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Abstract

This article describes the novel stochastic modeling tool OpenSESAME which

allows for a quantitative evaluation of fault-tolerant High-Availability systems. The

input models are traditional reliability block diagrams (RBD) which can be enriched

with inter-component dependencies like failure propagation, failures with a common

cause, different redundancy types, and non-dedicated repair. OpenSESAME offers

a novel set of graphical diagrams to specify these dependencies. Due to the depen-

dencies, traditional solution methods for RBDs cannot be applied to OpenSESAME

models. We therefore present a novel evaluation method, which is based on the au-

tomatic generation of several state-based models, which are semantically equivalent

Preprint submitted to Elsevier 8 March 2007



to the high-level input model. Alternatively, either stochastic Petri nets or textual

models based on a stochastic process algebra can be generated. The state based

models are then analyzed using existing solvers for these types of models. Three

case studies exemplify the modeling power and usability of OpenSESAME.

Key words: dependability modeling, reliability block diagrams, stochastic

dependencies, web server, adjunct processor, fault-tolerant water supply

1 Introduction

A quantitative analysis of fault-tolerant systems may serve several purposes:

First, it is important to know the risk of using/operating the system. For

instance, it is frequently quoted that components used in an airplane should

have an unreliability of less than 10−9 for one hour of flight. Second, it is

often not trivial how a fault tolerant system must be built in order to achieve

the highest level of dependability, given a fixed set of components. A similar

question is: which part of the system should be made more dependable to get

the most increase in dependability? Third, increasing the dependability of a

system by adding redundancy usually implies some performance losses and/or

increased costs. Thus, the decreased performance/cost ratio must be justified

by a credible increase in reliability or availability. Fourth, from a somewhat

different perspective, a quantitative evaluation of the dependability of a system

may help to make the right decisions when purchasing such a system.

Stochastic dependability models [1–5] are used to predict the dependability

of systems from the dependability of their components. Fault trees (FT, see

[6–8]) and reliability block diagrams (RBD) are the most common modeling

techniques for fault tolerant systems. Unfortunately, the traditional solution
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methods for these models rely on the assumption that there are no inter-

component dependencies between the components of the system. Therefore,

these techniques yield dangerous, over-optimistic results as they do not take

into account failures with a common cause, failure propagation, imperfect

failure detectors, fail-over times (spent for fault detection, localization, and

isolation as well as reconfiguration), physical disturbances (e.g. heat, electro-

magnetic noise, vibration) and limited repair personnel.

State based models like Markov chains can be used to model systems including

these dependencies. As the state space grows exponentially with the number

of components, it is usually implicitly defined using e.g. stochastic process

algebras [9,10] or stochastic Petri nets [11–15]. However, these formal and

rigorous modeling methods are, in comparison to e.g. fault trees, not very

intuitive and require a higher learning effort. Furthermore, it is difficult to

modularize these models and arrange them in a hierarchic manner which often

results in quite unreadable models. Moreover, a stepwise refinement of the

models is usually not possible.

On this account, we propose to not use state-based models for specifying the

system directly, but to automatically generate them from a high-level model

description. In this paper, we advocate the tool OpenSESAME (Simple but

Extensive Structured Availability Modeling Environment, [2,16–18]) for this

purpose. The tool offers a user-friendly modeling environment which is based

on well-known formalisms like reliability block diagrams. However, in contrast

to conventional tools, these diagrams can be enriched by inter-component

dependencies including different kinds of redundancy strategies (like active-

active or active-standby), failure propagation, failures with a common cause,

limited repair and so on. Sec. 2 describes the input model of OpenSESAME
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in more detail. Sec. 3 explains how the input model is transformed into a

state-based model, which can then be evaluated by existing tools. For the

modelers, the transformation process is invisible: they just tell OpenSESAME

to perform the calculations and obtain the results. Thus, no knowledge in

the area of Petri nets or stochastic process algebra is necessary to create and

analyze OpenSESAME models. This is exemplified in Sec. 4 which presents

three real-world examples. The related work is described in Sec. 5. Finally, Sec.

6 summarizes the paper and gives an outlook on open problems and future

work.

2 Input Model

An OpenSESAME model as seen by the user comprises component tables,

reliability block diagrams, failure dependency diagrams, repair group tables,

and variable tables. Not all model parts are necessary, usually one starts with

one component table and a block diagram, only. Then, the model can be refined

by adding additional tables and diagrams. In the following, the individual parts

of a model are described.

2.1 Components

The component tables list all components the system consists of. Each com-

ponent type has a unique name, a mean time to failure (MTTF), and a mean

time to repair (MTTR). In its current implementation, OpenSESAME as-

sumes exponentially distributed failure and repair times, only. If the system

contains several components of the same type, the table also lists the number
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of components of this type. Furthermore, each component may have either a

dedicated repair person or is allotted to a repair group (see below). For small

and medium sized models, a single component table will be sufficient. For

larger models, several tables can be used to group related components. As a

rule of thumb, each table should not contain more than about ten different

components to conserve readability.

2.2 Reliability Block Diagrams

An extended version of reliability block diagrams (RBD) is used to model the

redundancy structure of the system. Defining the redundancy structure implies

the specification of the measures which will be computed by OpenSESAME.

RBDs are undirected graphs where each edge is labeled with a component.

A component may appear several times in the same RBD. Several pairs of

terminal nodes s and t each define a Boolean system which is available, if there

is a connection between these nodes and unavailable otherwise. As components

can be unavailable so can the edges: calculating the probability whether s and t

are connected yields the availability of the modeled system. During a solution

process, OpenSESAME calculates this availability. A special variable t (see

2.6) is used to specify the instant of time for a transient analysis. If t is set to

∞, a steady-state analysis is performed.

In OpenSESAME, several modern extensions to traditional RBDs were im-

plemented. First, so-called k-out-of-N:G edges are supported to allow for a

compact representation for many real-world systems. As its name implies, a

k-out-of-N:G edge is available, as long as at least k out of its N parallel paths

are available (or good). The parameter k is usually depicted in a circle right
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to the k-out-of-N:G edge. Fig. 1 shows three representations of a 2-out-of-3:G

system comprising the components c[1], c[2], and c[3] which were previously

defined in the component table. The leftmost representation refers to an array

of identical components in the table and is the most compact one. Its size is

independent of the parameters N and k, whereas the rightmost representa-

tion may become very large even for small values of N and k (
(

N
k

)
paths each

consisting of k edges are needed).

Second, the user may specify several pairs of terminal nodes. This allows for

calculating the availabilities of subsystems in addition to the overall availabil-

ity.

Third, edges may be labeled with a sub-RBD instead of a component. This

allows for building a hierarchy of RBDs. Thus, even large systems can be mod-

eled in a concise way. For example, Fig. 2 shows a hierarchic set of RBDs. The

topmost diagram “main” is the top-level RBD describing a parallel system.

Each path of the system is described in more detail in a sub-diagram. For the

sake of simplicity, the figure shows only one of these paths, namely path 3.

Path 3 is a series system: both valve A and valve B must be available for this

path, as well as at least k out of N pumps. Each pump is again modeled by a

sub-diagram. Because all sub-diagrams are identical, an array of sub-diagrams

(pump[i]) is used. Each pump is again a series system comprising two com-

ponents called part1 and part2. The basic edges valve A, valve B, part1[i],

part2[i] refer to the respective components in the component table (Tab. 1).
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2.3 Redundancy Types

As a unique feature of OpenSESAME, the model can be enriched with inter-

component dependencies. Because some dependencies are related to the re-

dundancy structure of the system, it makes sense to add these dependencies

to the RBD. For example, in many systems fault tolerance is achieved using

passive or standby redundant components. In such systems, the failure of an

active component must be detected, localized and isolated, and a system re-

configuration is necessary after the failure of the primary component. During

this so-called fail-over time, the system is unavailable (see Fig. 3).

To avoid over-optimistic results and unfair comparisons, availability models

should therefore take into account possible fail-over times. In OpenSESAME,

k-out-of-N:G edges can therefore be attributed with a fail-over time. Please

refer to Sec. 4.2 of this article for more detailed information.

2.4 Failure Dependency Diagrams

Not all inter-component dependencies result from fault tolerance mechanisms.

They can therefore appear between any two or more components of the system,

even if they are not neighbors in the redundancy structure. Adding these

dependencies to the RBD might therefore be difficult. For instance, it might

happen that there is a failure propagation between two components which

were modeled in different sub-RBDs.

To explicitly make a distinction between the redundancy structure on the one

hand, and failure dependencies on the other hand, OpenSESAME supports
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a second kind of diagram, called failure dependency diagram (FDD). These

diagrams can be used to model failures with a common cause, different kinds

of failure propagation as well as imperfect failure detection mechanisms (im-

perfect coverage).

FDDs are directed graphs: the nodes are labeled with components, whereas

the edges are labeled with a type and a probability. Currently, two types of

failure dependencies are supported: destructive failure propagation and block-

ing failure propagation. Drawing an edge of destructive failure propagation

with probability p between two components S and T means, that whenever

S fails, the failure is propagated to T with probability p. Thus, T fails at

the same time and must be repaired, too. Destructive failure propagations are

drawn using solid lines whereas blocking failure propagations are drawn by

dashed lines (see Fig. 4a). In the blocking case, T becomes unavailable but

will not be repaired by itself. As soon as component S is repaired, component

T becomes available, too.

As an FDD can contain several edges, and one OpenSESAME project can

comprise several FDDs, sophisticated failure dependencies can be modeled in

a concise and clear way. For example, Fig. 4b) and 4c) show several possi-

ble dependencies originating at source component S and affecting two target

components T1 and T2. In Fig. b) the targets are independently affected: the

failure may either propagate to T1, T2, or both T1 and T2. The probability

for the latter is – as the term independent implies – p2. In contrast, Fig. c)

shows common failure propagation: here, either both components T1 and T2

are affected by the propagation, or none. This behavior is modeled by using a

so-called pseudo component P. P does not appear in the redundancy structure

and cannot fail (its MTTF is ∞). However, it might be the target of a failure
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propagation from component S. In that case, it propagates the failure to both

T1 and T2 with probability 1.

For another example how FDDs can be used, please refer to Fig. 4d). Here,

the pseudo component P is the source of a failure propagation. This FDD

can be used to model common cause failures. P is attributed with the mean

time between such events. If P fails, i.e. the common cause occurs, a failure is

induced in both T1 and T2.

In standby redundant systems, a failure of the active component has to be

detected before the system can be reconfigured. This does not only take some

time (see Sec. 2.3), but may not be successful at all (no failure detection

mechanism is perfect). Imperfect failure detectors can be modeled with Open-

SESAME using failure propagation diagrams as shown Fig. 5 (left). A pseudo

component is used as a target of a non-destructive failure propagation. The

probability of propagation is 1− c, where c is the coverage factor of the failure

detection mechanism. This time, the pseudo component also appears in the

redundancy structure of the systems, as shown in Fig. 5 (right).

Because a component may appear several times in an FDD, the diagrams

can be easily modularized. In addition, an FDD node may refer to an array

of similar components to allow for a compact representation of symmetric

models. Please refer to Fig. 6 for an example.

2.5 Repair

Stochastic dependencies may also occur due to a limited amount of repair

personnel. Unless every component has a dedicated repair person, delays in
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the repair may occur if multiple components are failed at the same time and the

repair personnel is overburdened. In OpenSESAME, this can be modeled by

means of a repair group table. Each entry of this table describes a repair group

in terms of its size, i.e. number of repairs which can be done concurrently. In its

current implementation, OpenSESAME assumes a non-interruptive, random-

next repair policy for each repair group. Later revisions of OpenSESAME

might also support different repair strategies like first come (i.e. failed) first

served, shortest repair first or closest repair next etc.

2.6 Variables

In many scenarios, a model must be analyzed with a varying set of parameters.

For instance, one might want to evaluate the availability of a system with

varying failure and repair rates or a varying number of redundant components.

It is a big advantage of OpenSESAME, that all parameters of the model can

be defined in the form of a variable.

For this purpose, OpenSESAME supports three types of variables:

• Mean times represent positive real numbers and are used for MTTF and

MTTR values, as well as fail-over times in RBDs.

• Probabilities are numbers from the interval [0:1] and are used to attribute

edges in FDDs.

• Naturals can be used to specify the number of components of one type, the

parameter K in k-out-of-N:G edges and the capacity of a repair group.

For example, Fig. 7 shows a generic model of a system comprising N com-

ponents. The system is available, if at least K components are available. If
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one of the components fails, with probability p, all other components become

blocked until this component is repaired. During the evaluation process, the

values for N, K, p and the MTTF and MTTR of the component can be auto-

matically substituted. This allows for an easy execution of experiment series

and reproducible results.

There is one special time variable t which is used to specify the instant of time

for a transient analysis. For a steady state analysis, t can be set to ∞.

3 Transformation Process

As OpenSESAME models contain inter-component dependencies between the

failure and repair events, they cannot be evaluated with classical evaluation

techniques for Boolean models. Thus, the input diagrams are transformed

into state-based models, which in turn can be analyzed using an evaluation

tool for this model class. Currently, Generalized Stochastic Petri Nets (GSPN,

[13,19]), or, alternatively, textual models defined by a Stochastic Process Al-

gebra, (SPA) [9] are created.

At a glance, the transformation process consists of nine phases as shown in

figures 8 and 9. In the following, each phase is described in more detail.

3.1 Pre-processing

In the first phase, the model is simplified to facilitate the remaining trans-

formation process. More specifically, all variables are substituted by the re-

spective constants (if several experiments were defined, this and all remaining
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steps are repeated for each experiment). Then, component and RBD arrays are

replaced by the respective number of normal components and RBDs. Finally,

all hierarchies are resolved by copying the elements of the child diagrams into

their parents. Likewise, all FDDs are merged (by copying the nodes and edges)

into a single FDD. The result of the pre-processing phase is one OpenSESAME

project for each experiment containing: one component table, one RBD, zero

or one repair group table, and zero or one failure dependency diagram.

3.2 Gain redundancy structure

Next, the resulting RBD is converted into a symbolic expression. This can

be done by finding all minimal paths of the RBD. Each path then represents

one conjunction-term of the redundancy structure given in disjunctive normal

form. Thus, the redundancy structure is of the form:

∨
i=1,2,...,n

(ci1 ∧ ci1 ∧ ... ∧ cim)

In the worst case, the number of paths grows exponentially with the size of

the RBD. Thus, we are currently implementing a method to directly convert

the RBD into a binary decision diagram based on methods which are known

to work well for a diverse set of graphs [20].

3.3 Find independent sub-models

With the required information at hand we could now create one big state-

based model for the overall OpenSESAME project. However, as the number
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of states in such a model grows exponentially with the number of components,

the project is divided into parts which can be solved individually by finding

disjoint sets of inter-dependent components (SIC). This is done by creating

an undirected graph whose nodes are the components of the system. If two

components are dependent, an edge is added between the respective nodes.

The SICs are generated by finding the maximal connected sub-graphs, e.g. by

a depth first search.

For example, the system modeled in Fig. 10 comprises the four components

{A, B, C,D}. Due to the FDD, there are stochastic dependencies between A

and B, as well as between C and D. However, e.g. A and C are indepen-

dent from each other. Thus there are two sets of inter-dependent components:

{A, B} and {C, D}.

3.4 Decompose redundancy structure

The divide and conquer approach described above also requires to divide the

redundancy structure according to its variables. A simple way to do this is by

using a method similar to the Shannon decomposition which is best shown by

referring again to the example shown in Fig. 10. Its redundancy structure φ

looks like this:

φ = (A ∧B ∧ C) ∨ (A ∧B ∧D) ∨ (A ∧ C ∧D) ∨ (B ∧ C ∧D)

As the system consists of two SICs, two state-spaced models will be created.

Defining, e.g. φAB as φ with A substituted by true and B substituted with

false, i.e.:
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φAB = (C ∨D) φAB = (C ∧D)

φAB = (C ∧D) φAB = false,

(1)

the redundancy structure φ is divided as follows:

φ = [(A ∧B) ∧ φAB] ∨ [(A ∧B) ∧ φAB] ∨
∨ [(A ∧B) ∧ φAB] ∨ [(A ∧B) ∧ φAB] =

= [(A ∧B) ∧ (C ∨D)] ∨ [(A ∧B) ∧ (C ∧D)] ∨
∨ [(A ∧B) ∧ (C ∧D)] ∨ [(A ∧B) ∧ (false)]

As all sub-terms are disjoint, Pr{φ}, i.e. the probability that φ is true, can be

computed by:

Pr{φ}= Pr{(A ∧B) ∧ (C ∨D)}+ Pr{(A ∧B) ∧ (C ∧D)}+

+ Pr{(A ∧B) ∧ (C ∧D)}+ 0

and finally, because the subsets {A, B} and {C, D} are stochastically inde-

pendent, it holds:

Pr{φ}= Pr{(A ∧B)} · Pr{(C ∨D)}+

+ Pr{(A ∧B)} · Pr{(C ∧D)}+

+ Pr{(A ∧B)} · Pr{(C ∧D)}

In the following, a state state-based model is created for the SIC {A, B},

which is used to compute the probabilities Pr{A ∧ B}, Pr{(A ∧ B)}, and

Pr{(A ∧ B)} and a model is created for the SIC {C, D}, to compute the

remaining probabilities. This is done by attributing the state space models by

respective reward rates. For example, the reward rates of the model for SIC

{A, B} are: (A∧B), (A∧B), and (A∧B). In the solution process, the solver
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will compute the probabilities of these reward rates which can then be used

to compute Pr{φ}.

3.5 Create component oriented data structures

The OpenSESAME diagrams contain information in a dependency-centric

view. For instance, the FDDs contain information on the failure dependencies

using directed edges. This allows for an easy adding, removing and modify-

ing of dependencies. However, to generate a state-based model a component-

centric system view is required.

Thus, as a fifth step, each SIC is converted into a component-oriented data

structure. This data structure comprises one object for each component of the

SIC, which is attributed by the inter-dependencies this component is involved

in. For example, Fig. 11 shows an extract of a UML object diagram of such a

data structure. The component shown is a member of a redundancy cluster,

and can be affected by a destructive failure-propagation from other compo-

nents. In turn, if the component fails, with a probability of 0.001, the failure

is propagated to other components. The component is repaired by a single,

non-dedicated repairman.

3.6 Create Petri net / algebraic model

From this component-centric model, a state-based model can be derived. Cur-

rently, two basic types of state-based models are supported by OpenSESAME:

Generalized Stochastic Petri Nets (GSPNs, [13]) and textual models based on

the stochastic process algebra supported by the tool CASPA [10]. In the fol-
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lowing, we will describe how Petri nets are created, a similar approach was

chosen for the algebraic models.

One Petri net is created for each SIC. Each Petri net consists of several subnets:

one for each component of the SIC, one for each redundancy group, and one

for each repair group. In a second step, these subnets are connected to create

the overall Petri net. For an introduction to stochastic Petri nets, please refer

to [13] or [12]. In this article, we follow the suggestions found in [1] to obtain

a concise graphical representation of the nets.

The structure of a component subnet depends on the inter-component-dependencies

the component is involved in. For example, Fig. 12 shows the Petri net which

is created for the component from Fig. 11.

Three places represent the main states the component may be in: stand-by,

active and failed. Whether the component is in active or stand-by mode is

determined by the state of other components. Thus, the transitions T1 and

T2 will later be attributed by so-called guards, which are marking dependent

transition enablings.

The transitions T3 and T4 represent component failures. If a failure is prop-

agated to the component, this is done by moving a token into the place P4,

also called a failure propagation input place (FPIP). This will immediately

bring the component in the failed state by enabling the immediate transition

T7.

In turn, if a failure occurs, with probability p, T8 fires and an additional

token will be created and moved to place P5, called the failure propagation

output place (FPOP). From there, the token will be moved to FPIPs of other
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components. With probability (1−p) T9 fires instead of T8 and no additional

token is created.

In both cases, the component is repaired by a non-dedicated repair person.

Thus, the repair may be delayed if the repair person is engaged in repairing

some other components. This is modeled by the immediate transition T5. The

repair itself is modeled by the timed transition T6 which is attributed by the

mean time to repair of the component.

After creating such a subnet for each component, these subnets are connected

by appropriate edges. This includes connecting the FPOPs to their correspond-

ing FPIPs, and the places representing repair groups to the corresponding

transitions of the components which are repaired by these groups. In stand-by

redundant systems, the transitions between the places active and stand-by have

to be attributed by appropriate guards to ensure that at most k configurations

can be in the active state.

3.7 Generation and analysis of Markov chain

For computing its state probabilities, each SIC has to be converted from its

high-level description (Petri net or process algebraic specification) to the un-

derlying continuous-time Markov chain (CTMC). Currently, input for the

Petri net tools DSPNexpress [12] or Möbius [15], or for the stochastic pro-

cess algebra tool CASPA [10] can be generated. During the generation of the

CTMC, the notorious state space explosion problem may occur, since every

possible interleaving of concurrent activities taking place in the individual

components must be considered.
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The tool DSPNexpress transforms the GSPN model into a CTMC by exploring

the reachability graph of the Petri net in a conventional state-by-state fashion,

the generation time thus being linear in the total number of MC-transitions

found. Furthermore, the CTMC is stored explicitly in a sparse matrix repre-

sentation whose memory requirement is linear in the number of transitions of

the Markov chain. Therefore, as a rule of thumb, using DSPNexpress for a

SIC containing more than, say, 20 components, the generated CTMC will not

fit into main memory and consequently a solution will not be possible within

reasonable time. For the computation of the stationary probability vector,

DSPNexpress offers GMRES [21], a Krylov subspace method which is known

to converge rapidly.

In order to manage models with very large state space, the tools Möbius (in

connection with the pZDD engine described in [22,23]) and CASPA do not

employ an explicit representation of the CTMC, but a symbolic representa-

tion based on decision diagram data structures. In the following, the strategy

implemented in the Möbius pZDD engine is briefly sketched, for details of

CASPA the reader is referred to [10]. The Möbius pZDD engine uses a new

type of data structure, called partially shared zero-suppressed multi-terminal

BDD (pZDD for short), which extends zero-suppressed BDDs [24] to the multi-

terminal case and guarantees maximal sharing of subgraphs (and therefore

increased compactness). For generating the Markov chain from the GSPN,

the activity-local approach [22] performs only a partial explicit exploration of

the state graph, which is combined with a symbolic encoding and subsequent

symbolic composition of activity-specific substructures. Since the composition

step generates a potential state space, i.e. a superset of the actually reachable

transitions, the approach is complemented by an efficient symbolic reachabil-
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ity algorithm (based on sets of states instead of individual states). Numerous

experiments have shown that such a scheme creates very memory-efficient

symbolic representations of even huge CTMCs (theoretical results character-

ize a setting where the size of the decision diagram grows only linearly in the

number of concurrent components [25]). The key to such compactness lies in

some heuristics for transition encoding which exploit the inherent regularity

of the CTMC. Furthermore, the method is also very runtime efficient, e.g. for

a 6-out-of-8 version of the Adjunct Processor described in Sec. 4.2 a CTMC

with more than 261 million states and 5.8 billion transitions is generated in

less than 20 seconds on an AMD Opteron 2.4 GHz computer system [26]. The

Möbius pZDD engine performs numerical analysis of the CTMC, reading the

transition rates from the symbolic representation of its transition matrix while

using an explicit representation (i.e. ordinary arrays) for the iteration vectors.

Such a combination makes the numerical analysis of models with hundreds

of millions of states possible. The symbolic engine offers the Jacobi iteration

scheme, as well as a block-oriented so-called pseudo Gauss-Seidel iteration

scheme [27]. The numerical analysis of the above 261 million state CTMC re-

quires 4.1 GByte of RAM (95% of which is consumed by the iteration vectors,

not by the CTMC!) and can be accomplished on the same Opteron system in

about 30 minutes. Clearly, a CTMC of this size can neither be generated nor

solved within reasonable time if one uses only explicit data structures.

Similar to changing the back-end of a compiler in order to migrate it to a

new architecture, tools such as GreatSPN [13], SHARPE [19], TimeNet [11]

or WebSPN [28] could be used as back-end evaluation tools of OpenSESAME,

thereby exploiting their specific features (e.g. the analysis of non-Markovian

models). In our ongoing work, we are investigating these tools and their ap-
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plicability to OpenSESAME models.

3.8 Compose results & Post-processing

Whatever solution-method is used, the result will be a set of probabilities for

each SIC, which have to be combined to a single result according to the rules

shown in Sec. 3.4. Additionally, other post-processing, like summarizing the

results of several solution runs with different parameter assignments in a table

or diagram (see e.g. Fig. 22), can follow.

4 Case Studies

The following sections contain three realistic examples showing how Open-

SESAME can be used to easily model fault-tolerant systems including inter-

component dependencies. In the first example, a fault-tolerant web server,

OpenSESAME is used to determine the appropriate number of redundant

components. The second example stems from an industrial cooperation and

models a real-world telecommunication system. The model is made up of sev-

eral RBDs which are arranged in a hierarchic manner and shows how standby

redundant systems are modeled. The last example addresses a water-supply

system of a city requiring a more complex reliability block diagram and com-

mon failure propagation.
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4.1 Web server

Fig. 13 shows the structure of a typical fault-tolerant web server. Usually,

HTTP servers act as a front-end and receive requests from clients. So called

application servers are responsible for the creation of dynamic web pages. They

receive requests from the HTTP servers and provide the respective HTML files.

The database servers are used to store the raw data which is used to create

static and dynamic web pages. Neither the HTTP-servers nor the application

servers can operate without access to the database servers.

We further assume that there is more than one computer of each type to allow

for the necessary bandwidth and an acceptable response time for all clients.

We assume that the minimum number of necessary servers are NH , NA, and

ND, respectively.

Additionally, the architecture contains a number of spare servers of each type

for the sake of increased dependability. It is one of our goals of the following

availability analysis to determine the necessary number of redundant servers.

At the moment, these numbers are called RH , RA, and RD, respectively.

Last but not least, there is an interconnection network between the servers. A

network failure will lead to an unavailability of the web server architecture.

Tab. 2 lists the components of the web architecture and their respective MTTF

and MTTR values. For the servers we assume an average uptime of one week

(168 hours) as this is the mean uptime for a standard PC with a standard

operating system [29]. As most failures are due to software bugs, the repair of

a PC corresponds to rebooting the system which is assumed to take no longer

21



than 30 minutes.

The network, which does not comprise any sophisticated software mechanisms,

has an MTTF of a million hours (i.e. 114 years). This value is quoted by

vendors of this type of equipment [30]. For the repair of the network we assume

that 24 hours are needed on the average.

The redundancy structure of the web server is specified by the RBD shown

in Fig. 14. It is a series system comprising the subsystems HTTP-servers,

application servers, database servers, and network. Each of the subsystems

(except the network) is a N-out-of-(N+R):G system where the number (N+R)

is the total number of servers (including redundant servers) and N is the

number of servers which are necessary to guarantee for the specified minimum

performance. The network is assumed to be non-redundant and represents a

so called single point of failure.

Tab. 3 shows the results computed with the tool OpenSESAME under the

assumption that NH = NA = ND = 2 and for different values for RH,A,D. The

table shows also the respective unavailability U = 1−A and the mean annual

costs due to down-time under the assumption that one hour of down-time

costs 8000 ¤. As can be seen at least one redundant server must be used for

each server type to avoid intolerable down-time costs. Moreover, using more

than two redundant servers of each type is clearly not justified as the increase

in availability is negligible.

Until now, we assumed that the failure and repair times of all components

were statistically independent. However, in a real web server, there will be

inter-dependencies between its components. For example, failed nodes may

jam the network by sending illegal packages. As the distributed web server
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has no redundant network, such a babbling node brings the system down.

Therefore, a meaningful availability analysis should take the phenomenon of

babbling nodes into account. With OpenSESAME, this can be done by at-

tributing the model with a non-destructive failure-propagation. In detail, we

assume that every time a server fails there will be a failure propagation to the

network with probability p.

Fig. 15 shows the FDD modeling the phenomenon of babbling nodes. An

evaluation of the OpenSESAME model including this FDD yields the results

which are summarized in Tab. 4. As can be seen, the unavailability increases

with the probability of failure propagation. If p is large (i.e. p ≥ 0.01), adding

redundant servers will not contribute to a higher availability. In contrast,

adding redundancy will decrease the system’s availability because there are

more possible sources for failures. Thus, the only solution is to either reduce the

risk of babbling nodes, e.g. by using switched networks, or adding a redundant

network to tolerate the babbling nodes.

Because there is a dependency between the LAN and every node, the model

cannot be divided into several SICs prior to its solution. In contrast, Open-

SESAME creates a single GSPN to evaluate the model.

4.2 Adjunct Processor

A traditional application area for highly available systems is telecommunica-

tion. Although a single call seems to be of little financial value, losing several

thousands of calls due to a failure will lead to a substantial loss for the telecom-

munication provider.
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One of the critical components in a modern digital telecommunication network

is the so-called adjunct processor (AP). Its task is, among others, to translate

virtual phone numbers into location dependent physical numbers. This allows

for easy-to-remember and location independent phone numbers. E.g., in Ger-

many, 110 can be called from every telephone to reach the police. However, the

specific police department the callers will be connected to depends on their

current location.

4.2.1 Components of the Adjunct Processor

Fig. 16 shows a schematic drawing of a digital adjunct processor implemen-

tation. It comprises several single board computers (SBC) which are plugged

into a passive backplane. This backplane serves as a means for communicating

data and control information between the computers. Each SBC is connected

to a dedicated rear transition board (RTB) which is plugged into the other

side of the backplane. All I/O-devices which would normally be connected to

the SBC are connected to its RTB instead. This makes it possible to remove an

SBC from the backplane without removing any cabling. Thus, a failed board

can be replaced very quickly. Moreover, modern standardized backplanes like

AdvancedTCA [31] allow for removing boards during runtime, what is usually

referred to as the hot-swap capability.

The backplane houses two different kinds of SBCs: I/O-SBCs, which run a

telecommunication protocol stack (e.g. SS7) and connect the adjunct processor

to the rest of the world, as well as host-SBCs, which run a database and

are responsible for the actual translation between virtual and physical phone

numbers. To perform their tasks, the RTB of each I/O-SBC is connected to the
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telecommunication network via an E1/T1 line. The RTBs of the host-SBCs

are connected to mirrored disks storing the mapping of phone numbers.

The detection and isolation of faulty boards, as well as the control over remov-

ing and inserting boards lies within the responsibility of a so-called hot-swap

controller. In addition to all these electronic components the system also com-

prises several fans for cooling and power supplies. Tab. 5 summarizes these

components and shows their respective MTTF and MTTR values.

The MTTF values are field data obtained by the suppliers of the products.

Typically, to estimate the MTTF of a component which lacks the necessary

amount of field data, standardized methods like the MIL-HDBK-217 [32] or

the Siemens Norm SN29500 [33] can be used. The data listed here was partially

computed via the Siemens Norm.

In the adjunct processor, repairing a component means replacing it by a new

one. Under ideal conditions, we can assume the repair time of a single board

computer to be 5 minutes, including the reboot process of the operating system

on the board. For the repair of an RTB, cabling has to be removed from

the failed board and attached to the new board after replacement. Thus, the

overall repair process is assumed to take 30 minutes. After the failure and

replacement of one of the RAID disks, data has to be copied to the newly

installed disk, which is assumed to take 30 minutes, too.

The only component, which cannot be replaced that easily, is the system’s

backplane. In case of a backplane failure, the whole system has to be disas-

sembled and put together with a new backplane, again. For this procedure,

we assessed one hour of repair time.
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4.2.2 Redundancy structure of the Adjunct Processor

For our example, a redundancy structure as shown in Fig. 17 is proposed for

the Adjunct Processor. The model comprises five reliability block diagrams:

a high-level diagram for the overall system and two secondary diagrams rep-

resenting a host-unit and an I/O-unit respectively. The remaining sub-RBDs

are used to specify that each unit comprises an SBC and the corresponding

RTB.

A simple combinatorial analysis of this model shows that the unavailabil-

ity of the adjunct processor is 2.00 · 10−7 corresponding to an availability of

99.99998 %. Thus, the availability is in the order of nearly “seven Nines”,

where usually only “Five Nines” are required in the telecommunication envi-

ronment. However, the model does not take into account any inter-component

dependencies. Hence, it is likely that the model is over-optimistic and that

the real availability of the adjunct processor will be lower than the value com-

puted.

4.2.3 Inter-component dependencies in the adjunct processor

A typical dependency between redundant components which is neglected when

using standard Boolean modeling methods is the fact that a standby redun-

dant component has to be reconfigured before it can take over the task of a

failed active component.

These fail-over times are known to contribute significantly to the down-time of

any system in the telecommunication environment. In the adjunct-processor

we have to assume that there is a fail-over time after the failure of a host-unit,
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as well as after the failure of an I/O-unit. The disks, fans, HSCs and power

supplies are arranged in an active-active redundancy scheme and hence have

no fail-over time.

For the host-units, failure detection can be done by using a mutual heartbeat-

protocol with a period of one second. Thus, in the worst case, it will take a

second for the standby-node to detect the failure of the active node. As the

standby unit is in warm redundancy, it can replace the active unit immediately.

Hence, the fail-over time between host-units is one second. A failure of an

I/O-unit is assumed to be detected by the external telecommunication switch

which unsuccessfully tries to reach the adjunct processor via the I/O-unit.

After failure detection, the switch informs the HSC about the failed I/O-unit

and reconfigures its internal table on available I/O-units. It is assumed that

the whole process can be done in less than 3 minutes.

Fig. 18 shows how the non-zero fail-over times can be integrated into an Open-

SESAME Redundancy Diagram. Compared to Fig. 17, the only differences are

the dashed edges representing an active/standby redundancy scheme. The fail-

over times themselves are depicted as a textual attribute above the respective

edges.

An evaluation of this model with OpenSESAME yields an unavailability of

7.42 · 10−7 for the adjunct processor. This implies that its unavailability and

the mean annual down-time costs were underestimated by the factor 2.5 using

the simple model from Sec. 4.2.2. Even with the more realistic model, the

system fulfils the requirements of “Five Nines” availability, though.
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4.2.4 Computational Costs and Memory Requirements

Although there is not much of a difference from the modeler’s point of view

between the simple and the more realistic model, the solution process signif-

icantly differs. In the simple case, there are no dependencies and a dedicated

SIC is created for each component. The unavailability of each component can

be computed by applying the formula U = MTTR
MTTR+MTTF

; no Markov chain

must be created nor analyzed.

For the more realistic models, one SIC for the I/O-units and one SIC for

the host-units is created. For the remaining components, dedicated SICs are

generated. The first SIC is the largest and by far the most computationally

challenging one: it contains 6 I/O-boards and 6 RTB-boards. The generated

state space consists of nearly one million states and 7.4 GByte of main memory

are required to solve this SIC with the tool DSPNexpress.

It is therefore better to solve SICs with more than about 10 components by

using symbolic methods like the Möbius pZDD engine. Only 36 MByte of

memory are necessary to solve the model with this technique.

In our future work, we will decrease the sizes of the generated state-spaces by

exploiting symmetries in the model. For example, in the adjunct processor, all

I/O-boards have the same MTTF and MTTR values, and the fail-over times

are identical for all I/O-units.
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4.3 Water Supply System

For a final illustrative example, the reader is referred to Fig. 19, showing a

water supply system of a city. It consists of up to five pumps (1, 2, ..., 5) and

two distributors (A and B). The water of pumps 1 and 2 flows into A whereas

the water of pumps 4 and 5 flows into B. The water of pump 3 can flow into

both A or B. We assume that there is enough water for the city as long as

it is supplied by water from at least two pumps flowing through A, B, or a

combination of both.

We assume that the pumps and distributors have a mean time to failure of

one year. All pumps and distributors fail independently from each other. Im-

mediately after a failure, pumps and distributors are being repaired, which

takes 24 hours in average.

Pump 3 is special in terms of its failure behavior: after a failure, with proba-

bility p, the pump delivers dirty water which spoils any distributor to which it

is delivered. Consequently, the distributor must be shut down until the pump

is repaired. This raises the question which distributor should be connected to

pump 3. In the following, we will compare three possible configurations C1,

C2, and C3:

• C1: To avoid any possible contamination, pump 3 is not used at all.

• C2: Pump 3 is connected to both distributors to achieve the highest degree

of redundancy.

• C3: As a compromise, pump 3 is connected to distributor A only.

The left RBD of Fig. 20 models configuration C1. If both distributors are
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available, the middle path can be chosen. This path is available, if at least 2

of the 4 pumps are available. If distributor B is failed, the upper path must

be taken. This path requires the pumps 1 and 2 to be available. Similarly the

lower path requires the pumps 4 and 5 to be available and must be taken, if

distributor A is failed. An evaluation of this model with OpenSESAME yields

an unavailability of the city’s water supply of 3.73 · 10−5. On average, the city

is without water for 19.6 minutes per year.

The block diagrams for C2 and C3 are also shown in Fig. 20. These models

cannot be evaluated using traditional solution methods due to the failure prop-

agation from pump 3 to the distributors. The corresponding OpenSESAME-

model is enriched with the failure dependency diagram shown in Fig. 21. For

C2, the parameter B takes the value 1: a failure of pump 3 will first propagate

to the pseudo-component P with probability p, and from there to both dis-

tributors A and B. The pseudo-component P cannot fail by itself and cannot

be repaired (its MTTF and MTTR are both infinite). It ensures that A and

B fail simultaneously in case of a failure propagation. The failure propagation

is of the blocking type: as soon as pump 3 is repaired, the pseudo component

as well as both A and B become available immediately. For C3, the parameter

B takes the value 0. Thus, a pump failure can affect distributor A only.

An evaluation of the configurations C2 and C3 using OpenSESAME yields the

results shown in Fig. 22. It shows the unavailability of the three configurations

with respect to the parameter p.

The unavailability of C1 is constant as it does not depend on p. For very small

values of p, C2 yields the best unavailability (between 3.96 and 11.1 minutes

per year). However, the unavailability increases rapidly when p becomes larger.
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In this case, pump 3 acts as a single point of failure, as it can spoil the overall

system. Thus, if p is larger than 1 % , C2 is the better configuration. Finally,

for large values of p, i.e. p > 0.7, it is better to not use pump 3 at all which

results in the above-mentioned unavailability of 19.6 minutes per year.

For this example, the computational demands are negligible, as the largest

SIC contains three components, only.

5 Related Work

5.1 SHARPE

The Symbolic Hierarchical Automated Reliability and Performance Evaluator

(SHARPE) is an environment which allows the combination of several dif-

ferent modeling formalisms like block diagrams, fault trees, Markov Chains,

Stochastic Reward Nets etc. (see [19]). In this way, the modeler can choose a

different model type for different parts of the system and can therefore choose

an appropriate level of manageability and accuracy for each part of the model.

However, the tool does not allow to incorporate inter-component dependen-

cies between two components which are modeled in two different diagrams.

Thus, the set of components has to be divided into independent subsets at the

very beginning of the modeling process. This division cannot be changed later,

which hampers a stepwise refinement and the modifiability of the model.
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5.2 MEADEP

The Measurement - Based Dependability Analysis Tool (MEADEP) [34] fol-

lows a similar approach as SHARPE. Here, Reliability Block Diagrams and

Markov Chains can be combined into one availability model which is evalu-

ated bottom up, i.e. the evaluation results of the lower models are used as

parameters for the other models until the top-level model has been resolved.

However, MEADEP does not allow to integrate inter-component dependencies

to span over several diagrams.

5.3 HIDE

In contrast to SHARPE and MEADEP, the High-level Integrated Design En-

vironment for Dependability (HIDE, [35]) and its successors [36] are not based

on combining several modeling techniques but on converting a high level input

model into state-based models. In other terms, HIDE uses a similar principle

as the work presented in this paper. However, there are significant differences

in the type of input diagrams. Whereas in our work the goal was to create sim-

ple, intuitive and manageable diagrams for modelers which are familiar with

traditional combinatorial modeling methods, the HIDE project uses UML di-

agrams for input. This has the advantage that availability estimations can

be gained “for free”, if such UML diagrams already exist, e.g. if they were

created during the design phase of the system. However, if a model has to be

created from scratch, many modelers will feel more comfortable with model-

ing methods which resemble traditional modeling methods for highly available

systems, like the widely used Reliability Block Diagrams. There are also dif-
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ferences in respect to the kind of supported dependencies. For instance, unlike

OpenSESAME, HIDE does not support blocking failure propagation nor a

limited repair capacity.

5.4 DIFtree

Another tool which transforms high-level input diagrams into state-spaced

models is Dynamic Innovative Fault Tree (DIFtree) [37,38], which has been

incorporated into the modeling environment Galileo [39]. The input diagrams

are so called Dynamic Fault Trees, which extend traditional fault trees by

a set of new gates that can handle different kinds of redundancy (e.g. cold,

warm, and hot redundancy). However, all dependencies have to be modeled by

using these gates. Therefore, a failure propagation between two components

in two different branches of the tree cannot be introduced without a major

redesign of the model. Furthermore, many modelers prefer Reliability Block

Diagrams to fault trees when modeling High Availability systems, as they are

more closely related to the system’s schematic layout.

5.5 Boolean Logic Driven Markov Processes

In a recent article [40], an innovative approach for combining fault trees and

Markov models is presented. Each leaf of the fault tree represents a compo-

nent of the system which can be described in more detail by a Markov process.

Switching between the states of the chain can be triggered by the failure or

repair of other components, which allows for modeling inter-component depen-

dencies. To simplify the task of the modeler, several predefined standard cases
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can be reused. These cases include warm standby redundancy, on demand fail-

ures, and components with an increasing failure rate (i.e. aging components).

The applicability of this technique to real world problems has been shown in

the context of modeling fault-tolerant systems.

Unlike OpenSESAME, the state-based models are still visible in the user inter-

face in this approach, as Markov chains are used to specify the inter-component

dependencies. Another difference lies in the target application area: whereas

OpenSESAME focuses on High-Availability systems, this approach aims at

safety-critical, electrical high-voltage apparatus.

5.6 Dynamic Reliability Block Diagrams, DRBD

In this approach [41–43] dynamic extensions to reliability block diagrams are

introduced. These extensions can be used to model varied dependencies be-

tween components including several types of redundancy (hot, warm, standby)

and failure propagation. Dependencies are specified by their type (order or

strong), the action and reaction events (wake-up, reparation, sleep, and fail-

ure). In total, 24 different kinds of dependencies are defined. The work also

addresses the problem of conflicting dependencies, i.e. the behavior of the

system in the case of multiple dependencies occurring at the same time. In

contrast to OpenSESAME, all dependencies are specified in the RBD itself

instead of additional diagrams. This hampers the creation of hierarchic dia-

grams which is one of the main goals of the OpenSESAME design. One should

also note that at the moment there is no software implementation of DRBD

yet. Further comparison will be made as soon as the implementation of DRBD

is completed.
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6 CONCLUSIONS & FUTURE WORK

This article is a contribution to the area of modeling fault-tolerant High-

Availability systems including inter-component dependencies. We advocate an

approach which is based on state-based modeling methods. However, unlike

traditional techniques, which require to define the model by using stochastic

Petri nets or models based on a stochastic process algebra, an input with a

very high level of abstraction is used in the approach described here.

Generating the state-based models “by hand” is work-intensive, cumbersome

and error-prone. As an alternative, we advocate the tool OpenSESAME, which

allows for a stepwise refinement of simple Boolean models. Using OpenSESAME,

one starts with a plain model, to which inter-component dependencies can be

added at any time. No expert knowledge in the fields of Markov chains, Petri

nets or Stochastic Process Algebras is necessary to create OpenSESAME-

models.

To demonstrate the benefits of our approach, we modeled several fault toler-

ant systems in two ways: a simple RBD model was used without any inter-

component dependencies, and a more elaborate model was used including

inter-component dependencies like failure propagation, common cause failures,

standby-redundancy and so on. We show that the simple models generate over-

optimistic results which makes it advisable not to neglect the dependencies.

However, the examples also show that by using OpenSESAME, integrating

the dependencies into the models is very easy and can be done by a step-wise

refinement of the original model.

In its current implementation, OpenSESAME does not take advantage from
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symmetries in the model. For example, if a model contains several identical

components, the same Petri net structure is created as if the components were

different. This may yield Petri nets with an unnecessary large state-space.

Our future work will therefore concentrate on exploiting these symmetries to

improve the performance of our tool.

Furthermore, OpenSESAME is quite limited in the kind of result which is

generated: only transient and steady state availabilities are computed. Future

versions of the tool should also be able to compute reliabilities, MTTF and

MTTR values, and derivatives from these measures. Moreover, a sensibility

analysis should be possible.

The main application area of OpenSESAME is – as its name implies – High-

Availability. Most safety critical systems cannot be analyzed, as they usually

have more then one undesired event (usually, a distinction between “failed-

safe” and “catastrophic failure” is made). We therefore plan to extend the

OpenSESAME concept in a way that it can be used for systems with more

than the two macro states “available” and “failed”.

7 AVAILABILITY OF THE TOOL

OpenSESAME can be obtained from http://OpenSESAME.in.tum.de/ and

runs on Unix-like operating systems. The GUI is written in Java and should

run on most platforms including MS-Windows.
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Fig. 1. Usage of k-out-of-N:G edges and arrays. All three diagrams model the same

system.
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Fig. 2. Hierarchic block diagram. The top-level diagram main refers to three sub-dia-

grams (of which only one is shown). Sub-diagrams may refer to further sub-diagrams.

Several identical diagrams can be combined using arrays of diagrams.
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Fig. 15. Failure Dependency Diagram (FDD) of the web server
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best result is obtained using configuration 2. For all other cases (0.01 < p < 0.7)
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Table 1

Exemplary component table with four different component types.

component number MTTF MTTR

part1 1 1 000 000 h 24 h

part2 1 2 000 000 h 24 h

valveA N 1 500 000 h 24 h

valveB N 1 500 000 h 24 h
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Table 2

Components of the distributed web server.

component number MTTF MTTR

HTTP NH + RH 168h 0.5h

APP NA + RA 168h 0.5h

DB ND + RD 168h 0.5h

network 1 1 000 000h 48.0h

51



Table 3

Results for different degrees of redundancy. Estimated down-time costs are 8000 ¤

per hour.

RH,A,D U A = 1 - U
annual down-time

(U · 1 year)

annual costs

(U · 1 year · 8000 Euro ·h−1)

0 1.77 · 10−2 0.9823 155 h 1 240 000 ¤

1 1.27 · 10−4 0.999873 1.11 h 8 880 ¤

2 4.83 · 10−5 0.9999517 0.423 h 3 384 ¤

3 4.80 · 10−5 0.9999520 0.420 h 3 360 ¤
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Table 4

The unavailability (in�) for different babbling node probabilities.

probability 0 0.002 0.004 0.006 0.008 0.010

RH,A,D = 1 0.127 0.180 0.233 0.286 0.339 0.392

RH,A,D = 2 0.0483 0.120 0.191 0.262 0.333 0.404
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Table 5

Components of the adjunct processor

Component number MTTF MTTR

host-SBC 2 100 000 h 5 min

host-RTB 2 1 100 000 h 30 min

I/O-SBC 6 200 000 h 5 min

I/O-RTB 6 1 250 000 h 30 min

disk 2 1 000 000 h 30 min

HSC 2 100 000 h 5 min

backplane 1 5 000 000 h 1 h

fan array 2 17 500 h 5 min

power supply 3 1 450 000 h 5 min
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