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Abstract: Finite state machines are considered in a probabilistic environment that is gener-
ated by a Markov chain. An expressive temporal logic is introduced for specifying complex
requirements that the FSM should satisfy in the given environment. The corresponding model
checking algorithm is described and its symbolic implementation is sketched. Throughout the
paper, the method is illustrated by a simple running example.
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1 Introduction
Finite state machines (FSM) play an important role as a general model for sequential logic
circuits and control circuits. Using the concept of FSMs, such circuits can be specified at an
abstract level and then implemented more or less automatically in (programmable) hardware.
This paper proposes a method for analysing the behaviour of FSMs by means of model check-
ing. The FSM under investigation is exposed to a probabilistic environment which generates
the sequence of input vectors according to a specific stochastic law. The combination of the
FSM and its environment is then a stochastic model which serves as basis for verification. A
new temporal logic, more expressive than PCTL [5], is presented which enables the user to
specify complex requirements, covering both functional and timing properties of the FSM.

The method is illustrated in Fig. 1a. The system model F and the environment model M
are shown at the top left of the figure. Their combination yields the labelled Markov chain P.
The requirement to be checked, specified by means of a temporal logic, is fed – together with
the Markov chain P – into the model checking engine. This engine contains the algorithms
(including Boolean evaluation, graph analysis and numerical solution of systems of linear
equations) for determining whether a given requirement is satisfied or not. The verification
results are then output in the form of truth values augmented by numerical data as indicated
at the bottom of the figure.

FSMs with Markovian behaviour have been investigated in different contexts. Marculescu
et al. computed the steady-state probabilities of a FSM whose inputs are generated by a
so-called stochastic state machine which exhibits Markovian behaviour [10]. The problem of
computing the steady-state probabilities for very large FSMs whose inputs are Markovian was
addressed by Hachtel et al. [4]. These authors use Algebraic Decision Diagrams (ADDs) as
a symbolic data structure, and take the decomposable structure of the FSM into account.
On the verification side, the well-known logic PCTL, interpreted over state-labelled Markov
chains, was developed by Hansson and Jonsson [5] and has been extended since in various
directions. One of the most powerful such extensions is the work by Baier et al. [2], which
describes the logic asCSL to be interpreted over state- and action-labelled Continuous-Time
Markov Chains, where it is possible to characterise satisfying paths with the help of regular
expressions of actions and so-called tests. The verification algorithms for probabilistic logics
have been implemented in model checking tools such as ETMCC [6], PRISM [9] and CASPA
[8], where the latter two rely on space-efficient symbolic data structures.

The rest of this paper is structured as follows: Sec. 2 formally introduces the system model
and the environment model and how they are combined. The temporal logic for requirement
specification and the associated model checking algorithm are discussed in Sec. 3, and Sec. 4
concludes the paper. Both Secs. 2 and 3 contain a short discussion of how the method can
be implemented symbolically. Throughout the paper, the method is illustrated by means of
the running example of a simple bus arbiter.



outputs
inputs

. .
 .

. . .

model checking engine

"yes" / "no" + numerical results

a)

environment model
(labelled Markov chain)

system model
(FSM)

requirements
(temporal logics)

combined model
(labelled Markov chain)

PSfrag replacements

FM

P

φ = . . .
12

23

22

13

21

00

10

10 01

01

00

11

0x

1x

1x x1

x1

x0

xx xx

x0 0x

Legend:

input

output

state id

b)

1 2

0.8, 110.2, 10

0.5, 10

c)
0.5, 10

PSfrag replacements

F

M

P

φ = . . .

Figure 1: a) Overview of the proposed method. b) FSM model F of a two cell bus arbiter.
c) Environment model M.

2 Model Description

System Model: A FSM in the style of Moore-automata is defined as follows:

Definition 2.1 Let the input alphabet I = IBn and the output alphabet O ⊆ IBm be given. A
Finite State Machine (FSM) is a tuple F = (SF , s0

F , nF , oF) where SF is a finite set of states,
s0
F ∈ SF is the initial state, nF : (SF × I) 7→ SF is the next state function, and oF : SF 7→ O

is the output function.

The input to the FSM is a vector of Booleans corresponding to the n primary inputs of the
system. The output of the system is again a Boolean vector (of length m). For the purpose of
verification, each of the m output signals will be interpreted as an atomic proposition which is
either true or false in a given state. The system model is a clocked system, i.e. in every clock
cycle the system evaluates its inputs and takes a transition as specified by function nF , leading
to the successor state which may be identical to the current state in the case of self-loops.

Example 1 The system model F for a simple two-cell bus arbiter is shown in Fig. 1b. The
arbiter has n = 2 input signals (req1 and req2) and m = 2 output signals (gnt1 and gnt2).
Upon request from cell i, the arbiter will eventually issue a grant to that cell, and the bus
holding time for a particular cell is restricted to a maximum of two clock cycles. The bus is
granted to the cells in a round-robin fashion. The notation used in the figure is explained in
the legend shown on the right of the state graph: The state identifier is given in the top half
of each state and the output signals are shown in the lower half, where a “1” means that the
grant signal for the corresponding cell is set to one. The arcs are labelled by the vector of
input signals, where an “x” means a don’t care of the corresponding request signal. In state i1
the arbiter polls cell i (i = 1, 2), but no grant signal is issued. In states 12 and 13 the bus is
granted to cell 1 for a first and second cycle, repectively. States 22 and 23 model the symmetric
behaviour for cell 2.

The arbiter can easily be extended to more than two cells and to longer maximum bus
holding times, but we chose this small configuration in order to keep the running example
simple.

Environment Model: The environment creating the stimuli for the FSM to be verified is
an action-labelled deterministic-time Markov chain (DTMC) defined as follows:

Definition 2.2 Let an alphabet of actions I = IBn be given. An action-labelled deterministic-
time Markov Chain (al-DTMC) is a tuple M = (SM, s0

M, δM) where SM is a finite set of



states, s0
M ∈ SM is the initial state, δM ⊆ SM× [0, 1]× I ×SM is the transition relation, such

that
∀s ∈ SM :

∑

(s,p,i,s′)∈δM

p = 1 (1)

If (s, p, i, s′) ∈ δM we also use the notation s
p,i
−→ s′. The value p ∈ [0, 1] denotes the probability

with which the al-DTMC moves from state s to state s′, thereby generating the signal vector
i ∈ I, which is going to be the stimulus for the FSM1. Condition (1) states that the sum of all
probabilities emanating from a state is equal to one. This also implies that the environment
model will keep generating stimuli forever, even if it stays in some “absorbing” state by a
self-loop. Similar to the system model, the environment model is also a clocked system, i.e.
at every clock cycle it takes a probabilistic decision, produces the vector of stimuli and moves
to the next state (which is possibly identical to the current state).

Example 2 A possible environment model M for the bus arbiter from Fig. 1b is shown in
Fig. 1c. It is a Markov chain with just two states, state 1 being the initial state. Each arc
is labelled with a transition probability and a vector of stimuli generated by the Markov chain.
M models a rather special environment, since the only vectors of stimuli generated are 10 and
11.

Combined Model: The synchronous parallel composition of a FSM as system model and
an al-DTMC as environment model yields an action- and state-labelled DTMC (asl-DTMC)
which will be used as basis for verification.

Definition 2.3 Let the FSM F = (SF , s0
F , nF , oF) and the al-DTMC M = (SM, s0

M, δM) be
given. Their synchronous product is an action- and state-labelled DTMC (asl-DTMC) which is
a tuple P = (SP , s0

P , δP , oP) where SP = SF×SM is the finite set of states, s0
P = (s0

F , s0
M) ∈ SP

is the initial state, δP ⊆ SP × [0, 1] × I × SP is the transition relation, defined as

(((sF , sM), p, i, (s′F , s′M)) ∈ δP) iff (nF (sF , i) = s′F and (sM, p, i, s′M) ∈ δM) ,

and oP : SP 7→ O, defined as oP((sF , .)) = oF(sF), is the output function.

The asl-DTMC P, essentially the product of the FSM F and the al-DTMC M, inherits the
next state function and the output function from F and the transition probabilities from M.
Due to the definition of the transition relation δP , not all states of SP may be reachable from
the initial state s0

P . It should be noted that the human user does not have to concern himself
with this combined model P, since it is generated automatically in order to be used as the
basis of the subsequent verification procedure.

Example 3 The combined model P obtained from the synchronous parallel composition of
the system F and the environment M from Fig. 1 is shown in Fig. 2. The state identifiers,
shown in the top half of each state, are now of the form aa/b, where aa denotes the state of
the system F and b that of the environment M. The lower half of each state contains the
output vector (i.e. the grant signals). Each arc is labelled by the transition probability and the
vector of stimuli (i.e. the request signals). It is noteworthy that out of the 6 · 2 = 12 states of
the product space SF × SM only 10 are actually reachable from the initial state.

1In practice, one usually has I ⊆ IBn instead of I = IBn as action set of the environment model M. We
chose the latter notation in order to indicate that the stimuli generated by M correspond exactly to the input
alphabet of the system model F .
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Figure 2: Combined model P for the bus arbiter.

Implementation with BDDs: Binary Decision Diagrams (BDD), a graph-based data struc-
ture for the representation of Boolean functions, have been used with great success for the
compact representation and analysis of very large transition systems. In the present context,
BDDs are used to represent the FSM under investigation, in particular the next-state function
of the FSM is encoded as a BDD. For this purpose, a characteristic function in disjunctive
normal form is generated, where each term encodes the source state and the input as well
as the target state of a given state-to-state transition. Similarly, we employ multi-terminal
BDDs2 (MTBDD) [3, 1] for representing the transition relation of the Markovian environment
model, where the probabilities associated with the individual transitions are stored in the
terminal vertices of the decision diagram.

Based on a BDD F representing the FSM F and an MTBDD M representing the environ-
ment M, the MTBDD P representing the combined model P is constructed by a single call
to the standard apply-function for MTBDDs [3] as

P = apply(F, M, ·) (2)

By an argument similar to the one used in [7] it can be shown that this product construction
leads only to an additive growth of the symbolic data structure, i.e. the number of vertices of
the resulting MTBDD P is a constant times the sum of the number of the vertices of F and
M. This is a very strong result, since the state space encoded by the symbolic data structures
exhibits a multiplicative growth. The MTBDD P constructed according to Eq. (2) encodes all
transitions of the combined model P, i.e. not only the ones that are reachable from its initial
state. Therefore, P is subsequently restricted to its reachable portion by applying a standard
symbolic reachability algorithm.

3 Verification

Logic for Requirement Specification: In this section, a new temporal logic L is defined,
to be used for specifying the requirements that the FSM should satisfy in a given environment.

Definition 3.1 Let a set of atomic propositions AP (with |AP | = m) and a set of actions
I(= IBn) be given. The set of valid state formulas Φ of the temporal logic L can be constructed
according to the following grammar:

Φ ::= q | ¬Φ | Φ ∧ Φ | S./p(Φ) | P./p(Φ[ρ]kΦ)

where q ∈ AP is an atomic proposition, ./∈ {<,≤,≥, >} is a comparison operator, p ∈ [0, 1]
is a probability value, k ∈ IN ∪ {∞} is a step counter, and ρ is a regular expression of actions
defined as

ρ ::= ε | a | ρ; ρ | ρ + ρ | ρ∗

with a ∈ I being an action.

2MTBDDs are also called Algebraic Decision Diagrams (ADD).



The state formulas of L are interpreted over the states of an asl-DTMC P. The notation s |= φ
denotes that state s satisfies state formula φ. The following is an informal explanation of the
semantics3 of L: A state s satisfies φ = q ∈ AP iff in state s the output signal corresponding
to q is set. The logical operators negation (¬) and conjunction (∧) have their usual meaning,
and all other logical operators (such as disjunction or implication) can be derived from them.
State s satisfies the steady-state formula S./p(φ) iff starting from s as the initial state the
steady-state probability of being in a state satisfying φ is within the bound as specified by
./ p. State s satisfies the quantised path formula formula P./p(φ1[ρ]kφ2) iff the probability
measure of the set of satisfying paths emanating from s is within the bound as specified by
./ p. A path is satisfying, if it is of the form s0

a1−→ s1
a2−→ . . .

al−→ sl, such that l ≤ k and
s0 |= φ1∧ . . .∧sl−1 |= φ1 and sl |= φ2 and the concatenation of the actions a1 . . . al is a word in
the language defined by the regular expression ρ. In the case k = ∞ there is no upper limit on
the length l of the path. It is straight-forward to show that standard temporal operators such
as “next” and “until” can be derived as special cases of the quantised path formula P./p(.).
Being able to characterise paths by regular expressions, L is more expressive than PCTL.

Example 4 We consider again the bus arbiter (system model F from Fig. 1b) in the envi-
ronment as given by Markov chain M from Fig. 1c. Using the temporal logic L, the following
requirements can be formulated (note that for requirement specification the user does not need
to have explicit knowledge of the product P):

1. The arbiter should be safe, i.e. the two grant signals should never be active at the same
time: φ1 = ¬(gnt1 ∧ gnt2)
Requirement φ1 is an example of a simple propositional logic formula.

2. The bus utilisation should be at least 50%: φ2 = S≥0.5(gnt1 ∨ gnt2)
Requirement φ2 states that, in equilibrium, one of the two grant signals should be active
at least 50% of the time.

3. If the req2 input signal persists, cell 2 should be granted the bus after at most 4 clock
cycles: φ3 = P≤0 (¬gnt2[(01 + 11)∗]4¬gnt2)
Requirement φ3 is a quantised path formula, where the probability bound ≤0 expresses that
the formula should hold with probability 0, i.e. not on any path emanating from a state.
Persistence of the req2 signal is formulated by the regular expression (01 + 11)∗ which
denotes a sequence of actions (i.e. inputs) of arbitrary length where the second element,
corresponding to req2, is always set to one. Requirement φ3 expresses a fairness property
of the arbiter.

4. At most 50% of the bus holding times of cell 2 should last for 2 clock cycles: φ4 = gnt2 →
P≤0.5 (true[any]1gnt2)
Requirement φ4 is formulated as an implication. Furthermore, the abbreviation “any”
is used to denote an arbitrary action (input). Looking at the environment model from
Fig. 1c, one can easily see that requirement φ4 will be violated, since having issued the
req2 signal, cell 2 will reissue this signal with probability 0.8.

5. The probability of two successive bus grants to cell 1 without granting to cell 2 in between
should be at most 20%: φ5 = gnt1 → P≤0.2 (¬gnt2[any; any; any∗]∞gnt1)
Requirement φ5 states that if the bus is currently granted to cell 1, a new grant to cell
1 without intermediate grant to cell 2 should happen with probability at most 20%. The
number of steps between the current and the next grant to cell 1 is left open, but the
regular expression enforces that there are at least two steps (with arbitrary input) in
between.

3The formal semantics of L is omitted in this paper due to space limitations.



Model Checking Algorithm: The basic model checking algorithm for the logic L is similar
to that for CTL: A given L-formula is checked by checking all of its subformulas in a bottom-
up fashion, thereby labelling the states of the model with the valid subformulas which can
thereafter be treated like atomic propositions. Checking the Boolean operators of L is similar
to CTL. For checking the steady-state operator S./p(φ) two cases have to be distinguished:
If the combined model P consists of a single strongly connected component the steady-state
probabilities are independent of the initial state and can be determined by solving the linear
system of equations ~π · T = ~π, where T denotes the transition probability matrix of P and
~π denotes the vector of steady-state probabilities. Otherwise the computation of the initial-
state-dependent steady-state distribution requires the computation of the bottom strongly
connected components (BSCC) of P by a graph algorithm and then determining the steady-
state distribution for each BSCC. Furthermore, for each transient state as initial state, the
probabilities of eventually reaching the individual BSCCs have to be computed.

The algorithm for model checking quantised path formulas of the form P./p(φ1[ρ]kφ2) is
the most involved. It proceeds along the following steps:

1. From the regular expression ρ a non-deterministic finite automaton Aρ is constructed.

2. From the labelled Markov chain P and the automaton Aρ a product is constructed in a
way that is analogous (but not identical) to the way described in [2]. The result is an
unlabelled DTMC X whose transitions are of the form

(si, Z)
p

−→ (sj, Z
′) (3)

where si and sj are states of P, and Z and Z ′ are sets of states of Aρ. Furthermore,
X has two special absorbing4 states: All states (si, Z) where the model part satisfies φ2

and where Z includes an accepting state are combined to a single absorbing state succ,
while all states where the model part satisfies neither φ1 nor φ2 are combined to a single
absorbing state fail.

3. By standard DTMC analysis of X , for each state the probability p̃ of reaching state
succ in at most k steps is computed. If p̃ ./ p then the quantised path formula is valid,
otherwise it is violated.

When model checking formulas of type S./p(.) or P./p(.), in addition to returning “yes” or “no”
as an answer, the model checker can also return the computed numerical results, such that
the user learns how close these values are to the specified probability bound p and thus better
understands the results of verification.

The method described in this paper involves a double product construction with the obvious
negative implication on the size of the state space. The model P to be analysed is the product
of the FSM F and the Markovian environment M. The size of its state space is at the most
|SF | · |SM|, but in many cases it is much smaller due to reachability conditions. When model
checking a formula of type P./p(φ1[ρ]kφ2) a further product, namely that of P and automaton
Aρ, has to be constructed, which also includes the determinisation of Aρ. However, here again,
experience has shown that the size of the reachable portion of the resulting state space is often
far smaller than the theoretical worst case product. The reason is that the regular expression
ρ of inputs, together with the conditions φ1 and φ2, may considerably restrict the permissible
behaviour of P.
Implementation with BDDs: The model checking algorithm for the logic L can be im-
plemented in a fully symbolic manner. As described in Sec. 2, the model to be checked is

4“Absorbing” means having a self-loop with transition probability one.



represented as an MTBDD P. For each subformula φi to be checked, a BDD is constructed
which represents the corresponding satisfaction set Sat(φi). Propositional logic subformulas
are checked by directly applying the Boolean operators on the respective BDDs. For checking
formulas of type S./p(.), the vector of steady-state probabilities is computed with the help of
an MTBDD-based iterative numerical algorithm as realised in the tools PRISM and CASPA.

For checking formulas of type P./p(φ1[ρ]kφ2) the automaton Aρ is represented symbolically
as a BDD Aρ (which is constructed directly from the regular expression ρ). The next step
is the symbolic product construction of P and Aρ, which includes the determinisation of the
automaton Aρ by a standard powerset construction and thereby also the generation of the
special absorbing states succ and fail. This step yields the transitions of the resulting DTMC
X (according to Eq. (3)) encoded as an MTBDD X on which the calculation of the k-step
transient probabilities is carried out by an efficient MTBDD-based numerical method.

4 Conclusion and Future Work
This paper has introduced a method for verifying finite state machines in a probabilistic
environment which is specified by a Markov chain. Requirements are formulated with the
help of an expressive temporal logic and checked by a specialised model checking algorithm.
The paper also briefly describes how the method can be realised symbolically, using BDDs and
MTBDDs as the basic data structures. Based on experience reports from related fields such
as [4, 8, 9] it is fair to say that the approach has the potential to handle very large systems.

The next step is an implementation of the method and to carry out case studies based on
real-life FSMs. In addition, there exist ideas of how the expressiveness of the logic L could be
further extended, which would lead to extensions of the model checking algorithm.
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