
Compositional Representation and Reduction of Stochastic

Labelled Transition Systems based on Decision Node BDDs

Markus Siegle, Universit�at Erlangen-N�urnberg, IMMD 7, Martensstra�e 3, 91058 Erlangen, Germany

siegle@informatik.uni-erlangen.de

Abstract

Compact symbolic representations of large labelled transition systems, based on binary decision diagrams

(BDD), are discussed. Extensions of BDDs are considered, in order to represent stochastic transition

systems for performability analysis. We introduce Decision Node BDDs, a novel stochastic extension of

BDDs which preserves the structure and properties of purely functional BDDs. It is shown how parallel

composition of components can be performed in this context, without leading to state space explosion.

Furthermore, we discuss state space reduction by Markovian bisimulation, also entirely based on symbolic

techniques. Together, parallel composition and state space reduction enable a compositional approach

to the stochastic modelling of concurrent systems.

1 Introduction

In many areas of system design and analysis, there

is the problem of generating, manipulating and

analysing large state spaces, usually represented in

the form of labelled transition systems (LTS). Such

transition systems are often very di�cult to handle

in practice, due to memory limitations. The use

of structured models { consisting of a number of

interacting components { makes it easier to spec-

ify complex systems. However, the size of the state

space of structured models is usually exponential

in the number of components. In this paper, we

present a novel approach to an e�cient represen-

tation of such structured models which avoids the

exponential blow-up.

We focus on stochastic LTSs, where each transition

is associated with a stochastic delay. Such stochas-

tic LTSs (SLTS) occur during performance evalua-

tion and performability analysis of distributed sys-

tems. For example, stochastic LTSs are generated

during the analysis of Markovian stochastic pro-

cess algebra (SPA) models. Abstracting from their

functional information, SLTSs can be interpreted as

Markov chains and analysed by numerical methods.

We propose an approach to SLTS representation

and manipulation which is based on symbolic tech-

niques. Our work has been motivated by the fact

that, in recent years, the problem of large LTS anal-

ysis has been very successfully approached by using

symbolic representations, in particular binary de-

cision diagrams (BDD). Most of this work took

place in the context of formal veri�cation and model

checking, i.e. it deals exclusively with functional be-

haviour, see e.g. [4, 5, 8, 10]. Experience showed

that symbolic representations make it possible to

handle much larger state spaces than traditional

methods. The success of symbolic techniques for

functional analysis induced us to experiment with

BDD-based representations of stochastic LTS. In-

clusion of non-functional information into BDDs is

possible [22, 9, 6, 13], but representation of stochas-

tic LTS has not got much consideration in the

past. Among the few publications in this line are

[13, 12, 16].

In this paper, the data structure DNBDD [24, 25] is

formally introduced. This data structure can cap-

ture not only functional, but also temporal (stochas-

tic) information. It is tailored for SLTS and allows

a very compact representation. It is shown that

known algorithms for BDDs can be adapted and

enhanced for the new data structure. We discuss a

DNBDD-based procedure for the parallel composi-

tion of submodels which can be used for e�ciently

building complex models from small components,

without inducing the problem of state space explo-

sion. Furthermore, we describe a minimisation al-

gorithm for stochastic LTS which is based on the

concept of Markovian bisimulation and works en-

tirely on the new DNBDD data structure.

The paper is organised as follows: Sec. 2 provides

an introduction to labelled transition systems and

BDDs and explains how LTSs can be represented

by BDDs. Sec. 3 explains how stochastic LTSs

can be represented by the extended data structure

DNBDD. In Sec. 4, we explain how DNBDD-based

parallel composition of components and DNBDD-

based state space minimisation work. After a brief

description of our prototype tool (Sec. 5) the paper

concludes with Sec. 6.

2 Symbolic representation of

labelled transition systems

2.1 Labelled Transition Systems

Informally, a transition system consists of states

and transitions between states. The transitions are

labelled with symbols from a set L which may cor-

respond, for example, to the set of actions Act of a

stochastic process algebra. A LTS can be graphi-

cally interpreted as a directed graph (with a distin-

guished initial node) whose edges are labelled with

labels from L. Fig. 1 shows an example LTS.

s

2

s

1

s

4

s

3

a b

ac

Figure 1: Example of a labelled transition system

(LTS)

Def: Labelled Transition System (LTS)

Let S = fs

1

; s

2

; : : :g be a �nite set of states, s

1

being the initial state. Let L = fl

1

; l

2

; : : :g be a

�nite set of labels. Let ! be a relation

! � S � L � S

We call T = (S; L;!; s

1

) a Labelled Transition Sys-

tem. If (x; a; y) 2 !, we write x

a

! y.

Note that in our de�nition the set of states S is

assumed to be �nite. Finiteness of the state space

is a prerequisite for the symbolic encoding of states

and transitions which is described below.

2.2 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [4, 1] is a

symbolic representation of a Boolean function f :

f0; 1g

n

! f0; 1g. Its graphical interpretation is a

rooted directed acyclic graph with one or two ter-

minal nodes. Each non-terminal node is associated

with a Boolean variable. The graph is essentially

a collapsed binary decision tree in which isomor-

phic subtrees are merged and don't care nodes are

skipped. As a simple example, Fig. 2 (left) shows

the BDD for the function (a^t)_(a^s^t). The func-

tion value for a given truth assignment can be de-

termined by following the corresponding edges (one-

edges drawn solid, zero-edges dashed) from the root

until a terminal node is reached. In the graphical

representation of a BDD, for reasons of simplicity,

the terminal node 0 and its adjacent edges are usu-

ally omitted, see Fig. 2 (right).

a

s

t

a

s

t

0 1 1

Figure 2: BDD for (a ^ t) _ (a ^ s ^ t), simpli�ed

graphical representation (right)

Def: Binary Decision Diagram (BDD)

A (reduced, ordered) Binary Decision Diagram B =

(Nodes; var; low; high) is de�ned by

� a �nite set of nodes Nodes = T [NT , where T

(NT) is the set of terminal (non-terminal) nodes,

jNodes j � 1, T � f0; 1g,

� a function var : NT ! V ars, where V ars is a set

of Boolean variables V ars = fv

1

; : : : ; v

n

g with a

�xed ordering relation \<", such that v

1

< : : : <

v

n

,

� a function low : NT ! Nodes and a function

high : NT ! Nodes,

with the following constraints:

1. 8x 2 NT : low(x) 2 T _ var(low(x)) > var(x)

8x 2 NT : high(x) 2 T _var(high(x))>var(x)

(respect ordering relation),

2. 8x 2 NT : low(x) 6= high(x)

(no redundant (don't care) nodes),

3. 8x; y 2 NT : var(x) 6= var(y)

_ low(x) 6= low(y)

_ high(x) 6= high(y)

(no isomorphic nodes)

Each BDD node unambiguously de�nes a Boolean

function. The de�nition is based on the so-called

Shannon expansion which states that

f(v

1

; : : : ; v

n

) =

(v

1

^ f(0; v

2

; : : : ; v

n

)) _ (v

1

^ f(1; v

2

; : : : ; v

n

))

Def: Boolean function Bool(x)

The Boolean function Bool(x) represented by a

BDD-node x 2 Nodes is recursively de�ned as fol-

lows:

� if x 2 T then Bool(x) = x, i.e. either 0 or 1,

� else (if x 2 NT)

Bool(x) =

�

var(x) ^Bool(low(x))

�

_

�

var(x) ^Bool(high(x))

�

For convenience, we de�ne the following notation:

Let fb

1

; : : : ; b

k

g 2 f0; 1g

k

be a �xed assignment for

a subset of the Boolean variables fv

i

1

; : : : ; v

i

k

g �

V ars. The Boolean function represented by node

x 2 Nodes under this assignment is Bool(x j v

i

1

=

b

1

; : : : ; v

i

k

= b

k

) = Bool(x)j

v

i

1

=b

1

;:::;v

i

k

=b

k

. Most

times one is interested in the case where x corre-

sponds to the BDD root.

It is known, that BDDs provide a canonical repre-

sentation for Boolean functions, i.e. a given Boolean

function has a unique BDD representation (assum-

ing a �xed ordering of the Boolean variables) [4].

For this reason, some computationally hard prob-

lems (e.g. satisfyability, test-for-tautology, equiva-

lence) can be solved in constant or linear time, once

the BDD representation of the Boolean functions

involved is known [1]. Algorithms for BDD con-

struction from a Boolean expression and algorithms

for Boolean operations on BDD arguments follow

a recursive descent scheme according to the above

Shannon expansion. It should be noted that, given

a Boolean function, the size of the resulting BDD is

highly dependent on the chosen variable ordering.

2.3 Symbolic representation of LTS

We �rst de�ne, how elements from �nite sets

(e.g. actions, states) are encoded as Boolean vec-

tors.

Def: Encoding

An encoding of a �nite set S = fs

1

; : : : ; s

n

g is a

mapping S ! f0; 1g

dlog

2

ne

. For x 2 S, we write

enc(x) = (b

1

; : : : ; b

dlog

2

ne

), i.e. enc(x) is a Boolean

vector of length dlog

2

ne. Function Enc denotes the

encoding of the whole of a transition of an LTS, i.e.

Enc(s

a

! t) = (enc(a); enc(s); enc(t)).

The next de�nition states in which way an LTS is

represented by a BDD.

Def: Symbolic Representation of a LTS by a BDD

Let T = (S; L;!; s

1

) be a LTS. Let B =

(Nodes; var; low; high) be a BDD with V ars =

fa

1

; : : : ; a

n

a

; s

1

; : : : ; s

n

s

; t

1

; : : : ; t

n

s

g and root node

r. We say that B is the symbolic representation of

T i�

s

a

! t

,

�

Bool

�

r j (a

1

;: : :;a

n

a

;s

1

;: : :;s

n

s

;t

1

;: : :;t

n

s

)=Enc(s

a

! t)

�

= 1

�

Naturally, we wish to consider \good" variable or-

derings to achieve \small" BDDs. Experience has

shown that the resulting BDD is small if the order-

ing of Boolean variables is chosen according to the

following heuristics [10]:

a

1

< : : : < a

n

a

< s

1

< t

1

< s

2

< t

2

< : : : < s

n

s

< t

n

s

i.e. the variables encoding the action come �rst, fol-

lowed by the variables for source and target state

interleaved. In particular, this ordering is advanta-

geous in view of the parallel composition operator

discussed below (see Sec. 4). Fig. 3 shows a sim-

ple LTS, the way transitions are encoded and the

corresponding BDD.

The algorithm for constructing the BDD represen-

tation from a given LTS works as follows: Transi-

tions from the LTS are processed one by one, each

transition being encoded in a simple BDD which is

subsequently combined by a Boolean \or" operation

with the BDD representing all the previously pro-

cessed transitions. The algorithm can be sketched

like this:

(1) B := 0

(2) for each transition x

a

! y of the LTS

(3) Newtrans :=

�

(a

1

;: : :;a

n

a

;s

1

;: : :;s

n

s

;t

1

;: : :;t

n

s

)=Enc(x

a

! y)

�

(4) B := B _ Newtrans

10

a

s

t

1

(a; s; t)

0

a

! 1 (0;0; 1)

1

a

! 1 (0;1; 1)

1

b

! 0 (1;1; 0)

a

b

a

Figure 3: LTS, transition encoding and corresponding BDD

On line (1), the BDD to be constructed, B, is ini-

tialised as 0. i.e. it does not represent any transi-

tion. On line (3), one transition of the SLTS is en-

coded in BDD Newtrans (which consists of a single

path from the root to the terminal node 1, encoding

action label a and source and target states x and

y). On the last line, the \or" between the previous

result and the new transition is computed.

3 Representing LTSs with ad-

ditional rate information

3.1 Stochastic LTSs

In case of stochastic transition systems, each tran-

sition has as a second attribute a positive real num-

ber, the rate of the transition, i.e. edges are labelled

with tuples from L � IR.

a;�

a; �c; �

s

2

b; �

s

1

s

4

s

3

Figure 4: Example of a stochastic labelled transi-

tion system (SLTS)

Def: Stochastic Labelled Transition System (SLTS)

Let S, s

1

, and L be de�ned as for LTSs. Let ! be

de�ned as follows:

! � S � L� IR

>0

� S

We call T = (S; L;!; s

1

) a stochastic Labelled

Transition System. If (x; a; �; y) 2 !, we say that

there is an a-transition from state x to state y with

rate � and write x

a;�

! y.

For practical reasons and in view of the follow-

ing symbolic representation, we merge multiple a-

transitions between a given pair of states into a sin-

gle transition. For instance, two separate tansitions

x

a;�

! y and x

a;�

! y will be merged into x

a;�+�

! y.

The real-valued rates specify the time spent in a

particular state, which is a random value drawn

from an exponential distribution. The mean of this

distribution is given by the inverse of the sum of all

rates of transitions leaving that state. For example,

in Fig. 4, the mean time spent in state s

1

is 1=�,

and the mean time spent in state s

2

is 1=(� + �).

The Continuous Time Markov Chain (CTMC) cor-

responding to a SLTS is obtained by abstracting

from the action labels.

3.2 Decision Node BDDs

In the previous section, we explained the basic idea

of representing LTSs symbolically with the help of

BDDs. Clearly, pure BDDs do not o�er any mecha-

nism for representing the information about transi-

tion rates. In the literature, Multi-terminal BDDs

(MTBDD) [9] (also called Algebraic DDs (ADD)

[13]), Edge-valued BDDs (EVBDD) [22] and Bi-

nary Moment Diagrams (BMD) [6] have been pro-

posed as data structures for representing functions

of the type f0; 1g

n

! IR. However, with all of

these approaches there is less sharing of subgraphs

and therefore the e�ciency of the representation is

diminished compared to the original BDD. There-

fore, in the present work, it was our aim to use the

unmodi�ed BDD (which represents the functional

information of the LTS) and decorate it with the

additional rate information.

The basic question for which we have to �nd an

answer is: If we map each Boolean assignment

(b

1

; : : : ; b

n

) to a real number, how can this in-

formation be incorporated into the BDD without

changing the basic BDD-structure? In other words,

BDDs should be extended in order to represent

functions of the type f : f0; 1g

n

! f0; 1g�IR. This

section explains our concept to achieve this goal.

We start with the de�nition of path:

Def: Path

A path through a BDD (over n Boolean variables)

is a vector of nodes (x

1

; : : : ; x

k

), 1 � k � n + 1,

where x

i

2 Nodes, x

1

is the BDD root node

and x

k

2 T (x

k

is a terminal node) and 8i :

x

i+1

= low(x

i

) _ x

i+1

= high(x

i

). A path is

called a true-path i� x

k

= 1, otherwise it is called

a false-path. We denote the set of all (true-) paths

through a BDD by Paths (True-Paths). For a given

Boolean assignment (b

1

; : : : ; b

n

) 2 f0; 1g

n

, the func-

tion path(b

1

; : : : ; b

n

) = (x

1

; : : : ; x

k

) returns the cor-

responding path through the BDD. We de�ne the

length of a path by length(x

1

; : : : ; x

k

) = k.

If a given path (x

1

; : : : ; x

k

) has length k = n + 1,

which is the maximal possible length for a path,

that path contains a node for every Boolean vari-

able, formally 8 1 � i � n : var(x

i

) = v

i

.

This means that the path corresponds to exactly

one Boolean assignment (b

1

; : : : ; b

n

). In this case,

we say that the path does not contain any don't

cares. If a path is of length k < n + 1, it contains

n+ 1� k = d don't cares. Such a path corresponds

to 2

d

di�erent Boolean assignments (because for

every don't care two Boolean values are possible).

Every Boolean assignment is mapped onto exactly

one path. Several Boolean assignments (always a

power of 2) may be mapped onto the same path, in

which case the path has one or more don't cares.

Therefore we assign to each true-path a vector of

real numbers (rates), also called a rate list, whose

length (a power of 2) is determined by the number

of don't cares of the path. Formally, we introduce

the function rates(x

1

; : : : ; x

k

) = (r

1

; : : : ; r

2

n+1�k).

Thus, the correspondence of Boolean assignments

to rates is one to one, uniquely de�ned by the lexical

ordering of the Boolean assigments. We illustrate

this concept in Fig. 5.

So far, we decided that every true-path is mapped

onto a real-valued vector whose dimension is given

by the number of Boolean assignments correspond-

ing to the path. Next we must �nd a practical

method for attaching that information to the BDD.

What are the characteristics of a path? A subset of

the BDD nodes, the so-called Decision Nodes play

a key role in this consideration.

Def: Decision Node

A non-terminal BDD-node x 2 NT is called deci-

sion node i� low(x) 6= 0 ^ high(x) 6= 0, i.e. i� the

terminal node 1 can be reached via both outgoing

edges of node x. The set of decision nodes is de-

noted DN .

Let (x

1

; : : : ; x

k

) 2 True-Paths. Let x

j

be the \last"

decision node on that path, i.e. x

j

2 DN ^ 8 j <

l � k : x

l

62 DN . We then attach the rate list

rates(x

1

; : : : ; x

k

) = (r

1

; : : : ; r

2

n+1�k
) to the edge

(x

j

; x

j+1

). We can now give the central de�nition

for our new data structure:

Def: Decision Node BDD (DNBDD)

A Decision Node BDD (DNBDD) is a BDD ex-

tended by a function

rates : True-Paths ! (IR)

+

(where (IR)

+

is the set of �nite lists over IR), such

that for any true-path p, rates(p) 2 IR

2

d

if d is the

number of don't cares on path p. The list rates(p)

is attached to the outgoing edge of the last decision

node on path p, i.e. the decision node nearest to the

terminal node 1.

Note that in this de�nition, the length of the vec-

tor rates(p) is not a global constant but depends on

the number of don't cares d (i.e. on the length k)

of the individual true-path p. It can be shown that

DNBDDs are a canonical representation for SLTSs.

The concept of DNBDDs is illustrated in Fig. 6 (in

the �gure, decision nodes are drawn black). In this

example, the SLTS has four transitions, i.e. there

are four Boolean assignments evaluating to 1, each

of which is mapped onto a rate (as shown in the

middle part of the �gure). The �rst two assign-

ments are mapped onto the same path, a path which

has a don't care in the Boolean variable s. There-

fore, the corresponding rate list (�; �) has length

two.

The practical realisation of the DNBDD concept

introduced so far induces the following problem:

There are situations, where several true-paths share

their last decision node. This is the case if and only

if there exists a decision node which can be reached

from the root by more than one path. As an exam-

ple, see Fig. 7 (left), where a decision node has two

incoming edges. In such a case, several rate lists

will be attached to the same edge. From the point

rate listsBoolean assignments paths

1 : 1

(x

1

; : : : ; x

k

)

(x

1

; : : : ; x

k

)

.

.

.

False� Paths

(b

1

; : : : ; b

n

)

.

.

.

(b

1

; : : : ; b

n

)

(x

1

; : : : ; x

k

)(b

1

; : : : ; b

n

)

(b

1

; : : : ; b

n

)

(r

1

)

True� Paths

(b

1

; : : : ; b

n

)

(b

1

; : : : ; b

n

)

.

.

.

2

d

: 1

function path function rates

(x

1

; : : : ; x

k

) (r

1

; r

2

; r

3

; r

4

)

.

.

.

(x

1

; : : : ; x

k

) (r

1

)

Figure 5: Correspondence between Boolean assignments, paths and rate lists

0 1

a

s

t

1

�;�

�

�

a;�

(a; s; t) rate

(0;0;1) �

(0;1;1) �

(1;0;1) �

(1;1;0) �

a;�

b; �

b; �

Figure 6: SLTS, mapping of Boolean assignments to rates and corresponding DNBDD

of view of canonicity this would not be a problem,

since the one-to-one correspondence between true-

paths and rate lists could be preserved based on lex-

icographical ordering. However, in the algorithms

for manipulating the data structure this would re-

sult in a confusion, since during recursive descent

it would not be clear any more which rate list cor-

responds to which path. In order to overcome this

problem, we introduce a pointer structure, the so-

called rate tree, as illustrated in Fig. 7 (right). The

rate tree is a binary tree whose terminal nodes con-

tain the rate lists. Its nodes are associated with

the decision nodes of the BDD as indicated in the

�gure (right). In our current implementation, the

rate tree is built as a separate data structure from

the BDD, but it is manipulated simultaneously with

the BDD, i.e. the rate tree is traversed (and possibly

modi�ed) in a recursive fashion by an appropriate

extension of the procedures which manipulate the

BDD data structure.

In addition to the function Bool, which can remain

unchanged as de�ned before, we now de�ne a func-

tion Num, which, given a DNBDD and a Boolean

�

�

�

�

a

1

a

0

s

t

1

a

1

a

0

s

t

1

�

�

�

�

Figure 7: Two true-paths sharing their last decision

node, DNBDD with rate tree

assignment, computes the numerical result.

Def: Numeric result value Num(r j b

1

; : : : ; b

n

)

Let r be the DNBDD root node and let (b

1

; : : : ; b

n

)

be a �xed assignment to the Boolean variables

v

1

; : : : ; v

n

. If Bool(r j v

1

= b

1

; : : : ; v

n

= b

n

) =

0 then the function Num(r j b

1

; : : : ; b

n

) is un-

de�ned. Else let (x

1

; : : : ; x

k

) = path(b

1

; : : : ; b

n

)

and rates(x

1

; : : : ; x

k

) = (r

1

; : : : ; r

2

n+1�k). Then

Num(r j b

1

; : : : ; b

n

) = r

i

, where i is determined un-

ambiguously by those positions of (b

1

; : : : ; b

n

) which

correspond to don't cares. In other words, each

of the 2

n+1�k

Boolean assignments sharing path

(x

1

; : : : ; x

k

) corresponds to exactly one element of

the rate list (r

1

; : : : ; r

2

n+1�k), and this correspon-

dence is according to the lexicographical ordering

of the Boolean assignments.

We are now able to de�ne how to represent a SLTS

by a DNBDD:

Def: Symbolic Representation of a SLTS by a

DNBDD

Let T = (S; L;!; s

1

) be a SLTS. Let B =

(Nodes; var; low; high; rates) be a DNBDD with

V ars = fa

1

; : : : ; a

n

a

; s

1

; : : : ; s

n

s

; t

1

; : : : ; t

n

s

g and

root node r. We say that B is a symbolic repre-

sentation of T i�

x

a;�

! y

,

Bool

�

r j (a

1

;:::;a

n

a

;s

1

;:::;s

n

s

;t

1

;:::;t

n

s

)=Enc(s

a

! t)

�

=1

^

Num

�

r j (a

1

;:::;a

n

a

;s

1

;:::;s

n

s

;t

1

;:::;t

n

s

)=Enc(s

a

! t)

�

=�

Fig. 8 shows two example SLTSs and their DNBDD

representation. The �rst example is the same as the

one given in Fig. 3, augmented by the rate informa-

tion. In the second example, there are four di�erent

actions which are encoded in two bits (a

1

and a

0

).

In this example, the BDD contains �ve true-paths,

two of which have a don't care in the Boolean vari-

able a

0

. Therefore, two rate lists have length two.

The other three true-paths do not contain any don't

cares, therefore the remaining three rate lists have

length one.

4 Operations on DNBDD

4.1 Generation and parallel compo-

sition

The method of generation of a DNBDD from a

given STLS is basically the same as explained ear-

lier for the purely functional case (see Sec. 2.3),

i.e. transitions are processed one by one. Each tran-

sition is �rst translated into a DNBDD which is

then combined by an or-operation with the previ-

ously obtained intermediate result (the or-operation

now also takes care of manipulating the rate-tree).

For DNBDDs representing LTSs which originate

1
0

0

1

�;�

a

s

t

�

�

s

t

a

1

a

0

1

a;�

a;�

b; �

c;

1

b; �

1

a;�

1

d; �

b; �

2

1

�

1

; �

1

a;�

2

�

2

; �

2

2

1

c;

2

Figure 8: SLTSs and corresponding DNBDDs

from stochastic process algebras or other modular

speci�cation techniques, an important operation is

parallel composition. The parallel composition op-

erator can be realised directly on the DNBDD rep-

resentation of the two operand processes. Suppose

we wish to perform the parallel composition of two

processes, P = A k

S

B, where S denotes the set of

synchronising actions, i.e. those actions which both

partners perform simultaneously together (actions

not in S are performed by one of the two partners

alone, independently of the other partner). We as-

sume that the DNBDDs which correspond to pro-

cesses A and B have already been generated and

are denoted A and B. The set S can also be coded

as a BDD, namely S (note that S is a BDD and

not a DNBDD, since it does not contain any rate

information). The DNBDD P which corresponds

to the resulting process P can then be written as a

Boolean expression:

P = (A ^ S) ^ (B ^ S)

_ (A ^ S ^ Stab

B

)

_ (B ^ S ^ Stab

A

)

The term on the �rst line is for the synchronising ac-

tions in which both A and B participate. The term

on the second (third) line is for those actions which

A (B) performs independently of B (A) | these ac-

tions are all from the complement of S. The mean-

ing of Stab

A

(Stab

B

) is a BDD which expresses sta-

bility, i.e. the fact that the source state of process

A (B) equals its target state.

An important question is about the result rate of

synchronising actions. Depending on the applica-

tion, di�erent expressions for the result rate may

apply. Typical examples are the maximum, mini-

mum, sum or product of the two partner rates (in

[19] the concept \apparent rate" is introduced for

this purpose). Choosing the product of the two

partner rates has the advantage that important con-

gruence properties can be established [17]. Using

DNBDDs, the result rate is calculated from the two

partner rates during the and-operation at the cen-

ter of the �rst line of the above equation. This

and-operation is exible enough to realise any of

the above alternatives (maximum, minimum, . . .),

i.e. DNBDDs cover any of those cases.

The result, P, describes all transitions which are

possible in the product space of the two processes,

i.e. originating in any pair of states of A and B.

However, given a pair of initial states for A and

B, only part of the product space may be reachable

due to synchronisation conditions. In this situation,

reachability analysis is an important tool for reduc-

ing the size of the underlying SLTS. Symbolic reach-

ability analysis can be performed on the DNBDD

representation of the resulting process. The reacha-

bility algorithm computes a BDD which represents

all states reachable from the initial state (which is

the combination of initial states of A and B). At

every step of the algorithm, states reachable by a

single transition from states previously found are

added to this BDD. This is repeated until a �xed

point is reached. Finally, the DNBDD P represent-

ing the overall SLTS is restricted to those transi-

tions which originate in reachable states.

4.2 Symbolic minimisation of SLTS,

working on DNBDD

This subsection describes how a SLTS can be min-

imised based on an equivalence relation de�ned on

the set of states. The idea is to reduce the state

space by representing all equivalent states by a sin-

gle macro state. It is shown how such a minimisa-

tion technique can be applied to the DNBDD rep-

resentation of the SLTS, i.e. the minimisation is en-

tirely based on DNBDD operations. Symbolic min-

imisation based on BDDs for the purely functional

case has been described before, see e.g. [2]. Here

we describe BDD-based minimisation of stochas-

tic LTSs, i.e. BDD-based minimisation which takes

into account the stochastic rate information (for

more details see [18]). The advantages for perfor-

mance analysis are obvious: The SLTS of a complex

system can be built from small components by ap-

plying the DNBDD-based parallel composition op-

erator step by step. After every parallel composi-

tion step, the intermediate result can be minimised

without leaving the DNBDD world. Thus, the use

of DNBDDs quite ideally supports the concept of

compositional reduction.

The equivalence relation on which we focus is known

as Markovian bisimulation [17]. Informally, two

states are Markovian bisimilar (members of the

same equivalence class) if from both states all equiv-

alence classes can be reached in one step by the

same actions and with the same cumulative rate

(de�ned below). There is a strong connection be-

tween Markovian bisimulation and classical Markov

chain lumpability [21]. Informally,Markovian bisim-

ulation is a re�nement of lumpability, by distin-

guishing between di�erent action names. Fig. 9

illustrates how a state space S is partitioned into

three disjoint subsets, C

1

. . .C

3

, also called classes.

x

2

x

1

a; �

SC

1

C

2

a; �

a; �

C

3

Figure 9: Partitioning of state space S

Def: Cumulative Rate

Let C

1

; : : : ; C

n

be a partition of the state space S of

a SLTS. Let x 2 S. The cumulative rate of action

a from state x to class C

i

is de�ned as

�(x; a; C

i

) =

X

x

a;�

!y; y2C

i

�

For example, in Fig. 9, �(x

1

; a; C

2

) = � and

�(x

2

; a; C

2

) = �+ �.

When using DNBDDs, the cumulative rate of action

a

k

from state x to class C

i

can be easily computed

in the following way. Let T (a; s; t) be the DNBDD

representing the SLTS (a, s and t are vectors of

Boolean variables). For convenience, T is usually

broken up into individual DNBDDs T

a

k

(s; t), one

for every action a

k

:

T

a

k

(s; t) = (T (a; s; t) ^ (a = enc(a

k

)))

In order to obtain a DNBDD which represents all

transitions from state x to states from class C

i

we

restrict T

a

k

(s; t) to the single source state x and to

target states from class C

i

(class C

i

is represented

by a BDD C

i

(t)):

T

x

a

k

!C

i

(s; t) = (T

a

k

(s; t) ^ (s = enc(x)) ^ C

i

(t))

The cumulative rate is then computed by applying

the function soar (sum of all rates) to T

x

a

k

!C

i

(s; t).

This function simply sums up all the entries in the

rate tree of a DNBDD (for example, applied to the

DNBDD shown in Fig 8 (bottom) the function soar

would yield the value �

1

+�

2

+�

1

+�

2

+

1

+

2

+�).

We can now give the formal de�nition of Markovian

bisimulation.

Def: Markovian Bisimulation

Let C

1

; : : : ; C

n

be a partition of the state space S

of a SLTS. Let

M

� be the equivalence relation corre-

sponding to this partition.

M

� is called a Markovian

Bisimulation i�

8x

1

; x

2

2 S :

x

1

M

� x

2

) 8a : 8C

i

: �(x

1

; a; C

i

) = �(x

2

; a; C

i

)

Algorithms for Markovian bisimulation tradition-

ally follow an iterative re�nement scheme [23, 11,

20] (the TIPPtool [15], for instance, contains such

an implementation). This means that starting

from an initial partition which consists of a single

class (containing all states), classes are re�ned un-

til the obtained partition corresponds to a Marko-

vian bisimulation. The result thus obtained is the

largest existing Markovian bisimulation, in a sense

the \best" such bisimulation, since it has a minimal

number of equivalence classes.

For the re�nement of a partition, the notion of a

\splitter" is very important. A splitter is a pair

(a;C

spl

), consisting of an action a and a class

C

spl

. During re�nement, a class C

i

is split with

respect to a splitter, which means that subclasses

C

i1

; C

i2

; : : : ; C

ik

are computed (k � 1), such that

the cumulative rate �(x; a; C

spl

) is the same for all

the states x belonging to the same subclass.

In the following, a DNBDD-based bisimulation al-

gorithm is presented, in which the transition system

is represented by DNBDDs T

a

(s; t), one for each ac-

tion a, and in which the current partition is stored

as a set of BDDs, one for each class. The algorithm

uses a dynamic set of splitters, denoted Splitters,

which in our implementation is realised as a pointer

structure. Note that here we only present a basic

version of the algorithm which can be optimised in

many ways [7, 14, 18].

1. Initialisation

Partition := fC

1

g = fSg

/* the initial partition consists of only one

class which contains all states */

Splitters := Act� Partition

/* all pairs of actions and classes have to be

considered as splitters*/

2. Main loop

while (Splitters 6= ;)

choose splitter (a;C

spl

) 2 Splitters

forall C

i

2 Partition split(C

i

; a; C

spl

)

/* all classes (including C

spl

itself) are

split */

Splitters := Splitters � (a;C

spl

)

/* the processed splitter is removed from

the splitter set */

It remains to specify the procedure split. Its task is

to split a class C

i

, using the combination (a;C

spl

)

as a splitter. Procedure split uses a data struc-

ture split tree (shown in Fig. 10). The input class

C

i

is split into subclasses C

i1

; : : : ; C

ik

according to

the cumulative rate from a state in C

i

to class C

spl

(regarding transitions labelled with action a). The

subclasses C

i1

; : : : ; C

ik

are represented by BDDs.

procedure split(C

i

; a; C

spl

)

forall s

x

2 C

i

�

s

x

= soar(T

a

(s; t) ^ (s = enc(s

x

)) ^ C

spl

(t))

/* the cumulative rate from state s

x

to class

C

spl

is computed */

insert(split tree; s

x

;�

s

x

)

/* state s

x

is inserted into the split tree which,

�nally, has k branches */

if (k > 1) /* only continue if C

i

has been split

into k > 1 subclasses */

Partition :=Partition[fC

i1

; C

i2

;: : :; C

ik

g�fC

i

g

Splitters :=Splitters[(Act�fC

i1

; C

i2

;: : :; C

ik

g)

�(Act � fC

i

g)

/* the partition and the splitter set

are updated */

. . .

split tree

�

1

�

k

C

i1

C

ik

Figure 10: The split tree used by procedure split

In the forall loop of procedure split, the cumulative

rate �

s

x

is computed for every state s

x

in class C

i

,

and state s

x

is inserted (by procedure insert) into

the split tree such that states with the same cumu-

lative rate fall into the same branch. The split tree

�nally has k leaves, i.e. k di�erent values of �

s

x

have appeared. If splitting has taken place (i.e. if

k > 1), the partition must be re�ned and the set of

splitters must be updated.

5 Tool and experimental re-

sults

The concept of DNBDDs which we described in this

paper has been fully realised in an experimental tool

in order to demonstrate the feasibility of our ap-

proach. The tool is still a prototype which is not

optimised in terms of memory requirements and ef-

�ciency. Therefore, so far, the tool is not capable of

handling very large state spaces. The tool is writ-

ten in C and up to now only o�ers a rudimentary

textual user interface. Its main capabilities are:

� generation of a DNBDD from a given SLTS. Cur-

rently, the tool reads SLTS �les generated by the

TIPPtool [15], a tool for the speci�cation and

analysis of Stochastic Process Algebra models.

� parallel composition of two processes whose be-

haviour had been encoded into DNBDD form in

previous steps. Afterwards, if the user desires,

reachability analysis can be performed in order to

restrict the potential behaviour of the resulting

process to the states which are actually reachable

from a given initial state.

As an example, Fig. 11 (left) shows the block di-

agram of a queueing model, consisting of an ar-

rival process, a scheduler (which assigns incom-

ing jobs to queues) and two queue-server pairs.

The model was speci�ed as the parallel composi-

tion of six sequential processes, using the stochas-

tic process algebra TIPP. For this model, the op-

erational semantics of the process algebra gener-

ates an overall SLTS with 1568 reachable states

and 4760 transitions. In general, when perform-

ing parallel composition of SLTSs, the size of the

resulting SLTS is exponential in the number of

parallel components.

The right hand side of Fig. 11 illustrates the

use of DNBDD-based parallel composition. The

SLTSs for the six sequential processes were gen-

erated by the SPA semantics and then trans-

lated into their corresponding DNBDDs. The

DNBDD for the overall model was then gen-

erated by applying the DNBDD-based parallel

composition algorithm in a stepwise fashion. The

�gure gives the number of DNBDD nodes at ev-

ery composition step. The main advantage of

symbolic parallel composition consists of the fact

that the DNBDD size is roughly linear (!) in the

number of parallel components. In this exam-

ple, the DNBDD for the overall model has only

183 DNBDD nodes (which is the same number of

nodes which the BDD for the purely functional

system would have if it were constructed in a

similar compositional way).

� minimisation on the basis of Markovian bisimu-

lation. We implemented a version of the bisim-

ulation algorithm which uses the splitter set

administration technique explained earlier (see

Sec. 4.2). As a result, the tool outputs the �-

nal partition of the state space and generates the

DNBDD representation of the reduced transition

system in which each class of equivalent states is

represented by a single state.

Applying symbolic minimisation, we observed

the following interesting phenomenon: Minimi-

sation of a SLTS may have the e�ect that, al-

though the number of states is reduced, the size

of the symbolic representation actually grows!

This negative e�ect has also be studied theoreti-

cally in the context of Multi Terminal BDDs [16].

The reason for this rather counter-intuitive phe-

nomenon is that minimisation destroys the regu-

larity of the symbolic representation.

� all results computed by the tool in DNBDD form

can be converted back into their SLTS represen-

tation in order to be further processed by the

TIPPtool.

Queue1 Queue2

Arrival

Scheduler

Server Server

Server 8

Queue1

Scheduler

Arrival

Queue2

Server

26

15

6

26

8

29

183

50

50

126

DNBDD nodes

Figure 11: Example process model and corresponding number of DNBDD nodes

It is still too early to publish empirical data about

the performance of our prototype tool since our im-

plementation still needs to be improved a lot. For

instance, we need to incorporate sophisticated hash-

ing techniques (see [3]). Furthermore, a straight-

forward implementation of the rate tree as de-

scribed in this paper means that one rate is explic-

itly stored for each encoded transition of the SLTS.

Basically, this goes against the grain of BDDs, and

experiments have shown that this may cause sub-

stantial overhead. However, it is possible to imple-

ment the binary rate tree itself as a decision dia-

gram. We are currently working on this problem.

6 Conclusion

The problem of state space explosion remains the

most prominent problem of analytical performance

and dependability modelling. A lot of research has

been done on how to best avoid or tolerate large

state spaces, some of which led to very valuable re-

sults. Nevertheless it remains important to look out

for new ideas which may improve the tractability of

complex models. In this sense, symbolic techniques,

in particular BDDs, are very promising, since they

have been successfully used for state-space-based

techniques in the area of functional analysis. In

the past, the symbolic approach had not received

much consideration from the performance commu-

nity, which seems to make it all the more important

to be looked into now.

We developed DNBDDs, a data structure which is

an extension of basic BDDs, tailored to represent

stochastic transition systems in a compact way. We

were able to show that all the algorithms which are

generally needed to build, manipulate and analyse

SLTSs have a corresponding algorithmwhich works

on the compact DNBDD representation. Using

DNBDDs, the advantages of the symbolic approach

can be enjoyed not only while working on purely

functional considerations, but also during analyses

which make use of the numerical information of a

SLTS. Therefore the use of DNBDDs has the poten-

tial to handle more complex stochastic performance

models than before.

Among future work we plan to develop DNBDD-

based algorithms for the numerical analysis of the

CTMC underlying a SLTS (so far, before applying

numerical analysis algorithms we switch back to a

sparse matrix representation). Iterative methods

for the numerical analysis of CTMCs are based on

vector-matrix multiplication. It is known how this

operation can be performed e�ciently using MTB-

DDs [9, 16]. In principle, vector matrix multiplica-

tion is also feasible on the basis of DNBDDs, but

the details are still a topic for further research.

Furthermore, the relation of BDD-based represen-

tations to the Kronecker approach (e.g. [7]) deserves

further studies. There is an obvious similarity be-

tween the two approaches: The representations of

submodels are combined by an operator (Kronecker

product/sum or a Boolean operation on BDDs)

such that the size of the resulting representation is

only linear in the number of submodels. In both ap-

proaches, this compactness is achieved by avoiding

the explicit enumeration of all possible interleavings

of actions in the participating submodels.

References

[1] H.R. Andersen. An Introduction to Binary De-

cision Diagrams. Technical report, Department

of Computer Science, Technical University of

Denmark, December 1994.

[2] A. Bouali and R. de Simone. Symbolic Bisim-

ulation Minimisation. In Computer Aided Ver-

i�cation, pages 96{108, 1992. LNCS 663.

[3] K.S. Brace, R.L. Rudell, and R.E. Bryant. Ef-

�cient Implementation of a BDD Package. In

27th ACM/IEEE Design Automation Confer-

ence, pages 40{45, 1990.

[4] R.E. Bryant. Graph-based Algorithms for

Boolean Function Manipulation. IEEE Trans-

actions on Computers, C-35(8):677{691, Au-

gust 1986.

[5] R.E. Bryant. Symbolic Boolean Manipulation

with Ordered Binary Decision Diagrams. ACM

Computing Surveys, 24(3):293{318, September

1992.

[6] R.E. Bryant and Y. Chen. Veri�cation of

Arithmetic Functions with Binary Moment Di-

agrams. In 32nd ACM/IEEE Design Automa-

tion Conference, pages 535{541, 1995.

[7] P. Buchholz. A Framework for the Hierarchi-

cal Analysis of Discrete Event Dynamic Sys-

tems. Habilitation thesis, Universit�at Dort-

mund, 1996.

[8] J.R. Burch, E.M. Clarke, and K.L. McMil-

lan. Symbolic Model Checking: 10

20

States

and Beyond. Information and Computation,

(98):142{170, 1992.

[9] E.M. Clarke, M. Fujita, P. McGeer, K. McMil-

lan, J. Yang, and X. Zhao. Multi-terminal

Binary Decision Diagrams: An e�cient data

structure for matrix representation. In IWLS:

Int. Workshop on Logic Synthesis, Tahoe City,

May 1993.

[10] R. Enders, T. Filkorn, and D. Taubner. Gen-

erating BDDs for symbolic model checking

in CCS. Distributed Computing, (6):155{164,

1993.

[11] J.C. Fernandez. An Implementation of an E�-

cient Algorithm for Bisimulation Equivalence.

Science of Computer Programming, 13:219{

236, 1989.

[12] M. Fujita, P. McGeer, and J.C.-Y. Yang.

Multi-terminal Binary Decision Diagrams: An

e�cient data structure for matrix represen-

tation. Formal Methods in System Design,

10(2/3):149{169, April/May 1997.

[13] G.D. Hachtel, E. Macii, A. Pardo, and

F. Somenzi. Markovian Analysis of Large Fi-

nite State Machines. IEEE Trans. on CAD,

15(12):1479{1493, Dec. 1996.

[14] H. Hermanns. Interactive Markov Chains. PhD

thesis, Universit�at Erlangen-N�urnberg, 1998.

[15] H. Hermanns, U. Herzog, U. Klehmet,

V. Mertsiotakis, and M. Siegle. Compositional

Performance Modelling with the TIPPtool. In

R. Puigjaner, N. Savino, and B. Serra, edi-

tors, 10th Int. Conference on Modelling Tech-

niques and Tools for Computer Performance

Evaluation (TOOLS '98), pages 51{62, Palma

de Mallorca, September 1998. Springer LNCS

1469.

[16] H. Hermanns, J. Meyer-Kayser, and M. Siegle.

Multi Terminal Binary Decision Diagrams

to Represent and Analyse Continuous Time

Markov Chains. Accepted for publication in

3rd International Meeting on the Numerical

Solution of Markov Chains 1999.

[17] H. Hermanns and M. Rettelbach. Syn-

tax, Semantics, Equivalences, and Axioms for

MTIPP. In U. Herzog and M. Rettelbach, edi-

tors, Proc. of the 2nd Workshop on Process Al-

gebras and Performance Modelling, pages 71{

88, Erlangen-Regensberg, July 1994. IMMD,

Universit�at Erlangen-N�urnberg.

[18] H. Hermanns and M. Siegle. Bisimulation Al-

gorithms for Stochastic Process Algebras and

their BDD-based Implementation. In J.-P.

Katoen, editor, 5th Int. AMAST Workshop

on Real-Time and Probabilistic Systems, pages

244{264, Springer LNCS 1601, 1999.

[19] J. Hillston. A Compositional Approach to Per-

formance Modelling. Cambridge University

Press, 1996.

[20] P. Kanellakis and S. Smolka. CCS Expressions,

Finite State Processes, and Three Problems of

Equivalence. Information and Computation,

86:43{68, 1990.

[21] J.G. Kemeny and J.L. Snell. Finite Markov

Chains. Springer, 1976.

[22] Y.-T. Lai and S. Sastry. Edge-Valued Binary

Decision Diagrams for Multi-Level Hierarchical

Veri�cation. In 29th Design Automation Con-

ference, pages 608{613. ACM/IEEE, 1992.

[23] R. Paige and R. Tarjan. Three Partition Re-

�nement Algorithms. SIAM Journal of Com-

puting, 16(6):973{989, 1987.

[24] M. Siegle. BDD extensions for stochastic tran-

sition systems. In D. Kouvatsos, editor, Proc.

of 13th UK Performance Evaluation Work-

shop, pages 9/1 { 9/7, Ilkley/West Yorkshire,

July 1997.

[25] M. Siegle. Compact representation of large per-

formability models based on extended BDDs.

In Fourth Int. Workshop on Performability

Modeling of Computer and Communication

Systems (PMCCS4), pages 77{80, Williams-

burg, VA, September 1998.

