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Abstract This paper considers a classical switch model of Kececioglu and some of its spe-
cialisations. By means of an example of a small reliable system we consider the impact of the
switch model on the reliability function of the entire reliable system. We relate the different
specialisations of Kececioglu’s switch model to each other by fitting the reliability functions of
the example system. Further, we show how the specialisations of the switch models influence
the failure modes observed and how one can relate the models to data collected during the
CIGRE studies.

1 Introduction

In this paper we consider an error model given in the literature (Kececioglu, 1991) of a
single pole, double throw switch, c.f. the switching subsystem in Fig. 2b. We compare three
specialisations of this error model by means of a small reliable system containing one such
switch. We will consider the question of (1) relating the on-demand failures of the different
models and (2) relating modelled switch failure modes to the measured failure modes of the
reliable system. The paper is organised as follows: In Sec. 2 we introduce Kececioglu’s switch
model and some specialisations. The switch models are compared by means of a small reliable
system that is introduced and analysed in Sec. 3. The different specialisations of the switch
model are related in Sec. 3.1, and in Sec. 3.2 we relate one specialisation to failure mode
distributions given e.g. by CIGRE enquiries (Colombo, Dialynas, Heising, Janssen & Lanz,
1994). Sec. 4 concludes the paper.

2 Switch models

In the sequel, we will use the following terms: An on-demand failure (ODF for short) is a
failure that occurs triggered by some event (i.e. attempt to open a switch). It is associated
with an on-demand-failure probability p. A stochastic failure is a failure that occurs without
external influence, driven by a random variable. The random variable describes the time
to failure. We distinguish two types of failures: A failure is said to be visible if it can be
immediately detected by the environment. On the other side a failure is hidden if it cannot
be detected immediately by the environment. It can only be detected after a certain event
(e.g. switching attempt) has taken place. Note that a hidden failure does not immediately
result in a system error.

2.1 Kececioglu’s switch model

In this paper, we treat a special variant of the switch model given in (Kececioglu, 1991) where
all stochastic failures are driven by exponentially distributed random variables. We call such
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(1) SW(state[2]):=

(2) [state=OK] -> (*changecommand, 1*); ( (*swODsuccess,(1-p)*); SW(OK)

(3) + (*swODfailed,p*); SW(FAILED_VISIBLE) )

(4) [state!=OK]-> (*changecommand, 1*); (*swODfailed,1*); SW(FAILED_VISIBLE)

(5) [state!=FAILED_VISIBLE] -> (fail_SWv,lv); (*swfailed,1*);SW(FAILED_VISIBLE)

(6) [state=OK] -> (fail_SWh,lh); SW(FAILED_HIDDEN)

(a) Kececioglu’s general model

(5’) [state=OK] -> (fail_SWv,lv); (*swfailed,1*);SW(FAILED_VISIBLE)

(b) changes for SIII

Figure 1: CASPA code of switch models

stochastic failures also Markovian failures. They are specified by their rate. The switch model
uses two exponentially distributed failures, a visible and a hidden one. Further, it also has
an on-demand failure probability p, which is the probability for an unsuccessful switching
attempt. The switch has three states, namely OK, FAILED_HIDDEN and FAILED_VISIBLE. It
can fail hidden as long as it is in the OK state and it can fail visible both from the OK and
from the FAILED_HIDDEN state. If the switch has failed before (hidden failure), a switching
attempt will fail with probability one and if it has not failed before, a switching attempt will
succeed with probability 1 − p, otherwise it will fail. We will use annotation K in the sequel
to indicate Kececioglu’s model.

The CASPA (Bachmann, Riedl, Schuster & Siegle, 2009) model of the switch is given in
Fig. 1a. Line (2) is the case where a change command is received and the switch has not failed
so far. Therefore the switching attempt can be completed successfully (with a probability of
(1 − p)) or it can fail with probability p (defined by line (3)). On the other hand, if a switch
command is received but the switch has failed before (either visible or hidden), the switching
attempt cannot be completed and a hidden failure becomes visible. This is described in line
(4). Line (5) describes the fact that if the switch has not failed visible so far, it still can do so
(with rate lv which will be denoted by λv in the sequel). Finally, in line (6) we specify that
a hidden error always can occur as long as the switch is working (with rate lh which will be
denoted by λh in the sequel).

2.2 Specialisations

An overview of the different specialisations of Kececioglu’s model is shown in Fig. 2a. Spe-
cialisation SI is the model proposed in (Bouissou & Bon, 2003). In specialisation SII all
on-demand failures are exclusively induced by preceding hidden errors of the switch. Special-
isation SIII uses the idea that no multiple errors can occur. This is realised by changing line
(5) in Fig. 1a to line (5’) given in Fig. 1b. An error can therefore only occur as long as the
switch is in state OK (i.e. only one error can occur).

3 Analysing a small reliable system by the state space method

To show the difference between SI , SII and SIII , we present a small reliable system as shown
in Fig. 2b. It consists of components C1 and C2 that provide a certain service where C1 is
initially active and C2 is a hot spare. If C1 fails, the switch has to change its position to make
C2 the active component. To keep it simple, we do not consider repairs, so the system will
surely fail if we have an infinite amount of time. In this section, we present the state spaces
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K SI SII SIII

Visible error λv λv λv λv

Hidden error λh 0 λh λh

ODF probability p p 0 0
Multiple stoch. yes no yes no
switch failures

(a) Comparison (b) Small reliable system

Figure 2: Comparison and small reliable system

Figure 3: State space of the small reliable system (using Kececioglu’s general switch model)

of the corresponding CASPA models using the different switch models as they were generated
by the CASPA tool (after elimination of some transitions used only for synchronisations such
as changecommand, swfailed, etc.). For the analytical solution we produced parameterised
transition matrices out of the transition systems given by the CASPA tool and analysed them
with the tool MAPLE.

The transition system for the general Kececioglu model (in the exponential case) is given
in Fig. 3. The dashed (solid) edges are timeless (timed) transitions. The shaded states
are vanishing states that can be eliminated before the model analysis takes place. For the
calculation of the induced on-demand failure probabilities it is useful to know the probability
p7(t) observed in state 7. Therefore we removed the swODfailure transition leading from state
7 to state 8. The probability that the system has failed up to time t, i.e. the unreliability, is
then given as UK(t) := p7(t) + p8(t). We eliminated vanishing state 2’ in order to end up at
a purely Markovian model. Generator matrix QK is given in Eq. 1 (states are enumerated
according to Fig. 3, the di denote the corresponding negative row sums). The upper left block
belongs to the transient states, the upper right block describes the rates into the absorbing
states and the lower two blocks are zero, as they belong to the absorbing states. It can be
shown, that QK is not nilpotent. Despite this fact, MAPLE was able to calculate the exact
solution for the exponential eQK ·t. From eQK ·t the probability of being in one of the error
states at a certain time can be calculated as pi(t) = e

⊺

1 · eQK ·t · ei (ei denotes the i-th unit
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Model RModel(t) P (ODFModel)

K e−(λv+λc1)·t + (1−p)·λc1

λc1+λh
· (e−(λv+λc2)·t − e−(λc1+λc2+λv+λh)·t) λh+p·(λv+λc1+λc2)

λv+λh+λc1+λc2

SI e−(λv+λc1)·t + (1 − p) · (e−(λv+λc2)·t − e−(λc1+λc2+λv)·t) p

SII e−(λv+λc1)·t + λc1

λc1+λh
· (e−(λv+λc2)·t − e−(λc1+λc2+λv+λh)·t) λh

λv+λh+λc1+λc2

c1(λv, λh, λc1) · e
−λc1·t + c2(λv, λh, λc1) · e

−λc2·t+

SIII c3(λv, λh, λc1) · e
−(λv+λh+λc2)·t + c4(λv, λh, λc1) · e

−(λv+λh+λc1)·t+ λh

λh+λc1+λc2

c5(λv, λh, λc1) · e
−(λc1+λc2+λv+λh)·t

Figure 4: Reliability functions and on-demand failure probabilities

column vector) from which the unreliability UK(t) and the reliability RK(t) := 1 − UK(t)
follow.

QK :=

























d1 (1 − p) · λc1 λc2 0 λh 0 0 λv + p · λc1

0 d2 0 λh 0 0 0 λv + λc2

0 0 d3 0 0 λh 0 λv + λc1

0 0 0 d4 0 0 0 λv + λc2

0 0 0 0 d5 λc2 λc1 λv

0 0 0 0 0 d6 0 λv + λc1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























(1)

All specialisations can be obtained from the transition system given in Fig. 3 with the
following changes: For SI λh = 0, for SII p = 0, and for SIII fail_SWv transitions emanating
from states 4, 5 and 6 are omitted. The different reliability functions RModel(t) are given in
Fig. 4, the P (ODFModel)-column is calculated in the next section. All results are obtained in
the same way as before. Note that the reliability function of SIII (with rational functions ci)
has a different structure than the other specialisations.

3.1 Relating on-demand failure probabilities and hidden error rates

In this section, on-demand failure probabilities are related to the ratio of error rates. More
specifically, we want to calculate approximations SI ⇔ SII and SI ⇔ SIII for our reliable
system example. The on-demand failure probability P (ODFK) of the general Kececioglu
model can be calculated as follows. A failure during switching occurs if one of the following
paths in Fig. 3 is taken: Init->fail_SWh->fail_C1 or Init->fail_C1->swODfailed so the
corresponding probability is

pfail,K :=
λh

λc1 + λc2 + λv + λh

·
λc1

λc1 + λc2 + λv

+
p · λc1

λc1 + λc2 + λv + λh

.

The switch can be operated successfully in the path Init->fail_C1->swODsuccess (i.e. no
hidden error occurred before) with a probability

psucc,K :=
(1 − p) · λc1

λc1 + λc2 + λv + λh

.

From this the ODF can be calculated as P (ODFK) = P (failure|switch operated) =
P (failure∩switch operated)

P (switch operated) =
pfail,K

pfail,K+psucc,K
. In the same way the ODF probabilities of the

other switch models can be calculated, thus leading to the right column in Fig. 4.
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(a) RSI
,RSII

(b) RSI
,RSIII

(c) pODF = 1

1000
(d) pODF = 1

2
(e) pODF = 999

1000

Figure 5: Parametric plots of the fitted reliability curves

The other way around, given an ODF probability pODF we now try to adjust the hidden
failure rates of SII and SIII such that the expected time to a visible error does not change (i.e.
λv = const) and P (ODFModel) = pODF . We discuss briefly the accuracy of the approximations
by means of some quantitative results. For this purpose we fix the parameters λi = 10−41/h for
i ∈ {c1, c2, v} and leave pODF and t as parameters. SI will be taken as a reference by setting

p := pODF . SII (SIII) is fitted by setting λh := pODF ·(λc1+λc2+λv)
(1−pODF ) (λh := pODF ·(λc1+λc2)

(1−pODF ) ).

Resulting reliability functions RSI
and RSII

(RSIII
) are plotted over t and pODF in Fig. 5a

(Fig. 5b). In both cases, the lower surface belongs to RSI
(linear in pODF , c.f. Fig. 4). On

a larger time horizon we have plotted the resulting reliability curves for three different on-
demand failure probabilities in Fig. 5c-5e. For the practically relevant case pODF ≈ 0, the
three specialisations can be well-approximated by each other. It is notable that for pODF = 1

2
RSI

and RSII
intersect at t ≈ 6000h, i.e. RSII

is not always an upper bound for RSI
.

3.2 Relation of failure mode distributions

Specialisation SIII has a nice analogy to the CIGRE studies, (where failure mode distributions
are calculated): If we put a certain failure mode distribution in the switch (in this paper we
restrict ourselves to two modes, namely visible and hidden) and we assume that every failure is
finally detected, then the observed failure mode distribution in a reliable system environment
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is the same as the distribution in the switch. This is shown by the following observation:
In the state space of the example system using switch model SIII there are decision points,
namely in states I = {1, 3, 2} there are both hidden and visible errors possible. By the law
of total probability, one can deduce that the probability of running into a visible switch error
is P (visible) =

∑

i∈I pi ·
λv

λv+λh+ci
where I is the set of decision points, pi is the probability

of getting into the decision point i ∈ I and ci is the cumulated transition rate out of state
i that does not lead into a switch error. The conditional probability of observing a visible
switch error under the condition that a switch error occurred (given that finally we detect
every hidden error) is P (visible|error) = . . . = λv

λh+λv
. Note that this is not the case for K,

SI and SII (assuming the free variables to be non-zero).

4 Conclusion

Kececioglu’s switch model and some specialisations have been studied in this paper. Cal-
culations forth and back have been performed to transform on-demand-failure probabilities
to hidden failure rate approximations and vice versa. As was empirically shown by a small
example, the same reliability distribution functions can in general never be achieved using
different switch models. Nevertheless for the practically relevant case pODF ≈ 0 the result-
ing reliability functions fit quite well. As recommended in (Colombo et al., 1994) it would
be interesting to use even more sophisticated error models related to the CIGRE data (e.g.
different modes for “does not close/open on command” as there are different probabilities for
these modes). We will study more complex models to show how different error models change
the reliability function of a reliable system.

Acknowledgement

Special thanks to Alexander Gouberman for sharing his mathematical background and sus-
tained proof-reading the manuscript. Thanks to Thomas Krieger for the fruitful discussions.
The authors would like to thank Deutsche Forschungsgemeinschaft for supporting this work
under grant SI 710/5-1. This work is partially supported by DFG/NWO bilateral research
programme ROCKS.

References

Bachmann, J., Riedl, M., Schuster, J. & Siegle, M. (2009). An Efficient Symbolic Elimination
Algorithm for the Stochastic Process Algebra tool CASPA. In Sofsem 2009 (p. 485-496).
Springer, LNCS 5404.

Bouissou, M. & Bon, J.-L. (2003). A new formalism that combines advantages of fault-trees
and Markov models: Boolean logic driven Markov processes. Reliability Engineering

and System Safety, 82, 149-163.

Colombo, E., Dialynas, E., Heising, C., Janssen, A. & Lanz, W. (1994). Summary Of
CIGRE 13.06 Working Group World Wide Reliability Data And Maintenance Cost
Data On High Voltage Circuit Breakers Above 63 kV. In Conf. record of the industry

applications society annual meeting (p. 2226-2234). IEEE.

Kececioglu, D. (1991). Reliability Engineering Handbook Volume 2. Prentice Hall. (available
also through google books (last checked Dec. 2010))

6


