
A LAnguage for
REconfigurable dependable Systems:

Semantics & Dependability Model Transformation

Martin Riedl
Institut für Technische Informatik,

Universität der Bundeswehr München,
Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany

martin.riedl@unibw.de

Markus Siegle
Institut für Technische Informatik,

Universität der Bundeswehr München,
Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany

markus.siegle@unibw.de

LARES (LAnguage for REconfigurable dependable Systems) has been defined to model fault-tolerant systems.
It serves as an easy-to-learn formalism that allows to describe the structure of a system and to express its dynamic
failure and repair behavior in a convenient and concise way. The paper gives insight into the recent improvements
to the language and its formal transformation semantics into a stochastic process algebra.

1. INTRODUCTION

Fault-tolerant systems are most often designed by
developers and engineers from industry. Since those
systems have to satisfy some important non-functional
properties (e.g. reliability, availability, survivability),
tools have to be applied to specify and consequently
analyze those systems. Exhaustive methods or rare-event
simulations are the most suitable methods to be applied,
as cases of failures are ”hopefully” intrinsically extremely
rare. Tools which implement exhaustive methods mostly
come from academia. There, research is mainly focused
on expressiveness and theoretic verifiability of models
specified with the help of formal languages, or speeding
up the analysis methods. Indeed, formalisms such as
reliability block diagrams (RBD) or fault trees are
used by engineers to design fault-tolerant systems
but suffer from limited expressiveness. State-based
formalisms such as Petri nets or Markov models do not
pervade common usage. Compositional languages such
as process algebra seem to fill this gap but still do not
attract sufficiently - probably because it is a non-trivial
task to specify process synchronizations correctly.

A language that provides both, i.e. basic well-known
concepts to model simple fault-tolerant aspects and at
the same time maintaining expressive power to specify
more complex dependencies, has been introduced as
LARES in [Gouberman et al. (2009)]. A number of
improvements and advanced features have been added
since then. Models can be specified in a hierarchical
way by so-called Module or Behavior definitions.

Instances inside module definitions can be defined by
either inheritance or applying an Instance statement.
Condition statements denote Boolean expressions
similar to RBDs and are used to define the interaction
between those instances by guards statements. The
direction of information flow within a model has to be
defined stringently, using either Condition or forward
definitions. Equally, scoping and visibility restrictions are
provided to assure modularity and clarity.

The aim of this paper is to provide information on
the LARES language expressiveness and semantics
(Sec. 3) and the fully automated transformation of
LARES dependability models into the CASPA process
algebra [Kuntz, Siegle and Werner (2004); Bachmann
et al. (2009)] (Sec. 4) in order to allow formal
analysis (Sec. 5). Thus, the contribution of the paper
consists of the presentation of a complete modelling
framework, starting from an expressive and user-
friendly specification language and resulting in a formal
quantitative model and its automated analysis.

2. RELATED WORK

The ideas leading to the LARES transformation
semantics have been collected in [Riedl et al. (2010)] and
successive works. There, ZuVerSicht models, providing
a basic non-Boolean error model with aspects such as
error propagation, common cause failure and two kinds
of repair concepts, were translated into a stochastic
process algebra and analyzed by the CASPA tool.

1

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

After LARES had been defined initially [Gouberman
et al. (2009)], further work to emphasize the suitability
of modeling fault-tolerant systems using a dialect
of LARES has been described in [Walter and Lê
(2011); Walter (2011b,a)]. The objective of LARES is
twofold, to serve as an intermediate language as well
as a user-level language. In [Lê and Walter (2011)]
an efficient conversion from conventional graph based
reliability block diagram structures to LARES Boolean
expressions is described and will contribute to the
LARES framework within a graphical editor which is
currently under development (see Sec. 6).

Related work has been done in the COMPASS project
[Bozzano et. al. (2011)] by formalizing a subset of
AADL1 incorporating also the error-model annex. There,
the semantics is given in terms of (Networks of) Event-
Data Automata. Arcade [Boudali et. al. (2008)] has
taken a similar approach by formalizing a subset of
AADL using IO-IMCs (Input/Output Interactive Markov
Chains). Automated model transformation using the
model driven development paradigm has been applied
in [Grassi et al. (2008)] where an intermediate language
called KLAPER (Kernel LAnguage for PErformance and
Reliability analysis) was defined.

3. LARES EXPLAINED BY EXAMPLE

LARES serves as a generic language in which any kind
of discrete-event stochastic system can be specified.
However, modellers benefit most if they use LARES
for describing systems which have a hierarchic structure,
where events depend on combinations of causes and may
lead to combinations of consequences.

As a running example, a fault-tolerant network system
is given. It consists of two processors and a network that
connects those processors using a number of redundant
links (see also Fig. 1). Each of the processors can fail
as well as each of the links of the network. Initially
only the first link is active and the others remain
inactive. However, if the active link fails, the second

Figure 1: Redundant Network Example

is activated and so forth. Once all links are failed, the
network as a whole is failed. The system itself fails
if one of the processors or the network fails. In the
following, explanations are given how this model can

1Architecture Analysis and Design Language (AADL): http://

www.aadl.info

be specified using LARES. We start with the general
system structure as shown in Listing 1. In LARES
a keyword System is provided to denote the system
instance of the fault-tolerant network model by a name,
i.e. FTN. Since our interest is on the system level, i.e.
whether the system as a whole is operable, we provide a
failure behavior BSys to the system definition. Inside
the system definition we provide all instantiations of
its subcomponents, i.e. two processors p[1] and p[2]

by stating Instance p[i] of Processor with an
expansion expression of this statement for the variable
i ranging between 1 and 2 and the network instance
n by stating Instance n of Network(numLink=3),
meaning that we provide the value 3 for the parameter
numLink of the Network definition.

Behavior BSys { . . . }

Behavior BLink { . . . }

Behavior B P r o c e s s o r { . . . }

System FTN : BSys {
Module P r o c e s s o r : B P r o c e s s o r { . . . }
. . .
expand (i i n {1 . . 2}) {

Instance p [i] o f P r o c e s s o r
}
Instance n o f Network (numLink=3)

}

Module Network (numLink) {
Module L i n k : BLink { . . . }
Instance l [1] i n i t i a l l y a c t i v e o f L i n k
expand (i i n {2 . . numLink}) {

Instance l [i] i n i t i a l l y p a s s i v e o f L i n k
. . .

}
}

Listing 1: Fault-Tolerant Network System: Structure

The processor definition itself has a behavior which
is defined on the root level of the model. Inside
the network definition also the subinstances of the
Links are created. There, the statement Instance

l[1] initially active of Link creates the active
link instance, while the remaining links depending on
the number of links of the corresponding variable
numLink are created being passive initially. The link
definition is also stated in the network definition,
while its corresponding behavior is stated on the root
level of the model. Another important aspect concerns
the visibility of definitions. In LARES the scope of
behavior and module definitions behaves as in object-
oriented programming with (inner-)class definitions, i.e.
a behavior/module definition is visible at the same level
where it is defined and at the subtrees. Thinking of
our example as shown in Fig. 2: the definition Link

is stated inside a definition Network and therefore not
visible inside another definition, e.g. FTN and the subtree
belonging to FTN. That means, a link instance cannot
be created within the FTN definition or in its subtree.
Note, that the self-referring dashed arrow denotes that
system module definition FTN has a twofold meaning,
i.e. it serves as both, a definition and its corresponding
instantiation. So far, the structure of the model is

2

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

Figure 2: Structural Model: Scoping

defined, i.e. all module/behavior definitions are given
including their instances which implicitly define the
resulting instance tree. Next the interactions of the
instances have to be complemented. For that purpose,
a number of statements can be defined within a module
definition:

• Conditions, i.e. boolean terms as assertions over
states or other conditions.

• forward rules (which propagate an event and
define which kind of synchronised behavior or
which remote forwards should be triggered by
referring to their label).

• guards statements (which generate such an event
and define which kind of synchronized behavior or
which forwards should be triggered).

The general flow of information is depicted in Fig. 3:
the information over assertions on states is aggregated
using a Condition statement, which generates an event
within the guards statement. This in turn is forwarded
by forward statements to guarded transitions (in case
of a number of intermediate levels), or triggering a
behavior directly by referring to the guard label of the
guarded transition.

In Listing 2 a LARES specification of the example is
provided. One can approach the completion of the model
from different directions (either a top-down, or bottom
up, or mixed approaches). Here a top-down approach
has been chosen, which means that we start from the
system definition, where we state how its subtrees should
interact.

3.1. System Module Definition

The initial state of the system behavior is de-
fined to be in ok, i.e. the statement Initial ok

initially BSys.sok defines that the behavior in-
stance of the system has to be in sok initially. Remember
that we have the following redundancy structure of

the system: the system fails if one of the proces-
sors fail, or the network fails. Therefore the state-
ment OR[i in 1 .. 2] p[i].failed | n.nfailed

guards BSys.<systemfail> is formulated. It guards
a label referring to a transition of the systems behavior
instance BSys. Only two states sok and sfailed are
explicitly defined and its corresponding transitions: a
guarded transition that is triggered by the systemfail
event and a transition that results in the implicitly
defined state shazard after sojourning in sfailed by
an exponentially distributed delay.2

3.2. Network Module Definition

In the network we have to additionally state that if a
link is failed, the next one has to take over. This is
expressed by the statement l[i-1].lfailed guards

l[i].<swactive>. The expand expression implies that
this guard statement is duplicated depending on the
numLink parameter, i.e. since numLink is 3 the
expand results in two guard statements meaning that
that if l[1] is failed l[2] is signalled to switch
active (<swactive>) and that if l[2] is failed,
l[3] has to switch active. In addition to define
how the links interact due to failures, we have to
state whether the network has failed and make its
internal state visible to the environment. This is done
using a Condition statement. Condition nfailed =

AND[i in 1 .. numLink] l[i].failed states that
the network is failed (i.e. labelled by nfailed) if all
links are in their failed state. Due to the fact that there
is no inherited behavior or an incompletely initialized
subinstance no explicit Initial statement has to be
provided.

3.3. Link Module/Behavior Definition

The link module definition consists of a few simple
statements, the forward statement to pass the signal
<swactive> to the link’s behavior. Besides, offering
the two initial states active, i.e. if BLink is in state

2Apart from transitions with timed delay, LARES also offers
weighted immediate transitions which may lead to vanishing states
similar to GSPNs.

3

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

Figure 3: General Flow of Information

lactive, and passive i.e. if BLink is in state lok.
The corresponding behavior to a link BLink is defined
using three states lactive, lok and lfailed with the
corresponding transitions in between them: a guarded
transition from lok to lactive with the guard label
<swactive>. And the unguarded transitions from either
lok or lactive to lfailed with distinct exponentially
distributed rates.

3.4. Processor Module/Behavior Definition

After all interesting parts of the model have been
explained, for the sake of completeness, the behavior
and the module definition of a processor remain to be
provided. In the module definition of the processor a
Condition pfailed states that its behavior instance
BProcessor is in state pfailed. With Initial ok

initially BProcessor.pok an initial state is defined
for a processor, i.e. sets the initial state of the behavior
instance to pok. By mentioning these two states,
all states of the Behavior BProcessor have been
considered. In addition, an unguarded transition with
an exponential distributed delay can move the behaviors
state from pok to pfailed.

Behavior BSys {
State sok , s f a i l e d
Transitions from sok i f <s y s t e m f a i l>→ s f a i l e d
Transitions from s f a i l e d

i f <t r u e>→ shazard , d e l a y e x p o n e n t i a l 2
}

Behavior BLink {
Transitions from l o k

i f <s w a c t i v e>→ l a c t i v e
i f <t r u e>→ l f a i l e d , d e l a y e x p o n e n t i a l 0 . 1

Transitions from l a c t i v e
i f <t r u e>→ l f a i l e d , d e l a y e x p o n e n t i a l 0 . 3

}

Behavior B P r o c e s s o r {
Transitions from pok

i f <t r u e>→ p f a i l e d , d e l a y e x p o n e n t i a l 0 . 0 0 5
}

System FTN : BSys {
Module P r o c e s s o r : B P r o c e s s o r {

Condition p f a i l e d = B P r o c e s s o r . p f a i l e d
Initial ok = B P r o c e s s o r . pok

}
expand (i i n {1 . . 2}) {

Instance p [i] o f P r o c e s s o r
}
Instance n o f Network (numLink=3)
Initial ok = BSys . sok

OR[i i n {1 . . 2}] p [i] . p f a i l e d |

n . n f a i l e d guards BSys.< s y s t e m f a i l>
}

Module Network (numLink) {
Module L i n k : BLink {

forward <s w a c t i v e> to BLink.< s w a c t i v e>
Condition l f a i l e d = BLink . l f a i l e d
Condition p a s s i v e = BLink . l o k
Initial a c t i v e = BLink . l a c t i v e
Initial p a s s i v e = BLink . l o k

}
Instance l [1] i n i t i a l l y a c t i v e o f L i n k
expand (i i n {2 . . numLink}) {

Instance l [i] i n i t i a l l y p a s s i v e o f L i n k
AND[j i n {1 . . i −1}] l [j] . l f a i l e d &

l [i] . p a s s i v e guards l [i].< s w a c t i v e>
}
Condition n f a i l e d =

AND[i i n {1 . . numLink }] l [i] . l f a i l e d
}

Listing 2: Fault-Tolerant Network System: Full
Specification

In the example conditional forwards have not been
addressed. With their help an additional boolean
expression can be formulated pertaining to the state
of its subtree. The forward statement in consequence
only affects the behavior of its subtree if the condition
is fulfilled. Another important aspect to note is, that
both the guard statement and the forward statement
follow a max-sync semantics: all addressed instantiated
subbehaviors or submodules that are able to follow (as
soon as a certain condition triggers a related guard
statement at the upper level) will do this instantaneously
in a synchronous step.

4. TRANSFORMATION SEMANTICS

This section is split into two parts. The first
part considers in-model transformations, i.e. the
resolution of certain language features that lead to an
expanded but behavior-equivalent LARES model called
LARESBASE . The second part of the section is specific
to the transformation into the destination formalism. In
this paper the focus is on the transformation into the
CASPA stochastic process algebra language [Bachmann
et al. (2009)]. Other target formalisms have also been
addressed (see Sec. 6).

4

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

4.1. In-model Transformation

Three consecutive steps lead to a LARESBASE
model: At first all instantiation parameters have to be
resolved, leading to different realizations of behavior
or module definitions depending on their instantiation
parameterizations (see Fig. 4). Secondly, within Boolean
expressions used in forward, guards and Condition

statements, references to other conditions can be stated.
All of those references are resolved such that a Boolean
expression only consists of references to states. And
thirdly, all guard label forwards are resolved, such that
only modified guards statements remain with direct
references to the guard labels inside the instantiated
behavior definitions. In the following paragraphs, the
steps are explained in detail by means of the running
example.

4.1.1. Parameter Expansion
Starting at the root node of a LARES model we first
identify all parameters defined in the system definition
FTN. We then search for all expand statements. The
one we can find in the system instance of the running
example is:

expand (i i n {1 . . 2}) {
Instance p [i] o f P r o c e s s o r

}

Since the set expression used in the statement is static
(i.e. does not depend on a parameter in this case), the
expansion can take place immediately, resulting in:

Instance p [1] o f P r o c e s s o r
Instance p [2] o f P r o c e s s o r

The same holds for the guards statement within the
system instance which is expanded to:

(
p [1] . f a i l e d | p [2] . f a i l e d

) | n . n f a i l e d guards BSys.< s y s t e m f a i l>

Since there is nothing more to expand, a recursive
descent is performed over the subinstances. In
consequence, the scheme is applied to the module
definition that is referred to by the instantiation with the
given parameters. Of course, the definition has to be in
scope (i.e. must not be defined in another subtree of the
definitions). Note that the network instance is created
by setting the numLink parameter to 3. Assume that we
perform now the parameter expansion on the network
instance. The body of the module’s definition contains
an expand statement over a statement block. Since the
instance of this definition has a defined parameter set,
the set expression can be evaluated and the statement
block expanded corresponding to the evaluation. The
statements in the blocks are also evaluated concerning
the iterators, resulting in:

Instance l [2] i n i t i a l l y p a s s i v e o f L i n k

(
l [1] . l f a i l e d & l [2] . p a s s i v e

) guards l [2] .< s w a c t i v e>

Instance l [3] i n i t i a l l y p a s s i v e o f L i n k

(
(l [1] . l f a i l e d & l [2] . l f a i l e d) & l [3] . p a s s i v e

) guards l [3] .< s w a c t i v e>

What remains is the Condition that states whether the
network is failed. This condition is expanded to:

Condition n f a i l e d = (
l [1] . f a i l e d & l [2] . f a i l e d & l [3] . f a i l e d

)

The same schema is performed also on the link and
the processor instances. Since there are no parameters
defined, no specific expansions have to be performed.
However, it is important to note that all expanded
definitions contain concrete parameters and are directly
associated with their instantiations. For the sake of
brevity, it is not detailed how the initials are propagated
through the model, but it follows the same scheme as
the propagation of the parameter evaluations.

4.1.2. Condition Expansion
Since the parameter expansion provides us with a
concrete instance tree (see Fig. 4) and its associated
expanded definitions, all Boolean expressions can be
resolved recursively. Starting at the leaves of the
instance tree, all condition statements found in the
expanded definitions are rebuilt in such a way that there
is no dependency to other conditions any more. As an
example given:

Condition bothGood = b1 . Good & b2 . Good

Condition a l l G o o d = bothGood | b3 . Good

results in

Condition bothGood = b1 . Good & b2 . Good

Condition a l l G o o d = (b1 . Good & b2 . Good) | b3 . Good

Of course things are a bit more complicated since
resolving local dependencies is sensitive to the order
of resolvable conditions. Therefore, such resolutions
have to follow a topological order concerning their
dependencies, similar to the evaluations of set
expressions within the expand statements. This aspect
won’t be detailed since this would go beyond the scope
of the paper. Since a Condition of a module definition
of an instance is visible to the environment, as a result
of the recursive descent, all modified conditions are
provided. Going back to the example, this means that for
the network n the corresponding condition definitions

(
l [1] . l f a i l e d & l [2] . p a s s i v e

) guards l [2] .< s w a c t i v e>

(
(l [1] . l f a i l e d & l [2] . l f a i l e d) &
l [3] . p a s s i v e

) guards l [3] .< s w a c t i v e>

5

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

Figure 4: Parameter Expansion: From an Abstract to a Concrete Instance Tree

Condition n f a i l e d = (
l [1] . f a i l e d & l [2] . f a i l e d & l [3] . f a i l e d

)

refer to the condition lfailed of different instances of
the links. Taking the results of the recursive descent, the
conditions of the network will then be transformed into
new Boolean expressions that only consist of references
to states of instantiated behaviors:

(
l [1] . BLink . l f a i l e d & l [2] . BLink . l o k

) guards l [2] .< s w a c t i v e>

(
(l [1] . BLink . l f a i l e d & l [2] . BLink . l f a i l e d) &
l [3] . BLink . l o k

) guards l [3] .< s w a c t i v e>

Condition n f a i l e d = (l [1] . BLink . l f a i l e d &
l [2] . BLink . l f a i l e d & l [3] . BLink . l f a i l e d

)

As a result, also the Boolean expressions used at the
level of the system instance are modified

(
(

p [1] . B P r o c e s s o r . p f a i l e d |
p [2] . B P r o c e s s o r . p f a i l e d

) | (n . l [1] . BLink . l f a i l e d &
n . l [2] . BLink . l f a i l e d & n . l [3] . BLink . l f a i l e d

)
) guards BSys.< s y s t e m f a i l >.

4.1.3. Guard Expansion
The structure of a guards statement is similar to that
of a forward statement: the only difference is the fact
that a forward statement defines a label visible to
the environment and that the condition can be omitted
(which means that it is implicitely true) in the case of
an unconditional forward. We can therefore formally
denote the abstractions A of those statements α as the
set of tuples of a Boolean expression bα and a set of label
references Lα. So the set of abstractions A is given as

A = B × P(L)

where B is the set of all Boolean expressions and P(L)
denotes the power set over the set of label references.
The set of guards statements is therefore defined as
G = A and the set of forward statements is defined
as F = ID × A, where ID represents its label.
Given the abstraction α = (bα, Lα), a label reference
l ∈ Lα is called resolved, if it refers to a guard label
inside a behavior instance. Moreover, α is resolved if
all of its labels are resolved. We define LRα = {l ∈

Lα | l resolved} and LUα = Lα \ LRα (unresolved). We
recurse now on the instance tree. When starting from
the leaf instances, i.e. instances that do not contain any
further subinstances, we can safely assume that they
contain only guards or forward statements referring
directly to guard labels inside their behaviors, i.e. all
of them are resolved. When considering a guards - or a
forward - statement in a parent node p = (bp, Lp) ∈ A,
Lp can either refer over LUp to its resolved forward

statements in its children nodes F or directly over LRp to
the assigned behavior instances. For a particular guards
or forward statement within node p, we can determine
the set of conditional forwards FC , i.e. all of the referred
forwards F that comprise a Boolean expression not
equal to true, by defining FC = {f ∈ F | π1(π2(f)) 6≡
true}. (Hereby, πi is the projection function, yielding the
i-th element of a tuple.) From all conditional forwards
FC we retrieve the set of Boolean expressions

B =
⋃
f∈FC

π1(π2(f)).

Now we can generate the resulting set of expanded
statements P ′ derived from p by considering all possible
combinations of the set of Boolean expressions B:

P ′ =
⋃

Bt∈P(B)

(b′(Bt), L
′(Bt)) ,

where for each combination Bt a Boolean expression
b′ is constructed as a conjunction of the Boolean
expression of the parent statement bp, the elements of
the corresponding combination of unnegated terms Bt
and the (negated) elements of its complement B \Bt

b′(Bt) = bp ∧

(∧
x∈Bt

x

)
∧

 ∧
x∈B\Bt

¬x

 .

Moreover for each combination Bt, the corresponding
label references L′ have to be constructed as the
union of the label references of the parent statement
that were already resolved LRp , the label references
of the unconditional forwards (i.e. F \ FC) and the
label references of those conditional forwards FC that
are ”enabled” since their Boolean expression is in the
unnegated set Bt:

L′(Bt) = LRp ∪(⋃
f∈F\FC

π2(π2(f))
)
∪(⋃

f∈FC :π1(π2(f))∈Bt
π2(π2(f))

)

6

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

Figure 5: Scheme of the forward / guards Expansion

Fig. 5 illustrates the scheme described by these
formulas. Note that for brevity we did not consider
inside the given formulas that the label references
and the Boolean expression literals namespace has
to be suffixed by the instance over which they have
have been resolved. After performing an expansion and
obtaining P ′ as the transformed guards or forward

statements, p can be substituted by the statements
within P ′. While performing the expansion over the tree
structure of the model starting at the leaf instances,
all associated guards - and forward statements will
be expanded. When reaching the root node of the
instance tree, all guards are expanded and therefore
resolved, i.e. referring directly to the guard labels of
the instantiated behaviors. In consequence, the resolved
forward statements are not needed any more. In the
running example the outcome is pretty straightforward
since we do not have conditional forwards (i.e. the
Boolean expression is implicitly true). For the network
instance the two guard statements are resolved by the
forwards associated to the link instances, resulting in the
LARESBASE statements

(
l [1] . BLink . l f a i l e d & l [2] . BLink . l o k

) guards l [2] . BLink.< s w a c t i v e>

(
(l [1] . BLink . l f a i l e d & l [2] . BLink . l f a i l e d) &
l [3] . BLink . l o k

) guards l [3] . BLink.< s w a c t i v e>

while for the system instance the guard remains
the same, since BSys.<systemfail> is already a

resolved label and consequently the whole statement is
considered as being resolved :

(
(

p [1] . B P r o c e s s o r . p f a i l e d | p [2] . B P r o c e s s o r . p f a i l e d
) | (

n . l [1] . BLink . l f a i l e d & n . l [2] . BLink . l f a i l e d &
n . l [3] . BLink . l f a i l e d

)
) guards BSys.< s y s t e m f a i l>

4.2. Resolving Hierarchy and Behavior
Transformation into SPA

To recall, a guards statement within a LARESBASE
model evaluates the state of its related instance tree
(which we denote as its generative part) and triggers
certain guard labels within the behavior instances (its
reactive part). The reactive part follows a max-sync
semantics, which means that the maximum possible
subset of the behavior instances will participate in the
synchronization.

We illustrate this by a simple example:

A . a & B . b guards A.<x>, C.<y>

Here the generative part consists of only a single
satisfying path i.e. A.a∧B.b. The reactive part consists
of all possible combinations as shown in Table 1. (The
last line of the table is provided only for the sake of
completeness. Since no process is able to react, no
synchronising transition needs to be generated in this
case.) In the last column of the table, the table assigns
to each case a unique identifier which will later be used

7

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

generative part reactive part (max sync) unique action label
A.a ∧ B.b A.〈x〉 ∧ C.〈y〉 g0r0

A.〈x〉 ∧ ¬C.〈y〉 g0r1
¬A.〈x〉 ∧ C.〈y〉 g0r2
¬A.〈x〉 ∧ ¬C.〈y〉 g0r3

Table 1: Generative and Reactive Combinations

generative augm. Literals reactive augm. Literals
((ns, gN, g0r0), A.a), ((ns, gN, g0r0), B.b) ((ns, gN, g0r0), A.〈x〉), ((ns, gN, g0r0), C.〈y〉)
((ns, gN, g0r1), A.a), ((ns, gN, g0r1), B.b) ((ns, gN, g0r1), A.〈x〉), ((ns, gN, g0r1),¬C.〈y〉)
((ns, gN, g0r2), A.a), ((ns, gN, g0r2), B.b) ((ns, gN, g0r2),¬A.〈x〉), ((ns, gN, g0r2), C.〈y〉)
((ns, gN, g0r3), A.a), ((ns, gN, g0r3), B.b) ((ns, gN, g0r3),¬A.〈x〉), ((ns, gN, g0r3),¬C.〈y〉)

Table 2: Augmented Generative and Reactive Combinations

as part of an SPA action label.

In the sequel we explain the general case:

1. Since each guards statement describes an
interaction of process instances, unique action
labels have to be generated for each combination
of its generative and reactive parts. The action
label has to include the namespace NS of the
module instance. This namespace is just a tuple
of instance identifiers ID, denoting the current
module instance in the hierarchy.

2. The generative part comprises a Boolean
expression over states, which is represented by
disjunctive normal form (DNF) in the standard
way. The generative part will be translated (in the
process algebra domain) to a parallel composition
with a defined synchronization set as follows:
each minterm contributes to a different action
label gX ∈ Lg over which the queried processes
synchronize.

3. The reactive part comprises a list of guard
label references, where all referenced behaviors
synchronize, if possible. This is addressed by
considering all subsets, where always at least
one label has to imply a behavioral change. By
considering all subsets individually (as exemplified
in the above table), it is assured that no illegal
choices are allowed. Each subset represents the
remaining contribution rY ∈ Lr to the action
label gXrY that will be constructed.

A guard-combination identifier gid ∈ Gid is then a tuple
gid = (ns, gN, gX, rY), where gN is the guard number
within namespace ns. Each literal used in a combination
of generative and reactive parts of a guards statement
is augmented by its guard-combination identifier, i.e.
tuples of the form (gid, l) ∈ Gid × (Lg ∪ Lr) are
built (shown in Table 2). These augmented literals
are all generated while traversing the model instances.

Whenever guards statements are found, a unique action
label identifier is constructed as stated above. As a
consequence, for the above example we obtain Table
2. These tuples are aggregated and forwarded while
traversing along the instance tree in the direction to its
leaves. When reaching a particular behavior instance,
a transformation function is applied. It is declared as
follows:

tB : NS × ID ×B × P(Lg)× P(Lr)→ P

We denote (ns, asgnId, b, Lg, Lr) as the argument
tuple (with the namespace ns of the behavior instance,
its assigned identifier asgnId, the behaviors definition b
and the generative and reactive literals Lg and Lr) of
that function. This has to be mapped into a sequential
process p ∈ P with assigned information about how to
synchronize with its environment. The transformation of
a behavior instance is then defined as follows:
By concatenating the namespace ns and the assigned
identifier asgnId a unique identifier for the resulting
SPA process p is constructed. Next, the set of generative
augmented literals Lg are partitioned into L6¬g and L¬g ,
considering whether the literal is a unnegated or negated
one. The same is done for the reactive augmented
literals, i.e. defining L 6¬r and L¬r . For the transformation
of guarded transitions we have to consider different
cases w.r.t. the generative literals of a single guard-
combination identifier:

1a) ∃ unnegated generative literals ∧
∃ negated generative literals,

1b) ∃ unnegated generative literals ∧
@ negated generative literals,

2) @ unnegated generative literals ∧
∃ negated generative literals and

3) @ unnegated generative literals ∧
@ negated generative literals.

8

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

Cases 1a) and 1b) can be treated uniformly, since case
1a) is included in case 1b). The reason is that a state
is only associated to exactly one identifier that a literal
can refer to. Likewise, we have to consider the cases
concerning the reactive augmented literals of a single
guard-combination identifier:

1a) ∃ unnegated reactive literals ∧
∃ negated reactive literals,

1b) ∃ unnegated reactive literals ∧
@ negated reactive literals,

2) @ unnegated reactive literals ∧
∃ negated reactive literals and

3) @ unnegated reactive literals ∧
@ negated reactive literals.

As before, the cases 1a) and 1b) can be treated
uniformly since a transition is only associated to exactly
one single guard label.
Thus, in combination there are 9 distinguishable cases
to consider. Based on all cases stated above, sets of
SPA transitions T{1,2,3}2 are constructed for a specific
behavior instance:

TB =

 ⋃
x,y∈{1,2,3}2

Txy(gid)

∣∣∣∣∣∣ gid ∈ Gid

The family of functions Txy generates those transitions
of the SPA process p which are associated with the
guard gid. In addition, the local transitions of a behavior
instance are generated and become part of the SPA
process. Details of their implementation are beyond the
scope of this paper. But apart from constructing p, the
construction of the overall SPA model as a hierarchical
composition of processes is an important issue. In this
context, it is important to mention that almost all action
labels derived from gid have to synchronize with the
environment of process p (the only exceptions are “self-
affecting” guards where both the generative and the
reactive parts refer to the same single behavior). This
concept for composing the SPA structure via action
synchronisation which we denote as PACT (Process
Algebra Composition Tuple) was already developed in
[Riedl et al. (2010)] and has been refined since then. In
this paper, we do not present the code of the resulting
SPA model for our running example, but in the next
section the analysis of that example is carried out.

5. ANALYSIS OF THE RUNNING EXAMPLE

For each model parameterization (e.g. in the case of our
example model we can set the parameter numLink with
different values) the transformations can be applied,
resulting in a CASPA SPA model. The workflow chain
as given in Fig. 8 allows CASPA to be executed

with the generated CASPA model code and certain
additional arguments, stating for instance whether to
perform steady-state or transient analysis or whether to
dump the resulting statespace. With model parameter
numLink set to 3 the resulting statespace is too large
(57 reachable states after elimination) to be depicted
here. Therefore, we provide Fig. 6 as an example for
the statespace when setting numLink to 1. As one
can see, the composed states are tuples with one
entry for each instantiated behavior. Each state is
composed of the four states of the behavior instances,
i.e. the system behavior instance FTN BSYS, the single
link behavior instance FTN n l[1] BLink and the two
processor behavior instances FTN p[1] BProcessor

and FTN p[2] BProcessor. For example, the topmost
state, i.e. the initial state, is composed of the states
(sok,lactive,pok,pok). In Fig. 7 the transient
probability of being in a composed state where a
system hazard has already taken place is calculated
by CASPA for different parameter sets. Note that
each step, starting from the LARES specification to
the quantitative evaluation of the SPA model, is
performed automatically. Also the statespace figure and
the diagram with the measure of interest can be directly
generated by our tool chain. Each curve within Fig. 7
corresponds to a specific configuration, i.e. a specific
combination of values for the link failure rate and the
number of links. It requires the workflow to be performed
for each configuration and subsequently be analysed by
CASPA as many times as data-points for the curves
are needed. Due to the fully-automated process no
cumbersome manual work has to be done any more.

6. FURTHER WORK

In Fig. 8, different transformation workflows and their
relation to each other are shown. While in [Gouberman
et al. (2012)], the LARES modelling and analysis
environment implementation is presented in general,
this paper focused on the transformation workflow
starting with a LARES model, which is expanded to
a LARESBASE model and finally transformed into a
CASPA SPA model that can be analyzed using CASPA.
Since LARES aims at different solvers as backends,
also other transformations are provided. Hereby it is
important to maintain the same behavior over all
transformations:

Validation
When developing a new transformation workflow or
modifying existing transformation steps, the resulting
behavior has to remain always equivalent. This is
assured by first eliminating all vanishing states resulting
from the immediate transitions and then applying a
strong Markovian bisimulation algorithm [Hermanns
and Siegle (1999)]. The eliminated Markovian labeled
transition systems obtained from both, performing
CASPA reachability analysis and a reachability analysis

9

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

Figure 6: Resulting Statespace for numLink=1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.25

0.5

0.75

1

Time [Years]

P
ro

b
ab

ili
ty

of
b

ei
n

g
in

s
h
a
z
a
r
d

half link failure rate
std link failure rate
number of links 1 2 3

Figure 7: Transient Probabilities

10

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

based on a planar representation of LARES (i.e.
LARESFLAT , see Fig. 8), serve as input to the
bisimulation algorithm, which finally decides whether
both transition systems (TRA) are equivalent (∼)
with respect to strong Markovian bisimulation. As a
long-term goal, a proof on the equivalence between
the LTS and the SPA transformation semantics could
be conducted, stating that both transformations yield
the same CTMC for each possible input model.
However, this proof has not yet been carried out.
Apart from a formal proof of the theoretical correctness
of the transformation semantics, correctness of its
implementation is hard to prove, and therefore we
assume the implementation to be sound by testing it on
a number of models with different level of complexity.

State-Space Explosion
Reduction techniques on the language-level are currently
not supported. However, analysis of the structure
and interaction between instances could help to
determine independent subcomponents or instances
which are behaviorally equivalent with respect to
their environment. Independent subcomponents can be
solved independently and their results reused within the
upper-model. It is also possible to aggregate a large
number of equivalently behaving instances by analyzing
the relative number of components being in a certain
state (e.g. by mean-field analysis [Le Boudec et al.
(2007)]).

Petri Net Transformation
The LARESFLAT planar model has been developed as
a by-product of an additional transformation workflow
that has been realized to obtain stochastic Petri net
models. There, the eDSPN formalism of [Zimmermann
et al. (2006)] has been used as a target formalism to
allow the use of TimeNet as the corresponding solver.
Additionally, a serialization has been defined on the
eDSPN formalism to provide an output conforming the
SPNP syntax [Ciardo, Muppala and Trivedi (1989)].

Editors
In addition to an already existing textual LARES
editor for the Eclipse environment3 that provides the
modeler with auto-completion and syntax highlighting,
a graphical editor is currently under development.

7. CONCLUSION/OUTLOOK

Notwithstanding that the paper did not provide a fine-
grained formalization of the transformation semantics,
an insight has been given on how the transformation
workflow from LARES into CASPA SPA is formalized
and implemented. As already addressed, the resulting
framework comprises of a number of transformations,
algorithms for validation of the transformations and
routines to apply the associated solvers. Mechanisms

3Eclipse IDE: http://www.eclipse.org

have been established to easily modify or complement
the transformation workflows.

In the near future we plan to integrate the framework
within the textual/graphical editor to provide a suitable
IDE for LARES.

Acknowledgments.
Special thanks to Johann Schuster for helping to
improve the comprehensibility of the transformation
notation, and to David Jansen for his sharp eyes
on the running example. The authors are also
grateful to the anonymous reviewers for their valuable
comments. Further, we would like to thank Deutsche
Forschungsgemeinschaft (DFG) who supported this
work under grants SI 710/7-1 and for partial support
by DFG/NWO Bilateral Research Programme ROCKS.

8. REFERENCES

Bachmann, J., Riedl, M., Schuster J., and
M. Siegle.(2009) An Efficient Symbolic Elimination
Algorithm for the Stochastic Process Algebra Tool
CASPA. In SOFSEM ’09: Proceedings of the 35th
Conference on Current Trends in Theory and Practice of
Computer Science, pages 485–496, Berlin, Heidelberg,
2009. Springer LNCS 5404.

H. Boudali, P. Crouzen, B.R. Haverkort, M. Kuntz,
and M. Stoelinga.(2008) Architectural dependability
evaluation with Arcade. In DSN 2008, pages 512–521,
2008.

M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen,
T. Noll, and M. Roveri.(2011) Safety, Dependability and
Performance Analysis of Extended AADL Models. The
Computer Journal, 54(5):754–775, 2011.

G. Ciardo, J. Muppala, and K. Trivedi.(1989) SPNP:
Stochastic Petri Net Package. In Proceedings of
the Third International Workshop on Petri Nets and
Performance Models, pages 142 –151, Dec 1989.

A. Gouberman, M. Riedl, J. Schuster, and
M. Siegle.(2012) A modelling and analysis environment
for lares. In Jens B. Schmitt, editor, MMB/DFT,
volume 7201 of Lecture Notes in Computer Science,
pages 244–248. Springer, 2012.

A. Gouberman, M. Riedl, J. Schuster, M. Siegle, and
M. Walter.(2009) LARES - A Novel Approach for
Describing System Reconfigurability in Dependability
Models of Fault-Tolerant Systems. In ESREL ’09:
Proceedings of the European Safety and Reliability
Conference, pages 153–160. Taylor & Francis Ltd.,
2009.

V. Grassi, R. Mirandola, E. Randazzo, and A. Sa-
betta.(2008) KLAPER: An Intermediate Language for
Model-Driven Predictive Analysis of Performance and
Reliability. In The Common Component Modeling
Example, volume 5153 of Lecture Notes in Computer

11

A LAnguage for REconfigurable dependable Systems:
Semantics & Dependability Model Transformation

Riedl • Siegle

Figure 8: Transformation Workflows

Science, pages 327–356. Springer Berlin / Heidelberg,
2008.

H. Hermanns and M. Siegle.(1999) Bisimulation
Algorithms for Stochastic Process Algebras and Their
BDD-Based Implementation. In ARTS’99, pages 244–
264, 1999.

M. Kuntz, M. Siegle, and E. Werner.(2004) Symbolic
Performance and Dependability Evaluation with the
Tool CASPA. In Applying Formal Methods: Testing,
Performance and M/E Commerce: FORTE 2004 Work-
shops, European Performance Engineering Workshop,
pages 293–307. Springer, LNCS 3236, 2004.

M. Lê and M. Walter.(2011) Considering Dependent
Components in the Terminal Pair Reliability Problem.
In Proc. of The Second Workshop and Tool Session
on DYnamic Aspects in DEpendability Models for
Fault-Tolerant Systems (DYADEM-FTS), pages 415-
422, IEEE, 2011.

J.-Y. Le Boudec, D. McDonald and J. Mundinger.(2007)
A Generic Mean Field Convergence Result for Systems
of Interacting Objects. In Proc. of Fourth Int. Conf. on
the Quantitative Evaluation of Systems (QEST), pages
3–18, IEEE, 2007.

M. Riedl, J. Schuster, M. Siegle, M. Blum, and
F. Schiller.(2010) Dependability Model Transformation
– A Stochastic Process Algebra Semantics for
ZuverSicht Models. In Reliability, Risk and Saftey: Back
to the Future. Proceedings of the European Safety and
Reliability Conference (ESREL 2010), pages 932–940.
Taylor & Francis Group, London, 2010. ISBN 978-0-
415-60427-7.

M. Walter.(2011) Simple Non-Markovian Models for
Complex Repair and Maintenance Strategies with
LARES+. In Advances in Safety, Reliability and Risk
Management (Proc. of ESREL 2011), pages 962–969.
Taylor & Francis Group, London, 2011.

M. Walter.(2011) Stepwise Refinement of Complex
Dependability Models Using LARES+. In Sixth
International Conference on Availability, Reliability and
Security (ARES 2011), pages 436–441, 2011.

M. Walter and M. Lê.(2011) Clear and Concise
Models for Fault-Tolerant Systems with Limited Repair
using the Modeling Paradigm LARES+. In 19th
AR2TS Advances in Risk and Reliability Technology
Symposium, pages 310–321, 2011.

A. Zimmermann, M. Knoke, A. Huck, and G. Hom-
mel.(2006) Towards version 4.0 of TimeNET. In MMB,
pages 473–476. VDE Verlag VDE Verlag, 2006.

12

