
Multi Terminal Binary Decision Diagrams to

Represent and Analyse Continuous Time

Markov Chains

H. Hermanns

1

and J. Meyer-Kayser

2

and M. Siegle

2

1

Systems Validation Centre, Dept. of Computer Science, University of Twente,

The Netherlands

2

IMMD 7, Dept. of Computer Science, University of Erlangen-N�urnberg, Germany

Abstract. Binary Decision Diagrams (BDDs) have gained high atten-

tion in the context of design and veri�cation of digital circuits. They

have successfully been employed to encode very large state spaces in an

e�cient, symbolic way. Multi terminal BDDs (MTBDDs) are generali-

sations of BDDs from Boolean values to values of any �nite domain. In

this paper, we investigate the applicability of MTBDDs to the symbolic

representation of continuous time Markov chains, derived from high-level

formalisms, such as queueing networks or process algebras. Based on this

data structure, we discuss iterative solution algorithms to compute the

steady-state probability vector that work in a completely symbolic way.

We highlight a number of lessons learned, using a set of small examples.

1 Introduction

State space explosion is a notorious problem in the context of continuous time

Markov chains (CTMC) derived from high-level formalisms such as queueing

networks, stochastic automata, stochastic Petri nets or stochastic process al-

gebras. The inherent concurrency in such a high-level representation is trans-

lated into an interleaving of all possible moves. As a consequence, the num-

ber of states of a CTMC tends to grow exponentially in the number of paral-

lel components from which it is derived. In addition, using approximations of

non-exponential distributions by phase-type distributions leads to an enormous

growth of the state space. Various approaches to attack the state space explosion

problem have been pursued so far. Without aiming to be exhaustive we mention

product-form solutions [BCMP75], decomposition-based solution [SA61,CS85],

tensor-based representations [PA91,Buc94,Don93,Sie94b], symmetry exploitation

[CDFH93,HR98,Sie94a] and partial order representations [BKLL95].

In the �eld of design and veri�cation of digital circuits, state space explosion

is a similarly omnipresent phenomenon. During the last decade, however, binary

decision diagrams (BDDs) [Bry86] have moved the border between manageable

and unmanageable sizes of veri�cation problems upwards by many orders of

magnitude. Papers have been published presenting veri�cation results of state

spaces larger than the number of atoms in the whole universe, see for instance



[BCL91,BCM

+

92]. BDDs are compact and canonical representations of Boolean

functions as directed acyclic graphs, where the representation of redundant in-

formation is completely avoided. A proper assessment of BDDs, however, has

to mention that much of their success is based on heuristics, speci�cally con-

cerning the encoding of state spaces as Boolean functions and the avoidance of

redundancies in the representation of these functions as BDDs. Without apply-

ing these heuristics, BDDs do not necessarily behave better than ordinary state

space encodings, such as linked lists, for instance.

Multi terminal BDDs [FM97] (MTBDDs, also called algebraic decision di-

agrams) extend BDDs such that they can represent functions of an arbitrary

range, while their domain is still a multidimensional Boolean space. Other BDD

extensions with the same capability are edge-valued BDDs [LS92], and decision-

node BDDs [HS99]. In this way, state spaces can be encoded where transitions

between states are labelled by some value, such as a non-negative real num-

ber. Hence, MTBDDs are capable of representing discrete and continuous time

Markov chains. [HMPS96] contains an investigation of the bene�ts when repre-

senting discrete time Markov chains (DTMCs) derived from digital circuits by

MTBDDs. In a nutshell, it describes how steady-state probabilities of DTMCs

of up to 10

27

states can be computed by applying iterative numerical solution

methods, namely the power method and a variant of the method of Jacobi. Di-

rect solution (such as LU decomposition) of the Markov chain turns out not to

be well-suited for the MTBDD framework. Apart from the size of the problem it-

self, a major limitation of direct methods is that each step modi�es the MTBDD

structure, and hence involves serious overhead to keep the representation canon-

ical [BFG

+

97].

In this paper, we investigate the application of MTBDDs to the iterative so-

lution of continuous time Markov chains and report on a number of decisive �ne

points in order to derive small MTBDD representations for large Markov chains,

a topic that is not discussed in [HMPS96]. We give reformulations of classical

iterative solution methods for CTMCs in the setting of MTBDDs which can be

implemented in a straight-forward manner. The main contribution of this paper

is a set of heuristics that are an essential part of a successful application of

MTBDDs, in the same way as the success of BDDs is grounded on heuristics.

The essential observation underlying these heuristics is that there is usually a

large degree of freedom when encoding states as bit vectors, and that small dif-

ferences in encodings can have tremendous e�ects on the size of the MTBDD

that (still) has to be kept in memory during the iterative solution of the Markov

chain. Optimal encodings exist, but unfortunately this issue is known to be NP-

hard [THY93,BW96]. For practical purposes, we introduce heuristics in the form

of rules of thumb that exploit the structure of the Markov chain based on the

structure of the high-level speci�cation at hand. We consider high-level speci�ca-

tions in the form of failure-repair models, stochastic process algebra models and

queueing networks. For some cases, these heuristics have just a modest e�ect,

while for others the result is far beyond any other data structure used to repre-

sent Markov chains so far. In particular, we present a class of queueing models



that can be encoded in such a way that an exponential increase in the number of

queue positions only linearly increases the memory requirements. For instance,

we show how a tandem queueing network with queue lengths of 10

877

results in

a memory requirement of not more than 1MB.

The paper is organised as follows: In Sec. 2, we summarise the theoretical

background needed for our work. Sec. 3 describes the encoding of CTMCs and

symbolic algorithms to compute steady-state probabilities. In Sec. 4, we provide

examples and discuss various subtle points when deriving a symbolic represen-

tation from a high-level description. Sec. 5 concludes the paper.

2 Preliminaries

In this section, we briey recall the essentials of continuous time Markov chains

and the computation of their steady-state probabilities. Furthermore, we intro-

duce multi-terminal BDDs and their crucial features.

Continuous timeMarkov chains:ACTMC is a tuple

1

M = (S;R) where S is

a �nite set of states, and R : S�S ! IR

�0

is the rate matrix satisfyingR(s; s) = 0

for all s. The CTMC is called homogeneous if the rates are time-independent. An

in�nitesimal generator matrix Q is derived from R by setting Q(s; s

0

) = R(s; s

0

)

for s 6= s

0

and replacing the diagonal elements ofR by Q(s; s) = �

P

s

0

6=s

R(s; s

0

).

Given a CTMC M = (S;R), one of the main goals is the computation of

its steady-state probability vector � = lim

t!1

�(t). In this paper, we only

consider �nite, homogeneous, irreducible CTMCs. The steady-state probability

vector � = (�

s

)

s2S

is obtained by solving the linear system of equations

� �Q = 0

under the additional constraint that

P

s2S

�

s

= 1. This equation can be solved by

direct methods such as Gaussian elimination. In order to obtain iterative solution

schemes, the equation can also be transformed into the following common �xed

point equation with appropriate iteration matrix M :

� = � �M .

Multi terminal binary decision diagrams: MTBDDs are an extension of

BDDs [Bry86], representing functions from a multidimensional Boolean domain

to an arbitrary �nite range D. For instance, D can be a �nite subset of the

real numbers, or the set f0; 1g. In the latter case the MTBDD actually reduces

to a BDD, representing a Boolean function. In the former case, the MTBDD

represents a function of the type f : f0; 1g

n

! IR: The main idea behind the

MTBDD representation of real-valued functions is the use of rooted directed

acyclic graphs for a more compact representation of the binary decision tree

which results from the Shannon expansion

f(v

1

; : : : ; v

2

) = if v

1

then f(1; v

2

; : : : ; v

n

) else f(0; v

2

; : : : ; v

n

);

or, in terms of arithmetics, where + and � denote ordinary addition and multi-

1

Since we only consider steady-state behaviour for strongly connected chains, we do

not �x a particular initial distribution.



r

1

c

1

r

2

c

2

value

0 1 0 0 3

0 1 0 1 3

0 1 1 1 1

1 0 0 0 4

1 0 1 0 2

1 0 1 1 2

else 0

3 1 0 4 2

c

2

r

2

r

1

c

1

M

Fig. 1. MTBDD M, representing a function f

M

f0; 1g

4

7! f0; : : : ; 4g

plication,

f(v

1

; : : : ; v

2

) = v

1

� f(1; v

2

; : : : ; v

n

) + (1 � v

1

) � f(0; v

2

; : : : ; v

n

):

De�nition 1. Let D be a �nite set, and Var be a �nite set of Boolean variables,

equipped with a total ordering � � Var� Var. A multi-terminal binary decision

diagram (MTBDD) over hVar;�i is a rooted acyclic directed graph with vertex

set V and the following labelling: Each terminal vertex v is labelled by an el-

ement of D, denoted by value(v). Each non-terminal vertex v is labelled by a

variable var(v) 2 Var and has two children then(v), else(v) 2 V . In addition, the

labelling of the non-terminal vertices by variables respect the given ordering �,

i.e. var(then(v)) � var(v) � var(else(v)) for all non-terminal vertices v.

The edge from v to then(v) represents the case where var(v) is true; conversely,

the edge from v to else(v) the case where var(v) false. A BDD is an MTBDD with

value(v) 2 f0; 1g for all terminal vertices v. Each MTBDD M over (v

1

; : : : ; v

n

)

represents a function f

M

: f0; 1g

n

7! D and has two cofactors M

then

and

M

else

, resulting from a top-level Shannon expansion, i.e. M

then

(M

else

) represents

f

M

(1; v

2

; : : : ; v

n

) (f

M

(0; v

2

; : : : ; v

n

)), respectively.

2

Fig. 1 shows a simple MTBDD M over (r

1

; c

1

; r

2

; c

2

) together with the func-

tion f

M

it represents. In the graphical representation, vertices are grouped into

four levels, and all vertices on the same level are assumed to be labelled with

the variable denoted on the left. Furthermore, we adopt the convention that

edges from vertex v to then(v) are drawn solid, while edges to else(v) are drawn

dashed.

De�nition 2. A MTBDD M is called reduced i�

{ for each non-terminal vertex v the two children are distinct, i.e. then(v) 6=

else(v). Each terminal vertex v has a distinct label value(v).

{ for all vertices v, v

0

with the same labelling, if the subgraphs with root v and

v

0

respectively are isomorphic (i.e. coincide up to the names of the vertices)

then v = v

0

. Formally: If var(v) = var(v

0

) and else(v) = else(v

0

) and then(v) =

then(v

0

), then v = v

0

.

2

Note that an MTBDD over hVar;�i is also an MTBDD over hVar

0

;�

0

i for any

superset Var

0

of Var and total ordering �

0

on Var

0

such that v

1

� v

2

i� v

1

�

0

v

2

for

all v

1

, v

2

2 Var. If Var = fv

1

; : : : ; v

n

g and v

1

� v

2

� : : : � v

n

then we also speak

about MTBDDs over (v

1

; : : : ; v

n

) rather than MTDDs over hVar;�i.



For a �xed ordering of Boolean variables, reduced MTBDDs form a canonical

representation of (real valued, in our setting) functions, i.e. if M, M

0

are two

reduced MTBDDs over the same ordered set Var such that f

M

= f

M

0

, then M

and M

0

are isomorphic. Bryant [Bry86] has proposed a recursive procedure to

reduce BDDs that can be applied to MTBDDs as well. Unless otherwise stated,

we work with MTBDDs that are reduced by convention.

MTBDD M of Fig. 1 satis�es De�nition 2, it is reduced. Note that the valua-

tions of some variable levels are irrelevant on certain paths through the MTBDD.

For instance, for function f

M

to return the values 3 or 2, the truth value of vari-

able c

2

is irrelevant. Hence the vertices on these paths are skipped, a consequence

of the �rst clause of De�nition 2. Variable c

2

is called a don't-care variable for

the respective paths.

3 Symbolic representation and analysis

In this section, we discuss how matrices (and hence CTMCs) can be encoded

as MTBDDs and present iterative solution algorithms to compute steady-state

probabilities that completely work on MTBDDs, extending work by [BFG

+

97].

The algorithms make use of a set of basic operations on MTBDDs taken from

the literature, and described in Appendix A.

Encoding of matrices: A matrix whose entries are from a �nite domain D,

say a �nite subset of IR, can be represented by an MTBDD whose leaf vertices

are labelled by elements from D. For the moment we consider square matrices

whose dimension is a power of two, 2

n

. In the case of general dimensions, the

matrix will be padded with an appropriate number of rows and columns of

zeroes. By construction, these additional entries do not contribute to the size of

the MTBDD representing the matrix.

The basic idea behind the use of BDDs for representing non-stochastic sys-

tems is to use an encoding of the states by bit vectors (v

1

; : : : ; v

n

) of some �xed

length n and to create a symbolic representation of the transition relation. The

BDD corresponds to the Boolean function f : f0; 1g

2n

! f0; 1g that is 1 if and

only if a transition between two states exists. In the case of Markov chains, the

rate matrix or transition probability matrix can be represented similarly, using

the same basic idea.

As an example, consider the simple CTMCM = (f0; 1; 2; 3g;R) (an example

taken from [Ste94, p. 21]) with transition rate matrix R as shown on the left

of Fig. 2. Since the dimension of this matrix is 2

n

= 4, we need n = 2 bits

for addressing its rows and 2 bits for addressing its colums. We use Boolean

variables r

1

; r

2

, (c

1

; c

2

) for encoding the row (column) position. Now, two crucial

decisions have to be made, each of which inuences the size of the MTBDD

encoding matrix R. (1) It is necessary to de�ne a total ordering on the Boolean

variables involved, and (2) the state identi�ers have to be mapped on bit vectors

of lenght n = 2.

Concerning the �rst issue, it might seem natural to order all row bits on top

(or below) of the column bits, grouping the bits together that belong together.



04 3 2 1

R =

0

B

B

@

� 4 � �

3 � 3 �

� 2 � 2

� � 1 �

1

C

C

A

transition r

1

c

1

r

2

c

2

value

0

4

! 1 0 0 0 1 4

1

3

! 0 0 0 1 0 3

1

3

! 2 0 1 1 0 3

2

2

! 1 1 0 0 1 2

2

2

! 3 1 1 0 1 2

3

1

! 2 1 1 1 0 1

else 0

R

c

2

r

2

r

1

c

1

Fig. 2. Rate matrix R, transition encoding, and MTBDD R for a simple CTMC

However, experience has shown that in order to obtain compact symbolic rep-

resentations, the Boolean variables should not be ordered in this way. Instead,

it is recommended to choose an ordering such that variables specifying row and

column positions are interleaved [EFT93]. This is the most prominent heuristics

known in the context of BDDs. We will focus on heuristics in detail in Sec 4.

For the moment we simply choose the following interleaved variable ordering:

r

1

� c

1

� r

2

� c

2

Concerning the second issue, we choose the straight-forward encoding for the set

of states f0; 1; 2; 3g, i.e. 0 7! 00, 1 7! 01, 2 7! 10, and 3 7! 11. Fig. 2 shows the

resulting encoding of the transitions of the CTMC, and the (reduced) MTBDD

R over (r

1

; c

1

; r

2

; c

2

). In fact, this is not the smallest possible MTBDD represent-

ing R; a more e�cient mapping from states to bit vectors exists. Using 0 7! 10,

1 7! 00, 2 7! 11, and 3 7! 01 instead results in a slightly smaller representation,

namely the MTBDD M shown in Fig. 1. The latter MTBDD has only 12 instead

of 16 vertices, basically because some don't care variables are skipped on paths

from the r

2

level to the terminal vertices labelled 3 and 2. Even in this simple

example we can see the inuence which the state encoding may have on the

space e�ciency of the symbolic representations.

The cofactors of an MTBDD representing a matrix correspond to submatri-

ces. For instance, in our example R

else

yields the upper half and R

then

the lower

half of matrix R, while R

else

else

yields the upper left quarter of matrix R.

Since matrices derived from CTMCs are usually rather sparse, it is worth

to briey compare MTBDD representations with explicit sparse matrix data

structures. As shown in [FMY97], the order of space requirements of MTBDDs

is no worse than that of sparse matrix data structures, but it may (in the worst

case) require a linear overhead. In the best case, MTBDD storage is by far

superior. The particular strength of MTBDD lies in the ability to combine all

matrix entries with the same numerical value in a single terminal vertex. This

sharing is especially well-suited for CTMC applications, where usually just a

handful of di�erent rates are present, each of them occupying many entries in

the generator. The crucial challenge is to encode the sparse matrix in such a

way that sharing of terminal vertices is extended to sharing of subgraphs in

the MTBDD. As we will see in Sec. 4, this can be achieved in particular for

block-structured matrices with repetitive blocks.



Matrix operations: To give an impression of how basic logic and arithmetic

operations are performed on MTBDDs, we discuss the realisation of matrix mul-

tiplication. All operations on (MT)BDDs follow the exempli�ed way. Details on

other operations needed in this paper (such as Apply) can be found in the

appendix.

Consider two square matrices M

1

and M

2

, represented as (non-

reduced, for simplicity) MTBDDs M

1

and M

2

over variables (r

1

; c

1

: : : ; r

n

; c

n

)

and (c

1

; c

0

1

: : : ; c

n

; c

0

n

). Mmult(M

1

;M

2

) produces an MTBDD M over

(r

1

; c

0

1

: : : ; r

n

; c

0

n

), representing the matrix product M = M

1

�M

2

. This MTBDD

is generated by recursive descent. The four quarters of M corresponding to the

cofactors M

else

else

, M

else

then

, M

then

else

, and M

then

then

are computed on the basis of

the cofactors of M

1

and M

2

. For instance:

M

else

else

= Apply

�

Mmult(M

else

1

else

;M

else

2

else

);Mmult(M

else

1

then

;M

then

2

else

);+

�

is the MTBDD reformulation of the fact that the upper left quarter of M

1

�M

2

equals the sum of (1) the product of the upper left quarters of M

1

and M

2

,

and (2) the product of the upper right quarter of M

1

and the lower left quarter

of M

2

. The products Mmult(M

else

1

else

;M

else

2

else

) and Mmult(M

else

1

then

;M

then

2

else

)

are recursively computed in the same way. The recursion terminates when the

operands of Mmult are terminal vertices v

1

and v

2

, in which case a terminal

vertex labelled by value(v

1

) � value(v

2

) is returned. Matrix-vector (and vector-

matrix) multiplicationMVmult (VMmult) is performed by the same strategy.

If M

1

is as above, and P over variables (c

1

; : : : ; c

n

) represents a vector p, then

MVmult(M

1

;P) computes an MTBDD Q representing q = M

1

� p by means of

the cofactors of its arguments. The upper half of the vector q is, for instance,

obtained from

Q

else

= Apply

�

MVmult(M

else

1

else

;P

else

);MVmult(M

else

1

then

;P

then

);+

�

:

In order to extend this scheme to the case of reduced MTBDDs, additional inte-

ger parameters have to be passed to functionMmult,MVmult, and VMmult,

basically to take care of variable levels that are skipped (don't care variables)

[FMY97]. Their implementation works on reduced MTBDDs and returns MTB-

DDs that are reduced (and hence canonical) by construction. This highly relies

on the use of hash tables for bookkeeping of functions for which the MTB-

DDs are already computed, together with pointers to the vertices of the (al-

ready generated) MTBDDs. These tables make it possible to generate reduced

MTBDDs without an explicit call of Bryant's reduction procedure. As a side

result, the hashing strategy avoids that the same arithmetic or logic oper-

ation with the same arguments is performed twice. We refer the reader to

[Bry86,BRB90,CMZ

+

97,BFG

+

97,FMY97] for elaborated expositions of these

details.

The above matrix algorithms have the same time complexity as their conven-

tional sparse-matrix counterparts, but some overhead (in computation time) is

needed, for instance to keep MTBDDs reduced, which on the other hand allows

sophisticated hashing techniques to avoid recalculations of intermediate results.

Furthermore, it should be noted that the look-up of a matrix entry on MTBDDs

is logarithmic in the dimension of the matrix.



4 -4 -6 3 0 2 1 -1 4/7 3/7 0 2/7 1/7 6/7

r

1

c

1

r

2

c

2

MQ

Fig. 3. MTBDD representation of matrices Q and M for the CTMC of Fig. 2

Preparations for symbolic iteration: Now we are ready to discuss symbolic

(i.e. MTBDD-based) algorithms for calculating the steady-state distribution vec-

tor � of a CTMC, i.e. for the solution of the linear system of equations � �Q = 0

under the constraint � �1 = 1. Direct methods such as Gaussian elimination have

proved to be unsuitable for symbolic implementation [BFG

+

97, p. 201] because

of the changing structure of the coe�cient matrix caused by every elimination

step. Modi�cations of the coe�cient matrix are expensive in a symbolic setting,

because canonicity of the MTBDD has to be maintained at every step. This is

why we consider iterative methods where an iteration matrixM is derived from

the generator (or rate) matrix. Matrix M remains unmodi�ed during iteration

which takes the form �

(k+1)

:= �

(k)

�M .

As a �rst step towards building the symbolic iteration matrixM, the in�nites-

imal generator matrixQ must be derived from the rate matrixR. Assuming that

f

R

over (r

1

; c

1

; : : : ; r

n

; c

n

) represents matrix R, we compute the row sums of R

by setting:

D :=MVmult(R; 1)

where 1 is the reduced MTBDD (consisting of only a terminal vertex labelled

1) over (c

1

; : : : ; c

n

) representing a vector of length 2

n

with constant entries 1.

From function f

D

representing the vector of negative diagonal entries of Q, we

can now construct the MTBDD Q (for the operator Diag, see the appendix)

Q := Apply(R;Diag(D);�)

For the running CTMC example the MTBDD Q is shown on the left of Fig. 3.

Power method: In elementwise notation, the power method to iteratively com-

pute the steady-state probabilities can be written as follows:

�

(k+1)

s

= �

(k)

s

+

P

s

0

2S

�

(k)

s

0

Q(s

0

; s) ��t

which corresponds to the following matrix equation:

�

(k+1)

= �

(k)

� (Q ��t+ I)

where I is the identity matrix of appropriate size. The scaling factor �t must be

chosen such that �t < (max

s2S

jQ(s; s)j)

�1

in order to ensure that the iteration

matrix M = Q ��t + I is stochastic. A suitable value for �t can be chosen by

means of Max(D), since the MTBDD D is used to represent the row sums. In

our running example, the biggest row sum is f

D

(0; 1) = 6. Therefore, for sim-



algorithm IterativeSolve (M;n; di�

max

)

(0) P := 1=2

n

(1) repeat

(2) P

0

:= VMmult(P;M)

(3) P

0

:= P

0

fc

1

 r

1

g : : : fc

n

 r

n

g

(4) T := Max(Apply(P;P

0

;�))

(5) P := P

0

(6) until value(T) < di�

max

(7) return P

Table 1. Symbolic iterative solution algorithm

plicity, we choose �t = 1=7.

3

The actual scaling, i.e. calculating the product

Q ��t amounts to a simple scalar multiplication, afterwards the identity matrix

(of dimension 2

n

) is added. Let T be an MTBDD consisting of a terminal vertex

labelled �t. Summarising the above steps, we de�ne the iteration MTBDD

M := Apply(Smult(Q;T); I;+)

where I = Diag(1) is a BDD representing the identity matrix (actually a func-

tion f

I

=

Q

n

i=1

(c

i

�r

i

+(1�c

i

)(1�r

i

)) indicating that the row and column indices

are identical.) Fig. 3 shows on the right the MTBDD M for the CTMC of Fig. 2.

Having constructed the MTBDD representation of the iteration matrix M , two

vectors are needed that will contain the state probability vectors �, �

0

(of length

2

n

) before and after each iteration step. We represent them as MTBDD P and

MTBDD P

0

, over variables (r

1

; : : : ; r

n

), and (c

1

; : : : ; c

n

).

The symbolic iterative solution algorithm is given in Table 1. The algorithm

has three parameters: iteration MTBDD M, length of the state encoding n, and

the maximal tolerated di�erence between successive iterates, di�

max

. To initialise

the iteration, P is set to a reduced MTBDD consisting of a single terminal vertex

labelled with 1=2

n

, i.e. all states are assumed to be equiprobable (alternatively,

one could put probability 1 on a single state, or choose a known estimate as the

initial probability vector). In line (2), the multiplication of the current estimate

with the iteration matrix M is performed. The variable renaming in line (3)

basically transposes a column vector into a row vector (note that the ordering

of variables respects the precondition required by renaming, cf. App. A). This is

required in the subsequent subtraction in line (4), where the di�erence between

the old and the new iterate is calculated, which is used in line (6) as a termination

criterion. If the di�erence lies within the tolerated bound di�

max

the algorithm

terminates, returning the probability vector �, represented as the MTBDD P.

Jacobi method: In elementwise notation, the method of Jacobi can be written

as follows:

�

(k+1)

s

= �

P

n

s

0

2S

s

0

6=s

�

(k)

s

0

Q(s

0

; s) �

1

Q(s;s)

:

3

Note that in practice �t should be chosen very close to (max

s2S

jQ(s; s)j)

�1

, for

instance (max

s2S

jQ(s; s)j)

�1

� (1� �) for a small value of �, in order to achieve good

convergence [Ste94, p. 31, 124]



Using D to refer to the diagonal matrix of the row sums of R, the corresponding

matrix formulation is

�

(k+1)

= �

(k)

�R �D

�1

:

This means that the iteration matrixM is de�ned as M = R �D

�1

. This form is

suitable for symbolic implementation since inverting D is trivial (componentwise

inversion) and the product R�D

�1

can be calculated by the matrixmultiplication

algorithm sketched in Sec. 3. More precisely, let R represent the rate matrix R

and D be the MTBDD encoding the row sums of R (see above). Then we set

M :=Mmult(R; InvDiag(Diag(D))).

The MTBDD operation InvDiag is implemented by means of a single update

of each terminal vertex v of the argument MTBDD, replacing each non-zero

value(v) by value(v)

�1

. For similar (time) e�ciency reasons, an MTBDD-based

algorithm for matrix multiplication can be devised for our special case where

the right argument is a diagonal matrix. This multiplication simply amounts

to column-wise scaling of the matrix R.

4

With this MTBDD M, the iteration

proceeds as in Table 1.

Gauss-Seidel and Successive Overrelaxation: The iteration scheme of

Gauss-Seidel is similar to the method of Jacobi, but for computing the new

iterate �

(k+1)

s

i

the already updated values for �

(k+1)

s

j

, j < i are used immediately,

instead of at the next iteration. Since the speci�c strength of our symbolic com-

putation is the simultaneous computation of common parts of a matrix-vector

product, at �rst sight this strategy does not seem to be well-suited for symbolic

implementation. But { for the sake of argument { suppose one wished to per-

form Gauss-Seidel by straight-forward matrix multiplication. One would have to

explicitly calculate the iteration matrix L � (D � U )

�1

where L and U are the

lower (upper) triangular portions of R. A recursive MTBDD-based algorithm

InvTri for inverting triangular matrices can easily be devised. The inversion

causes a lot of �ll-in, and therefore this approach is counterproductive in the

setting of sparse matrices. However, in the MTBDD setting, the �ll-in can be

tolerated as long as many of the newly computed entries of (D�U )

�1

are iden-

tical, because this induces a sharing of subgraphs in the resulting MTBDD. For

speci�c cases, such as the simple M/M/1 queue (cf. Sec. 4.3) with �nite capac-

ity c, this is the case indeed: Its matrix D � U possesses 2 � c + 1 non-zeroes.

The inverse has (c + 1) � (c + 2)=2 non-zeroes (�ll-in). However, the number of

distinct non-zeroes is only 2 � c. Therefore, in speci�c cases, the straight-forward

vector-matrix realisation of Gauss-Seidel might turn out to be rather e�cient in

a symbolic setting.

A symbolic version of the Successive Overrelaxation method (SOR) raises

essentially the same issues as with Gauss-Seidel: Performing SOR by a simple

matrix-vector multiplication scheme (which is not what is usually done) involves

the inversion of a triangular matrix.

4

A matrix column of R is addresssed with the help of restriction R

�

�

�

c

1

=b

1

: : :

�

�

�

c

1

=b

n

of

the c labelled vertices, where b

1

: : : b

n

encodes the column index.



4 Compact encodings

In this section, we discuss a number of heuristics that are essential to get compact

MTBDD representations for CTMCs derived from high-level formalisms. The

heuristics address the ordering of Boolean variables, and the encoding of state

identi�ers as bit vectors. They are presented as rules of thumb, and discussed in

the context of di�erent high-level formalisms. The �rst, and most common rule

of thumb has already been used in previous sections.

Rule of thumb 1: It is recommended to use an interleaved ordering of the

bit vectors (r

1

; : : : ; r

n

) and (c

1

; : : : ; c

n

) encoding row and column indices,

i.e. to use (r

1

; c

1

; : : : ; r

n

; c

n

) as the variable ordering for the Markov chain.

The bene�ts of this rule can be visualised by an inspection of the function

f

I

=

Q

n

i=1

(c

i

� r

i

+ (1� c

i

)(1� r

i

)) that can be interpreted as the identity ma-

trix of dimension 2

n

. Using the variable ordering (r

1

; c

1

; : : : ; r

n

; c

n

) leads to an

MTBDD Iwith 3�n+2 vertices, whereas the na��ve ordering (r

1

; : : : ; r

n

; c

1

; : : : ; c

n

)

blows up exponentially in n, it requires 3 � 2

n

� 1 vertices. In our matrix setting,

this phenomenon implies that everything that `happens' on the main diagonal,

or on a diagonal of some submatrix represented by a cofactor (or obtained by

restriction of some arbitrary bits of the encoding) pro�ts from this encoding.

Furthermore, the interleaved ordering makes it possible to exploit structural

information of high-level formalisms in the encoding. Clearly, if any kind of

structural insight is used in the encoding of states, this insight will be reected

in the encoding of both row and column positions. Reasons why this is exploited

best with the interleaved ordering will be given in the next sections.

4.1 Failure-repair models

In this section, we wish to exemplify that (and how) high-level structure can be

turned into space-e�cient, low-level MTBDD encodings. We do this by exam-

ple, using a simple failure-repair model taken from [Ste94, p. 135]. The model

describes two classes of subsystems, each class consisting of two identical com-

ponents that are subject to failures and successive repairs. A component in class

i 2 f1; 2g fails with rate �

i

and is subsequently repaired with a rate �

i

. Taking

into account that equally behaving components can be lumped [KS76], we ob-

tain the following CTMC M = (f0; : : : ; 8g; R) with transition rate matrix R as

follows.

R =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

� 2�

2

� 2�

1

� � � � �

�

2

� �

2

� 2�

1

� � � �

� 2�

2

� � � 2�

1

� � �

�

1

� � � 2�

2

� �

1

� �

� �

1

� �

2

� �

2

� �

1

�

� � �

1

� 2�

2

� � � �

1

� � � 2�

1

� � � 2�

2

�

� � � � 2�

1

� �

2

� �

2

� � � � � 2�

1

� 2�

2

�

1

C

C

C

C

C

C

C

C

C

C

C

C

A



�

1

2�

1

2�

2

�

2

�

2

2�

2

2�

1

�

1

r

11

c

11

r

12

c

12

r

21

c

21

r

22

c

22

R

Fig. 4. MTBDD R for the structured encoding of the failure-repair model

The nine states can be encoded in the straight-forward way, mapping them onto

bit vectors of length 4, such that 0 7! 0000,. . . , 8 7! 1000. Using interleaved

variable ordering, the MTBDD R based on this encoding has 66 vertices in total.

In fact, this straight-forward encoding of states turns out to be suboptimal.

Rule of thumb 2: Compressingm states into dlog

2

me bits does not neces-

sarily lead to the most space e�cient encoding. It is always more promis-

ing to exploit the structure of the high-level speci�cation.

To illustrate this rule, we exploit the information that the above system consists

of two classes, and that each class has two components that may fail indepen-

dently. So we may view the states as tuples (w

1

; w

2

), where each of the elements

of this tuple ranges from 0 to 2 and indicates how many components of each class

are currently running. We need two bits to encode each of the tuple elements,

and choose to encode these elements in the straight-forward way. For instance,

(1; 2) (corresponding to state 3) is encoded as a bit vector 0110. The resulting

MTBDD is depicted in Fig. 4. It has fewer vertices than the one obtained with

the straight-forward encoding, 59 vertices in total. (Here, and in the sequel, we

omit the terminal vertex 0 and its incident edges from the graphical representa-

tion.) The example does not completely cover the claim in rule of thumb 2, since

both the na��ve and the structured encoding require dlog

2

me = 4 bits to encode

the m = 9 states of the example. We will return to this issue later, in Sec. 4.2.

The next rule of thumb is quite an interesting one. In particular we are not

aware of similar rules even in the non-stochastic setting

5

.

Rule of thumb 3: Established techniques to compress state spaces, such as

lumping, can be counterproductive in the MTBDD setting, since struc-

ture gets lost.

5

A corresponding rule in the non-stochastic setting would say that the application of

bisimulation equivalence [Mil89] tends to be counterproductive in the BDD setting.

This is our experience indeed, but we are not aware of any publication reporting this

e�ect.



�

1

�

1

�

2

�

2

c

1

r

2

c

2

r

3

c

3

r

4

c

4

R

r

1

Fig. 5. MTBDD R for the non-lumped failure-repair model

To illustrate this rule, we consider the above example without applying lumpa-

bility beforehand. As a consequence, we now deal with a CTMC M

0

= (S

0

; R

0

)

with nearly twice the number of states as before, namely jS

0

j = 2

4

= 16. The

rate matrix R

0

clearly contains more non-zero entries than the lumped variant,

but only four di�erent values (�

1

, �

2

, �

1

, �

2

) appear in this matrix. As a con-

sequence, we can obtain an again more e�cient MTBDD representation of this

CTMC. It is depicted in Fig. 5, and has only 39 vertices, although the under-

lying state space is much bigger. The encoding used for this example is simple.

Each of the four bits represents the status of one of the components. 1 is used

to represent a running component, and 0 for a failed component, The �rst two

bits represent components of class 1, the latter two class 2.

One may argue that a compression of the state space, even if it does increase

the memory requirements, results in a reduction of the solution e�ort in time,

since less computations have to be performed. However, since lumpable states

will by the de�nition of lumpability (and our choice of the start vector in Table 1)

be involved in the same arithmetic operations during the iterative solution, the

solution e�ort is not substantially increased in the MTBDD setting, if lumpable

states are kept distinct. The reason is that by means of e�cient hashing (citing

from [FMY97, p. 154]) \. . . virtually every operation has its result remembered

for later re-use." Thus, the application of lumpability can be counterproductive,

as it destroys the structure of the MTBDD without saving solution time.

4.2 Process algebras

Stochastic process algebras, or stochastic automata, are an excellent source for

structure, and therefore well-suited to be used together with MTBDDs. [DB95]

describes a general scheme to e�ciently generate reduced BDDs from process

algebraic descriptions. In particular, parallel composition on BDDs outperforms

other ways to represent the composition, admittedly except tensor-based ap-

proaches: As a direct consequence of the interleaved variable ordering (rule of

thumb 1 ) it is shown for non-stochastic process algebras in [EFT93] that the

symbolic representation grows additive in the size of the representation of its

components if the components are loosely coupled (i.e. have few synchronisation



points).

6

This result carries over from the non-stochastic to the CTMC case

[HS99,Sie98]. The same additive growth is known from tensor approaches, but

has to be contrasted to the usually observed multiplicative growth, due to inter-

leaving of independent moves. Note that, as opposed to tensor approaches, every

transition between two states is explicitly encoded in the MTBDD R by means

of the corresponding (r

1

; c

1

; : : : ; r

n

; c

n

) path leading to its rate. So, the look-up

of a matrix entry can be done in (worst-case) logarithmic time in the size of the

matrix (respectively additive in the size of the component MTBDDs), without

involving arithmetic operations. The fact that symbolic parallel composition al-

leviates the explosion of the state space caused by interleaving can be intensi�ed

by applying the following rule.

Rule of thumb 4: If the speci�cation formalism has composition oper-

ators, it is wise to invest into an optimal encoding of the lowest level

component state spaces. Avoid to touch the encodings that result after

composition.

This rule proposes to optimise the component encodings, either by means of the

exact algorithm

7

[THY93] or by means of adaptions of Rudell's sifting algorithm

[Rud93] or other heuristic methods for BDDs, e.g. [FMK91,BMS95]. Further-

more, the above rule says that the structure gained by applying composition

operators, such as parallel composition, should not be sacri�ced, even though it

might be tempting to shorten the bit vector encoding the states. This is essen-

tially a re-statement of rule of thumb 2. In the context of parallel composition

this rule implies that even though synchronisation constraints can induce that

considerable parts of of the composed state space are actually unreachable, we

propose not to construct an MTBDD over a Boolean space of a smaller dimen-

sion taking into account the reachability information. Our experience has shown

that it is more e�cient to keep the state encoding of the composed MTBDD

unchanged, and to construct an additional BDD that encodes a reachability

predicate. This BDD can be used to restrict the original MTBDD to the reach-

able subset of the state space, i.e. to remove all transitions originating from

unreachable states. Reachability analysis can be realised e�ciently on MTBDDs

[BdS92]. It is in the nature of a rule of thumb that it is not always valid. In fact,

for very strongly coupled systems, the additional computational burden imposed

by the large number of unreachable states can justify to sacri�ce the MTBDD

structure.

4.3 Queueing networks

In this section, we are aiming to show the e�ect which (rather obvious) struc-

turings of the state space encoding can have on the size of the MTBDD rep-

6

In short, the condition that only a single component has moved requires a predicate

in the style of the above function f

I

, to check whether row and column indices of all

the other components are identical, i.e. unchanged.

7

Since the lowest level components are not likely to have large MTBDD representa-

tions, NP-completeness of the exact algorithm is not a problem in practice.



r

m

1

c

m

1

r

m

2

c

m

2

r

m

1

c

m

1

r

m

2

c

m

2

r

m

3

c

m

3

��

R

��

R

Fig. 6. MTBDD R of the M/M/1 example with queue capacity 3 and 7

resentation. We start with a simple M/M/1 queue with �nite capacity c; for

simplicitiy, we assume that c = 2

k

�1 for some natural k, since this ensures that

the state space size is a power of two. Enumerating the states in the usual way

from 0 to 2

k

� 1, we obtain that the rate matrix R is non-zero at R(i; i+1) = �,

R(i + 1; i) = �, for 0 � i � 2

k

� 2, where � is the arrival rate, and � is the

departure rate. For k = 2 we get

R =

0

B

B

@

� � � �

� � � �

� � � �

� � � �

1

C

C

A

For this queue, the MTBDD R over (r

m

1

; c

m

1

; r

m

2

; c

m

2

) is shown in Fig. 6, together

with the MTBDD for k = 3, i.e. for an M/M/1 queue with 7 places (the su-

perscript 'm' is used to distinguish the variables from other variables that are

added later). The encoding of states as bit vectors is done in the `natural' way,

where 0 is encoded as a vector of zeroes, and 2

k

� 1 is encoded as a vector of

ones (both of length k). The reader is invited to inspect the structure of these

two decision diagrams. The crucial observation is that doubling the state space

size (and hence essentially the queue capacity) does not double the memory re-

quirements of the MTBDD needed to symbolically represent the rate matrix. In

contrast, the MTBDD increases only linearly, by a constant of 7 non-terminal

vertices. This is true in general, the M/M/1 with queue capacity 2

k

� 1 requires

7 �k�1 vertices to be represented as an MTBDD. As far as we know, this feature

is not present in any other method to store Markov chains explicitly.

Rule of thumb 5: Structure exploitation is the key. If repetitive sub-

blocks of a matrix are encoded `close' to each other, the result can be an

exponential saving.

Since the M/M/1 system is the simplest queueing system at all, its e�cient en-

coding is not really a convincing argument to exemplify rule of thumb 5. We

wish to highlight that the same e�ect, a logarithmic increase of the memory

requirements in the size of the queue lengths, can be obtained for more complex

queueing models as well. To illustrate this fact, we extend the above result to the

broad class of single queues with phase-type arrival and service time distribu-

tion. Consider, for instance, an M/Cox

p

/1 queue with �nite capacity c = 2

k

� 1



r

g

1

c

g

1

r

g

2

c

g

2

r

b

1

c

b

1

r

g

1

c

g

1

r

g

2

c

g

2

r

g

3

c

g

3

r

b

1

c

b

1

� b

1

�

1

�

2

a

1

�

1

� b

1

�

1

�

2

a

1

�

1

R

R

Fig. 7. MTBDD R of the M/Cox

2

/1 example with queue capacity 3 and 7

and p = 2

l

phases.

8

Assuming l = 1 and k = 2, i.e. a queue capacity of c = 3 and

a Coxian distribution with two phases, we end up with an example discussed in

[Ste94, p. 237] (see there for the special treatment of the `double' empty state).

The rate matrix for this queue is given by

R =

0

B

B

@

� A � �

B C A �

� B C A

� � B C

1

C

C

A

, where A =

�

� �

� �

�

, B =

�

b

1

�

1

�

�

2

�

�

, and C =

�

� a

1

�

1

� �

�

.

Obviously, the matrix possesses a block tridiagonal structure, and again, for

larger values of the queue capacity c, or the number of phases p the matrix is

simply extended in a regular fashion. In terms of k and l, the matrixR has dimen-

sion 2

k+l

, and hence it is quite natural to encode the global (diagonal) structure

with 2k Boolean variables (r

g

1

; c

g

1

; : : : ; r

g

k

; c

g

k

), and to represent the block matrices

with 2l variables (r

b

1

; c

b

1

; : : : ; r

b

l

; c

b

l

). For our example we get the MTBDDs shown

in Fig. 7 (left). Note how the bottom variable levels (r

b

1

; c

b

1

) directly encode the

block matrices A, B and C. In Fig. 7 we have also depicted the representation

of the M/Cox

2

/1 queue with capacity c = 7 = 2

3

� 1, in order to illustrate the

logarithmic growth of the MTBDD. It turns out that the MTBDD correspond-

ing to capacity (2

k

� 1) has 9 � k + 7 vertices, and a similar bound, linear in l,

can be derived for an exponential increase of the number of phases of the Coxian

distribution.

The same basic principle applies to any queue with block-structured genera-

tor matrix, and it is not restricted to single queues. If, for instance, we combine

the two previous queues in a tandem network (with blocking) as shown below,

�

1

�

�
�

2

a

1

b

1

we can derive the corresponding MTBDD R from the operand's MTBDDs (using

a variant of process algebra style parallel composition). The resulting MTBDD

for the case where both queues have a �nite capacity of c = 7 is shown in Fig. 8.

The state space for this model is 16 � 8 = 128 states, and the MTBDD has 93

vertices. In general, if each queueing station has a capacity of c = 2

k

� 1, the

8

If the number of phases is not a power of 2, the same encoding applies, but some

dummy rows and columns in the block matrices are �lled with zero entries. The

reduced MTBDD representation, however, has the same characteristics.



�

2

b

1

�

1

a

1

�

1

��

r

g

1

c

g

1

r

g

2

c

g

2

r

g

3

c

g

3

r

b

1

c

b

1

r

m

1

c

m

1

r

m

2

c

m

2

r

m

3

c

m

3

R

Fig. 8. MTBDD for the simple tandem queueing network

state space size is 2

2k+1

while the MTBDD representation only requires 30 �k+3

vertices. As a result, for exponentially growing state space, the growth of the

MTBDD is linear.

To give an impression of the memory requirements of such a structure, assume

that the memory requirement per MTBDD vertex is 12 byte (3 byte for the vertex

identi�er and the identi�ers of the children, respectively, and an additional 3

byte for the labelling information). Note that with 3 byte 2

24

vertices can be

addressed. Using just 1 MB of memory, MTBDDs with up to 87381 vertices

could be stored. In the tandem queueing network example we have seen that we

needed 30 � k+ 3 vertices to represent a state space of size 2

2�k+1

. For the 1 MB

limit, the maximumvalue for k is thus 2912, which corresponds to 2

5825

= 10

1753

states, generated by queue lengths of capacity 10

877

for each of the two tandem

queues.

5 Conclusion

In this paper we described symbolic representations of CTMCs based on multi-

terminal binary decision diagrams. Adaptions of simple iterative schemes for

the computation of the steady-state probabilities were discussed in this context,

together with potential problems and bene�ts. We pointed out various crucial

points concerning the encoding of state spaces stemming from di�erent high-

level formalisms and provided the reader with 5 useful rules of thumb which are

intended as guidelines for the application of MTBDDs to CTMCs. These rules

reect our experience with symbolic representations in the context of Markov

chains, and summarise the lessons we learned. In fact, the various success stories

reported for (MT)BDDs usually neglect to highlight that their amazing space

e�ciency does not come for free. It is based on deep insight into the structure of

the speci�cation (formalism) at hand, together with heuristics to exploit them.

Mechanised exploitation of such structure has been proposed for process algebra

style speci�cations [DB95], but still some awkward phenomena can be observed,



for instance that state space compression (based on bisimulation or lumpability)

can cause an increase of the size of the MTBDD (cf. rule of thumb 3 ). Never-

theless, we believe that it is promising to investigate symbolic representation of

CTMCs much further, in particular because they have the unique potential of

representing an exponential growth of the state space by means of an MTBDD

that only grows linearly, as we have shown for the queueing systems discussed

above. In the future, we are aiming to extend this result to broader classes of

open networks with �nite capacity and blocking.

Of course, a lot of work remains to be done concerning symbolic iterative

solution of CTMCs. Although the prototypical implementation on which we are

currently working is now capable of producing numerical results, it seems still

too early to publish data on its performance. Among future work, we plan to

investigate whether advanced numerical algorithms (e.g. projection techniques),

of which it is known that they are superior to the simple schemes considered in

this paper, have e�cient symbolic variants.

Acknowledgements: We would like to thank Christel Baier for elucidating

remarks concerning details of MTBDDs.

References

[BCL91] J.R. Burch, E.M. Clarke, and D. Long. Symbolic Model Checking with

partitioned transition relations. In VLSI'91, Edinburgh, Scotland, 1991.

[BCM

+

92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-

bolic Model Checking: 10

20

States and Beyond. Information and Computa-

tion, 98:142{170, 1992.

[BCMP75] F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios. Open Closed

and Mixed Networks of Queues with Di�erent Classes of Customers. Journal

of the ACM, 22(2):248{260, 1975.

[BdS92] A. Bouali and R. de Simone. Symbolic Bisimulation Minimisation. In

Proc. CAV'92, pages 96{108, Springer LNCS 663, 1992.

[BFG

+

97] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and

F. Somenzi. Algebraic Decision Diagrams and their Applications. Formal

Methods in System Design, 10(2/3):171{206, 1997.

[BKLL95] H. Brinksma, J.-P. Katoen, R. Langerak, and D. Latella. A stochastic

causality-based process algebra. The Computer Journal, 38(7):552{565,

1995.

[BMS95] J. Bern, C. Meinel, and A. Slobodova. Global rebuilding of OBDDs avoiding

memory requirement maxima. In Proc. CAV'95, pages 4{15. Springer LNCS

939, 1995.

[BRB90] K.S. Brace, R.L. Rudell, and R.E. Bryant. E�cient Implementation of a

BDD Package. In 27th ACM/IEEE Design Automation Conference, pages

40{45, 1990.

[Bry86] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation.

IEEE Transactions on Computers, C-35(8):677{691, 1986.

[BW96] B. Bollig and I. Wegener. Improving the Variable Ordering of OBDDs is

NP-Complete. IEEE Transactions on Computers, 45(9):993-1006, 1996.

[Buc94] P. Buchholz. A class of hierarchical queueing networks and their analysis.

Queueing Systems, 15:59{80, 1994.

[CDFH93] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad. Stochastic Well-

Formed Coloured Nets and Symmetric Modelling Applications. IEEE

Transactions on Computers, 42(11):1343-1360, 1993.



[CS85] W.L. Cao and W.J. Stewart. Iterative Aggregation/Disaggregation Tech-

niques for Nearly Uncoupled Markov Chains. Journal of the ACM,

32(3):702{719, 1985.

[CMZ

+

97] E.M. Clarke, K.L. Mcmillan, X. Zhao, M. Fujita, and J. Yang. Spectral

Transforms for Large Boolean Functions with Applications to Technology

Mapping. Formal Methods in System Design, 10(2/3):137{148, 1997.

[DB95] A. Dsouza and B. Bloom. Generating BDD models for process algebra

terms. In Proc. CAV'95, pages 16{30. Springer LNCS 939, 1995.

[Don93] S. Donatelli. Superposed stochastic automata: a class of stochastic Petri nets

with parallel solution and distributed state space. Performance Evaluation,

18(1):21{36, July 1993.

[EFT93] R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic

model checking in CCS. Distributed Computing, 6:155{164, 1993.

[FMK91] M. Fujita, Y. Matsunaga, and T. Kakadu. On variable ordering of binary

decision diagrams for the application of multi-valued logic synthesis. In

Proc. EDAC'91, pages 50{53, 1991.

[FM97] M. Fujita and P.C. McGeer, editors. Special Issue on Multi-Terminal Binary

Decision Diagrams. Formal Methods in System Design, 10(2/3), 1997.

[FMY97] M. Fujita, P. McGeer, and J.C.-Y. Yang. Multi-terminal Binary Decision

Diagrams: An e�cient data structure for matrix representation. Formal

Methods in System Design, 10(2/3):149{169, 1997.

[HMPS96] G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian Analysis

of Large Finite State Machines. IEEE Transactions on CAD, 15(12):1479{

1493, 1996.

[HR98] H. Hermanns and M. Ribaudo. Exploiting Symmetries in Stochastic Process

Algebras. In Simulation { Past, Present and Future, pages 763{770. SCS

International, 1998.

[HS99] H. Hermanns and M. Siegle. Bisimulation Algorithms for Stochastic Pro-

cess Algebras and their BDD-based Implementation. In 5th Int. AMAST

Workshop on Real-Time and Probabilistic Systems, Springer LNCS 1601,

pages 244{264, J.P. Katoen, editor, 1999.

[KS76] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.

[LS92] Y.-T. Lai and S. Sastry. Edge-Valued Binary Decision Diagrams for Multi-

Level Hierarchical Veri�cation. In 29th Design Automation Conference,

pages 608{613. ACM/IEEE, 1992.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

[PA91] B. Plateau and K. Atif. Stochastic Automata Network for Modeling Parallel

Systems. IEEE Transactions on Software Engineering, 17(10):1093{1108,

1991.

[Rud93] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams.

In Proc. IEEE ICCAD'93, pages 42{47, 1993.

[SA61] H.A. Simon and A. Ando. Aggregation of Variables in Dynamic Systems.

Econometrica, 29:111{138, 1961.

[Sie94a] M. Siegle. Structured Markovian Performance Modelling with Automatic

Symmetry Exploitation. In Short Papers and Tool Descriptions of the 7th

Int. Conf. on Modelling Techniques and Tools for Computer Performance

Evaluation, pages 77{81, Vienna, Austria, 1994.

[Sie94b] M. Siegle. Using Structured Modelling for E�cient Performance Prediction

of Parallel Systems. In Parallel Computing: Trends and Applications, pages

453{460. North-Holland, 1994.

[Sie98] M. Siegle. Compact representation of large performability models based on

extended BDDs. In 4th International Workshop on Performability Mod-

eling of Computer and Communication Systems (PMCCS4), pages 77{80,

Williamsburg, VA, 1998.

[Ste94] W.J. Stewart. Introduction to the numerical solution of Markov chains.

Princeton University Press, 1994.

[THY93] S. Tani, K. Hamaguchi, and S. Yajima. The Complexity of Optimal Variable

Ordering of a Shared Binary Decision Diagram. In Proc. 4th ISAAC, pages

389{398. Springer LNCS 762, 1993.



A Operations on MTBDDs

In this appendix, we briey sketch how the standard operators needed for our pur-

poses can be realised on reduced MTBDDs. Let M, M

1

, M

2

be reduced MTBDDs over

(v

1

; : : : ; v

n

). In what follows, we write v

1

� v

2

if either v

2

is a terminal vertex while v

1

is non-terminal or both v

1

, v

2

are non-terminal vertices and var(v

1

) � var(v

2

).

Combining two MTBDDs via binary arithmetic operators: If op is a binary

operator (e.g. summation + or multiplication �) then Apply(M

1

;M

2

;op) returns the

MTBDD M over (v

1

; : : : ; v

n

) where f

M

= f

M

1

op f

M

2

. The basic idea behind this

operator is as follows. Apply(M

1

;M

2

;op) calls a recursive procedure A

op

(v

1

; v

2

) that

takes a vertex v

1

of M

1

and a vertex v

2

of M

2

as its input and returns an MTBDDs

with a root vertex v.

{ If v

1

and v

2

are terminal vertices then A

op

(v

1

; v

2

) returns just the single terminal

vertex v labelled by value(v

1

) op value(v

2

).

{ If v

1

� v

2

then var(v) = var(v

1

), else(v) = A

op

(else(v

1

); v

2

) and then(v) =

A

op

(then(v

1

); v

2

).

{ Conversely, If v

2

� v

1

then var(v) = var(v

2

), else(v) = A

op

(v

1

; else(v

2

)) and

then(v) = A

op

(v

1

; then(v

2

)).

{ If v

1

, v

2

are non-terminal vertices and var(v

1

) = var(v

2

) = v then var(v) = v,

else(v) = A

op

(else(v

1

); else(v

2

)) and then(v) = A

op

(then(v

1

); then(v

2

)).

Variable renaming: Let w =2 fv

1

; : : : ; v

n

g and i 2 f1; : : : ; ng with v

i�1

� w � v

i+1

.

Then, Mfv

i

 wg denotes the MTBDD over (v

1

; : : : ; v

i�1

;w; v

i+1

; : : : ; v

n

) that results

from M where we change the variable labelling of any v

i

-labelled vertex into w. For

this, we put var(v) = w for any v

i

-labelled vertex v in M.

9

Restriction: Let i 2 f1; : : : ; ng and b 2 f0; 1g. Then M

�

�

�

v

i

=b

denotes the MTBDD over

(v

1

; : : : ; v

i�1

; v

i+1

; : : : ; v

n

) that is obtained from M by replacing any edge from a vertex

v to a v

i

-labelled vertex w by an edge from v to then(w) if b = 1 (else(w) if b = 0), and

by removing all v

i

-labelled vertices. Thus, for instance, M

�

�

�

v

1

=0

represents the partial

function (v

2

; : : : ; v

n

) 7! f

M

(0; v

2

; : : : ; v

n

), which is identical to the cofactor M

else

.

Scalar multiplication: If T just consists of a terminal vertex v

0

labelled with k =

value(v

0

), then Smult(M;T) returns the unique reduced MTBDD over (v

1

; : : : ; v

n

)

representing the function k � f

M

. Even though this operation can be easily realised

using Apply, it is more e�cient to implement as an update of terminal vertices v of

M, changing the value of each terminal vertex v into k � value(v).

Maximum: Let fv

1

: : : v

h

g be the terminal vertices of M. Max(M) is the MTBDD

consisting of a single terminal vertex labelled with the max

1�i�h

(jvalue(v

i

)j), the ab-

solute maximum of the function f

M

. This requires a simple traversal of the terminal

vertices of M.

Matrix diagonal: Diag(M) is the MTBDD over (v

1

; v

0

1

; : : : ; v

n

; v

0

n

) representing f

M

if

v

i

= v

0

i

for 1 � i � n and 0 otherwise. So, it turns a vector into a diagonal matrix of the

same dimension. It takes a vertex v of M and introduces new vertices v

0

and v

1

with

var(v

0

) = var(v

1

) = var(v)

0

, else(v

0

) = else(v), then(v

1

) = then(v), and then(v

0

) =

else(v

1

) = 0. Afterwards it sets else(v) = v

0

and then(v) = v

1

, and (recursively)

proceeds by taking the vertices else(v

0

) and then(v

1

).

9

Note that M and Mfv

i

 wg represent the same function (when viewed as MTBDDs

over (v

1

; : : : ; v

i�1

; v

i

; v

i+1

; : : : ; v

n

) and (v

1

; : : : ; v

i�1

;w; v

i+1

; : : : ; v

n

) respectively).


