Compositional Performance M odelling
with the T1PPtooal

H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, M. Siegle
Universitat Erlangen-Nurnberg, IMMD 7, Martensstr. 3, 91058 Erlangen, Germany

Abstract. Stochastic Process Algebras have been proposed as compositional
specification formalisms for performance models. In this paper, we describe a
tool which aims at realising all beneficial aspects of compositional performance
modelling, the TIPPtool. It incorporates methods for compositional specification
as well as solution, based on state-of-the-art-techniques, and wrapped in a user-
friendly graphical front end.

1 Introduction

Process agebras are an advanced concept for the design of distributed systems. Their
basicideaisto systematically construct complex systemsfrom smaller building blocks.
Standard composition operators allow one to create highly modular and hierarchical
specifications. An agebraic framework supports the comparison of different system
specifications, process verification and structured analysis. Classica process agebras
(e.g. CSP[20], CCS[26] or LOTOS [5]) describe the functional behaviour of systems,
but no temporal aspects.

Starting from [17], we developed an integrated design methodology by embedding
stochastic featuresinto process a gebras, | eading to the concept of Sochastic Process Al-
gebras (SPA). SPAs allow to specify and investigate both functional and temporal prop-
erties, thus enabling early consideration of all major design aspects. Research on SPA
has been presented in detail in several publications, eg. [11, 19, 4, 28, 15, 8] and the se-
ries of Workshops on Process Algebras and Performance Modelling (PAPM) [1].

This paper isabout amodelling tool, the TIPPtool, which reflects the state-of -the-art
of SPA research. Devel opment of thetool started as early as1992, the origina aim being
a prototypetool for demonstrating the feasibility of our ideas. Over the years, the tool
has been extensively used inthe TIPP project as atestbed for the semantics of different
SPA languages and the corresponding agorithms. Meanwhile, the tool has reached a
high degree of maturity, supporting compositional modelling and analysis of complex
distributed systems via a user-friendly graphical front end.

The core of thistool isan SPA language where actions either happen immediately
or are delayed in time, the delay satisfying a Markovian assumption [15]. Beside sup-
port for analysis of functional aspects, thetool offersalgorithmsfor the numerical analy-
sis of the underlying stochastic process. Exact and approximate eval uation techniques
are provided for stationary as well as transient analysis. As a very advanced feature,
the tool supports semi-automatic compositional reduction of complex models based on
equival ence-preserving reduction. This enablesthetool to handlelarge state spaces (the
running example given hereis small, due to didactical reasons and limited space).

Among related work, the PEPA Workbench [9] isanother tool for performance eval-
uation, where Markov chain models are al so specified by means of a process algebra.

The paper is organised as follows: In Sec. 2, we summarise the theoretical back-
ground of stochasticprocess algebras. Sec. 3 givesan overview of thetool’ scomponents.
All aspects of model specification are discussed in Sec. 4, and anaysis algorithms are
the subject of Sec. 5. The paper concludes with Sec. 6.

2 Foundationsof Stochastic Process Algebras
2.1 Process algebras

Classical process agebras have been designed asformal description techniquesfor con-
current systems. They are well suited to describe reactive systems, such as operating
systems, automation systems, communication protocols, etc. Basically, a process age-
braprovidesalanguagefor describing systems as a cooperation of smaller components,
with some distinguishing features.

Specifications are built from processes which may perform actions. The description
formalismis compositional, i.e. it allowsto build highly modular and hierarchical sys-
tem descriptions using composition operators. A parallel composition operator is used
to express concurrent execution and possible synchronisation of processes. Another im-
portant operator realises abstraction: Details of a specification which are internd at a
certain level of system description can be internaised by hiding them from the envi-
ronment. Several notionsof equivalence make it possible to reason about the behaviour
of a system, e.g. to decide whether two systems are equivalent. Apart from a formal
means for verification and validation purposes, equivalence-preserving transformation
can be profitably employed in order to reduce the complexity of the system. Thiscan also
be performed in a compositiona way, by replacing system parts through behaviourally
equivalent but minimised representations.

Let us exemplify the basic constructs of process algebras on a simple queueing
system. It consists of an arrival process Arrival, a queue with finite capacity, and
a Server. First, we model an arrival process as in infinite sequence of incoming ar-
rivas(arrive), each followed by an enqueue action (eng), using the prefix operator *:’.

Arrival := arrive; enq; Arrival
The behaviour of afinite queue can be described by afamily of processes, one for each
value of the current queue popul ation. Depending on the popul ation, the queue may per-
mittoenqueueajob (eng), dequeueajob (deq) or both. Thelatter possibility isdescribed
by a choice operator ‘[]' between two alternatives.
Queueq := engq; Queue;
Queue; := eng; Queue; 41 [] deq; Queue;_q 1<i< max

Queuemax = deQ; Queuemax—l

Next, we need to define a server process, as follows:

Server := deq; serve; Server
These separate processes can how be combined by the parallel composition opera
tor “|[..]]" in order to describe the whole queueing system. This operator is para-
metrised with alist ‘.. ." of actions on which the partners are required to synchronise:
System := Arrival |[enq]] Queuey |[deg]| Server

A forma semantics associates each language expression with an unambiguous in-
terpretation, a labelled transition system (LTS). It is obtained by structural opera
tional rules which define for each language expression a specific LTS as the unique
semantic model. Fig. 1 (top) shows the semantic model for our example queue-
ing system (assuming that the maximal population of the queue is max = 3).
There are 16 dtates, the initial state being indicated by a double circle. A tran-
sition between two states is represented by a dashed arrow and labelled with the
corresponding action. Since we assume that we are not interested in the inter-

ueune ueune ueune ueues
0 1 2

-7 e .7
serv@ serve” , AR serve’ AN serve” /
VA N A N A

;o | S ’ s S VA
e w0 I, eng_ ') I, eng_) I,
armve S armue Y Sarmue Sy Sarmue
!\/\ ! r’ ~s ! r’ o !
RN AN NN
O Yo o
{ A A A
B . i - : -
FPe d S ! S d
47 ! 47 ! 47 |
S0 | S | S |
e%ve 7 serve P serve P serve
\ - I - \
de ' de
L deq ! i deq \
() ' O)
\ 7 \\ 7 \ 7
4 . geq s . geq !
\ - L 0 L . .
\ arrwd eng arrmive eng \ arrive eng arrive
\ P / . \ / c
\ | - \ (v P \ 7 . \ |
N V%,» N I g . Yo N

hide eng,deg in... andweak bisimulation

©)

7\ ;
serve arrive
|

\
\ P ~< P e - ~<
o< RGOS ROS RO)
~ . PP N N P e
~<_ - ~<_ - ~<_ - 7
i \
serve serve serve

\ /
serve’ yarrive

Fig. 1. Semantic model, hiding and reduction
nal details of interaction between Arrival and Queue, respectively Queue and
Server, we may wish to only observe actions arrive and serve. This requires ab-
straction from internal details, and is achieved by employing the hiding operator:
hide enq, deq in System
Asaresult, actionseng and deq are now internal actions, i.e. they are not visible from
the environment. Actions hidden from the environment become the di stinguished inter-
nal action . In other words, the semantic model of the above expression is obtained by
turning al enq or deq labels appearing in Fig. 1 (top) into 7.

Such r-actions can be eiminated from the semantic model using an equivalence
which is insensitive to interna details of a specification, such as weak bisimulation.
Weak bisimulation is one of the central notions of equivalence in the general context
of process algebras [26]. Fig. 1 (bottom) shows an LTS, which is weakly bisimilar to
theone ontop (where dl eng- and deg-actions have been replaced by 7). It may be sur-
prising that the resulting LTS has 6 and not 4 states (we assumed maz = 3). Thisis
due to the fact that the arrival of a customer and its enqueueing into the queue are sep-
arate actions, so that one more arrival is possibleif the queueisaready full. Likewise,
dequeueing and serving are modelled as separate actions, such that at the moment the
gueue becomes empty, the server is still serving the last customer.

2.2 Stochastic Process Algebras

Stochastic Process Algebras (SPA) are aimed at theintegration of quaitative-functional
and quantitative-temporal aspectsin asingle specification and modelling approach [11].
In order to achieve thisintegration, tempora information is attached to actions, in the
form of continuous random variables, representing activity durations. The additional
timeinformationin the resulting LTS makes it possible to evaluate different system as-
pects:

o functional behaviour (e.g. liveness or deadlocks)
o temporal behaviour (e.g. throughput, waiting times, reliability)
o combined properties (e.g. probability of timeout, duration of an event sequence)
Let us give a SPA specification for the above queueing system by attaching distribu-
tions to actions. We assume that the arrival process is a Poisson process with rate A
and the service timeis exponentially distributed with rate ;.. We are not forced to asso-
ciate adurationwith every action. Actionswithout duration happen as soon as possible,
therefore they are called immediate actions. In our example, enqueueing and degqueue-
ing is assumed to happen without any relevant delay, thus eng and deq are immediate.

Arrival := (arrive, A); enq; Arrival

Server := deq; (serve, u); Server

The queueis specified as before (it isonly involved in eng and deg, therefore its spec-
ification does not have to be changed) and the composed System is aso as above.
Fig. 2 depictsthelabelled transition system associated with thismodel (again assuming
mazx = 3). Notethat thereare two kindsof transitionsbetween states: Timed transitions
(drawn by solid lines) which are associated with an exponential delay, and immediate
transitionswhich happen as soon as the respective action is enabled.

States without outgoing immediate transition are shown emphasised in the figure.
They correspond to states of a Continuous Time Markov Chain (CTMC) (shown at the
bottom of the figure) isomorphic to an LTS obtained by applying the notion of weak
Markovian bisimulation, after hiding eng and deq. Weak Markovian bisimulationisan
adaptation of weak bisimulationto the setting of timed and immediate actions[14]. Ab-
straction from the two immediate actions eng and deq is an essentia prerequisite for
unambiguously determining the Markov chain underlying this specification. If, say, eng
ishidden, we can be surethat our assumption that eng happenswithout any delay isjus-
tified. Otherwise, it may bethecasethat System isused asacomponent in further com-
position contexts, which require synchronisationon action eng. Inthiscase, the Markov
chain depends on additional timing constraintsimposed on eng. Thereforeit is not pos-
sibleto remove eng, aslong as further synchronisation on eng is still possible (indeed,
abstraction rules out any further synchronisation, since r isnot allowed to appear in the
list*..." of synchronising actions of a parallel composition operator *|[..]|".)

2.3 Bisimulation and Compositional analysis

Asillustratedin the running example, thenotion of bisimulationisimportant. Two states
of aprocessarebisimilar if they havethe same possibilitiestointeract (withathird party)
and reach pairwise bisimilar states after any of these interactions [26]. This definition
only accounts for immediate actions. On the level of Markov chains, a corresponding
definition is provided by the notion of lumpability. Two states of a Markov chain are
lumpable if they have the same cumulative rate of reaching pairwise lumpable states
[23]. Markovian bisimulationreflects lumpability and bisimulation on timed transitions,
by imposing constraints on actions and rates, see [15, 19] for details. Weak Markovian
bisimulation additionally alows abstraction from internal immediate actions, in ana-
ogy to ordinary weak bisimulation [16]. Equivalences are defined in terms of states and
transitions, i.e. on theleve of theLTS. It ispossibleto characterise their distinguishing
power on the level of the language by means of equational laws[13].

H H H u A
Fig. 2. Top: The LTSfor the example queueing system. Bottom: The corresponding CTMC

In the presence of composition operators, such as hiding and parallel composition,
itishighly desirable that equivalences are substitutive. Intuitively, substitutivity allows
to replace components by equivalent ones within a large specification, without chang-
ingtheoverall behaviour. Substitutiveequival encesare a so called congruences. Indeed,
Markovian and weak Markovian bisimulation are congruences. Practically important,
such equiva ences allow compositional reduction techniques, where the size of a com-
ponent’s state space may be reduced, without affecting any significant property of the
wholemodel. Compositional reduction has successfully been applied to avariety of sys-
tems, see e.g. [7] for an impressive industrial case study.

We return to our queueing example in order to illustrate compositiona re-
duction. We now consider a queueing system with one Poisson arrival process,
two queues and two servers. We build this system from the same components,
i.e. processes Arrival, Queue and Server are defined as above. The system is now:

System := Arrival |[enq]| ((Queuey |[deq]| Server) |||
(Queuey |[deq]| Server))

If the queue sizes are given by max = 3, the model has 128 states and 384 transitions.
By hiding actions eng and deq and applying weak Markovian bisimulation to the com-
plete system, the state space can be reduced to 22 states and 48 transitions. However,
reduction can aso be performed in acompositiona fashion: The subsystem consisting
of one queue-server pair has 8 states, which can be reduced downto 5 states. Combining
both (reduced) queue-server pairs, we obtain 25 states which can be reduced downto 15
states (this reduction step mainly exploits symmetry of the model). If thisreduced sys-
tem is combined with the arrival process, we get 30 states which can again be reduced
to 22 states. This concept of compositional reduction isillustrated in Fig. 3, where the
size of the state space and the number of transitionsare given for each reduction step.

It isinteresting to observethat thissystem exhibitsnon-deterministicbehaviour: Af-
ter the completion of aMarkovian timed action arrive, it isleft unspecified which of the
two queues synchroniseswith thearrival process onimmediate action enq (provided, of

hide degq states | states

414
Queve §rg —— transitions | transitions
T 8|5 (before after reduction)
2l 2 |~ 138
Server 513 /
5 15 .
44 hide deq 80 40 hide eng
Queve 55— 8|5 / 30| 22
| — 13|8 56| 48
212 /
Server 5715
2|2
Arrival —15

Fig. 3. Compositional reduction of the example queueing system

course, neither queueisfull, in which case the behaviour is deterministic). As aconse-
guence, the Markov chain underlying this specification is not completely specified. One
may assume that both alternatives occur with the same probability. Alternatively, one
may explicitly add information (such as a scheduling strategy) in order to resolve non-
determinism. In Sec. 4, we will follow the latter path.

3 Tool overview

The TIPPtool consists of severd interacting components. Specifications can be created
with an editor whichis part of thetool. A parser checks specificationsfor syntactic cor-
rectness. Another component is responsible for the generation of the LTS and for the
reduction of the LTS according to different bisimulation equivalences (currently, four
bisimulationagorithmsare provided). The user can specify performance and reliability
measuresto be cal culated (such as state probabiliti es, throughputsand mean val ues). Ex-
perimentscan be specified, providinginformationabout activity rateswhichmay vary. A
series of experiments can be carried out automatically in an efficient manner, generating
numerical resultsfor different values of acertain model parameter, whilethe state space
only needs to be generated once. The tool provides several numerical solution methods
for the steady state analysis as well as for transient analysis of Markov chains. The re-
sults of an experiment series are presented graphically with the tool PXGRAPH from
UC Berkeley.

The export module of the tool provides interfaces to three other tools, PEPP [12],
TOPO [24], and ALDEBARAN [6]. The former interface is based on a special seman-
ticsfor SPAswhich generates stochastic task graphs[18], for which thetool PEPP offers
awide range of both exact and approximate anaysis a gorithms, some of which work
even for genera distributions. The second interface provides support for the trandation
of SPA gpecifications into a format suitable for the LOTOS tool TOPO. Among other
functionalities, thistool is capable of building C-programs from LOTOS specifications.
The third interface can be used in order to bridge to the powerful bisimulation equiva-
lence algorithms of the tool ALDEBARAN.

4 Modée specification

In this section, we explain the details of the specification language supported by the
TIPPtoal. Itisan extension of basic LOTOS[5], the | SO standardised specification lan-
guage. To reflect the passing of timein a specification, randomly varying delays may be

attached to actions (at themoment, for reasons of anal ytical tractability, only exponentia
distributionsare supported).

Theavailableoperatorsare listed in Table 1; Action prefix, choice, hidingand paral-
lel composition (with synchronisation) have already been used in Sec. 2. If no synchro-
nisation between two processes is required, the pure interleaving operator | | | mod-
elsindependent parallelism. Synchronisation is possible both between immediate or be-
tween timed actions. Synchronising a timed with an immediate action is not allowed.
When synchronising on timed actions, we define the resulting rate to be the product of
the two partner rates (this definition preserves compositiondity [15]). The intuition of
theremaining operatorsisasfollows. st op representsan inactive process, i.e. aprocess
which cannot performany action. exi t behaveslikest op after issuing adistinguished
signa which isused in combination with the enabling operator >> to model sequentia
execution of two processes. Disruption with [> is useful to model the interruption of

one process by another. Process instantiations Play, . . ., a,,] resemble theinvocation of
procedures in procedural programming languages.
Name Syntax | Name Syntax
timed action prefix (a,r); P |inaction stop
immediate action prefix a; P | successful termination exit
choice P[] @ |enabling P>>qQ
parallel composition Pllai,...,an]]| @ |disruption P[>qQ
— pureinterleaving P ||| @ | processinstantiation Plai,...,an]
hiding hideay,...,aninP

Table 1. Basic syntax. P, (J are behaviour expressions, a, are action names.

The concept of processinstantiationmakes it possibleto parameteri se processes over
action names. In addition, it is often convenient to parameterise a specification with
somedataval ues, such asarate, or thelength of aqueue (theabove specificationisasim-
ple example for a data dependent specification, since parameter ¢ governs the synchro-
nisation capabilities of Queue;). We have incorporated the possibility to describe data
dependenciesin the TIPPtool. In addition, data can al so be attached as parametersto ac-
tions, and therefore be exchanged between processes, using the concept of inter-process
communication [5]. Thisishighly beneficial, in order to conveniently describe complex
dependencies. Datavauesaredeclared intheform! value, attached to an action, where
value may be a specific value, avariable or an arithmetic expression. Variable decla-
rations are the counterpart of value declarations. They have the form ?variable: type
where variable isthe name of the variable. These basic ingredients can be combined to
form different types of inter-process communication (note that i nter-process communi-
cationis currently only implemented for immediate actions), among them:

e value passing: If value declaration and variable declaration are combined in a syn-
chronisation, the valueis transmitted from one process to the other and thevariableis
instantiated by the transmitted value. An exampleis:
al2 ; stop |[a]] a?x:int ; b (x+1) ; ...

If several actionsare synchronised, each with a variable declaration of the same type,
asynchronisationwithanother processwhich offersavalue of the required typeyields
aform of multicast communication.

al2 ; stop |[a]] a?x:int ; P |[a]| a?y:int ;

o valuematching: If synchronisationon actionsis specified where both actionsinvolve
value declarations, this synchronisation is only possible if the values turn out to be
equal, asin the example given below.

a'2 ; stop |[a]]| a'(1+1) ;

To illustrate the power of these language el ements, we return to our running exam-
ple of aqueueing system. We modify the model in order to represent the join-shortest-
gueue (JSQ) service strategy. Theideaisto insert anew process, Schedul er , between
arrival and queue, whose task it isto insert an arriving job into the shortest queue. For
this purpose, Schedul er scans al queues in order to determine the shortest queue,
whenever an arrival has occurred. Process Ser ver is defined as before. The arrival
and queue processes do not communicate directly viaaction enq any more, but viathe
Schedul er . Therefore we simplify the arrival process as follows (‘pr ocess’ and
‘endpr oc’ are keywords enclosing a process specification):

process Arrival := (arrive, lanbda); Arrival endproc

i.e. Arrival and Schedul er now synchronise on the timed action ar ri ve. The
top-level specification isas follows:

(Arrival |[arrive]| Scheduler(2,1,1, 100, 100))
| [ask, repl, enq]
((Queue(1,0) |[deq]| Server) ||| (Queue(2,0) |[deq]| Server))

The Schedul er isa parametric process, which can be used for an arbitrary number
nog of queues. After an arrival (actionar r i ve with the“passive’ rate 1), the sched-
uler pollsall noq queuesin order to identify the queue with the smallest popul ation (ac-
tionsask andr epl). Each queue sends as areply its current popul ation. After polling,
Schedul er hasidentified the shortest queue. It then enqueues the job into that queue
(action enq). Parameters c, b, nc and nb are needed to store the current queue, the
gueue with (currently) smallest population, the current population and the (currently)
smallest population. Intheexample, nc and nb areinitiaisedwiththevalue 100, avalue
larger than any real queue population (notethat thetool providesthe possibility to spec-
ify choice aternatives which depend on conditions‘[...] ->’).

process Schedul er (noq, c, b, nc, nb) :=
(arrive, 1); AskQueue(noq,c, b, nc, nb)
wher e
process AskQueue(noq,c, b, nc,nb) :=
ask!c; repl?x:int; Decide(noq,c,b,x,nb)

endpr oc

process Decide(noq,c, b, nc,nb) :=
[c<noq and nc<nb] -> AskQueue(noq, c+1, ¢, nc, nc) [1
[c<noq and (nc>nb or nc=nb)] -> AskQueue(noq, c+1, b, nc, nb) [1
[c=noq and nc<nb] -> (eng!c; Schedul er(noq, 1, 1,100, 100)) []
[c=noq and (nc>nb or nc=nb)]->(enq!b; Schedul er(noq, 1, 1, 100, 100))

endpr oc

endpr oc

The Queue process hasto be modified aswell: It now hasa parameter s which denotes
theidentity of thequeue. In addition, it can now perform actionsask andr epl inorder
to supply information on the current queue size to the schedul er. Note how value match-
ingisused with actionsask and enq, and value passing is used with action r epl .

process Qeue(s,i) :=
askls; repl!i; Queue(s,i)
[]
([1<3] -> eng's; Queue(s,i+l) []
[i>0] -> deq; Queue(s,i-1))
endpr oc

5 Analysing a specification
5.1 Generating and analysing the semantic model

Theforma semantics of SPA providesan unambiguous description of how to construct
the semantic model in a mechanised way. The structura operationa rules can beimple-
mented in a straight-forward fashion. The resulting LTS is either saved directly to files
(while ahash-table of dl statesis maintained in memory) or it is temporarily stored in
main memory as an adjacency list, depending on whether equiva ence checking ago-
rithmsare selected or not.

Once the LTS isgenerated, it can be used for functional analysis. Our tool provides
the capabilities of checking for deadlocks and tracing through the states, i.e. showing a
path of actionsleading from theinitial state to a user-specified target state. Apart from
that, equival ence checking a gorithms can be used for deciding equival ence of two mod-
els. Inthisway it can be checked, for instance, whether amodel meets the requirements
of ahigh-level specification.

5.2 Performance evaluation

Transforming the semantic model into a CTMC and then analysing it by means of nu-
merical solutionagorithmsfor Markov chains, we can obtain performance and reliabil-
ity measures for a given specification.

M odels without immediate actions: For any SPA model with timed actions only
and finite state space, the underlying CTMC can be derived directly by associating a
Markov chain state with each node of the LTS [10, 19]. The transitions of the CTMC
are given by the union of al the arcsjoining the LTS nodes, and the transition rate is
the sum of the individua rates (see Fig. 4). Transitions leading back to the same node
(loops) can be neglected, since they would have no effect on the balance equations of
the CTMC. The action names are only taken into account later on, when high-level per-
formance measures are to be computed.

d, p
/W 214 @
@_»g,,/\ b, p — ®—>/\
BMU ¢, A @ A @

Fig. 4. Deriving aMarkov chain

Models with both timed and immediate actions: As discussed in Sec. 2, imme-
diate actions happen as soon as they become enabled. In order to ensure that this en-
abling cannot be delayed by further composition, abstraction of immediate actions is
mandatory. In the stochastic process, these immediate actions correspond to immedi-
atetransitions. The presence of immediate transitionsleadsto two kindsof statesinthis
process. States with outgoi ngimmediate transitions (vanishing states) and states without

suchtransitions (tangiblestates). If several immediate transitionsemanate fromasingle
state, the decision among these alternativesis non-deterministic, and it may depend on
which action is offered by the environment. If we consider the system as a closed sys-
tem (whichismade explicit by hiding al immediate actions) the decision among several
immediate transitions still has to be taken. One possible solution isto weight all alter-
natives with equa probabilities. The standard method used for eliminating immediate
transitionsis to incorporate transitions into the CTMC which are due to the traversa
of some vanishing states between two tangible states. This is done until al vanishing
states are bypassed [2]. Therate of these arcs is computed by multiplyingthe rate of the
Markovian transitions|eaving the source tangibl e state with the probability of reaching
the target tangible state. However, [29] showed that this technique should be applied
with carein the SPA context, essentially because anon-determinstic decision isconcep-
tually different from an equi-probabl edecision. Therefore, inorder to removeimmediate
transitions, it is more appropriate for SPAs to eliminate them on the basis of bisimula-
tion equivaences, as it has been done in Fig. 2. If non-deterministic alternatives only
lead (viasomeinternal, immediate steps) into equival ent states, equival ence-preserving
transformationsallow to remove this non-determinism, see Sec. 5.3.

In the TIPPtool, standard numerical solution agorithms (Gaul3-Seidel, Power
method, LU factorisation, refined randomisation) are employed for steady state analysis
aswell astransient anaysis of the CTMC. Apart from these, prototypical implementa
tionsof two efficient approximation methods are realised. Both approaches are based on
decomposition. Time Scal e Decomposition (TSD) isamethod which can exploit theNear
Complete Decomposability (NCD) property of many Markov chains. Response Time Ap-
proximation (RTA) works on the specification level rather than on the CTMC level [25].

5.3 Compositional model reduction
Equivaence relations such as (weak) Markovian bisimulation, introduced in Sec. 2.3,
are beneficia both for eliminating immediate transitions, and for reducing models with
very large state spaces. Both effects can be achieved by means of the same strategy. For a
given specification, say System, thekey ideaisto compute an equival ent specification,
System’, whichisminimal (with respect to the number of states). Performance anaysis
can then be based on the minimi sed specification which isobtained by a partitionrefine-
ment strategy: The bisimulation algorithm computes a partition of the state space, such
that the subsets correspond to the bisimul ation equiva ence classes. Thisisachieved by a
successive refinement of an initia partition which consists of asingle subset containing
all states. The partition becomes finer and finer until no further refinement is needed, or,
in algebraic terms, a fixed-point is reached. Thisfixed-point isthe desired result.
Thisgeneral strategy can be realised by means of very efficient algorithms[21, 27].
For specifications which do not contain timed transitions, we implemented Kanellakis
and Smolka'sal gorithmto compute strong and weak bisimulation. For the converse case
(only timed transitions), we implemented an agorithmwhich isdueto Baier [3] for fac-
torising specifications with respect to Markovian bisimulation. These two implementa-
tionsform the basis of the general case, where timed and immediate transitions coexist:
Weak Markovian bisimulation is computed by aternating the algorithmsfor weak bis-
mul ation (for immediate transitions) and Markovian bisimulation (for timed transitions)
until afixed-pointis reached. Since weak Markovian bisimul ation abstracts from inter-

nal, immediate transitions, this opens away to eliminate immediate transitionsfrom a
specification, as long as they are internal. However, in some cases hiding of immediate
transitionsis not sufficient, because non-deterministicinternal decisionsmay remain af -
ter factorisation. In this case the system is underspecified, and the TIPPtool produces a
warning message to the user.

Bisimulation-based minimisationis particularly beneficia if it isapplied to compo-
nentsof alarger specification in astepwisefashion. Sinceall implemented bisimulations
have the algebraic property of substitutivity, minimisation can be applied composition-
aly, asillustrated in Fig. 3. In this way, specifications with very large state spaces be-
come tractable. In the TIPPtool, compositional minimisation is supported in an elegant
way. By dragging the mouse insidethe editor window, it is possibleto highlight acertain
component of the specification and to invoke compositional minimisation of this com-
ponent. When the minimised representation is computed, a new specification is gener-
ated automatically, where the selected component has been replaced by the minimised
representation.

6 Concluson

In this paper, we have presented the status quo of the TIPPtool. Although alot has been
achieved, there remain, of course, many open problems for future research. We will
briefly present some aspects of ongoing work in the TIPP project.

Several attempts have been made in order to incorporate generally distributed ran-
dom variablesinto the model, see e.g. [18, 22]. However, they all suffer from the prob-
lem that general distributionslead to intractable stochastic processes. Another problem
isthat, so far, it isnot completely solved how to obtain an a gebraic framework (equiv-
alences and equational laws) for a process a gebrawith general distributions. A promis-
ing approach, however, is reported in [8], using stochastic automata as a model based
on Generalised Semi-Markov processes.

We are currently building a prototype tool for graphical model specification as an
easy-to-use front-end for users who are not familiar with the syntax of the TIPPtool’s
specification language. With theview on model swithlarge state spaces, weare currently
investigating techniquesfor the compact symbolic representation of the semantic model
of an SPA description, based on Binary Decision Diagrams [30].

To summarise, the TIPPtool realises state-of-the-art techniques for compositiona
performance and reliability modelling. As we have indicated, there is a lot of ongoing
activity, both in theoretical research, and concerned with the further development and
optimisation of the tool.

References
1. Workshopson Process Algebras and Performance Modelling, 1993 Edinburgh, 1994 Erlan-
gen, 1995 Edinburgh, 1996 Torino, 1997 Twente, 1998 Nice.

2. M. AjmoneMarsan, G. Balbo, and G. Conte. PerformanceModelsof Multiprocessor Systems.
MIT Press, 1986.

3. C. Baier. Polynomial time algorithms for testing probabilistic bisimulation and simulation.
In Proc. CAV'96. LNCS 1102, 1996.

4. M. Bernardo and R. Gorrieri. Extended Markovian Process Algebra. In CONCUR ' 96.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.
24,

25.

26.
27.

28.
29.

30.

T. Bolognesi and E. Brinksma. Introduction to the | SO specification languageLOTOS. Com+
puter Networks and ISDN Systems, 14:25-59, 1987.

. M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier. Protocol verification withthe ALDE-

BARAN toolset. Int. J. Softw. Tools for Techn. Transf., 1(1/2):166-184, 1997.

. G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian. Specification and Verifica-

tion of the Powerscale Bus Arbitration Protocol: An Industrial Experiment with LOTOS. In
Formal Description Techniques|X. Chapmann Hall, 1996.

. PR. D' Argenio, J-P. Katoen, and E. Brinksma. An algebraic approachto the specification of

stochastic systems. In Programming Concepts and Methods. Chapman and Hall, 1998.

. S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-

Based Approach to Performance Modelling. In 7th Int. Conf. on Modelling Techniquesand
Toolsfor Computer Performance Evaluation, Wien, 1994.

N. Gotz. Stochastische Prozef3algebren — Integration von funktionalem Entwurf und Leis-
tungsbewertung Verteilter Systeme. PhD thesis, Universitat Erlangen—Nurnberg, April 1994.

N. Gdtz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system design: The
integration of functional specification and performance analysis using stochastic process al-
gebras. In Tutorial Proc. of PERFORMANCE '93. LNCS 729.

F. Hartleb and A. Quick. Performance Evaluation of Parallel Programms — Modeling and
Monitoring with the Tool PEPP. In Proc. "Messung, Modellierung und Bewertung von
Rechen- und Kommunikationssystemen®, p. 51-63. Informatik Aktuell, Springer, 1993.

H. Hermanns. Interactive Markov Chains. PhD thesis, Universitat Erlangen-Niirnberg, 1998.

H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras as a Tool for
Performance and Dependability Modelling. In Proc. of IEEE Int. Computer Performance
and Dependability Symposium, p. 102—111, 1995. |EEE Computer Society Press.

H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras - Between LO-
TOS and Markov Chains. Computer Networksand |SDN Systems, 30(9-10):901-924, 1998.

H. Hermanns, M. Rettelbach, and T. Weil2. Formal characterisation of immediate actionsin
SPA with nondeterministic branching. In The Computer Journal [1], 1995.

U. Herzog. Formal Description, Time and Performance Analysis. A Framework. In Entwurf
und Betrieb Verteilter Systeme. Springer, Berlin, IFB 264, 1990.

U. Herzog. A Concept for Graph-Based Stochastic Process Algebras, Generally Distributed
Activity Timesand Hierarchical Modelling. [1], 1996.

J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

P. Kanellakisand S. Smolka. CCS Expressions, Finite State Processes, and Three Problems
of Equivalence. Information and Computation, 86:43-68, 1990.

J.P. Katoen, D. Latella, R. Langerak, and E. Brinksma. Partial Order Models for Quantitative
Extensionsof LOTOS. Computer Networksand |SDN Systems, 1998. to appear.

J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.

JA. Manas, T. de Miguel, and J. Salvachua. Tool Support to Implement LOTOS Specifica-
tions. Computer Networksand ISDN Systems, 25(7), 1993.

V. Mertsiotakis. Approximate Analysis Methodsfor Sochastic ProcessAlgebras. PhD thesis,
Universitét Erlangen—Nurnberg, 1998. to appear.

R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

R. Paigeand R. Tarjan. ThreePartition Refinement Algorithms. SIAM Jour nal of Computing,
16(6):973-989, 1987.

C. Priami. Stochastic =-calculus. [1], 1995.

M. Rettelbach. Sochastische Prozef3algebrenmit zeitlosen Aktivitaten und probabilistischen
Verzweigungen. PhD thesis, Universitat Erlangen—Nurnberg, 1996.

M. Siegle. Technique and tool for symbolic representation and manipulation of stochastic
transition systems. TR IMMD 7 2/98, Universitat Erlangen-Nirnberg, 1998.

