

$$
\text { System } \left.:=\text { hide enq in (Arrival }|[e n q]| \text { Queue }_{0}\right)
$$

Fig. 1 (top) shows the LTS associated with the System specified above for the case that the maximum queue population is $\max =3$. The LTS has 8 states, the initial state being emphasised by a double circle. Fig 1 (bottom) shows an equivalent representation, minimised with respect to weak bisimilarity. The original state space is reduced by replacing every class of weakly bisimilar states by a single state.

Algorithms for computing bisimilarity always require a finite state space. Traditionally, they follow an iterative refinement scheme [21, 9, 16]. This means that starting from an initial partition of the state space which consists of a single class (containing all states), classes are refined until the obtained partition corresponds to a bisimulation equivalence. The result thus obtained is the largest existing bisimulation, in a sense the "best" such bisimulation, since it has a minimal number of equivalence classes.

Figure 1: LTS of the queueing system example, before and after applying weak bisimilarity

For the refinement of a partition, the notion of a "splitter" is very important. A splitter is a pair ($a, C_{s p l}$), consisting of an action a and a class $C_{s p l}$. During refinement, a class C is split with respect to a splitter, which means that subclasses C^{+}and C^{-}are computed, such that subclass C^{+}contains all those states from C which can perform an a-transition leading to class $C_{s p l}$, and C^{-}contains all remaining states.

In the following, an algorithm for strong bisimulation is presented. The algorithm uses a dynamic set of splitters, denoted Splitters, which can be realised as a pointer structure. Note that here we only present a basic version of the algorithm which can be optimised in many ways [9, 21]. By a deliberate treatment of splitters, it is possible to obtain a time complexity $\mathcal{O}(m \log n)$, where n is the number of states and m is the number of transitions.

1. Initialisation

Partition : $=\{S\}$
/* the initial partition consists of only one class which contains all states */
Splitters $:=$ Act \times Partition
/* all pairs of actions and classes have to be considered as splitters*/
2. Main loop

```
while (Splitters \(\neq \emptyset)\)
    choose splitter ( \(a, C_{s p l}\) )
    forall \(C \in \operatorname{Partition} \operatorname{split}\left(C, a, C_{s p l}\right)\)
    /* all classes (including \(C_{s p l}\) itself) are split */
    Splitters \(:=\) Splitters \(-\left(a, C_{s p l}\right)\)
    /* the processed splitter is removed from the splitter set */
```

It remains to specify the procedure split. Its task is to split a class C, using ($a, C_{s p l}$) as a splitter. If splitting actually takes place, the input class C is split into subclasses C^{+}and C^{-}.

```
procedure split(C,a,C Cspl}
    C+}:={P|P\inC\wedge\existsQ:(P~\xrightarrow{}{a}QQ\wedgeQ\in\mp@subsup{C}{spl}{})}\quad/* the subclass C+ is computed */
    if (C}\mp@subsup{C}{}{+}=C\mathrm{ or }\mp@subsup{C}{}{+}=\emptyset) return /* only continue if class C actually needs to be split */
    C-}:=C-\mp@subsup{C}{}{+}\quad/*\mp@subsup{C}{}{-}\mathrm{ is the complement of }\mp@subsup{C}{}{+}\mathrm{ with respect to C */
    Partition := Partition \cup{\mp@subsup{C}{}{+},\mp@subsup{C}{}{-}}-{C}
    Splitters := Splitters \cup (Act }\times{\mp@subsup{C}{}{+},\mp@subsup{C}{}{-}})-Act \times{C
    /* the partition and the splitter set are updated */
```

We illustrate the algorithm by means of the above queueing example. In fact, we shall compute weak instead of strong bisimilarity. The only change that is necessarry for this purpose concerns the transition relation $--\underset{\rightarrow}{a}$ used in procedure split, which is replaced by the weak relation $==\underline{=}=\rightarrow$. However, this requires the computation of $==\underline{\underline{a}} \Rightarrow$ during the initialisation phase. As a matter of fact, the computation of $==\underline{\underline{a}}=\Rightarrow$ dominates the complexity of partition refinement, basically because the reflexive and transitive closure $\rightarrow \mathrm{i}^{*}-\rightarrow$ of internal moves has to be computed in order to build the weak transition relation. The usual way of computing a transitive closure has cubic complexity. (Some slight improvements are known for this task, see for instance [7]. In any case, this is the computationally expensive part.)

The LTS is depicted in Fig. 2 (top) where we have used a particular shading of states in order to visualize the algorithm. In the beginning all states are assumed to be equivalent, and hence, all states are shaded with the same pattern. We use to refer to the set of states shaded like . So, Partition := \{ , and Splitters is initialised accordingly.

Figure 2: Initialisation, first and second refinement step of the algorithm

After computing the weak transition relation $===\rightarrow$, we start After computing the weak transition relation $==\Rightarrow$, we start partition refinement by choosing a splitter, say (deq, and computing $\operatorname{split}(, d e q,()$ The initial state has no possibility to perform $a===\underline{d e q}=\Rightarrow$ transition in contrast to all other states. Therefore ${ }^{+}=\Longrightarrow$ and $={ }^{-}$. As a consequence, Partition becomes $\{\circlearrowleft, \Longrightarrow\}$ and new splitters are added to Splitters while the currently processed one, (deq, $)$, is removed. This completes the first iteration and leads to the situation depicted in Fig. 2 (middle).

By choosing a different splitter, say (deq, W), we start the next iteration. Since Partition now contains two elements, we compute $\operatorname{split}(\infty, \operatorname{deq},()$ and $\operatorname{split}(\underset{Z}{\infty}, \operatorname{deq}, \infty) . S$ cannot be split
 $\{\infty, \mathbb{Q}, \mathbb{Q}\}$ and adding new splitters leads to the situation depicted in Fig. 2 (bottom). Subsequent iterations of the algorithm will divide 8 further, leading to five partitions in total. The algorithm terminates once the set Splitters is empty.

4 The Markovian case

In this section, we consider the MTIPP-style language \mathcal{L}_{2} where all actions are associated with a delay which is an exponentially distributed random variable. The semantic model of a process from the language \mathcal{L}_{2} is an SLTS, only containing transitions $\xrightarrow{a, \lambda}$.

We return to our example of a queueing system. The arrival process is now modelled as follows, employing the Markovian action prefix:

$$
\text { Arrival }:=(\text { arrive, } \lambda) ;(e n q, 1) ; \text { Arrival }
$$

Since every action has an exponential delay, every action must be associated with a rate. Action arrive occurs with rate λ, whereas for action $e n q$ we specified the (passive) rate 1. Its meaning will become clear in connection with the specification of the queue process.

$$
\begin{array}{rll}
\text { Queue }_{0} & :=(e n q, \eta) ; \text { Queue }_{1} & \\
\text { Queue }_{i} & :=(e n q, \eta) ; \text { Queue }_{i+1}[](\text { deq }, \delta) ; \text { Queue }_{i-1} & 1 \leq i<\max \\
\text { Queue }_{\text {max }} & :=(d e q, \delta) ; \text { Queue }_{\max -1} &
\end{array}
$$

Here, the rate η is assigned to action $e n q$. In general, when two Markovian actions are synchronised, one must specify a rule that determines how the resulting rate is to be calculated from the two individual rates. For reasons discussed (for instance) in [11], it is mathematically convenient to use the product of the two partner rates as the resulting rate. However, since it is physically counter-intuitive to consider the product of two rates to be of type "rate" again, we will always make sure that exactly one of the two partner rates is equal to 1 , representing a passive participation in the synchronisation, while the other partner contributes the actual rate which will also be the resulting rate.

Fig. 3 depicts the SLTS obtained from the parallel composition of processes Arrival and Queue ${ }_{0}$ synchronised over action enq.

Figure 3: Semantic model of the Markovian queueing system, isomorphic to a CTMC

From a given SLTS one can immediately construct a continuous time Markov chain (CTMC) [17]. The arcs of the CTMC are given by the union of all the transitions joining the LTS nodes (regardless of their labels), and the transition rate is the sum of the individual rates. This is justified by the properties of the exponential distribution, in particular the fact that the minimum of two exponentially distributed random variables with rates λ_{1}, λ_{2} is again exponentially distributed with rate $\lambda_{1}+\lambda_{2}$. Transitions leading back to the same node (loops) can be neglected, since they would have no effect on the balance equations of the CTMC. The CTMC carries only the (cumulated) rate labels. Performance measures can then be derived by calculating the steady-state or transient state probabilities of the CTMC.

As already mentioned, both strong and weak Markovian bisimilarity coincide with Markovian bisimilarity à la MTIPP on this language. The technical reason is that the first clauses of Definition 2.2 and Definition 2.3 are irrelevant, while the respective second clauses both boil down to $\gamma(P, a, C)=\gamma(Q, a, C)$ for all actions a and classes C. This equivalence notion has a direct correspondence to the notion of lumpability on CTMCs [17, 13]. As a consequence, the algorithm which we develop can be used to efficiently

Figure 4: split_tree used by procedure split ${ }^{\prime}$
compute lumpable partitions of an SPA description (as well as a CTMC in isolation). The basic bisimulation algorithm is the same as in Sec. 3, only the procedure split needs to be modified. Procedure split' now uses a data structure split_tree which is shown in Fig. 4. It essentially sorts states according to their γ-values. During refinement, when a class C is split by means of a splitter ($a, C_{s p l}$), possibly more than one subclass $C_{\gamma_{1}}, C_{\gamma_{2}}, \ldots, C_{\gamma_{k}}$ will be generated ($k \geq 1$). Input class C is split such that the cumulative rate $\gamma\left(P, a, C_{s p l}\right)=\gamma_{j}$ is the same for all the states P belonging to the same subclass $C_{\gamma_{j}}$, a leaf of the split_tree.

```
procedure \(s p l i t{ }^{\prime}\left(C, a, C_{s p l}\right)\)
    forall \(P \in C\)
        \(\gamma:=\gamma\left(P, a, C_{s p l}\right)\)
        /* the cumulative rate from state \(P\) to \(C_{s p l}\) is computed */
        insert(split_tree, \(P, \gamma\) )
        /* state \(P\) is inserted into the split_tree */
    /* now, split_tree contains \(k\) leaves \(C_{\gamma_{1}}, \ldots, C_{\gamma_{k}} * /\)
    if \((k>1) / *\) if \(C\) has been split into \(k>1\) subclasses */
        Partition \(:=\) Partition \(\cup\left\{C_{\gamma_{1}}, C_{\gamma_{2}}, \ldots, C_{\gamma_{k}}\right\}-\{C\}\)
        Splitters \(:=\) Splitters \(\cup\left(\right.\) Act \(\left.\times\left\{C_{\gamma_{1}}, C_{\gamma_{2}}, \ldots, C_{\gamma_{k}}\right\}\right)-\) Act \(\times\{C\}\)
        \(/ *\) the partition and the splitter set are updated */
```

In the forall loop of procedure split', the cumulative rate γ is computed for every state P in class C, and state P is inserted into the split_tree such that states with the same cumulative rate belong to the same leaf (procedure insert). The split_tree has k leaves, i.e. k different values of γ have appeared. If splitting has taken place (i.e. if $k>1$), the partition must be refined and the set of splitters has to be updated. As in the non-stochastic case, this basic algorithm can be improved a lot, by essentially adopting the management of splitters of [21] yielding the complexity result of strong bisimilarity.

Proposition 4.1 The above algorithm computes Markovian bisimilarity on a given SLTS. It can be implemented such that the time complexity is of order $\mathcal{O}(m \log n)$ and the space complexity is of order $\mathcal{O}(m+n)$, where n is the number of states an m is the number of transitions.

The detailed proof is given in [10].

5 Markovian and immediate actions

In this section, we consider the complete language \mathcal{L} where both immediate and Markovian actions coexist. Again, we return to our queueing system example. In the arrival process, action arrive has an exponential delay, whereas action enq is immediate.

$$
\text { Arrival }:=(\text { arrive }, \lambda) ; \text { en } ; \text { Arrival }
$$

The specification of the Queue is again modified with respect to Sec. 3, i.e. action enq is immediate and action deq has exponential delay.

$$
\begin{array}{rll}
\text { Queue }_{0} & :=\text { enq;Queue } & \\
\text { Queue }_{i} & :=\text { enq;Queue }{ }_{i+1}[](\text { deq, } \delta) ; \text { Queue }_{i-1} & 1 \leq i<\text { max } \\
\text { Queue }_{\text {max }} & :=(\text { deq, } \delta) ; \text { Queue }_{\text {max }-1} &
\end{array}
$$

The overall system is again given by the composition of Arrival and $Q u e u e_{0}$, where $e n q$ is hidden after synchronisation. The semantic model of such a specification from the language \mathcal{L} is an ESLTS with two types of transitions: Markovian transitions \longrightarrow, and action transitions --- . Fig. 5 (top) depicts the ESLTS for the example queueing system. In the context of our complete language \mathcal{L}, the notion of weak Markovian bisimilarity is central for associating a CTMC to a given specification. The reason is that immediate transitions do not have a counterpart on the level of the CTMC. Weak Markovian bisimilarity justifies to eliminate internal immediate transitions such that a CTMC-like representation results. In order to illustrate how the relation can be used to achieve this, the equivalence classes of weak Markovian bisimilarity are indicated in Fig. 5 (bottom). Note, however, that this effect requires the absence of nondeterminism (after applying weak Markovian bisimilarity) [10].

Figure 5: ESLTS of the queueing system example, before and after applying weak Markovian bisimilarity

An algorithm to compute this relation is based on the one given in the previous section, but proceeds in a different way. The technical reason is that, similar to the computation of branching bisimilarity [23], refining a partition by means of a splitter might cause that the refinement with respect to already processed splitters has to be repeated for this partition. ${ }^{1}$ This is a crucial difference with respect to the algorithms we have described before. For branching bisimilarity, the problem is tackled in [15]. Bouali has adopted this machinery to compute also weak bisimilarity [3]. Indeed our algorithm is based on this adaption.

We use $P \searrow^{i} P^{\prime}$ to indicate that P may internally and immediately evolve to a tangible state P^{\prime}, i.e. where no further internal immediate transition is possible. Formally, $P\rangle^{i} P^{\prime}$ iff $P=\underset{i=}{i}=\rightarrow P^{\prime}$ and $P^{\prime} \xrightarrow[H]{i} \rightarrow$. If there is at least one stable state P^{\prime} that can be reached from P via internal immediate transitions we use the predicate $P \searrow^{i}$. The converse situation is denoted $P \chi_{\dot{i}}^{i}$. For the latter states, the second condition of Definition 2.3 needs not to be checked at all, while the first clause is still relevant. In the sequel, we consider transition systems that do not contain states of this type. This is done for simplicity, the general case is tackled in [10]. The basic algorithm is as follows.

1. Initialisation as before in Sec. 3. In addition, the weak transition relation $==\rightarrow$ is computed from $\rightarrow--$.

[^0]2. Main loop

```
while (Splitters \(\neq \emptyset\) )
    choose splitter ( \(a, C_{s p l}\) )
    forall \(C \in\) Partition split( \(\left.C, a, C_{s p l}\right)\)
    /* all classes are split with respect to weak transitions */
    forall \(C \in\) Partition split" \(\left(C, a, C_{s p l}\right)\)
    /* all classes are split with respect to Markovian transitions*/
    Splitters \(:=\) Splitters \(-\left(a, C_{s p l}\right)\)
    /* the processed splitter is removed from the splitter set */
```

The main loop contains two different procedures, split and split" requiring further explanation. The first, $\operatorname{split}\left(C, a, C_{s p l}\right)$, refines with respect to clause (i) of Definition 2.3. This is achieved using the procedure split of Section 3, but applied on weak transitions, as in the example of Sec. 3. The second function, split ${ }^{\prime \prime}\left(C, a, C_{s p l}\right)$, is more complicated. It refines with respect to the second clause of Definition 2.3. The details are given below.

```
procedure split \({ }^{\prime \prime}\left(C, a, C_{s p l}\right)\)
    forall \(P \in C\) and \(P \xrightarrow{i} \rightarrow \quad / * P\) is a tangible state \(* /\)
    \(\gamma:=\gamma\left(P, a, C_{s p l}\right)\)
    /* the cumulative rate to \(C_{s p l}\) is computed */
    insert(split_tree, \(P, \gamma\) )
    /* state \(P\) is inserted into the split_tree */
    /* now, split_tree contains \(k\) leaves \(C_{\gamma_{1}}, \ldots, C_{\gamma_{k}} * /\)
    forall \(P \in C\) and \(P \xrightarrow{\text { i }} \quad / * P\) is a vanishing state */
    if there is \(\gamma_{j}\) such that \(P \searrow^{i} Q\) implies \(Q \in C_{\gamma_{j}}\)
        insert(split_tree, \(P, \gamma_{j}\) )
        /* vanishing state \(P\) can internally and immediately evolve only to tangible states of class \(C_{\gamma_{j}}\) */
    Partition \(:=\) Partition \(\cup\left\{C_{\gamma_{1}}, C_{\gamma_{2}}, \ldots, C_{\gamma_{k}}\right\}-\{C\}\)
    Splitters \(:=\) Splitters \(\cup\left(\right.\) Act \(\left.\times\left\{C_{\gamma_{1}}, C_{\gamma_{2}}, \ldots, C_{\gamma_{k}}\right\}\right)-\) Act \(\times\{C\}\)
    /* the partition and the splitter set are updated */
    if \(\left(C \neq \bigcup_{1}^{k} C_{\gamma_{j}}\right) / *\) some vanishing states have not been covered yet */
    Partition \(:=\) Partition \(\cup\left\{C-\bigcup_{1}^{k} C_{\gamma_{j}}\right\}\)
    Splitters \(:=\) Splitters \(\cup\left(\right.\) Act \(\left.\times\left\{C-\bigcup_{1}^{k} C_{\gamma_{j}}\right\}\right)\)
    /* all remaining vanishing states form a new class, since they can
        internally and immediately evolve to tangible states from different classes */
```

The reader is invited to check the result depicted in Fig. 5 by means of this algorithm. In order to facilitate the inspection, tangible states are highlighted by bold circles in the figure. An implementation of this algorithm, based on $[15,3]$ has a cubic complexity:

Proposition 5.1 The above algorithm computes weak Markovian bisimilarity on a given ESLTS not containing states with $P \not \chi_{\dot{\perp}}$. It can be implemented such that it requires $\mathcal{O}\left(n^{3}\right)$ time and $\mathcal{O}\left(n^{2}\right)$ space, where n is the number of states.

The proof is given in [10], where also an adaption of the algorithm is presented that overcomes the restriction to $X^{\dot{L}}$-free ESLTSs. This adapted algorithm has the same time and space complexity. It is worth pointing out that non-stochastic weak bisimulation essentially has the same complexity, due to the fact that a transitive closure operation is needed to compute weak transitions $\Rightarrow=\Rightarrow$ in either case.

6 Symbolic representation with BDDs

In this section, we discuss details of a BDD-based implementation of the above algorithms. BDDs are specific representations of Boolean functions and have recently gained remarkable attention as efficient encodings of very large state spaces. In a process algebraic context, this efficiency is mainly owed to the fact that the parallel composition operator can be implemented on BDDs in such a way that the size of the data structure only grows linearly in the number of parallel components, especially for loosely coupled components. This compares favourably to the exponential growth caused by the usual operational semantics, due to the interleaving of causally independent transitions.

We explain how LTSs can be encoded as BDDs and illustrate a way to include the rate information of (E)SLTS into this data structure and the bisimulation algorithms. To complete the picture, we also discuss parallel composition on BDDs.

6.1 Binary Decision Diagrams and the encoding of LTSs

A Binary Decision Diagram (BDD) [5] is a symbolic representation of a Boolean function $f:\{0,1\}^{n} \rightarrow$ $\{0,1\}$. Its graphical interpretation is a rooted directed acyclic graph with one or two (terminal) leaf nodes. The graph is essentially a collapsed binary decision tree in which isomorphic subtrees are merged and "don't care" nodes are skipped ("don't care" nodes are those nodes where the truth value of the corresponding variable is irrelevant for the truth value of the whole formula). As a simple example, Fig. 6 (left) shows the BDD for the function $\bar{a} t+a s \bar{t}$. The function value for a given truth assignment can be determined by following the corresponding edges (one-edges drawn solid, zero-edges dashed) from the root until a terminal node is reached. In the graphical representation of a BDD, for reasons of simplicity, the terminal false-node and its adjacent edges are usually omitted, see Fig. 6 (right).

Figure 6: BDD for $\bar{a} t+a s \bar{t}$, simplified graphical representation (right)
A BDD unambiguously defines a Boolean function, based on the so-called Shannon expansion:

$$
f\left(v_{1}, \ldots, v_{n}\right)=v_{1} \cdot f\left(1, v_{2}, \ldots, v_{n}\right)+\overline{v_{1}} \cdot f\left(0, v_{2}, \ldots, v_{n}\right)
$$

It is known that BDDs provide a canonical representation for Boolean functions, i.e. a given Boolean function has a unique BDD representation, assuming a fixed ordering of the Boolean variables [5] (in Fig. 6, the variable ordering is $a<s<t$). Algorithms for BDD construction from a Boolean expression and for performing Boolean operations (and, or, not, ...) on BDD arguments basically follow a recursive scheme according to the above Shannon expansion.

Next we will describe how a LTS can be represented symbolically by a BDD. For the moment, we look at the non-stochastic case where it is not necessary to consider information about transition rates. The idea is to encode states and actions by Boolean vectors. One transition of the LTS then corresponds to a conjunction of $n_{a}+2 n_{s}$ literals (a literal is either a Boolean variable or the negation of a Boolean variable)

$$
a_{1} \ldots a_{n_{a}} s_{1} \ldots s_{n_{s}} t_{1} \ldots t_{n_{s}}
$$

where literals $a_{1} \ldots a_{n_{a}}$ encode the action, vector $s_{1} \ldots s_{n_{s}}$ identifies the source state and $t_{1} \ldots t_{n_{s}}$ the target state of the transition (we assume that the number of actions to be encoded is between $2^{n_{a}-1}$ and
$2^{n_{a}}+1$, so that n_{a} bits are suitable to encode them, and similarly for the number of states). The overall LTS corresponds to the disjunction of the terms for the individual transitions.

The size of a BDD is highly dependent of the chosen variable ordering. In the context of transition systems, experience has shown that the following variable ordering yields small BDD sizes [8]:

$$
a_{1}<\ldots<a_{n_{a}}<s_{1}<t_{1}<s_{2}<t_{2}<\ldots<s_{n_{s}}<t_{n_{s}}
$$

i.e. the variables encoding the action come first, followed by the variables for source and target state interleaved. In particular, this ordering is advantageous in view of the parallel composition operator discussed below.

To illustrate the encoding, Fig. 7 (top) shows the LTS corresponding to the Arrival process from Sec. 3, the way transitions are encoded and the resulting BDD. Since there are only two different actions (arrive and enq), one bit would be enough to encode the action. However, in view of the other action which will be needed later $(d e q)$, we use two bits to encode the action, i.e. $n_{a}=2$. Since there are only two states in the LTS of process Arrival, one bit is enough to encode the state. Fig. 7 (bottom) depicts the encoding of the LTS of process Queue $_{0}$ (assuming, again, that max $=3$). This LTS has four states, therefore two bits are needed to represent the state. In this example, we can observe the interleaving of the Boolean variables for the source and target state.

	$a_{1}, a_{2}, s_{1}^{\prime}, t_{1}^{\prime}, s_{2}^{\prime}, t_{2}^{\prime}$
$0 \xrightarrow{\text { en }} \underline{-}$ - $1 \rightarrow$	$(0,1,0,0,0,1)$
$1 \rightarrow 2 \rightarrow$	$(0,1,0,1,1,0)$
$2 \rightarrow-{ }^{\text {en }}$ - $3 \rightarrow$	$(0,1,1,1,0,1)$
$1 \xrightarrow{\text { deq }} \rightarrow 0 \rightarrow$	$(1,0,0,0,1,0)$
$2 \xrightarrow{\text { deq }}$, $1 \longrightarrow$	($1,0,1,0,0,1$)
$3 \xrightarrow{\text { deq }} \rightarrow 2 \rightarrow$	$(1,0,1,1,1,0)$

Figure 7: LTS, transition encoding and corresponding BDD

6.2 Symbolic parallel composition and reachability analysis

The parallel composition operator algebra can be realised directly on the BDD representation of the two operand processes. Consider the parallel composition of two processes, $P=P_{1}|[A]| P_{2}$, and assume that the BDDs which correspond to processes P_{1} and P_{2} have already been generated and are denoted \mathcal{P}_{1} and \mathcal{P}_{2}. The set A can also be coded as a BDD, namely \mathcal{A}. The BDD \mathcal{P} which corresponds to the resulting process P can then be written as a Boolean expression:

$$
\begin{aligned}
\mathcal{P}= & \left(\mathcal{P}_{1} \wedge \mathcal{A}\right) \wedge\left(\mathcal{P}_{2} \wedge \mathcal{A}\right) \\
& \vee\left(\mathcal{P}_{1} \wedge \overline{\mathcal{A}} \wedge \operatorname{Stab}_{P_{2}}\right) \\
& \vee\left(\mathcal{P}_{2} \wedge \overline{\mathcal{A}} \wedge \operatorname{Stab}_{P_{1}}\right)
\end{aligned}
$$

The term on the first line is for the synchronising actions in which both P_{1} and P_{2} participate. The term on the second (third) line is for those actions which $P_{1}\left(P_{2}\right)$ performs independently of $P_{2}\left(P_{1}\right)$ - these actions are all from the complement of A. The meaning of $S t a b_{P_{2}}\left(S t a b_{P_{1}}\right)$ is a BDD which expresses stability of the non-moving partner of the parallel composition, i.e. the fact that the source state of process $P_{2}\left(P_{1}\right)$ equals its target state.

We illustrate parallel composition by means of our queueing example. Fig. 8 shows the intermediate and final BDDs when performing BDD-based parallel composition of processes Arrival and Queue ${ }_{0}$. In the second (third) BDD one can observe the parts which expresses stability of process Queue e_{0} (Arrival).

Figure 8: Intermediate and final BDD results for parallel composition
The BDD resulting from the parallel composition, \mathcal{P}, describes all transitions which are possible in the product space of the two partner processes. Given a pair of initial states for P_{1} and P_{2}, only part of the product space may be reachable due to synchronisation conditions. Reachability analysis can be performed on the BDD representation, restricting \mathcal{P} to those transitions which originate in reachable states.

6.3 Symbolic bisimulation

The basic bisimulation algorithm of Sec. 3 and its various optimisations can be realised efficiently using BDD-based data structures. For convenience, the transition system is represented not by a single BDD, but
by a set of BDDs $T_{a}(s, t)$, one for each action a (here, s and t denote vectors of Boolean variables of length $\left.n_{s}\right)$. The current partition is stored as a set of BDDs $\left\{C_{1}(s), C_{2}(s), \ldots\right\}$, one for each class. When class C is split into subclasses C^{+}and C^{-}during execution of procedure split, those subclasses are also represented by BDDs. The dynamic set of splitters, Splitters, is realised as a pointer structure.

The computation of the subclass C^{+}in procedure split can be formulated as a Boolean expression on BDD arguments.

$$
C^{+}(s):=C(s) \wedge \exists t\left(T_{a}(s, t) \wedge C_{s p l}(t)\right)
$$

The existential quantification used in this expression can be performed on BDDs.

6.4 BDDs with rate information

We will now discuss the important question of how to symbolically represent a stochastic LTS. Clearly, pure BDDs are not capable of representing the numerical information about the transition rates. In the literature, several modifications of the BDD data structure have been proposed for representing functions of the type $f:\{0,1\}^{n} \rightarrow \mathbb{R}$. Most prominent among these are multi-terminal BDDs [6] and edge-valued BDDs [18]. In all of these approaches, the basic BDD structure is modified. In particular, the efficiency of the data structure, due to the sharing of isomorphic subtrees, is diminished. Based on this observation, we decided to develop a different approach which we call decision-node BDD (DNBDD) [22]. The distinguishing feature of DNBDDs is that the basic BDD structure remains completely untouched when moving from an LTS encoding to an SLTS encoding. The additional rate information is attached to specific edges of this BDD in an orthogonal fashion.

In a BDD representing a LTS, a path from the root to the terminal true-node corresponds to 2^{k} transitions of the transition system, where k is the number of "don't care" variables on that path. Since these transitions are labelled by 2^{k} distinct rates, we will attach a rate vector of length 2^{k} to that path.

Definition 6.1 A decision node BDD (DNBDD) is a BDD enhanced by a function

$$
\text { rates }: \text { Paths } \rightarrow(\mathbb{R})^{+}
$$

where Paths is the set of paths from the root node to the terminal true-node (and $(\mathbb{R})^{+}$is the set of finite words over \mathbb{R}) such that for any such path p,

$$
\operatorname{rates}(p) \in(\mathbb{R})^{2^{k}}
$$

if k is the number of "don't cares" on path p.
In other words, $\operatorname{rates}(p)$ is a vector of real values $\left(\lambda_{0}, \ldots, \lambda_{2^{k}-1}\right)$ of length 2^{k}. The mapping from transitions to individual rates of such a vector is implicitely given by the valuation of the encoding of the transitions on "don't care" nodes, which ranges from 0 to $2^{k}-1$. For the practical realisation of this concept, we must answer the question of where to store the rate vectors. This leads to the following consideration: Instead of characterising a path by all its nodes, we observe that a path is fully characterised by its decision nodes. Decision nodes are those nodes which have two successor nodes which are both different from the terminal false-node. The idea is to attach the rate vectors to the outgoing edges of the last decision node of a path, i.e. the decision node nearest to the terminal true-node.

This concept is illustrated in Fig. 9 (in the figure, decision nodes are drawn black). In this example, a SLTS with four transitions is represented by a DNBDD, the number of Boolean variables is $n_{a}=n_{s}=1$. Each of the transition encodings is mapped onto a rate as shown in the middle part of the figure. The first two transitions share the same path, a path which has a "don't care" in the Boolean variable s. Therefore, the corresponding rate list (λ, μ) has length two. The other two paths do not have any "don't care" variables, so they each correspond to exactly one transition of the SLTS and the corresponding rate lists both have length one.

To give some more insight into the encoding, we return to our queueing example. Fig. 10 shows the DNBDDs associated with processes Arrival, Queue 0_{0} and Arrival $|[e n q]| Q u e u e_{0}$. On the left, rates λ and 1 are attached to the outgoing edges of the (single) decision node of the BDD. In the middle, six individual rates are attached to the appropriate edges. On the right hand side, up to three rate vectors, each

Figure 9: Simple SLTS, mapping of Boolean assignments to rates and corresponding DNBDD
consisting of a single rate, are attached to BDD edges. For instance, the rate vectors $(\delta)(\delta)$ specify the rates of the two transitions encoded as bitstrings 10110010 and 10000010 whose paths share the last decision node.

Figure 10: DNBDDs for the queueing example. Shorthand notation: $X=(\eta)(\delta)(\delta)$

In the case where several rate vectors are attached to the same BDD edge (because several paths share their last decision node) it is important to preserve the one-to-one mapping between paths and rate lists. This could simply be accomplished by the lexicographical ordering of paths. For algorithmic reasons, however, we use a so-called rate tree, a pointer structure which makes it possible to access rate lists during recursive descent through the BDD [22].

Parallel composition of two SLTSs based on their symbolic representation follows the same basic algorithm as sketched in Sec. 6.2. Looking at the operational rules in Sec. 2, we use MTIPP-style synchronisation by calculating the product of the individual rates as the rate of a synchronising transition. However, the concept of DNBDDs is not bound to this decision, since any other arithmetic expression of the two individual rates can be equally employed. However, we remind that the decision should take into account the algebraic properties of the calculus. In particular, the congruence property is a yardstick for a proper decision [11].

6.5 Symbolic Markovian bisimulation

We now discuss aspects of a DNBDD-based algorithm which computes Markovian bisimulation on SLTSs. The basic bisimulation algorithm is the same as in Sec. 4, only the procedure split' needs to be adapted. When using DNBDDs, the cumulative rate of action a from state P to class $C_{s p l}$ is computed in the following way: We compute $T_{P \xrightarrow{a} C_{s p l}}(s, t)$, the DNBDD which represents all a-transitions from state P to states from class $C_{s p l}$. It can be obtained by restricting $T_{a}(s, t)$ to the single source state P and to target states from class $C_{s p l}$ (recall that the transition relation is represented by individual DNBDDs $T_{a}(s, t)$, one for every action a, and that class C is represented by a $\operatorname{BDD} C(t))$:

$$
T_{P \xrightarrow{a} C_{s p l}}(s, t):=T_{a}(s, t) \wedge(s \ddot{=} P) \wedge C_{s p l}(t)
$$

We use the notation $s \ddot{=} P$ to denote that state P is encoded as Boolean vector s. The cumulative rate $\gamma\left(P, a, C_{s p l}\right)$ is then computed by applying the function soar (sum of all rates) to $T_{P \xrightarrow{a} C_{s p l}(s, t) \text {. This func- }}$ tion simply sums up all the entries of all rate lists of a DNBDD. For example, application of the function soar to the DNBDD in Fig. 9 yields $\lambda+\mu+\alpha+\beta$. Furthermore, in the split_tree used by procedure split' (Fig. 4) the subclasses $C_{\gamma_{1}}, \ldots, C_{\gamma_{k}}$ are now also represented by BDDs.

```
procedure \(s p l i t{ }^{\prime}\left(C, a, C_{s p l}\right)\)
    forall \(P \in C\)
        \(T_{P \xrightarrow{a} C_{s p l}}(s, t):=T_{a}(s, t) \wedge(s \ddot{=} P) \wedge C_{s p l}(t)\)
        \(\gamma:=\operatorname{soar}\left(T_{P \xrightarrow{a} C_{s p l}}(s, t)\right)\)
        /* the cumulative rate from state \(P\) to \(C_{s p l}\) is computed */
        insert(split_tree, \(P, \gamma\) )
        /* state \(P\) is inserted into the split_tree */
    /* now, split_tree contains \(k\) leaves \(C_{\gamma_{1}}, \ldots, C_{\gamma_{k}} * /\)
    if \((k>1) \ldots\) the remaining part of procedure split' is as in Sec. 4,
                (but Partition and Splitters are represented by BDDs)
```


6.6 BDDs with and without rate information

The semantics of the complete language \mathcal{L} comprises both types of transitions, action transitions $\rightarrow \stackrel{a}{\longrightarrow}$ and Markovian transitions $\xrightarrow{a, \lambda}$, in one transition system, an ESLTS. Using the knowledge developed in the previous sections, an ESLTS can be encoded by means of two separate data structures, one BDD to encode all action transitions and one DNBDD to encode all Markovian transitions. Also, during parallel composition, the component BDDs are treated separately from the component DNBDDs. Therefore the treatment of ESLTS does not pose specific problems. Furthermore, the computation of weak Markovian bisimilarity (Sec. 5) can be lifted to this combination of BDD and DNBDD. Only the first part of function split" requires the DNBDD information, in order to sort tangible markings in a split_tree (the tangibility predicate is encoded as a BDD as well), in analogy to the implementation of function split t^{\prime} given in Sec. 6.5. The subsequent steps work completely on BDDs.

7 Conclusion

In this paper, we have discussed efficient algorithms to compute bisimulation style equivalences for Stochastic Process Algebras. In addition, we have presented details of a BDD-based implementation of these algorithms, introducing DNBDDs to represent the additional rate information which is relevant for the analysis of the underlying Markov chain.

The complexity results established in this paper allow the following simple conclusion: the computational complexity of computing bisimulation equivalences does not increase when moving from a nonstochastic to a stochastic setting. For Markovian bisimilarity this fact is also mentioned (in similar settings) in [14] and in [1].

The usefulness of BDDs to encode transition systems has been stressed by many authors. However, we would like to point out that the myth, saying that BDDs always provide a more compact encoding than the ordinary representation (as a list or a sparse matrix data structure), does not hold in general. A naïve encoding of transition systems as BDDs does not save space. Heuristics for encodings are needed, exploiting the structure of the specification. The implementation of parallel composition on BDDs is indeed such a heuristics, and a very successful one, since an exponential blow-up can be turned into a linear growth.

Apart from encoding transition systems as (DN)BDDs and parallel composition on (DN)BDDs, we have described how bisimulation algorithms can be implemented on these data structures. As a consequence, all the ingredients are at hand for carrying out compositional aggregation of SPA specifications in a completely BDD-based framework. In this way, the state space explosion problem can be alleviated. We are currently implementing all these ingredients in a prototypical tool written in C, based on our own DNBDD package [4]. However, in order to obtain performance results, the (minimised) BDD representation still has to be converted back to the ordinary representation, since we do not have a Markov chain analyser which works directly on DNBDDs. This would be a challenging task for future work.

References

[1] M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time. Theoretical Computer Science, 1998. to appear.
[2] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS. In P.H.J. van Eijk, C.A. Vissers, and M. Diaz, editors, The Formal Description Technique LOTOS, Amsterdam, 1989. North-Holland.
[3] A. Bouali. Weak and branching bisimulation in FCTOOL. Rapports de Recherche 1575, INRIA Sophia Antipolis, Valbonne Cedex, France, 1992.
[4] H. Bruchner. Symbolische Manipulation von stochastischen Transitionssystemen. Internal study, Universität Erlangen-Nürnberg, IMMD VII, 1998. in German.
[5] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE ToCS, C-35(8):677-691, August 1986.
[6] E.M. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-terminal Binary Decision Diagrams: An efficient data structure for matrix representation. In IWLS: International Workshop on Logic Synthesis, Tahoe City, May 1993.
[7] D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions. In Proc. 19th ACM Symposium on Theory of Computing, 1987.
[8] R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic model checking in CCS. Distributed Computing, 6:155-164, 1993.
[9] J.C. Fernandez. An Implementation of an Efficient Algorithm for Bisimulation Equivalence. Science of Computer Programming, 13:219-236, 1989.
[10] H. Hermanns. Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürnberg, 1998. to appear.
[11] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras - Between LOTOS and Markov Chains. Computer Networks and ISDN Systems, 30(9-10):901-924, 1998.
[12] H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for MTIPP. In U. Herzog and M. Rettelbach, editors, Proceedings of the 2nd Workshop on Process Algebra and Performance Modelling. University of Erlangen-Nürnberg, IMMD, November 1994.
[13] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.
[14] T. Huynh and L. Tian. On some Equivalence Relations for Probabilistic Processes. Fundamenta Informaticae, 17:211-234, 1992.
[15] J.F.Groote and F.W.Vaandrager. An efficient algorithm for branching bisimulation and stuttering equivalence. In M. S. Paterson, editor, Seventeenth Colloquium on Automata, Languages and Programming (ICALP) (Warwick, England), volume 443 of Lecture Notes in Computer Science, pages 626-638. Springer, 1990.
[16] P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and Three Problems of Equivalence. Information and Computation, 86:43-68, 1990.
[17] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.
[18] Y.-T. Lai and S. Sastry. Edge-Valued Binary Decision Diagrams for Multi-Level Hierarchical Verification. In 29th Design Automation Conference, pages 608-613. ACM/IEEE, 1992.
[19] K. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information and Computation, 94(1), 1991.
[20] R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
[21] R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of Computing, 16(6):973-989, 1987.
[22] M. Siegle. Technique and tool for symbolic representation and manipulation of stochastic transition systems. TR IMMD 7 2/98, Universität Erlangen-Nürnberg, March 1998. http://www7.informatik.unierlangen.de/~siegle/own.html.
[23] R. J. van Glabbeek and W. Weijland:. Branching Time and Abstraction in Bisimulation Semantics. Journal of the ACM, 43(3):555-600, 1996.

[^0]: ${ }^{1}$ In terms of [15], stability is not inherited under refinement.

