
On the use of MTBDDs for performability

analysis and verification of stochastic systems⋆

Holger Hermanns a Marta Kwiatkowska b Gethin Norman b

David Parker b Markus Siegle c

aFormal Methods and Tools Group, University of Twente, P.O. Box 217, 7500 AE

Enschede, The Netherlands

bUniversity of Birmingham, Birmingham B15 2TT, United Kingdom

cLehrstuhl für Informatik 7, University of Erlangen-Nürnberg, Martensstraße 3,

91058 Erlangen, Germany

Abstract

This paper describes how to employ Multi-Terminal Binary Decision Diagrams
(MTBDDs) for the construction and analysis of a general class of models that ex-
hibit stochastic, probabilistic and non-deterministic behaviour. It is shown how the
notorious problem of state space explosion can be circumvented by compositionally
constructing symbolic (i.e. MTBDD-based) representations of complex systems from
small-scale components. We emphasise, however, that compactness of the represen-
tation can only be achieved if heuristics are applied with insight into the structure
of the system under investigation. We report on our experiences concerning compact
representation, performance analysis and verification of performability properties.

Key words: Binary decision diagram, Markov chain, Markov decision process,
performability analysis, model checking.

1 Introduction and Motivation

Systems from many different areas of application, such as distributed algo-
rithms, client-server computing or mobile computing, behave in a way that
is not fully predictable and can therefore be viewed and modelled as being

⋆ Supported in part by DAAD/British Council ARC project StochVer, by
DFG/NWO project VOSS, and by EPSRC grant GR/M04617 and MathFIT stu-
dentship for David Parker.

Preprint submitted to Journal of Logic and Algebraic Programming, 25 June 2002

stochastic. The system’s behaviour may either be truly stochastic, as is the
case, for example, with randomised algorithms, where decisions are made on
the basis of the outcome of random experiments, or it may only appear to be
stochastic to an external observer, because the observable behaviour depends
on many hidden parameters and conditions which cannot easily be described
or understood in full detail.

Such systems can be described and analysed with the help of stochastic models,
which include features such as probabilistic decisions and delays, or durations
whose length is governed by a random variable. In addition to decisions with
probabilistically determined outcome, it is often helpful or even mandatory to
include non-deterministic decisions whose outcome is left completely unspec-
ified, in cases where it is unrealistic or impossible to associate the possible
outcomes with concrete probabilities. This leads to models such as Markov
decision processes [1], also called concurrent Markov chains [2,3]. During the
analysis of non-deterministic models, special techniques must be applied in
order to derive maximal or minimal probabilities with which certain require-
ments are satisfied, conditioned on the strategy by which non-deterministic
decisions are made. It is also possible to transform a non-deterministic model
into a purely probabilistic model, by replacing non-deterministic decisions by
probabilistic ones, and afterwards apply standard analysis techniques.

Since computer and communication systems are getting more and more com-
plex, it is impossible for humans to describe them without the help of some
high-level formalism which supports the construction of complex models from
small-scale components. Process algebras [4,5] are excellent candidates for
this procedure. They are equipped with operators for the parallel composition
of components which can be specified in isolation, abstraction mechanisms
for hiding a component’s internal behaviour from the environment, and pow-
erful notions of equivalence. Even though we do not explicitly introduce a
process-algebraic specification language for stochastic models (although such
languages exist, see for instance [6–8]), we do describe the compositional spec-
ification of models with the help of parallel composition and abstraction op-
erators borrowed from the domain of process algebras. These operators are
the key to the construction of complex models via composition. When con-
structing large and complex models, however, one is inevitably faced with
the problem of state space explosion: the number of model states may easily
grow to such an extent that it becomes impractical to generate, store and
analyse the overall model. Among the techniques that have been developed in
order to combat this notorious problem are decomposition [9], structured rep-
resentation based on Kronecker expressions [10,11], and compositional state
space reduction based on bisimulation equivalences and symmetry exploitation
[12,13].

In this paper, we present an approach to the memory-efficient representation

2

of very large stochastic models with the help of “symbolic” encodings in the
form of Multi-Terminal Binary Decision Diagrams (MTBDDs). MTBDDs are
an extension of Binary Decision Diagrams (BDD) [14], a graph-based represen-
tation of Boolean functions that is canonical and completely avoids the storing
of redundant information. The sweeping success of BDDs in the fields of digital
circuit verification and model checking led to the development of MTBDDs, to
be applied to functions with numerical range [15,16]. We employ MTBDDs not
only to represent a very general class of stochastic and probabilistic transition
systems in a compact way, but also to construct large models compositionally
from small components and to perform various types of analysis, including
model checking and numerical analysis on them. The aim of this analysis is
often to determine the performance measures of the system under investiga-
tion, which requires the computation of the state probabilities. A further aim
may be to check whether the system satisfies requirements formulated with the
help of a temporal logic, concerning the probability that a certain behaviour
occurs within a given time. Such model checking of non-functional properties
[17,18] is now considered a powerful technique that allows developers to verify
complex behavioural properties which could not be tackled using traditional
performance evaluation techniques.

The contribution of this paper is threefold: (i) We propose a uniform frame-
work for representing stochastic models, and discuss analysis algorithms for
both performance analysis and model checking of such models. (ii) We show
how such models can be encoded effectively with the help of MTBDDs, and
describe analysis and model checking algorithms based on this data structure.
(iii) We report on an empirical evaluation of two software tools (which are
independent, but based on the same MTBDD package), both realising the
basic principles of this symbolic approach. Our experience with implementing
the approach in two separate tools allows us to draw interesting conclusions
that we believe are important as heuristics in the context of MTBDD-based
analysis as a whole.

This paper is structured as follows: Sec. 2 introduces the general model in
the form of transition systems which exhibit stochastic, probabilistic and non-
deterministic behaviour. In Sec. 3, we describe mechanisms for the composi-
tional construction of complex models from small components. We do this for
the general model and for two important subclasses thereof, namely concurrent
probabilistic systems (CPS) and Markov transition systems (MTS). In Sec. 3.2
and Sec. 3.3 the basic analysis algorithms for these subclasses are reviewed,
and the logic PCTL is introduced as a formalism for specifying requirements
of CPS models. Sec. 4 introduces the MTBDD data structure, together with
the basic operations needed for the construction, manipulation and analysis of
MTBDDs. We emphasise the role of MTBDDs for the representation of matri-
ces and discuss how matrix manipulations are realised on this data structure.
Sec. 5 shows how general transition systems are represented symbolically with

3

the help of MTBDDs and explains how composition and abstraction can be
realised on symbolic representations. We provide the theoretical background
to show that symbolic parallel composition is the key to space-efficient rep-
resentation of huge state spaces. Sec. 6 discusses MTBDD-based algorithms
for model checking the logic PCTL against CPS models and for calculating
stationary probabilities for MTS models. In Sec. 7 we describe our MTBDD-
based software tools and present some experimental results. Our experience,
especially concerning heuristics for achieving compact symbolic representa-
tions of huge transition systems, is summarised in Sec. 8, and Sec. 9 concludes
the paper.

2 The general model

This section introduces stochastic and probabilistic transition systems, the
model considered in the remainder of this paper, and isolates five specific
instances thereof, namely ordinary labelled transition systems, discrete time
Markov chains, continuous time Markov chains, concurrent probabilistic sys-
tems, and Markov transition systems.

Before defining the general model, we first introduce some notational conven-
tions. We denote the set of Boolean values by IB = {0, 1}, the set of naturals
by IN = {0, 1, 2, . . .}, by IR the set of reals, and by IR>0 the set of positive
reals. For a finite set S of states we use s, s′, s0, t, u, . . . to range over states.
We assume that states are labelled with atomic propositions, drawn from a
set AP. Depending on the application domain, these atomic propositions de-
note for instance, an unsafe state, a failed component or an empty buffer.
We also assume a (finite) set Act of actions, which contains two distinguished
“internal” actions τi and τm. The set Act consists of two subsets, the set of
“immediate” actions Act i ∋ τi and the set of “timed” or “Markovian” actions
Actm ∋ τm. These sets are disjoint, i.e. Act i ∩ Actm = ∅. We use a, b, b′, . . .
to refer to the elements of Act , including τi and τm.

For a given finite set S we use π, π′, π0, . . . to range over probability distribu-
tions on S, i.e. functions π : S 7→ [0, 1] such that

∑

s∈S π(s) = 1. We refer to
such functions as “discrete” distributions, and by Dist(S) we denote the set of
discrete distributions over S. A discrete distribution π is called “degenerate”,
if π(s) = 1 for some s ∈ S, i.e. π determines a unique state. Furthermore, λ,
λ′, λ1, . . . are used to range over IR>0. The latter will be used to parameterise
exponentially distributed random delays as follows. If X is an exponentially
distributed random delay with rate parameter λ, then the probability that
delay X finishes before time t ≥ 0 is given by the continuous exponential
probability distribution P (X ≤ t) = 1 − e−λt. We will refer to such distri-
butions as “continuous” distributions, in order to distinguish them from the

4

above discrete distributions.

Definition 1 A (finite) stochastic and probabilistic transition system (SPTS,
for short) is a tuple S = (S, s̄,Act ,→,AP, L), where

• S is a finite set of states;
• s̄ ∈ S is the unique initial state;
• Act = Act i ∪ Actm (where Act i ∩ Actm = ∅) is a finite set of actions;
• → ⊂ S×Act×(S 7→ IR) is the transition relation, subject to the restriction

that whenever (s, a, f) ∈ → either

(i) a ∈ Act i and f ∈ Dist(S), i.e. f defines a discrete probability distribution
over S, or

(m) a ∈ Actm and ∃t ∈ S such that f(t) ∈ IR>0 and f(t′) = 0 for all t′ 6= t,
i.e. f assigns a positive real value to precisely one state;

• AP is a set of atomic propositions;
• L : S 7→ 2AP is a function labelling each state with a set of atomic proposi-

tions.

Instead of (s, a, f) ∈ → we usually write s
a
→f . If function f is of type (i) and

is degenerate with f(s′) = 1, we may write s
a
→s′. If instead f is a function of

type (m), we write s
a

99Kλ s
′ if f(s′) = λ.

Note that Def. 1 allows two or more transitions of type (m) with the same
action label but different rates between the same ordered pair of states. We
follow the convention that such “parallel” transitions will be cumulated into
a single transition whose rate is the sum of the individual rates. Technically,
this can be achieved with the help of a cumulation function (see Def. 5 below).
The cumulation is sound, i.e. does not change the behaviour of the SPTS.

The SPTS model in its full generality is rarely used, but it is convenient to
represent systems that evolve randomly, concurrently, or non-deterministically
as time progresses, where time can pass either in discrete steps or flow con-
tinuously. To illustrate this, we list below five special cases that have received
considerable attention in the literature – each in its own right. Other im-
portant models that can be seen as special cases of SPTS are (discrete and
continuous time) Markov decision processes, and Markov reward models.

Ordinary labelled transition systems are the basic interleaving models
in concurrency theory and practice. An SPTS S = (S, s̄,Act ,→,AP, L) is
a labelled transition system (LTS) if
• for each (s, a, f) ∈ →, f is of type (i) and degenerate.
An SPTS reduces to an LTS if continuous distributions do not occur, and
the discrete probabilistic behaviour is trivial, in that each probability dis-
tribution is degenerate.

Discrete time Markov chains are widespread models for representing syn-

5

chronous probabilistic systems. An SPTS S = (S, s̄,Act ,→,AP, L) is a dis-
crete time Markov chain (DTMC) if
• Act is a singleton set, say {a};
• for each (s, a, f) ∈ →, f is of type (i);
• (s, a, f) ∈ → and (s, a, f ′) ∈ → imply f = f ′.
In DTMCs there is no action labelling, and hence all transitions are labelled
with the same action. In order to exclude non-determinism, there is at most
one transition emanating from each state, describing a discrete probability
distribution on successor states.

Continuous time Markov chains An SPTS S = (S, s̄,Act ,→,AP, L) is a
continuous time Markov chain (CTMC) if
• Act is a singleton set, say {a};
• for each (s, a, f) ∈ →, f is of type (m).
All transitions are labelled with the same action, since in CTMCs the action
labelling is irrelevant. In contrast to DTMCs, there can be more than one
transition emanating from each state, each of them describing a continuous
distribution. Such a case (as in s′λ′

a
L99s

a
99Kλ′′ s′′) does not represent a non-

deterministic situation; instead, a “race” is assumed between concurrently
enabled continuous distributions. This race implicitly determines probabil-
ities for the successor states (namely λ′/(λ′+λ′′) for s′ and λ′′/(λ′+λ′′) for
s′′). As a consequence, the delay until the race finishes follows a continuous
distribution with a parameter cumulated from the contributing continuous
distributions (λ′ + λ′′ in this case).

Concurrent probabilistic systems are known to be conveniently captured
in the “simple” probabilistic automata model of Segala [3], the sub-model of
SPTS considered here. An SPTS S = (S, s̄,Act ,→,AP, L) is a concurrent
probabilistic system (CPS) if
• for each (s, a, f) ∈ →, f is of type (i).
In this case, only discrete, but not continuous, distributions are allowed to
occur. As opposed to DTMCs, non-determinism is included in this model,
i.e. it is possible to have (s, a, f) ∈ → and (s, b, f ′) ∈ → with a 6= b, or
with a = b and f 6= f ′.

Markov transition systems are used as the semantics of, among others,
the process algebras TIPP [19], IMC [20], and PEPA [7] (where IMC sup-
poses Actm to be a singleton and PEPA supposes Act i is empty) 1 . An SPTS
S = (S, s̄,Act ,→,AP, L) is a Markov transition system (MTS) if
• for each (s, a, f) ∈ →, if f is of type (i) it is degenerate.
MTSs form a superset of LTSs, where continuous distributions may occur,
but the discrete probabilistic behaviour is trivial.

Example 2 Since CPSs and MTSs will play a major role in the remainder

1 The EMPA language family [21,22] is not directly supported by SPTSs because
these languages involve the generative probabilistic model, where probabilities are
assigned to actions.

6

s1 s2

s4 s3d

c

aτi

a d

0.5

0.5

s1

s4 s3b

a

τi

b

c

0.6

0.30.7

0.5

0.4

s̄ s2 s̄

104

7

τm

0.7

Fig. 1. Concurrent probabilistic system (left) and Markov transition system (right).

of this paper, we introduce some visualisation conventions for them. Fig.1
depicts an example of each of these models. On the left there is a CPS
(S, s̄,Act ,→,AP, L) with

• S = {s̄, s1, s2, s3, s4};

• s̄
τi→π, s1

b
→π′, s1

b
→π′′, s4

b
→s4, s4

a
→s̄ where π(s̄) = π(s1) = 0.5, π′(s3) = 0.3,

π′(s4) = 0.7, π′′(s2) = 0.6, π′′(s3) = 0.4.

On the right, we have depicted an MTS (S, s̄,Act ,→,AP, L) with S as before
and → is given by

• s̄
τi→s1, s1

a
→s2, s1

a
→s4, s1

d
99K7 s3, s4

τm
99K0.7 s3, s4

d
99K0.5 s4, s4

c
99K104 s̄.

Note that probability 1 values are omitted, and the initial states are visualised
by a dangling incoming edge. Note further that for simplicity the labelling of
states with atomic propositions is not specified and not shown in the figure.

Note also that Markovian loops like s4
d

99K0.5 s4 are possible.

3 Model specification and analysis

In this section we consider compositional methods for specifying and analysing
SPTSs, in particular focusing on such methods for CPSs and MTSs.

3.1 Compositional model specification

Although the SPTS model suffices, at least in principle, for the description of
probabilistically and stochastically evolving systems, it is too limited to be of
great practical value when specifying such systems. It will often be necessary
to define systems as the parallel composition of a number of subprocesses. For
this purpose, we introduce a binary parallel composition operator for SPTSs
which is borrowed from process algebra [23,5]. If S1 and S2 are two SPTSs,

7

the parallel composition of S1 and S2 is denoted by the SPTS S1 |[A]| S2. This
operator is indexed with a set A of actions on which its component SPTSs
have to synchronise. All other actions, i.e. those that are not in the index
set of the composition operator, can be performed independently of the other
component process.

Another important feature in this context is a mechanism to abstract from
internal aspects that are irrelevant at higher design levels. In process algebra,
the concept of abstraction is realised by the abstraction operator. The key to
this operator is the distinguished internal action τ that symbolises an internal
or hidden action, e.g. a state change that cannot depend on synchronisation
with the environment. If S is an SPTS and B ⊆ Act , we use hide B in S
to denote the operation of hiding all the actions in B. We use two internal
actions τi and τm, one for type (i) and one for type (m) transitions. This allows
us to clearly distinguish between immediate and Markovian transitions. It is
natural to assume that internal actions cannot be synchronised on, hence we
require that τi, τm /∈ A, where A is the above synchronisation set for parallel
composition.

In the sequel, we will first define these operators for CPSs and MTSs, using
the standard operational rule schemes in the style of Plotkin [24], and then
generalise the definition to the SPTS setting.

3.1.1 Concurrency and Abstraction in CPS models

In this section we define the two operators introduced above for composing
CPS models.

Definition 3 Let S1 = (S1, s̄1,Act1,→1,AP1, L1) and S2 =
(S2, s̄2,Act2,→2,AP2, L2) be two CPSs and A ⊆ (Act1∪Act 2)\{τi}. Then S =
S1 |[A]| S2 denotes a CPS S = (S1×S2, (s̄1, s̄2),Act1∪Act 2,→,AP1∪AP2, L)
with

• L((s1, s2)) = L1(s1) ∪ L2(s2) for all (s1, s2) ∈ S1 × S2;
• → is the least relation satisfying:

s1
a
→1π1 s2

a
→2π2

(s1, s2)
a
→ (π1 ⊗ π2)

(a ∈ A)

s1
a
→1π1

(s1, s2)
a
→ (π1 ‖ s2)

(a 6∈ A)
s2

a
→2π2

(s1, s2)
a
→ (s1 ‖ π2)

(a 6∈ A)

where (π1 ⊗ π2)(t1, t2) = π1(t1) · π2(t2) and (π ‖ s′)(t, t′) = (s′ ‖ π)(t′, t) =
π(t) if t′ = s′ and 0 otherwise.

8

The above transition rules allow one to derive the transitions of the combined
CPS from the transitions of the two participating components. The first rule,
for instance is to be read as follows: if there is an a-transition s1

a
→1π1 (in the

first transition system) and an a-transition s2
a
→2π2 (in the second transition

system), then there will be an a-transition (s1, s2)
a
→ (π1⊗π2) in the combined

system. The distribution π1 ⊗ π2 is the Kronecker product of the operand
distributions.

In the remaining rules (the rules for interleaving), the condition t′ = s′ ex-
presses idling of the non-moving partner, i.e. the fact that its source state
equals its target state.

Note that in Def. 3 the set S is defined as the product space S1×S2. In general,
it is often the case that S ⊂ S1×S2, since some states in S1×S2 are unreachable
due to synchronisation constraints. Reachability analysis is needed in order to
determine the reachable subset of S1 × S2. Our later definition for MTBDD-
based parallel composition (cf. Th. 16) also assumes this denotational view.

Definition 4 Let A ⊆ Act and S1 = (S1, s̄1,Act1,→1,AP1, L1) be a CPS.
Then S = hide A in S1 denotes a CPS S = (S1, s̄1,Act1,→,AP1, L1) with
→ given as the least relation satisfying:

s
a
→1π

s
a
→π

(a 6∈ A)
s

a
→1π

s
τi→π

(a ∈ A).

3.1.2 Concurrency and Abstraction in MTS models

This section introduces parallel composition and abstraction on MTSs. For
technical reasons, we need a function that flattens a multiset into a set, but
cumulates parameters contained in this set. We need such a function for cu-
mulating the rates of multisets of Markovian transitions which all have the
same source state and the same target state. Since transitions are elements of
S×Act×(S 7→ IR), a multiset of transitions can be denoted as a multi-relation
(S × Act × (S 7→ IR)) 7→ IN .

Definition 5 Let R ⊂ IR be a finite set of real numbers and MR : R 7→ IN
denote a multiset over R. Then C(MR) =

∑

λ∈R λ ·MR(λ) is called a cumula-
tion function for MR. We lift this cumulation function to multi-relations of the
form M→ : (S × Act × (S 7→ IR)) 7→ IN by defining the cumulated transition
relation C(M→) ⊂ S × Act × (S 7→ IR) as follows: (s, a, f) ∈ C(M→) if and
only if one of the following conditions hold

• a ∈ Act i and M→(s, a, f) > 0;
• a ∈ Actm and ∃t ∈ S such that f(t) =

∑

f ′ f ′(t) ·M→(s, a, f ′) and f(t′) = 0

9

for all t′ 6= t.

Note that type (i) transitions are not cumulated (regardless of their multi-
plicity), and, in the case of type (m) transitions, the rates of all a-transitions
leading from the same source state to the same target state are cumulated.

Definition 6 Let S1 = (S1, s̄1,Act1,→1,AP1, L1) and S2 =
(S2, s̄2,Act2,→2,AP2, L2) be two MTSs and A ⊆ (Act1 ∪ Act2) \ {τi, τm}.
Then S = S1 |[A]| S2 denotes an MTS S = (S1 × S2, (s̄1, s̄2),Act1 ∪
Act2, C(→),AP1 ∪AP2, L) with

• L((s1, s2)) = L1(s1) ∪ L2(s2) for all (s1, s2) ∈ S1 × S2;
• → is the least multi-relation satisfying:

s
a
→1t s′

a
→2t

′

(s, s′)
a
→ (t, t′)

(a ∈ A)
s

a
99Kµ,1 t s′

a
99Kν,2 t

′

(s, s′)
a

99Kφ(µ,ν) (t, t′)
(a ∈ A)

s
a
→1t

(s, s′)
a
→(t, s′)

(a /∈ A)
s

a
→2t

(s′, s)
a
→(s′, t)

(a /∈ A)

s
a

99Kλ,1 t

(s, s′)
a

99Kλ (t, s′)
(a /∈ A)

s
a

99Kλ,2 t

(s′, s)
a

99Kλ (s′, t)
(a /∈ A).

As in [8], the construction for synchronisation of Markovian transitions is
parametric in a function φ determining the rate of synchronisation, in response
to the fact that different synchronisation policies are possible [21,19,20,7].

Definition 7 Let A ⊆ Act and S1 = (S1, s̄1,Act1,→1,AP1, L1) be an MTS.
Then S = hide A in S1 denotes an MTS S = (S1, s̄1,Act1, C(→),AP1, L1)
with → given as the least multi-relation satisfying:

s
a
→1t

s
a
→t

(a /∈ A)
s

a
99Kλ,1 t

s
a

99Kλ t
(a /∈ A)

s
a
→1t

s
τi→t

(a ∈ A)
s

a
99Kλ,1 t

s
τm
99Kλ t

(a ∈ A).

3.1.3 Concurrency and Abstraction on SPTS models

We are now in a position to define what it means to compose two SPTSs in
parallel, by superposing the definitions of the previous sections.

Definition 8 Let S1 = (S1, s̄1,Act1,→1,AP1, L1) and S2 =
(S2, s̄2,Act2,→2,AP2, L2) be two SPTSs, and A ⊆ (Act1 ∪ Act2) \ {τi, τm}.
Then S1 |[A]| S2 denotes the SPTS (S1×S2, (s̄1, s̄2),Act1∪Act 2, C(→),AP1∪
AP2, L) where

10

• L((s1, s2)) = L1(s1) ∪ L2(s2) for all (s1, s2) ∈ S1 × S2;
• → is the least multi-relation satisfying:

s
a
→1f s′

a
→2f

′

(s, s′)
a
→ (f ⊗ f ′)

(a ∈ A ∩ Act i)
s

a
→1f s′

a
→2f

′

(s, s′)
a
→ φ(f, f ′)

(a ∈ A ∩ Actm)

s
a
→1f

(s, s′)
a
→ (f ‖ s′)

(a /∈ A)
s

a
→2f

(s′, s)
a
→ (s′ ‖ f)

(a /∈ A)

where (f ‖ s′)(t, t′) = (s′ ‖ f)(t′, t) = f(t) if t′ = s′ and 0 otherwise.

As for MTSs, the synchronisation rate of Markovian transitions is paramet-
ric in a function φ; on the other hand, the synchronisation probability for
immediate transitions, as in CPSs, uses the Kronecker product and is the
multiplication of the probabilities.

Definition 9 Let A1 ⊆ Act and S1 = (S1, s̄1,Act1,→1,AP1, L1) be an SPTS.
Then hide A in S1 denotes an SPTS (S1, s̄1,Act1, C(→),AP1, L1) with →
given as the least relation satisfying:

s
a
→1f

s
a
→f

(a /∈ A)
s

a
→1f

s
τi→f

(a ∈ A ∩ Act i)
s

a
99Kλ,1 t

s
τm
99Kλ t

(a ∈ A ∩Actm).

3.2 Analysing CPS models

This and the next section discuss algorithms and techniques to analyse CPS
and MTS models, in order to set the ground for our MTBDD implementations.

3.2.1 The probabilistic temporal logic PCTL

Probabilistic model checking of concurrent probabilistic systems involves cal-
culating the probability of certain temporal properties holding in a given
state. In this paper we consider the probabilistic branching-time temporal
logic PCTL [25,26].

Before we can introduce the syntax and semantics of the logic PCTL, we need
to introduce the definitions of a path and an adversary of a CPS.

A path of a CPS S = (S, s̄,Act ,→,AP, L) is a non-empty finite or infinite
sequence σ = s0

a0→π0s1
a1→π1s2

a2→π2 · · · where si ∈ S, si
ai→πi with πi(si+1) > 0 for

all 0 ≤ i < |σ| and |σ| denotes the length of the path σ, defined in the usual
way. The first state of a path σ is denoted by first(σ); the last state of a finite
path σ is denoted by last(σ); σ(i) denotes the i-th state of σ; step(σ, i) is the
action-distribution pair selected in the i-th step; and σ(i) is the prefix of σ of

11

length i. A path σ is called a fulpath if and only if it is infinite. We denote
by Path ful the set of fulpaths of S, whereas Path ful(s) is the set of fulpaths σ
with first(σ) = s.

The nondeterminism present in a CPS is resolved using adversaries (or sched-
ulers). Formally, an adversary A of a CPS S = (S, s̄,Act ,→,AP, L) is a
function mapping every finite path σ of S to an action-distribution pair en-
abled in the last state of the path, that is A(σ) = (a, π) such that last(σ)

a
→π

is a transition in S. We use A(S) to denote the set of all adversaries of S.
For an adversary A we define PathA

ful as the set of paths in Path ful such that

step(σ, i) = A(σ(i)) for all i ∈ IN . Furthermore, we can associate A with a
Markov chain, and hence induce the probability measure ProbA over PathA

ful ;
for more detail see [26].

Since we allow non-determinism, we may have to impose fairness constraints
in order to ensure that liveness properties can be verified. In a distributed envi-
ronment fairness corresponds to a requirement for each concurrent component
to progress whenever possible. Without fairness, certain liveness properties
may trivially fail to hold in the presence of simultaneously enabled transitions
of a concurrent component. We define a path σ of a concurrent probabilis-
tic system to be fair if and only if, whenever a state s is visited infinitely
often in σ, each non-deterministic alternative which is enabled in s is taken
infinitely often in σ. Now an adversary is fair if any choice of transitions that
becomes enabled infinitely often along a computation path is taken infinitely
often 2 . The interested reader is referred to [27,3,26,28] for more information
concerning fairness in probabilistic systems.

Based on [26,25], we now recall the syntax and semantics of the probabilistic
branching-time temporal logic PCTL. Note that, to simplify this presentation,
we have omitted the “bounded until” and “next state” operators which can
easily be added.

Definition 10 The syntax of PCTL formulas is defined as follows:

φ ::= true | ϕ | φ1 ∧ φ2 | ¬φ | P∼q[φ1 U φ2]

where ϕ ∈ AP, q ∈ [0, 1] and ∼∈ {<,≤,≥, >}. Any formula of the form
φ1 U φ2 where φ1, φ2 are PCTL formulas is defined to be a path formula.

PCTL formulas are interpreted over states of a CPS, whereas path formulas
over fulpaths of a CPS.

Definition 11 Given a CPS (S, s̄,Act ,→,AP, L), a set Adv of adversaries

2 To be precise, the measure of the fair fulpaths is 1.

12

of the CPS and PCTL formula φ, we define the satisfaction relation s |=Adv φ
inductively as follows:

s |=Adv true for all s ∈ S

s |=Adv ϕ ⇔ ϕ ∈ L(s)

s |=Adv φ1 ∧ φ2 ⇔ s |=Adv φ1 and s |=Adv φ2

s |=Adv ¬φ ⇔ s 6|=Adv φ

s |=Adv P∼q[φ1 U φ2] ⇔ ProbA({σ | σ ∈ PathA
ful(s) ∧ σ |=Adv φ1 U φ2}) ∼ q

for all adversaries A ∈ Adv

σ |=Adv φ1 U φ2 ⇔ there exists k ≥ 0 such that σ(k) |=Adv φ2

and σ(i) |=Adv φ1 for all 0 ≤ i ≤ k.

We denote |=A(S) by |= (satisfaction for all adversaries) and |=Afair (S) by |=fair

(satisfaction for all fair adversaries).

The above definition in fact gives rise to an indexed family of satisfaction
relations |=Adv [26], of which we only consider two, |= and |=fair .

3.2.2 Model checking for PCTL

With the exception of “until” formulas and fairness, model checking for PCTL
is straightforward, see [25,26]. It proceeds by induction on the parse tree of the
formula, as in the case of CTL model checking [29]. To establish whether s ∈ S
satisfies P⊑q[φ U ψ] where ⊑∈ {<,≤}, we calculate the maximum probability :

pmax
s (φ U ψ) = sup{pA

s (φ U ψ) | A ∈ A(S)}

where pA
s (φ U ψ) = ProbA({σ | σ ∈ PathA

ful(s) ∧ σ |= φ U ψ}) and compare
the result to the threshold q, i.e. establish the inequality pmax

s ⊑ q.

The algorithm for finding pmax
s proceeds as follows. First we construct the

following sets of states:

• Syes := Sat(ψ) (the set of all states which trivially satisfy φ U ψ with
probability 1);
• Sno := S \ (Sat(φ) ∪ Sat(ψ)) (states which trivially satisfy φ U ψ with

probability zero);
• S? := S\(Syes∪Sno) (states which satisfy φ U ψ with some, as yet unknown,

probability).

13

Then, we set pmax
s (φ U ψ) = 1, if s ∈ Syes and pmax

s (φ U ψ) = 0 if s ∈ Sno. For
s ∈ S?, calculate pmax

s (φ U ψ) iteratively as the limit, as n tends to ∞, of the
approximations 〈xs,n〉n∈IN , where xs,0 = 0 and for n = 1, 2, . . .

xs,n = max







∑

t∈S?

π(t) · xt,n−1 +
∑

t∈Syes

π(t) | s
a
→π







.

Alternatively, the values pmax
s (φ U ψ) can also be computed by solving linear

optimization problems [25,2,30].

On the other hand, to establish whether s ∈ S satisfies P⊒q[φ U ψ] where
⊒∈ {≥, >}, we calculate the minimum probability :

pmin
s (φ U ψ) = inf{pA

s (φ U ψ) | A ∈ A(S)}

and compare the result to the threshold q, i.e. establish the inequality pmin
s ⊒ q.

We can calculate pmin
s ⊒ q either using an iterative method similar to the above

or by reduction to the dual linear programming problem.

The model checking algorithm for “until” properties can be improved by pre-
computing the sets of all states from which the formula holds with max-
imal/minimal probability 0 and maximal/minimal probability 1 by means
of graph-based analysis. Further details on these precomputation algorithms
can be found in [25,31,32]. Furthermore, using such precomputation steps the
model checking for |=fair can be reduced to that for ordinary satisfaction |=,
see [26,30,32] for further details.

For DTMCs, which are a subset of CPSs, model checking of “until” reduces
to solving the following linear equation system in |S?| unknowns:

xs =
∑

t∈S?

πs(t) · xt +
∑

t∈Syes

πs(t)

where πs is the unique distribution such that s
a
→πs. This system of equations

can be solved either through a direct method such as Gaussian elimination,
or iteratively via e.g. Jacobi or Gauss-Seidel iteration (see Sec. 6.3).

3.3 Analysing MTS models

The analysis of MTSs proceeds via a transformation of the model into a contin-
uous time Markov chain. Subsequently, this CTMC is analysed with standard
numerical methods.

14

We first construct an unlabelled version of the Markov transition sys-
tem, by removing all actions labelling transitions. For a given MTS S =
(S, s̄,Act ,→,AP, L), this is achieved by hide Act in S. The resulting MTS
is the tuple (S, s̄, {τi, τm},→,AP, L). Note that the elements of → are now

either of the form s
τi→s′ or s

τm
99Kλ s

′.

In order to associate a CTMC with the MTS under study, transitions of
the form s

τi→s′ need to be eliminated. Recall from Sec. 2 that an MTS
(S, s̄, {a},→,AP, L) is a CTMC, if for each (s, a, f) ∈ →, f assigns a positive
real value to precisely one state. This is not the case for transitions of the
form s

τi→s′. We now discuss how to eliminate these transitions, and proceed
similarly to the “well-defined” and “well-specified” algorithms of [33,34], see
also [35]. For s ∈ S, let τ+

i (s) denote the set of states maximally reachable

from s via
τi→, i.e., τ+

i (s) = {s′ ∈ S | s
τi→
∗
s′ ∧ s′

τi
9}, where

τi→
∗

denotes the
transitive closure of internal immediate transitions and s

τi
9 denotes a “stable”

state s which does not possess an outgoing internal immediate transition, i.e.
s

τi
9 if and only if ¬∃s′ ∈ S : s

τi→s′.

• If, for each state s in S, τ+
i (s) is a singleton, then the system is well-defined

(or well-specified) according to [33,34], and the elimination proceeds as fol-
lows. Define a CTMC (S, s̄′, {τm},→

′,AP, L) with →′ the least relation

satisfying that if τ+
i (s′) = {s′′} then s

τm
99K

′

λ s
′′ whenever s

τm
99Kλ s

′. In this
case, each sequence of immediate transitions (starting in s′) has a unique

stable end point s′′ that can replace the end point s′ in s
τm
99Kλ s

′. The new
initial state s̄′ is given by τ+

i (s̄) (which is equal to s̄ if s̄ is stable). Note
that by this construction of →′ Markovian transitions emanating from un-
stable states will no longer be reachable, but they can easily be identified
by reachability analysis and then deleted.
• In the general case, there may be states s for which τ+

i (s) is not a singleton.
As a first option, the elimination can be performed by constructing an MTS
which is bisimilar to the original one, with respect to weak Markovian bisim-
ulation [20,36]. As a second option, similar to the CPS case (cf. Sec. 3.2),
we may assume that for every path ending in an unstable state there is a
scheduler which assigns probabilities to the successor states. In this case we
can adapt the algorithm of [37], to remove immediate transitions. In the
following we sketch the effect of this algorithm from an operational point of
view, see e.g. [38] for a description on the level of the matrix representing
the state space.

(1) Identify the unstable states. For every unstable state with more than one
emanating

τi→ transition, a scheduler must assign probabilities to those
transitions 3 . If probability p is assigned to transition t

τi→ u, we write

3 Lacking any further information, equiprobability can be considered as the best
possible choice, because it maximises the entropy [39]. On the other hand, the use
of equiprobable schedulers may yield different results for bisimilar processes.

15

t
τi,p−→ u.

(2) Delete all Markovian transitions emanating from states which have at least
one outgoing

τi→ transition, since these Markovian transitions would never
be taken.

(3) Step (2) may have rendered some states unreachable. Determine the un-
reachable states and delete them and all transitions (regardless of their
type) emanating from them.

(4) While there are still unstable states, select one of them (let it be called
state t) and do the following: redirect transitions leading to t (regardless
of their type) to the successor states of t, thereby taking into account

the probabilities. More precisely, if s
τm
99Kλ t and t

τi,p−→ u, then modify
the former transition as s

τm
99Kpλ u; if s

τi,q−→ t and t
τi,p−→ u, then modify

the former transition as s
τi,pq
−→ u. Afterwards, delete t and all transitions

emanating from it. This step may lead to the existence of immediate
loops of the kind s

τi,pq
−→ s. Such loops can be eliminated by deleting them

and multiplying all other
τi→ transitions emanating from s with the factor

1/(1− pq).
In this algorithm, steps (2) and (3), which delete unreachable transitions,
are optional.

Once the CTMC is constructed, i.e. its states and transition rates have been
determined, it can be analysed by standard numerical techniques [40]. For
instance, in order to obtain the steady-state probabilities, a linear system of
equations, given by x · Q = 0, must be solved. Here, x denotes the vector of
steady-state probabilities, Q denotes the infinitesimal generator matrix of the
CTMC (which is equal to its rate matrix augmented by a diagonal containing
the negative row sums), and 0 denotes a vector of all zeroes. The vector of
transient state probabilities at a given time t, given by x(t) = x0 · e

Q·t, can
also be determined, e.g. by the method of uniformisation [41,42].

When analysing MTSs, the foremost aim of performance evaluation is to cal-
culate the probability with which a certain property holds either at a given
finite point in time or on the long run (i.e. at time infinity). For this purpose
we use atomic propositions to characterise interesting state properties. So,
once the state probabilities are computed, the probability that a given atomic
proposition ϕ holds can be computed easily by summing up the matching state
probabilities:

Prob(ϕ) =
∑

s∈S, s|=ϕ

xs

where we write s |= ϕ if and only if ϕ ∈ L(s) for state s ∈ S and ϕ ∈ AP (as
in the CPS context).

16

4 Multi-Terminal Binary Decision Diagrams

This section introduces the MTBDD data structure and operations thereon.
It also explains how matrices and vectors can be represented and manipulated
with the help of MTBDDs.

4.1 Basics of MTBDDs

An MTBDD [16,15] is a graph-based structure for representing functions of
the type f : IBn 7→ D, i.e. functions from a multi-dimensional Boolean domain
to an arbitrary range D (note that for a fixed n the image of the function f
is always finite). For instance, D can be the real numbers. In the special case
D = IB the MTBDD actually reduces to a BDD [14], representing a Boolean
function. Thus, MTBDDs can be seen as a generalisation of BDDs.

The main idea behind the MTBDD representation of real-valued functions is
the use of a rooted directed acyclic graph as a more compact representation
of the binary decision tree which results from the Shannon expansion

f(v1, . . . , vn) = v1 · f(1, v2, . . . , vn) + (1− v1) · f(0, v2, . . . , vn)

where v1, . . . , vn are Boolean variables and + and · denote ordinary addition
and multiplication.

Definition 12 Let D be an arbitrary set, and Var be a finite set of Boolean
variables, equipped with a total ordering ≺ ⊂ Var × Var. A Multi-Terminal Bi-
nary Decision Diagram (MTBDD) over 〈Var,≺〉 is a rooted acyclic directed
graph with finite vertex set V = VNT ∪ VT and the following labelling:

• Each non-terminal vertex v ∈ VNT is labelled by a variable var(v) ∈ Var and
has two children then(v), else(v) ∈ V .

• Each terminal vertex v ∈ VT is labelled by an element of D, denoted by
value(v) ∈ D.

In addition, the labelling of the non-terminal vertices by variables respects the
given ordering ≺, i.e. if v, then(v) ∈ VNT then var(v) ≺ var(then(v)), and if
v, else(v) ∈ VNT then var(v) ≺ var(else(v)).

The edge from v to then(v) represents the case where var(v) is true; conversely,
the edge from v to else(v) the case where var(v) is false. Each MTBDD M over
(v1, . . . , vn) represents a function fM : IBn 7→ D and has two cofactors Mthen

17

v1 v2 v3 v4 value

0 1 0 0 3

0 1 0 1 3

0 1 1 1 2

1 0 0 0 4

1 0 1 0 2

1 0 1 1 1

else 0 3 2 1 4

v4

v3

v1

v2

M

Fig. 2. MTBDD M, representing a function fM : {0, 1}4 7→ {0, . . . , 4}.

and Melse, resulting from a top-level Shannon expansion, i.e. Mthen and Melse

represent fM(1, v2, . . . , vn) and fM(0, v2, . . . , vn) respectively. 4

Fig. 2 shows a simple MTBDD M over (v1, v2, v3, v4) together with the function
fM it represents. In the graphical representation, the non-terminal vertices are
grouped into four levels, and all vertices on the same level are assumed to
be labelled with the variable denoted on the left. We adopt the convention
that edges from vertex v to then(v) are drawn solid, while edges to else(v) are
drawn dashed. For clarity we omit the terminal vertex 0 and all edges to it
from the diagram.

Definition 13 An MTBDD M is called reduced if and only if the following
conditions hold:

– For each non-terminal vertex v ∈ VNT the two children are distinct, i.e.
then(v) 6= else(v). Each terminal vertex v ∈ VT has a distinct label value(v).

– For all vertices v, v′ ∈ VNT with the same labelling, if the subgraphs with root
v and v′ respectively are identical then v = v′. Formally, if var(v) = var(v′)
and else(v) = else(v′) and then(v) = then(v′), then v = v′.

For a fixed ordering of Boolean variables, reduced MTBDDs form a canonical
representation of D-valued functions, i.e. if M, M′ are two reduced MTBDDs
over the same ordered set Var such that fM = fM′, then M and M′ are isomor-
phic. Bryant [14] proposed a recursive procedure to reduce BDDs that can be
applied to MTBDDs as well. In this paper, we assume that all MTBDDs are
reduced.

4 Note that an MTBDD over 〈Var,≺〉 is also an MTBDD over 〈Var′,≺′〉 for any
superset Var′ of Var and total ordering ≺′ on Var′ such that v1 ≺ v2 if and only if
v1 ≺

′ v2 for all v1, v2 ∈ Var. If Var = {v1, . . . , vn} and v1 ≺ v2 ≺ . . . ≺ vn then we
also speak about MTBDDs over (v1, . . . , vn) rather than MTDDs over 〈Var,≺〉.

18

MTBDD M of Fig. 2 satisfies Definition 13, i.e. it is reduced. Note that the
valuations of some variable levels are irrelevant on certain paths through the
MTBDD. For instance, for function fM to return the value −3, the truth value
of variable v4 is irrelevant. Hence, the v4-labelled vertex on this path is skipped,
a consequence of the first clause of Definition 13. Variable v4 is therefore called
a don’t-care variable for the respective path.

We remark at this point that the variable ordering chosen may have an im-
mense effect upon the size of the MTBDD, i.e. the number of vertices. A
prominent example is the identity function Id which we introduce below (in
Sec. 4.3). The issue of variable ordering will be further discussed in Sec. 8.

4.2 Operations on MTBDDs

In this section, we describe how standard logical and arithmetic operations
can be realised on MTBDDs. Let M, M1, M2 be MTBDDs over (v1, . . . , vn).
In what follows, we write v1 ≺ v2 if either v2 is a terminal vertex while v1 is
non-terminal or both v1, v2 are non-terminal vertices and var(v1) ≺ var(v2).
From here on, unless otherwise noted, we assume that D = IR.

Variable renaming: Let w /∈ {v1, . . . , vn} and i ∈ {1, . . . , n} with vi−1 ≺ w ≺
vi+1. Then, M{vi ← w} denotes the MTBDD over (v1, . . . , vi−1,w, vi+1, . . . , vn)
that results from M where we change the variable labelling of any vi-labelled
vertex into w. For this, we set var(v) = w for any vi-labelled vertex v in M. 5 If
1 ≤ i1 < . . . < im ≤ n and w1, . . . ,wm, v1, . . . , vn are pairwise distinct, we write
M{vi1 ← w1, . . . , vim ← wm} as a shorthand for M{vi1 ← w1} . . .{vim ← wm}.

Restriction: Let i ∈ {1, . . . , n} and b ∈ {0, 1}. Then M|vi=b denotes the
MTBDD over (v1, . . . , vi−1, vi+1, . . . , vn) that is obtained from M by replacing
any edge from a vertex v to a vi-labelled vertex w by an edge from v to then(w)
if b = 1 (else(w) if b = 0), and by removing all vi-labelled vertices. Thus, for in-
stance, M|v1=0 represents the partial function (v2, . . . , vn) 7→ fM(0, v2, . . . , vn),
which is identical to the cofactor Melse.

The Apply operator: If op is a binary operator (e.g. addition + or multi-
plication ×) then Apply(M1,M2,op) returns the MTBDD M over (v1, . . . , vn)
where fM = fM1 op fM2. If M1 and M2 are both BDDs and op is a bi-
nary Boolean operation such as conjunction, disjunction or implication, then
Apply(M1,M2,op) works in exactly the same manner. We often abbreviate
the Apply operator to an infix notation and simply write M1 op M2.

5 Note that M and M{vi ← w} represent the same function (when viewed as
MTBDDs over (v1, . . . , vi−1, vi, vi+1, . . . , vn) and (v1, . . . , vi−1,w, vi+1, . . . , vn), re-
spectively).

19

The algorithm that realises Apply(M1,M2,op) calls a recursive procedure
Aop(v1, v2) that takes a vertex v1 of M1 and a vertex v2 of M2 as its input and
returns a (reduced) MTBDD with root vertex v that represents the combina-
tion of the MTBDDs rooted at v1 and v2 by the operator op; for details see e.g.
[14]. The worst case time complexity of Apply(M1,M2,op) is O(|M1| · |M2|),
where |Mi| is the number of vertices of MTBDD Mi. This follows directly from
the complexity analysis for Apply for BDDs as given in [14].

Abstraction: For an associative binary operator op we define
Abstract(M, vi,op) := M|vi=0 opM|vi=1, which is called the abstraction of M
with respect to the Boolean variable vi and operator op. Abstracting with re-
spect to more than one variable is defined as Abstract(M, (vi1, . . . , vin),op)
:= M|(vi1

,...,vin)=(0,...,0) op · · · opM|(vi1
,...,vin)=(1,...,1), i.e. all possible restrictions

of M with respect to the Boolean variables vi1 , . . . , vin are combined by the
operator op.

Constant: For real x, Constant(x) returns the constant MTBDD with value
x, i.e. the MTBDD consisting of a single terminal vertex v with value(v) = x.

Absolute Maximum: Let {v1 . . . vh} be the terminal vertices of M.
MaxAbs(M) returns max1≤i≤h{ |value(vi)| }, the maximum absolute value
of the function fM. This requires a simple traversal of the terminal vertices of
M.

Threshold: The Threshold operator converts an MTBDD to a BDD
according to a given bound. For an MTBDD M, relational operator ∼∈
{<,≤,≥, >} and real x, Threshold(M,∼, x) returns the BDD represent-
ing the function f = 1 if fM ∼ x and 0 otherwise .

4.3 Manipulating Matrices and Vectors with MTBDDs

Vector-matrix multiplication: We first describe how (real-valued) matrices
are represented by MTBDDs. For simplicity we assume square matrices whose
dimension is a power of 2, i.e. 2n. Rectangular matrices of general dimensions
can be represented with the same basic scheme by padding them with an
appropriate number of columns and rows of zeroes. A 2n × 2n matrix M can
be seen as a function from {0, . . . , 2n − 1} × {0, . . . , 2n − 1} to IR. Let Var =
{s1, . . . , sn, t1, . . . , tn}. If the row position s is encoded by Boolean variables si

and the column position t by Boolean variables ti (where in both cases i =
1, . . . , n), then the MTBDD M over 〈Var,≺〉, where fM(s1, . . . , sn, t1, . . . , tn) =
M(s, t), is a canonical representation of matrix M .

Concerning the variable ordering, it turns out that an interleaving of the
Boolean variables encoding row and column position, i.e. the ordering s1 ≺

20

t1 ≺ . . . ≺ sn ≺ tn, is usually the best choice, for the following reasons:

– The cofactors of the MTBDD correspond to block submatrices of the ma-

trix. For instance, Melse corresponds to the upper half of matrix M , Mthenelse

corresponds to the lower left quarter of matrix M , etc.

– The identity matrix, corresponding to the function 6 Id =
∏n

k=1(sk ≡ tk),
can be represented in a number of vertices which is logarithmic in the
dimension of the matrix. More precisely, the number of vertices needed to
represent an identity matrix of dimension 2n × 2n is 3n + 2. In contrast,
using the straightforward ordering s1 ≺ . . . ≺ sn ≺ t1 ≺ . . . ≺ tn the size of
the MTBDD would be 3 · 2n − 1 vertices. Since identity matrices play an
important role during the parallel composition of transition systems (see
Sec. 5.2), their compact representation is an essential feature of MTBDDs.

Similarly as for matrices, a (row or column) vector x of size 2n can be seen
as a function from {0, . . . , 2n − 1} to IR. Let Var = {p1, . . . , pn}. If an ele-
ment’s position p is encoded by Boolean variables pi (where i = 1, . . . , n),
then the MTBDD X over 〈Var,≺〉, where fX(p1, . . . , pn) = x(p), is a canonical
representation of vector x.

Based on this encoding scheme for matrices and vectors, vector-matrix mul-
tiplication can be realised on the MTBDD representation. Consider a vec-
tor x represented by an MTBDD X over variables (s1, . . . , sn), and a square
matrix M , represented as an MTBDD M over variables (s1, t1 . . . , sn, tn).
VMmult(X,M) produces an MTBDD Y over (t1, . . . , tn), representing the
vector-matrix product y = x ·M . This MTBDD can be generated by recur-
sive descent, according to the following idea: Compute the two halves of y

corresponding to the cofactors Yelse and Ythen on the basis of the cofactors of
Y and M as follows:

Yelse = Apply

(

VMmult(xelse,Melseelse),VMmult(xthen,Mthenelse
),+

)

Ythen = Apply

(

VMmult(xelse,Melsethen
),VMmult(xthen,Mthenthen

),+
)

.

The expression for Yelse is the MTBDD reformulation of the fact that the
left half of x · M equals the sum of (1) the product of the left half of
x and upper left quarter of M , and (2) the product of the right half
of x and the lower left quarter of M . The four smaller size products

VMmult(xelse,Melse
2

else
), . . . ,VMmult(xthen,Mthen

2
then

) are recursively com-
puted in the same way. The recursion terminates when the operands of
VMmult are terminal vertices v1 and v2, in which case a terminal vertex
labelled by value(v1) · value(v2) is returned.

6 Using only addition and multiplication, function Id would be written as Id =
∏n

k=1(sk · tk + (1− sk) · (1− tk)).

21

Matrix-vector (and matrix-matrix) multiplication MVmult (Mmult) can
be performed by the same basic strategy. For two square matrices M1 and
M2, represented as MTBDDs M1 and M2 over variables (s1, t1 . . . , sn, tn)
and (t1, t

′
1 . . . , tn, t

′
n), Mmult(M1,M2) produces an MTBDD M over

(s1, t
′
1 . . . , sn, t

′
n), representing the matrix product M = M1 ·M2.

The näıve approach to vector-matrix multiplication which we just described
is not sufficient (it does not work correctly) if X and M are reduced MTBDDs
where variable levels may be skipped (as is the case, for example, when rep-
resenting regularly structured vectors or matrices with repeated submatri-
ces). The literature on MTBDDs describes algorithms for vector-matrix and
matrix-matrix multiplication which overcome the shortcomings of the given
simple scheme discussed above [16,43,15]. These implementations work on re-
duced MTBDDs and return MTBDDs that are reduced (and hence canonical)
by construction. The general idea is to pass additional integer parameters to
functions such as VMmult, basically to take care of the variable levels that
are skipped.

Inversion of triangular matrices: Inversion of triangular matrices, de-
noted Inv Tri, can be performed on their MTBDD-based representation by a
straightforward algorithm, which relies on the recursive inversion of the quar-
ters of the matrix, as described in [16].

4.4 Implementation aspects

We now briefly touch on some aspects concerning the efficient implementation
of MTBDD algorithms. We focus on Apply as the typical representative, since
the other algorithms are of a similar recursive nature.

In order to make sure that the MTBDD returned by Apply(·) is in reduced
form, the algorithm uses a “unique table” which contains all currently existing
MTBDD vertices. A unique table entry for a non-terminal vertex v consists
of the vertex identifier, the vertex’s variable labelling var(v) and the two ref-
erences to the children vertices then(v) and else(v). A unique table entry for a
terminal vertex consists of the vertex identifier and the vertex’s value labelling
value(v). As a result of procedure Aop(v1, v2), a new vertex is inserted into
the unique table if an isomorphic vertex was not yet in the table. Otherwise,
a reference of the already existing vertex is returned.

Most (MT)BDD packages [44] maintain a second table called the “computed
table”. This contains entries of the form (v1, v2,op, v), where v is the identifier
of the vertex which had been previously obtained when computing Aop(v1, v2).
Whenever Aop is called, the algorithm checks whether there exists a matching
entry in the computed table, and if this is the case simply returns the vertex

22

found there. This reduces the complexity of typical (MT)BDD operations from
exponential to quadratic time.

For efficiency reasons, both the unique table and the computed table are usu-
ally implemented with the help of hashing functions, and the computed table
is realised as a finite size cache [44].

Finally, in order to improve efficiency, the algorithm to compute Aop(v1, v2)
may check for the presence of special “controlling” values [14] which can re-
ceive special treatment and thereby avoid the initiation of recursive calls. For
instance, if op is multiplication and v1 is a terminal vertex with value(v1) = 1,
then v2 can be immediately returned as the result.

5 MTBDD-based representation and composition of SPTS models

5.1 Encoding of general transition systems

In Sec. 4.2 we have already explained how (real-valued) matrices — and thus
Markov chains — can be represented with the help of MTBDDs. In this sec-
tion, we will discuss the general approach to the symbolic representation of
stochastic and probabilistic transition systems.

In general, elements of any finite set S can be encoded by Boolean vectors of
length ⌈log2 |S|⌉. As an example, suppose we have a set of actions given by
Act = {a, b, τ}. We can encode action a as the bitstring 01, b as 10 and τ as 00
(we write E(a) = 01, E(b) = 10 and E(τ) = 00). If we use Boolean variables a1

and a2 to characterise the two positions of such a bitstring, then the term a1a2

corresponds to 01 (i.e. action a), the term a1a2 corresponds to 10 (i.e. action
b) and the term a1a2 corresponds to 00 (i.e. action τ). As a second example,
the states from the set S = {0, 1, 2, 3} can be encoded by bitstrings of length
two in the obvious way.

To represent a transition relation, it is always necessary to encode at least the
source state and the target state of a particular transition. We will use Boolean
variables s1, . . . , sns to encode the source state, and t1, . . . , tns to encode the
target state. Concerning the ordering of the variables in the MTBDD, unless
otherwise noted, we follow the commonly accepted heuristics, already men-
tioned in Sec. 4.2, which interleaves the Boolean variables for source and target
state. For the case where the transition relation contains a (non-trivial) action
component, that component must also be encoded, say by Boolean variables
a1, . . . , ana, as in the example above. It is customary to place the variables en-
coding the actions before the state variables. Furthermore, in the general case

23

additional Boolean variables are needed to represent non-deterministic choices
between transitions. We call these the choice variables, denoted by c1, . . . , cnc ,
and place them at the beginning of the ordering. The overall variable ordering
is then

c1 ≺ · · · ≺ cnc ≺ a1 ≺ · · · ≺ ana ≺ s1 ≺ t1 ≺ · · · ≺ sns ≺ tns.

We introduce the following notation: for n > 0 and two Boolean vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) of length n, let x ⊲⊳ y abbreviate
(x1, y1, . . . , xn, yn). We now give a formal definition of the correspondence be-
tween an SPTS and an MTBDD.

Definition 14 Let S be an SPTS (S, s̄,Act ,→,AP, L) and let M be an
MTBDD over (v1, . . . , vm). M is said to represent S if and only if

• there is an injective function EA : Act 7→ IBna for some na ≤ m;
• there is an injective function ES : S 7→ IBns for some ns ≤ m;
• nc = m− (na + 2ns)

such that for all a ∈ Act i and s ∈ S the following conditions hold:

(i1) if s
a
→f , then there exists c ∈ IBnc such that for all s′ ∈ S:

fM(c, EA(a), ES(s) ⊲⊳ ES(s′)) = f(s′)

(i2) for all c ∈ IBnc, if there exists s′ ∈ S such that fM(c, EA(a), ES(s) ⊲⊳
ES(s′)) 6= 0, then s

a
→f for some f ∈ Dist(S) and for all s′ ∈ S:

fM(c, EA(a), ES(s) ⊲⊳ ES(s′)) = f(s′),

and such that for all a ∈ Actm and s ∈ S the following condition holds:

(m) s
a

99Kλ s
′ if and only if for all c ∈ IBnc:

fM

(

c, EA(a), ES(s) ⊲⊳ ES(s′)
)

= λ and λ 6= 0

If M represents S we write M ⊲ S.

To illustrate this definition, Figure 3 shows six examples of how a transition
system S can be represented by an MTBDD M.

(a) An LTS with only one single action, which does not have to be encoded
explicitly. Since it is an LTS, there is no need to represent any numerical
information concerning transition probabilities or rates. Between a given
pair of states there either exists a transition (encoded by value 1) or there
does not (encoded by value 0). Thus, the resulting structure is a BDD.

24

(e)

(b)(a) (d)

(f)

(c)

1 4 1 21 3 2 1 3 4

1 3 4 2 0.90.11

action encoding

τi, τm 00

a 01

b 10

c 11

b, 3

s2

c

a2

a1

t1

s1

s2

t2

c

s1 s3

s0

2

τm, 4

a, 3

τm, 2

τi τm, 1

t1

s1

s2

a1

a2

t2

L1

3

4

1

2

τm, 2
b, 3

τm, 4

a, 3

τm, 2

a

τi

b
τi

τi

s0 s2

s3s1

s0 s2

s1 s3

s0

s1

s2

s3

3

t1

s1

a2

a1

s2

t2

L2

M1

M2

c

b

c

0.9

a
0.1

0.1

0.9

a

s0 s2

s1 s3

M3

M4

s3s1

s0 s2

Fig. 3. Encoding of general transition systems. The action encodings are given in
the table.

25

(b) An LTS with the (non-trivial) action set Act = {a, b, τi}. Again, there is
no numerical information and therefore we obtain a BDD.

(c) An MTS with only a single action, and where all transitions are of type
(m) (this corresponds to the rate matrix of a CTMC, i.e. to a real-valued
matrix). Note that this is the same function (after a renaming of Boolean
variables) as the one used before in Figure 2.

(d) An MTS with a non-trivial set of actions, and where all transitions are of
type (m).

(e) An MTS with a non-trivial set of actions which has both immediate
and Markovian transitions. Note the non-determinism between the two c-
transitions emanating from state 3.

(f) A CPS which features non-determinism. Note that apart from the Boolean
variables encoding the action name, the source state and the target state,
an additional “choice” variable is employed (variable c) which encodes the
non-deterministic decision made by the scheduler. Note also that the value
of c is immaterial for the part of the MTBDD which encodes transitions
other than the two a-transitions.

Note that, for the representation of CPSs, the choice variables ci are necessary
in order to distinguish between different probability distributions labelled with
the same action label, whereas in the case of MTSs, where all probability
distributions are degenerate, the choice variables are not needed and can be
ignored.

Note further that Def. 14 does not fix a particular initial state s̄. Therefore, in
all the examples given, the initial state is not represented by the MTBDD, only
the transition relation is encoded. In general, an MTBDD M can represent
several distinct SPTSs, that (apart from isomorphism in states and action
labelling) differ w.r.t. to their initial state. The initial state may be stored
as a scalar in a separate location. Moreover, a non-trivial initial probability
distribution may be stored as a probability vector, which of course can also
be represented as an MTBDD, and which may be used as a starting point
for numerical analysis. Furthermore, we do not explicitly include the labelling
of states with atomic propositions in Def. 14. This may, in fact, be encoded
implicitly in the choice of MTBDD variables. Alternatively, the information
can be stored separately in a BDD.

For convenience, we define the following functions which, for a given MTBDD
M(v1, . . . , vm), select different subsets of Boolean variables:

• Vc(M) = {v1, . . . , vnc} which selects the choice variables of M;
• Va(M) = {vnc+1, . . . , vnc+na} which selects the action variables of M;
• Vs(M) = {vnc+na+1, . . . , vm} which selects the state variables of M.

26

5.2 MTBDD-based parallel composition of general transition systems

In this section, we will discuss how parallel composition of components, which
are given as general transition systems, can be performed at the level of their
MTBDD representation.

5.2.1 MTBDD-based parallel composition

The semantic rules from Def. 8 provide the formal basis to construct the
possible transitions of the combined transition system one by one from the
transitions of the partner systems. If MTBDDs are used to represent the tran-
sition systems, then all transitions of the combined system can be obtained in
an efficient manner by performing only a few MTBDD operations, as discussed
in the sequel. In order to see how this can be done, we first define the notion
of compatible representations.

Definition 15 Let S1 and S2 be two SPTSs with the same set of actions Act.
Let MTBDDs M1(v1, . . . , vm) and M2(v

′
1, . . . , v

′
m′) be two MTBDDs such that

M1⊲S1 and M2⊲S2. The two MTBDDs are said to be compatible representations
of S1 and S2 if and only if the following conditions are satisfied:

• Vc(M1) and Vs(M1) do not appear in M2;
• Vc(M2) and Vs(M2) do not appear in M1;
• Va(M2) = Va(M1) (i.e. the same set of action variables is used) and for all
a ∈ Act: E (1)

a (a) = E (2)
a (a), where E (1)

a (a) and E (2)
a (a) denote the encoding of

action a in MTBDD M1 and M2 respectively.

Note that one can encode any set of actions, such as the set of synchronising
actions Sync, as a BDD Sync, by taking the disjunction of the encodings of
its elements. The complementary set (of non-synchronising actions), i.e. the
complement of Sync with respect to Act is encoded by simply negating BDD
Sync (in MTBDD terms: by taking 1−Sync). In addition, one needs to express
idling, i.e. the fact that one of the partners does not make a move but retains

its current state. This can be represented by BDDs Idi =
∧n

(i)
s

k=1(s
(i)
k ≡ t

(i)
k),

where i = 1, 2 denotes the first resp. second partner.

With the help of Def. 15, we can now provide a theorem which states the
relationship between the MTBDD representation of the transition system re-
sulting from parallel composition and the MTBDD representations of the two
partner systems.

Theorem 16 Let S1 = (S1, s̄1,Act ,→1,AP1, L1) and S2 =
(S2, s̄2,Act ,→2,AP2, L2) be two SPTSs. Let MTBDDs M1 and M2 be
compatible representations of S1 and S2. Let Ai (Am) be the encoding of the

27

set Act i (Actm). Let Sync be the encoding of the set of synchronising actions
Sync ⊆ Act \ {τi, τm}, and let c be a new MTBDD variable (not in M1 or
M2). If

M =(M1 · Sync) · (M2 · Sync)

+ c ·M1 · Ai · (1− Sync) · Id2 + (1− c) ·M2 · Ai · (1− Sync) · Id1

+ M1 · Am · (1− Sync) · Id2 + M2 · Am · (1− Sync) · Id1,

where

Vc(M)= {c} ∪ Vc(M1) ∪ Vc(M2),

Va(M)=Va(M1)(= Va(M2)),

Vs(M)=Vs(M1) ∪ Vs(M2),

then M ⊲ S1 |[Sync]| S2.

The first line of the equation in Th. 16 generates all the transitions where both
partners move together 7 . The second line generates those transitions of type
(i) where the first (second) partner moves while the second (first) one remains
idle (note the symmetry between the two terms of the second line). Since for
transitions of type (i) there is a non-deterministic choice between which of the
partners moves, a new choice variable c is introduced at this point. The third
line, again consisting of two symmetric terms, generates those transitions of
type (m) where the first (second) partner moves while the second (first) one
remains idle.

The proof of the Th. 16 involves a particular fine point related to the use
of the cumulation function C in Def. 8. In short, this function cumulates
parallel, duplicated Markov transitions into a single transition, i.e. it flattens
a multiset to a set. The proof of the theorem now needs to ensure that such
parallel, duplicated transitions are cumulated also on the MTBDD level. We
can assume that the component SPTSs (and their MTBDD representations M1

and M2) are free of such duplicates. In the composition, a detailed case analysis
is needed to identify sources of such duplicate transitions in the construction.
It turns out that this situation can only arise from the interleaving of two
Markovian self-loops (one in each original SPTS). In this case, the third line
of the definition of M takes care of the cumulation, by adding two symmetric
terms.

Note that Th. 16 says nothing about the position of the new variable c within
the variable ordering. As a heuristic, one may put it at the top of MTBDD
M, i.e. first in the ordering, which is consistent with the ordering mentioned
in Sec 5.1.

7 Note that in the first line both probabilities of type (i) transitions and rates of
type (m) transitions are multiplied, i.e. Th. 16 assumes that the function φ used in
Def. 6 and Def. 8 is instantiated by multiplication.

28

Now we consider some special cases of Th. 16:

(1) Suppose that (MT)BDDs M1 and M2 are compatible representations of
two ordinary labelled transition systems S1 and S2. Suppose further that
the set of actions Act does not contain the internal action τi, so that
synchronisation is indeed allowed on all actions in the set Act . Then the
LTS for the parallel composition S = S1|[Act]|S2 is represented by the
(MT)BDD M = M1 ·M2 (= M1∧M2), i.e. a single MTBDD-multiplication
(BDD-and) operation suffices in order to obtain the combined transition
system. Formally:

Corollary 17 Let S1 = (S1, s̄1,Act ,→1,AP1, L1) and S2 =
(S2, s̄2,Act ,→2,AP2, L2) be two LTSs whose set of actions Act does
not contain an internal action τi. Let M1 and M2 be two compatible MTBDDs.
If M1 ⊲ S1 and M2 ⊲ S2, then M1 ·M2 ⊲ S1|[Act]|S2.

(2) In the case of only partial synchronisation, things become a bit more
involved. Let us still consider ordinary labelled transition systems but
assume that the set of synchronising actions Sync is a proper subset of
Act \ {τi}. In this case, one has to distinguish between synchronising and
non-synchronising actions, i.e. both of the above semantic rules will now
be needed. Formally:

Corollary 18 Let S1 = (S1, s̄1,Act ,→1,AP1, L1) and S2 =
(S2, s̄2,Act ,→2,AP2, L2) be two LTSs. Let M1 and M2 be two compati-
ble MTBDDs such that M1 ⊲ S1 and M2 ⊲ S2, and Sync be the encoding of the
set of actions Sync ⊂ Act \ {τi}. If

M = (M1 · Sync) · (M2 · Sync)

+M1 · (1− Sync) · Id2 ∨ M2 · (1− Sync) · Id1,

then M ⊲ S1|[Sync]|S2.

Note that choice variables are not needed in the MTBDD representation
of an LTS. Hence, they can be removed from the second line of Th. 16.
This does, however, require us to use disjunction 8 in place of summation,
in case identical transitions are combined.

(3) For CTMCs, the transition relation contains transitions of type (m) only,

i.e. transitions of the form s
a

99Kλ s′. A CTMC can be represented by
an MTBDD M as shown in Figure 3 (c). Since there are no actions over
which to synchronise, the parallel composition of two CTMCs is simply

8 We define disjunction on MTBDDs in the obvious way, provided that both argu-
ments are actually BDDs.

29

the interleaving of the two stochastic processes 9 . Formally:

Corollary 19 Let Act = {a} (i.e. a singleton set) and S1 =
(S1, s̄1,Act ,→1,AP1, L1) and S2 = (S2, s̄2,Act ,→2,AP2, L2) be two CTMCs.
Let M1 and M2 be two compatible MTBDDs. If M1 ⊲ S1 and M2 ⊲ S2, then
M1 · Id2 + Id1 ·M2 ⊲ S1|||S2.

10

We can also interpret the above equation as a matrix equation. If
MTBDD Mi represents the rate matrix Mi of CTMC Si, then M
represents the Kronecker sum M1 ⊕M2, which is the rate matrix of the
combined CTMC.

(4) For DTMCs the transition relation consists of (in general non-degenerate)
probability distributions. A DTMC is represented by an MTBDD in the
same way as a CTMC, with the difference that the terminal vertices
contain transition probabilities instead of transition rates. DTMCs are
discrete-time stochastic processes which make a move at every time step
(possibly back to the current state). The probability that the combined
DTMC moves from state (s, s′) to (t, t′) is given by p1 · p2, provided that
the probability for the partner chain to make a move from s to t (from
s′ to t′) is p1 (p2). Formally:

Corollary 20 Let Act = {a} (i.e. a singleton set) and S1 =
(S1, s̄1,Act ,→1,AP1, L1) and S2 = (S2, s̄2,Act ,→2,AP2, L2) be two DTMCs.
Let M1 and M2 be two compatible MTBDDs. If M1 ⊲ S1 and M2 ⊲ S2, then
M1 ·M2 ⊲ S1|[Act]|S2.

We can again interpret the above equation as a matrix equation. If
MTBDD Mi represents the stochastic matrix Mi of DTMC Si, then M
represents the Kronecker product M1 ⊗ M2, which is also a stochastic
matrix, namely the transition probability matrix of the combined DTMC.

(5) For CPSs, the transition relation contains no transitions of type (m),
meaning that the terms on the third line of the equation in Th. 16 are
not needed. Transitions of type (i), however, are allowed in their full
generality, and hence the choice variables must be retained unlike in case
(2) above. Formally:

Corollary 21 Let S1 = (S1, s̄1,Act ,→1,AP1, L1) and S2 =
(S2, s̄2,Act ,→2,AP2, L2) be two CPSs. Let M1 and M2 be two compati-
ble MTBDDs such that M1 ⊲ S1 and M2 ⊲ S2, and Sync be the encoding of the
set of actions Sync ⊂ Act \ {τi}. Let c be a new MTBDD variable (not in M1

9 The probability that both partners make a move at exactly the same time is zero.
10 The symbol ||| abbreviates |[∅]|, i.e. denotes parallel composition without syn-
chronisation.

30

or M2). If

M = (M1 · Sync) · (M2 · Sync)

+ c ·M1 · (1− Sync) · Id2 + (1− c) ·M2 · (1− Sync) · Id1,

then M ⊲ S1 |[Sync]| S2.

(6) We now consider MTSs stemming from process algebraic specifications.
These models have two types of transitions: transitions of type (m), de-

noted s
a

99Kλ s
′, which are as above in CTMCs but carry an additional

non-trivial action label, and transitions of type (i), restricted to degen-
erate probability distributions and denoted s

a
→s′. Such an MTS can be

represented by a single MTBDD whose terminal vertices can have the
following values: (a) value 0, (b) value 1.0 11 , or (c) a real-valued rate
(which, of course, can be equal to 1.0). Formally:

Corollary 22 Let S1 = (S1, s̄1,Act ,→1,AP1, L1) and S2 =
(S2, s̄2,Act ,→2,AP2, L2) be two MTSs. Let M1 and M2 be two compati-
ble MTBDDs such that M1 ⊲ S1 and M2 ⊲ S2, and Sync be the encoding of a
set of actions Sync 6∋ τi, τm. If

M = (M1 · Sync) · (M2 · Sync)

+ M1 · Ai · (1− Sync) · Id2 ∨ M2 · Ai · (1− Sync) · Id1

+ M1 · Am · (1− Sync) · Id2 + M2 · Am · (1− Sync) · Id1,

then M ⊲ S1|[Sync]|S2.

Note that, as with LTSs (case (2) above), we can remove choice vari-
ables from the equation, but must be careful to replace summation with
disjunction.

For practical reasons, it may be convenient to store Markovian transi-
tions in an MTBDD and immediate transitions in a BDD, thus making
the computations disjoint. This is indeed how the tool IM-CAT proceeds
(see Sec. 7.2).

5.2.2 Size of the MTBDD resulting from parallel composition

We now discuss the size of the (MT)BDD resulting from parallel composition.
First note that parallel composition of two SPTSs S1 and S2 with state sets
S1 and S2 yields an overall transition system S with up to |S1| · |S2| states,

11 If non-determinism between internal immediate transitions is later resolved by
probabilities (as described in Sec. 3.3), the MTBDD will have terminal vertices
whose value is a probability.

31

i.e. in the worst case the state space grows multiplicatively. Enders et al. [45]
proved for the parallel composition of BDDs generated from CCS terms that
the number of BDD vertices grows only additively. This result carries over to
the general SPTS case which we consider in this paper.

Theorem 23 Let S1 and S2 be two SPTSs represented by the two compatible
MTBDDs M1 and M2, i.e. Mi ⊲ Si (i = 1, 2), using the standard interleaved
variable ordering. For Sync ⊆ Act with Sync 6∋ τi, τm, let M be the MTBDD
representing the parallel composition S = S1|[Sync]|S2, written M ⊲ S. Then
the number of vertices of MTBDD M is bounded by k · |Act | · (|M1| + |M2| +
|Id1|+ |Id2|) where k depends on the number of non-deterministic choices and
on the number of distinct rate or probability values that are associated with a
particular action.

We now sketch a proof of Th. 23. Suppose that the SPTS Si is represented by
MTBDD Mi, i.e. Mi ⊲ Si (for i = 1, 2), and the variable ordering for MTBDD
Mi is

c
(i)
1 ≺ . . . ≺ c

(i)
ni

c
≺ a1 ≺ . . . ≺ ana ≺ s

(i)
1 ≺ t

(i)
1 ≺ . . . ≺ s

(i)
ni

s
≺ t

(i)
ni

s
,

i.e. the Boolean variables encoding the non-deterministic choices are at the
top, followed by the action names, and finally an interleaving of the variables
for source and target states. For the MTBDD M resulting from parallel com-
position we assume variable ordering:

c ≺ c
(1)
1 ≺ . . . ≺ c

(1)
n1

c
≺ c

(2)
1 ≺ . . . ≺ c

(2)
n2

c
≺ a1 ≺ . . . ≺ ana ≺

s
(1)
1 ≺ t

(1)
1 ≺ . . . ≺ s

(1)
n1

s
≺ t

(1)
n1

s
≺ s

(2)
1 ≺ t

(2)
1 ≺ . . . ≺ s

(2)
n2

s
≺ t

(2)
n2

s

where c is the new MTBDD choice variable added during the construction of
M. The proof considers three cases.

(1) We consider first the case of parallel composition with maximal syn-
chronisation, i.e. synchronisation on all actions. Let |Mi| be the num-

ber of vertices of Mi, c ∈ IB
n1

c+n2
c+1 a valuation of the non-deterministic

choice variables and Aa be the BDD encoding of the action a ∈ Act .
Let Mi,ca = Mi · (c · Aa) be the restriction of Mi to the valuation c of
the non-deterministic choice variables and action a. To obtain the sub-
graph of the resulting MTBDD M which corresponds to the valuation c
of the non-deterministic choice variables and action a one has to build
Mca = M1,ca ·M2,ca = (M1 · c · Aa) · (M2 · c · Aa) whose number of vertices

32

can be bounded by:

|Mca| ≤ |M1,ca|+ η1,ca · |M2,ca|

≤ |M1|+ η1,ca · |M2|

≤ η1,ca · (|M1|+ |M2|)

In the latter equation, η1,ca denotes the number of terminal vertices of
M1,ca which is usually a small value in comparison with the size of M1.
Summing up over all valuations of the non-deterministic variables and
actions we obtain |M| ≤ 2nc ·|Act |·η1 ·(|M1|+|M2|), where nc = 1+n1

c +n2
c

and η1 = maxc∈IBnc∧a∈Act{η1,ca}. Note that 2nc and |Act | are also usually
small values 12 in comparison with the size of M1 and M2 and that this is
a rather coarse worst case bound which assumes that there is no sharing
of the subgraphs which correspond to different non-deterministic choices
and actions.

(2) In the case where there are no synchronising actions the picture is as
follows: Let |Mi|, c, Aa and Mi,ca be defined as in (1). If a ∈ Act i, then
Mca = c ·M1,ca · Id2 + (1− c) · Id1 ·M2,ca = c · (M1 · c · Aa) · Id2 + (1− c) ·
Id1 · (M2 · c · Aa). Therefore, if c evaluates to true in c:

|Mca| ≤ |M1,ca|+ η1,ca · |Id2| ≤ |M1|+ 1 + η1,ca · |Id2|

and if c evaluates to false in c:

|Mca| ≤ |Id1|+ |M2,ca| ≤ |Id1|+ |M2|+ 1.

On the other hand, if a ∈ Actm, then Mca = M1,ca · Id2 + Id1 · M2,ca =
(M1 · c · Aa) · Id2 + Id1 · (M2 · c · Aa) whose size can be bounded by:

|Mca| ≤ |M1,ca|+ η1,ca · |Id2|+ |M2,ca|+ |Id1|

≤ |M1|+ η1,ca · |Id2|+ |M2|+ |Id1|.

Therefore, in the case of pure interleaving the overall size is bounded by
|M| ≤ 2nc · |Act | · (|M1| + η1 · |Id2| + |M2| + |Id1|). Remember that Idi

is represented in a compact manner with only 3ni
s + 2 = 3⌈log |Si|⌉ + 2

vertices, that is, |Idi| is usually much smaller than |Mi|.
(3) For the general, mixed case, where there are both synchronising and non-

synchronising transitions, we combine the two extremal cases and obtain
the overall bound: |M| ≤ 2nc · |Act | · η1 · (|M1|+ |M2|+ |Id1|+ |Id2|).

This concludes the proof.

12 2nc is an upper bound for the number of non-deterministic choices in any state
of S.

33

The relevance of the above theorem relies on the following practical considera-
tions. First, we note that Id1 (respectively Id2) grows logarithmically in the size
of S1 (respectively S2), and is usually dominated by the size of M1 (M2). The
size of the constructed MTBDD M is thus in the order of k · |Act | ·(|M1|+ |M2|)
where k subsumes 2nc · η1. All three parameters |Act |, nc and η1 are model
dependent. In principle, it is possible to construct pathological cases where
either nc or η1 become large. In practice, however, both parameters are small
values, often close or equal to 1. Therefore, as is our experience indeed (and
as we shall see in the examples in Sec 7.3) the size of M is virtually linear in
the size of M1 and M2.

5.2.3 Reachability considerations

The MTBDD M resulting from the parallel composition encodes all transitions
which are possible in the product space of the two partner systems S1 and S2.
Given a pair of initial states for S1 and S2, only part of the product space
may be reachable due to synchronisation constraints. (Symbolic) reachability
analysis can be performed on the MTBDD representation, restricting M to
an MTBDD Mreach which contains only those transitions which originate in
reachable states. However, contrary to what one would expect, the MTBDD
Mreach is typically larger than M, although it encodes fewer transitions. In
general, this rather counter-intuitive increase of the MTBDD size is due to
the loss of regularity, see Sec. 8.

5.3 MTBDD-based abstraction in SPTS models

This section considers symbolic abstraction on MTBDDs. More precisely, we
discuss how the MTBDD representation of the transition system resulting from
an abstraction operation can be constructed from the MTBDD representation
of the original transition system. For notational convenience, we first give the
following definition:

Definition 24 Given n Boolean variables a1, . . . , an and a Boolean vector
(b1, . . . , bn) of length n, we denote by M(a1, . . . , an; b1, . . . , bn) the minterm
consisting of the multiplication (resp. conjunction) of n literals (a literal is
either a Boolean variable or its negation), i.e. M(a1, . . . , an; b1, . . . , bn) =
a∗1 · · · a

∗
n where a∗i = ai if bi = 1 and a∗i = 1− ai if bi = 0.

As an example, we have M(a1, a2, a3; 0, 1, 1) = (1− a1) · a2 · a3.

Theorem 25 Let S = (S, s̄,Act ,→,AP, L) be an SPTS. Let MTBDD M
represent S, i.e. M ⊲S. Let A be the encoding of the set A ⊆ Act of actions to
be hidden, and for each a ∈ A let ca be a new MTBDD variables (not in M).

34

If

M′ = M · (1− A)

+
∑

a∈A∩Acti
ca ·M|a=EA(a) · M(a, EA(τi))

+
∑

a∈A∩Actm
M|a=EA(a) ·M(a, EA(τm)),

where

Vc(M
′) = {ca | a ∈ Act} ∪ Vc(M),

Va(M
′) = Va(M),

Vs(M
′) = Vs(M),

then M′ ⊲ hide A in S.

In Th. 25, we use the notation M|a=EA(a) to denote the restriction of M to
action a. Note that we add a new choice variable ca for each synchronising
action of type (m). This is because several (previously distinct) probability
distributions may now be labelled with the same action (τi), and hence there
is a non-deterministic choice between them.

6 MTBDD based analysis

The preceding sections have shown how to encode SPTSs — and in particular
MTSs and CPSs — in terms of MTBDDs, and how to construct them symbol-
ically, on the level of MTBDDs, using parallel composition and abstraction. In
this section, we describe the MTBDD algorithms for model checking the logic
PCTL against a concurrent probabilistic system (CPS) and calculating the
steady-state distribution vector of a Markovian transition system (MTS). In
the remainder of this section, for a given MTBDD M representing a stochastic
and probabilistic transition system S = (S, s̄,Act ,→,AP, L), we suppose that
M has choice variables c1, . . . , cnc , action variables a1, . . . , ana and source and
target variables s1, t1, . . . , sns, tns.

6.1 PCTL model checking

Given a CPS S = (S, s̄,Act ,→,AP, L), an MTBDD M representing S and a
PCTL formula φ, we calculate the set of states of S which satisfy φ as a BDD
as follows: we construct the parse tree for the formula φ and then calculate the
set of states that satisfy the subformulae ψ of φ recursively. The cases when

35

algorithm IterativeOptimize(A, b, ε,∼)
res := b

done := false

while (done = false)
tmp := res{s1 ← t1, . . . , sn ← tn}
tmp := MVmult(A, tmp)
if (∼∈ {<,≤})

tmp := Abstract(tmp, {c1, . . . cnc
, a1, . . . ana

}, max)
else

tmp := Abstract(tmp, {c1, . . . cnc
, a1, . . . ana

}, min)
endif

tmp := Apply(b, tmp,+)
if (MaxAbs(Apply(res, tmp,−)) < ε)

done := true

endif

res := tmp

endwhile

return res

Fig. 4. MTBDD iterative algorithm for linear optimization problems.

ψ is not an until formula are the same as for CTL [46]. In the case where
ψ = P∼q[ψ1 U ψ2], model checking reduces to solving a linear optimization
problem, as described in Sec. 3.2.2. This problem can be viewed as the matrix
inequality Ax ≤ b orAx ≥ b depending on whether∼∈ {≥, >} or∼∈ {<,≤}.
Direct methods such as Simplex have been shown to be unsuitable for MTBDD
implementation [47] for the following reasons: firstly, methods which rely on
access to individual rows, columns or elements of a matrix are not well suited
to MTBDDs. Secondly, the change in the structure of A at every iteration
of the algorithm leads to a loss in regularity. Fortunately, the optimization
problems we consider can be solved iteratively.

Supposing we have already calculated the BDDs which represent the sets of
states that satisfy ψ1 and ψ2 respectively, we now explain how to construct
the MTBDDs representing A and b. First, we compute the BDDs byes, bno and
b?, representing the sets of states Syes, Sno and S?. This is straightforward:
the precomputation algorithms mentioned in Sec. 3.2.2 correspond to fixpoint
algorithms based on standard BDD operations. Then, to compute the MTBDD
representing A, we filter out the states which we do not need to consider (those
states not in S?):

A = Apply(M, b?,×).

The vector b is represented by the BDD byes.

The iterative method for calculating the solution of Ax ≤ b or Ax ≥ b

is given in Fig. 4, where ε represents the termination criterion: when the
difference between the old and new iteration vectors is less than the bound ε
we stop iterating. Note that we need to include ∼ to determine whether we
are considering the case Ax ≤ b or Ax ≥ b.

36

Once the MTBDD res representing the solution has been obtained, the BDD
representing the set of states satisfying ψ is given by Threshold(res,∼, q).

In the special case where S is a DTMC, model checking reduces to the simpler
problem of solving a system of linear equations (matrix equation Ax = b).
We consider this problem in Sec. 6.3.

6.2 Steady-State Computation

As mentioned in Sec. 3.3, calculating the steady-state vector of an MTS re-
duces to transforming it to a CTMC and solving a system of linear equations,
given by x ·Q = 0, where Q denotes the infinitesimal generator matrix of the
CTMC.

Given an MTS S = (S, s̄,Act ,→,AP, L) and an MTBDD M representing S,
we compute Q, the MTBDD representing the matrix Q, by performing the
following steps. First we abstract the actions from M (Ai and Am are BDDs
encoding the sets Act i and Actm, respectively):

R = Apply(Abstract(M · Ai, {a1, . . . , ana},∨),

Abstract(M · Am, {a1, . . . , ana},+),+).

Next we remove immediate actions by an elimination procedure as described
in Sec. 3.3. Location and elimination of immediate internal transitions, in-
cluding the resolving of non-determinism by probabilities, can be realised by
elementary MTBDD operations.

We then compute the row sums of M and use these to construct Q

row sums := Abstract(R, {t1, . . . , tns},+)

Q := Apply(R,Apply(row sums, Id,×),−)

where Apply(row sums, Id,×) turns the vector row sums into a diagonal ma-
trix of the same dimension. Finally, we solve the linear system of equations
x · Q = 0 by setting Q = A, b = Constant(0) and using the methods
described in Sec. 6.3.

37

algorithm IterativeSolve(M, b′, x0, ε)
res := x0

done := false

while (done = false)
tmp := res{s1 ← t1, . . . , sn ← tn}
tmp := MVmult(M, tmp)
tmp := Apply(b′, tmp,+)
if (MaxAbs(Apply(res, tmp,−)) < ε)

done := true

endif

res := tmp

endwhile

return res

Fig. 5. MTBDD iterative algorithm for the solution of linear equation systems.

6.3 Solving linear systems of equations

We now consider the general problem of solving a linear system of equa-
tions. We tackle the case A · x = b, but the methods translate easily to
the case x · A = b. Suppose A is represented as an MTBDD A with vari-
ables (s1, t1, . . . , sns, tns) and b as the MTBDD b with variables (s1, . . . , sns).
Direct methods such as Gaussian elimination have proved to be unsuitable for
MTBDD implementation [15] due to the difficulty in accessing individual rows
or columns and the loss in regularity caused by the change in structure of A
at every elimination step. We therefore consider iterative methods where an
iteration matrix M is derived from the matrix A and the matrix M remains
unmodified during iteration. Each iteration takes the form x(k+1) = M ·x(k)+b′

where b′ is some modification of the vector b. Further requirements are an
initial approximation x0 and a termination criterion: when the difference be-
tween the old and new iteration vectors is less than some bound ε we stop
iterating. This general iterative solution algorithm is given in Fig. 5.

In steady-state calculations, the vector b is zero and the initial approximation
is usually that all states are equally probable, that is, x0 is the MTBDD
consisting of a single terminal node labelled with 1/2m. In the case of PCTL
model checking DTMCs, both b and the initial vector are given by byes.

Power method: The power method can be written in the following
matrix format:

x(k) =

(

I −
A

q

)

· x(k−1) +
b

q

where I is the identity matrix of the appropriate size and q is a scalar scaling
factor. If A is the (negative of the) generator matrix of a CTMC, then choosing
q > maxj |Ajj| ensures that the iteration matrix I − A/q is stochastic.

38

The MTBDD M is therefore given by

M := Apply(Id(s1, t1, . . . , sns , tns),Apply(A,Constant(q),÷),−)

and b′ := Apply(b,Constant(q),÷).

Jacobi method: the Jacobi method has the following matrix format:

x(k) = D−1 · (D −A) · x(k−1) +D−1 · b.

where D represents the diagonal elements of A.

We can obtain the MTBDD D representing D through a pointwise multipli-
cation with the identity matrix. We store the inverse of the diagonal in a
vector, represented by MTBDD d. This is because multiplication of a diago-
nal matrix, such as D−1, with any other matrix (or vector) can be reduced to
pointwise multiplication with a vector containing the diagonal. d is obtained
by abstracting the column variables from D and inverting:

D := Apply(A, Id,×)

d := Apply(Constant(1),Abstract(D, {t1, . . . , tns},+),÷)

We can then compute the matrix M and vector b′ as follows:

M := Apply(d,Apply(D,A,−),×)

b′ := Apply(d, b,×).

Gauss-Seidel and Successive Overrelaxation: The Gauss Seidel scheme
has the following matrix format:

x(k) = U−1 · (U −A) · x(k−1) + U−1 · b.

where U represents the upper triangular part of A (including the diagonal). A
recursive MTBDD-based algorithm for the inversion of triangular matrices can
easily be derived. The inversion causes a lot of fill-in and is counter–productive
in the case of sparse matrices. However, in the MTBDD setting, the fill in can
be tolerated as long as the regularity is not lost. In certain cases this method
might prove rather effective, but in general the regularity is lost. A symbolic
version of the Successive Overrelaxation method (SOR) raises essentially the
same issues as Gauss–Seidel.

39

7 Tools and case studies

7.1 PRISM

PRISM [48] is a probabilistic symbolic model checker being developed at the
University of Birmingham. It supports DTMCs, CTMCs and CPSs. Model
checking algorithms are implemented in BDDs and MTBDDs. The tool is
written in a combination of Java and C++. It uses CUDD [49], a publicly
available BDD/MTBDD library developed at the University of Colorado at
Boulder.

The main features of PRISM are:

(1) Model construction. PRISM builds DTMC, CTMC and CPS models by
parsing specifications written in a custom system description language.
The language is a probabilistic variant of the Reactive Modules language
of [50]. We chose to use this language as input to the tool because it
allows a direct (and efficient) translation into MTBDDs, and leads to
structured, and hence small, MTBDDs.

(2) Reachability analysis. The tool computes the set of reachable states in
the model, given an initial state. Unreachable states are then removed
from the model.

(3) Model export. Once built, the transition matrix of the model can be
exported for visualisation or use in other tools.

(4) PCTL model checking. Properties in the temporal logic PCTL can be
parsed and then verified against constructed DTMC and CPS models
(either with or without fairness). Simple PCTL operators (AND, OR,
etc.) are model checked using BDDs. Model checking of the PCTL until
operator reduces to solving either a linear system of equations (in the
case of DTMCs), or a linear optimisation problem (in the case of CPSs).
Both are solved using iterative methods. In the former case, the user can
choose between the Power and Jacobi methods.

(5) Precomputation algorithms. The tool also includes BDD fixed point al-
gorithms which can precompute partial results for the PCTL until oper-
ator. More specifically, they check qualitative properties, i.e. those where
the probability is 0 or 1. These BDD methods are much more efficient
than the MTBDD algorithms for quantitative reasoning. As mentioned
in Sec. 3.2, using this precomputation often reduces the work to be done
by the MTBDD algorithm and sometimes replaces it altogether.

(6) Steady-state computation. In the case of CTMCs, the steady-state proba-
bilities for each state are computed. Again, this is performed by iteratively
solving a linear system of equations and the user can choose between the
Power and Jacobi methods.

40

(7) Graphical user interface. All the features described above are accessible
via the PRISM Java-based graphical user interface.

More information about the tool can be found on the PRISM web page at
URL www.cs.bham.ac.uk/˜dxp/prism.

7.2 IM-CAT

IM-CAT is a tool for the construction, manipulation and analysis of MTSs. It
has been developed at the University of Erlangen-Nürnberg and uses MTBDDs
as its central underlying data structure [51,52]. IM-CAT is written in C++
and (similarly to PRISM) is built on top of the library CUDD [49].

The main features of IM-CAT are:

(1) Reading of elementary MTSs from file in a simple format as generated by
the stochastic process algebra tool TIPPtool [53] and generating their
MTBDD representation. Actually, the Markovian transitions of an MTS
are represented by an MTBDD and immediate transitions by a separate
BDD, which later is turned into an MTBDD if non-deterministic choice
is resolved by probabilities as explained in Sec. 3.3.

(2) Parallel composition of two MTSs using their MTBDD representations,
according to the scheme described in Sec. 5.2.1, case (6). The user needs
to specify the names of the two partner MTSs, the set of synchronising
actions, and the name of the resulting MTS.

(3) Reachability analysis. The tool computes the set of states reachable from
the initial state. Unreachable states are then removed from the model.

(4) Hiding of actions at the MTBDD level. At any time, it is possible to
hide some user-defined actions, i.e. to turn visible actions into the special
invisible actions τi and τm. This feature is useful if one wishes to hide
actions which are no longer needed for synchronisation. Note that the
hiding of immediate actions may actually render certain states unstable,
which means that they can be eliminated.

(5) Elimination of unstable states. The elimination can be triggered manu-
ally at any stage, for instance after parallel composition and subsequent
hiding have been performed, and before the current MTS is composed
further with other components. Elimination is invoked automatically as
a mandatory first step of numerical analysis (since numerical analysis
requires a CTMC). During elimination, non-determinism between sev-
eral internal immediate transitions is resolved by assigning probabilities
to the non-deterministic alternatives 13 . These probabilities may be as-

13 Note that, by assigning probabilities to the internal immediate transitions, the
BDD representing the immediate transitions becomes an MTBDD.

41

signed automatically, in which case the default option of equiprobability
between all non-deterministic alternatives is assumed, or they may be
assigned manually by the user in an interactive fashion.

(6) Numerical analysis. IM-CAT contains iterative algorithms for calculat-
ing the steady-state probability distribution (power method, Jacobi, dif-
ferent variants of Gauss-Seidel, and the projection method BiCGStab
[54]). All these schemes (even Gauss-Seidel) are based on vector-matrix
multiplication, which can be realised conveniently on MTBDDs.

(7) Utilities such as the output of information about the currently stored
MTBDDs, the generation of graphical output for visualising the MTB-
DDs, the writing of transition systems to file in the original format, etc.

The parallel composition feature of IM-CAT, together with reachability anal-
ysis, hiding and elimination of unstable states, makes it possible to gener-
ate very large MTSs from small components, thereby exploiting the storage-
efficiency of the MTBDD approach. Up to now, the user interacts with IM-

CAT via the command line, which is somewhat tedious and requires some
experience, but we are currently developing an easy-to-use Java-based graph-
ical user interface.

7.3 Case studies

In all statistics given below for both IM-CAT and PRISM, the termination
criterion (ε in Fig. 4 and Fig. 5) of 10−6 was used. Furthermore, all experi-
ments using IM-CAT were carried out on a 300 MHz SUN 5/10 workstation,
equipped with 1GB of main memory, while all PRISM experiments were run
on a 270MHz SUN Ultra 10 workstation with 384 MB memory. All times are
given in seconds.

7.3.1 A cyclic server polling system

In this section, we consider a cyclic server polling system consisting of d sta-
tions and a server, modelled as a generalized stochastic Petri net (GSPN) 14 .
The example is taken from [55], where a detailed explanation can be found.
For d = 2, i.e. a two-station polling system, the GSPN model is depicted in
Fig. 6. For a d-station polling system, the Petri net is extended in the obvious
way. Place idlei represents the condition that station i is idle, and place busyi

represents the condition that station i has generated a job. The server visits
the stations in a cyclic fashion. After polling station i (place polli), the server
serves station i (place servei), and then proceeds to poll the next station. The

14 We refer to [37,38] for details on the semantics of GSPNs, and their mapping on
MTSs.

42

poll2

serve1

serve2

µ1

γ1idle1

λ1
busy1

busy2
idle2

λ2

skip2

skip1

γ2

µ2

poll1

Fig. 6. The cyclic server polling system with 2 stations [55].

reachable MTBDD size

d states transitions compositional monolithic

before reachability after reachability without actions

3 36 84 169 203 112 351

5 240 800 387 563 271 1,888

7 1,344 5,824 624 1,087 482 9,056

10 15,360 89,600 1,163 2,459 921 69,580

15 737,280 6.144e+6 2,191 6,317 1,942 –

20 3.145e+07 3.407e+08 3,704 13,135 3,346 –

Fig. 7. Statistics for the polling system (obtained with IM-CAT).

times for generating a message, for polling a station and for serving a job are
all distributed exponentially with parameters λi, γi and µi, respectively. If the
server finds station i idle, the service time is zero. This is modelled by the
immediate transition skipi and the inhibitor arc from place busyi to transi-
tion skipi. In this study we consider polling systems with d = 3, 5, 7 and 10
stations (like in [55]). In addition, we consider the cases d = 15 and d = 20.
The stations are assumed to be symmetric, i.e. λi, γi and µi have the same
numerical value for all i ≤ d. We set γi = 200, µi = 1 and λi = µi/d.

The MTBDD representation of the overall polling model was constructed com-
positionally from d+1 elementary transition systems (which were generated by
TIPPtool), one for the server and one for each station, which were encoded
as individual MTBDDs Server and Stationi (i = 1, . . . , d). The MTBDD for the
overall system was computed by applying MTBDD-based parallel composition
according to the following scheme:

(Station1||| . . . |||Stationd)|[S]|Server.

In Fig. 7, important statistics for the polling system are given for different val-

43

ues of d. The 2nd and 3rd columns of the table contains the number of reach-
able states and reachable transitions respectively. The remaining columns give
the number of MTBDD vertices. Column 4 contains the number of vertices of
the MTBDD that was generated compositionally from the component MTB-
DDs. The MTBDD generated in this way represents all transitions which are
possible within the product of the d+ 1 components’ state spaces. As can be
observed from the 5th column of the table, determining the set of reachable
states and “deleting” the transitions which originate in unreachable states
considerably increases the size of the MTBDD. The 6th column of the table
contains the size of the MTBDD which one obtains by removing all action-
labelling information from the MTBDD of column 5. This MTBDD, which
now only depends on Boolean variables for the source and target state of
transitions, but not on Boolean variables encoding action labels, represents
the rate matrix of the (unlabelled) CTMC.

The last column of Fig. 7 shows the number of MTBDD vertices which one
would obtain by taking the monolithic MTS of the overall model and directly
encoding it as an MTBDD. Clearly, this method cannot be recommended.
Apart from the fact that the MTS of the overall model may not be available
due to its size, the growth of the MTBDD sizes is prohibitive 15 . As expected
from Th. 23, the MTBDD sizes in column 4 (and column 6) grow linearly,
whereas the ones in column 7 grow exponentially. Looking at the last row
of the table (the case d = 20) one can observe that, even for an extremely
large state space, the MTBDD representation can be very compact if it is
constructed in a compositional fashion.

In Fig. 8 we give the amount of memory required to store the matrix repre-
senting the underlying CTMC of the polling system (the system with actions
removed), when using MTBDDs (for both the compositional and monolithic
approach) and sparse matrices. As the statistics demonstrate, using MTBDDs
together with the compositional approach gives a very space-efficient encod-
ing of the CTMC, especially for large state spaces. On the other hand, the
monolithic MTBDD approach is less efficient than using sparse matrices.

In Fig. 9 we give statistics for computing the steady-state solution of the cyclic
polling system using PRISM (we obtained almost identical results using IM-

CAT). We include results for both the power and Jacobi method. We note that
when using either iteration method the time taken to construct the MTBDD
representing the iteration matrix is negligible. However, as shown in Fig. 9,
the size of the MTBDD representing the iteration matrix is larger than the
MTBDD representing the system. In both methods this loss of structure arises

15 The “–” entries in the last column indicate that the number could not be de-
termined because the monolithic MTS of the overall model was never explicitly
constructed due to excessive runtime and memory requirements.

44

d memory (KB)

MTBDD compositional MTBDD monolithic sparse matrix

3 2.19 6.86 1.13

5 5.29 36.9 10.3

7 9.41 176 73.5

10 18.0 1,359 1,110

15 37.9 – 74,880

20 65.4 – 4.11e+06

Fig. 8. Storage requirements for the polling system.

power method Jacobi method

MTBDD sparse MTBDD sparse

d iters iter. matrix time per time per iters iter. matrix time per time per

(vertices) iter. (s) iter. (s) (vertices) iter. (s) iter. (s)

3 1,624 151 0.004 0.000006 75 187 0.003 0.000006

5 2,300 392 0.020 0.00007 137 628 0.014 0.00007

7 2,848 761 0.158 0.0008 196 1,453 0.101 0.0006

10 3,495 1,632 13.89 0.014 280 3,698 4.51 0.014

Fig. 9. Statistics for the steady-state analysis of the polling system (obtained with
PRISM).

through the inclusion of the diagonals in the construction of the infinitesimal
generator matrix Q (see Sec. 6.2). Furthermore, in the case of the Jacobi
method there is a further loss of structure when we multiply by the inverse of
the diagonal elements of Q (see Sec. 6.3). For comparison, we include the time
per iteration for a sparse matrix implementation included in PRISM as well as
when using MTBDDs. The results demonstrate that numerical analysis using
MTBDDs is much slower than using a sparse implementation.

7.3.2 A tandem queueing network with blocking

As a second example we consider a tandem queueing network with blocking
taken from [56] and used again in [53]. It consists of a M/Cox2/1-queue sequen-
tially composed with a –/M/1-queue, see Fig. 10. Each of the two queueing
stations has a finite capacity of c jobs, c > 0. Jobs arrive at the first queue-
ing station according to a Poisson stream with rate λ. The service time of
the first station has a Coxian distribution with two exponential phases. The
first phase has rate parameter µ1. After completion of the first phase, with
probability b1 = 1− a1 the service is finished, and with probability a1 the job
moves to the second phase whose rate parameter is µ2. Once served, jobs leave
the first station, and are queued in the second station whose service time is
exponential with rate κ. In case the second queueing station is fully occupied,
i.e. its server is busy and its queue is full, the first station is said to be blocked.

45

µ1
λ

κµ2
a1

b1

Fig. 10. A simple tandem network with blocking [56]

c reachable transitions MTBDD size

states compositional monolithic

7 128 378 148 723

15 512 1,650 197 1,575

127 32,768 113,538 341 11,480

1,023 2,097,152 7.33082e+06 485 –

16,383 5.36871e+08 1.8789e+09 677 –

Fig. 11. Statistics for the tandem queueing system (obtained with IM-CAT).

Note that, in this situation, the second phase of the first server is blocked and
the first server can only pass a job from the first phase to the second phase
(which happens with rate µ1 ·a1), but the “bypass” of the second phase is also
blocked.

For the experiments we use the following values for the parameters of the
queue: λ = 3, µ1 = µ2 = 2, κ = 4, and a1 = 0.1. Fig. 11 contains the number
of reachable states and the number of transitions of the polling system for
different values of c, and the number of vertices of the corresponding MTB-
DDs. The MTBDDs in column 4 were constructed as follows: the elementary
MTSs for the Markovian station and for the Coxian station were encoded as
two MTBDDs and subsequently composed in parallel, using MTBDD-based
parallel composition. The MTBDDs in column 5 were obtained by directly
encoding the MTS of the overall queueing system as an MTBDD.

From the numbers given in Fig. 11 it can be observed that the MTBDD sizes
for the compositional approach are surprisingly small, whereas the MTBDD
sizes for the monolithic approach become prohibitive. This result was to be
expected, since it is a direct consequence of Th. 23. It supports the finding that
MTBDDs are only beneficial if they are used in a structured (i.e. in our case
compositional) fashion. Note that in the tandem queueing network example
all states from the product state space of the two components (the Coxian
station and the Markovian station) are reachable. Therefore, (MTBDD-based)
reachability is not necessary in this case.

Fig. 12 contains some statistics collected when computing the steady-state
solution of the tandem model for varying queue capacity c. Columns 2 to 4
contain the number of iterations until convergence, the number of MTBDD
vertices of the iteration matrix, and the mean time per iteration. Columns 6 to
8 contain the corresponding figures for the Jacobi method. As a comparison,
the results obtained for the same models using TIPPtool’s sparse imple-

46

power method Jacobi method

MTBDD sparse MTBDD sparse (GS)

c iters iter. matrix time per time per iters iter. matrix time per time per

(vertices) iter. (s) iter. (s) (vertices) iter. (s) iter. (s)

7 180 196 0.011 0.000108 190 327 0.009 0.000151

15 380 249 0.050 0.000377 250 415 0.045 0.000481

127 1,540 399 2.068 0.04926 1,110 655 2.435 0.0500

Fig. 12. Statistics for the steady-state analysis of the tandem system (obtained with
IM-CAT and TIPPtool).

while true do

prefer i := ⊥
flipi := 0.5 : heads + 0.5 : tails

if flipi = heads

inc(counter)
else

dec(counter)
end if

if counter ≥ K ·N
prefer i := 0
return prefer i

else if counter ≤ −K ·N
prefer i := 1
return prefer i

end if

end while

Fig. 13. Shared coin protocol for process i.

mentation are given in columns 5 and 9 (note that since TIPPtool does not
implement Jacobi, column 9 gives results for sparse Gauss-Seidel instead). In
summary, as with the previous example, the statistics show that MTBDD-
based numerical analysis is far slower than an efficient sparse implementation.

7.3.3 Shared coin protocol

As an example of a concurrent probabilistic system (CPS), we consider a
shared coin protocol which is part of the distributed randomised consensus
algorithm of [57]. The shared coin protocol implements a collective random
walk, parameterised by the number of processes N and the constant K > 1
(independent of N). The processes access a global shared counter, initially
0. On entering the protocol, a process flips a coin, and, depending on the
outcome, increments or decrements the shared counter. Having flipped the
coin, the process then reads the counter. If the counter has a value greater
than or equal to K · N it chooses 0 as its preferred value, and if the counter
has a value less than or equal to −K ·N it chooses 1. Otherwise, the process
flips the coin again, and continues doing so until it observes that the counter
has passed one of the barriers. The shared coin protocol for process i is given
in Fig. 13.

47

In Fig. 14 the statistics for the shared coin protocol are given for different
values of N and K, where the construction time includes the time taken to
compute the reachable states. The MTBDDs were constructed as follows. The
elementary CPSs for the counter and for the processes were first encoded as
MTBDDs, noting that starting from the initial state (when the counter is
0) the counter will never be greater than (K + 1) · N (less than −(K + 1) ·
N), and hence we only need to construct the (finite) CPSs of the counter
and processes for the value of counter within these bounds. To construct the
full system, these MTBDDs were composed in parallel, using MTBDD-based
parallel composition.

From the results given in Fig. 14 it can be observed that the MTBDD sizes
are surprisingly small and increasing K has little effect on the size of the
MTBDD compared to the increase in the number of states. Furthermore, using
MTBDDs the models can be constructed quickly. This is a consequence of
only simple MTBDD operations being involved in constructing the parallel
composition of processes.

We now consider the model checking results of this example using PRISM.
The properties of the shared coin protocol required by [57] are listed below.

C1 For each fair execution of the shared coin flipping protocol that starts
with a reachable state of the shared coin flipping protocol, with probability
1 all processes that enter the shared coin flipping protocol will eventually
leave.

C2 For each fair execution of the shared coin flipping protocol, and each
value v ∈ {0, 1}, the probability that all processes that enter the shared
coin flipping protocol will eventually leave agreeing on the value v is at
least (K − 1)/2K.

Both properties C1 and C2 are expressible in PCTL. We let ϕi(0) and ϕi(1)
denote the atomic propositions true in the states which satisfy prefer i = 0
and prefer i = 1 respectively. Then C1 corresponds to the PCTL property:

P≥1[true U ((ϕ1(0) ∨ ϕ1(1)) ∧ . . . ∧ (ϕN(0) ∨ ϕN (1)))]

and C2 can be represented by the PCTL properties:

init ⇒ P≥(K−1)/2K [true U (ϕ1(v) ∧ . . . ∧ ϕN(v))]

for v = 0, 1 where init is the atomic proposition true only in the initial state.
C1 is a probability-1 property, and therefore admits efficient qualitative [58]
probabilistic analysis, using only reachability based analysis [32], as already
mentioned in Sec. 3.2.2. On the other hand, C2 is quantitative, and requires
calculating the minimum probability that, starting from the initial state of

48

N K States Transitions MTBDD size Construction time (s):

4 16 166,016 692000 1,327 1.438

4 32 329,856 1,376,032 1,338 2.746

8 8 2.222e+8 1.692e+9 5,587 7.500

8 16 4.372e+8 3.332e+9 5,404 13.173

10 4 5.180e+9 4.812e+10 8,713 10.032

10 8 1.002e+10 9.319e+10 8,718 16.319

Fig. 14. Statistics for the shared coin protocol (obtained with PRISM).

N K C1 C2

iters. time per iter. (s) iters. time per iter. (s)

4 16 404 0.007 59,253 1.911

4 32 788 0.008 181,791 1.170

8 8 420 0.062 59,253 8.365

8 16 804 0.074 181,791 5.969

10 4 284 0.256 26,799 8.228

10 8 524 0.266 85,641 11.51

Fig. 15. Model checking results for the coin flipping protocol.

the shared coin flipping protocol, all processes leave the protocol agreeing
on a given value. Note that both properties involve fairness constraints and
therefore we check these properties only against fair adversaries by using the
satisfaction relation |=fair .

A summary of model checking statistics obtained from the shared coin-flipping
protocol using PRISM is included in Fig. 15. The results from the model
checking show that C1 and C2 hold for all the instances of N and K given.
The number of iterations for C1 corresponds to the number of iterations of the
probability-1 precomputation step, whereas for C2 the number of iterations
corresponds to those of the iterative method given in Fig. 4.

Fig. 15 clearly shows that the model checking of qualitative properties (“with
probability 1” properties) when using MTBDDs is very fast. On the other
hand, when one needs to calculate probabilities, as with the previous examples,
MTBDDs become less efficient, but are able to handle very large state spaces.

8 Lessons learned

It is well-known that the effectiveness of BDD-based methods depends on
heuristics tailored to the particular application area at hand — even though
this fact is often inadequately reflected in the literature on BDDs. This section
summarises some lessons learned from our experience with applying MTBDDs

49

to SPTSs in PRISM and IM-CAT, emphasising the importance of good
heuristics.

8.1 Compositional versus monolithic encoding

Our most important observation is that it is unwise to simply encode a given,
monolithic transition system as an MTBDD. Instead, in order to achieve com-
pact symbolic representation, the construction should proceed composition-
ally, starting from the MTBDDs for the lowest level components, and using
MTBDD-based parallel composition (as described by Th. 16) in every con-
struction step. The superiority of the compositional approach is due to the
fact that it exploits structure and regularity and thus automatically yields
good state encodings (see Sec. 8.2).

8.2 State encoding and state variable ordering

Most heuristics are concerned with the encoding of state identifiers as bit
vectors and the ordering of the Boolean variables, two issues which are closely
intertwined. To find the optimal ordering is an NP-complete problem [59],
and hence one has to resort to heuristics. It is generally recommended (and
we also follow this recommendation) to use an interleaved ordering of the
Boolean vectors (s1, . . . , sn) and (t1, . . . , tn) encoding source and target states,
i.e. to use (s1, t1, . . . , sn, tn) as the variable ordering for state sets [45]. For
the symbolic representation of matrices, this encoding implies that everything
that “happens” on the main diagonal, or on a diagonal of some submatrix
represented by a cofactor (or obtained by restriction of some arbitrary bits
of the encoding) profits from this encoding. In a compositional setting, the
interleaved ordering makes it possible to exploit structural information of the
high-level formalism in the encoding. Any kind of structural insight that is
used in the encoding of states is reflected in the encoding of both row and
column positions, and therefore exploited best with the interleaved ordering
[56].

Our experience has also shown that even if a composition (via |[Sync]|) involves
heavy synchronisation among the components (implying that a large portion
of the composed state space is unreachable), it is usually not recommended to
shorten the bit-vector by changing the encoding, because structure would be
lost. It is wise to invest in an optimal encoding of the lowest level component
state spaces, but to avoid modifying the encodings after composition. That
is, we propose to optimise the component encodings, either by means of the

50

exact algorithm 16 [60] or by means of adaptions of Rudell’s sifting algorithm
[61] or other heuristic methods for BDDs, e.g. [62,63].

8.3 Component variable ordering

Using the compositional approach gives us a choice of where the MTBDD
variables representing the state sets of sub-components appear in the ordering
(while keeping the interleaved ordering). Experiments have shown that such
choices can have a considerable influence on the size of the MTBDD repre-
senting the overall system. Furthermore, these experiments have led us to the
following two related heuristics concerning this ordering:

• If sub-components synchronise with each other, then the Boolean variables
which represent their state sets should be placed close together in the or-
dering.
• If a sub-component interacts (synchronises) with many of the other sub-

components of the system, then the Boolean variables which represent its
state set should be placed towards the root of the ordering or closer to the
root than those components which it synchronises with.

To illustrate the second of these heuristics we return to the cyclic server polling
system introduced in Sec 7.3.1 which is defined by the following parallel com-
position of sub-components:

(Station1 ||| . . . ||| Stationd) |[S]| Server.

In this example the server synchronises with all the other components (the
stations). Thus, following the heuristics given above, placing the MTBDD
variables representing the state set of the server closest to the root leads
to a “good” variable ordering. On the other hand, placing these variables
closest to the leaf vertices leads to a “bad” ordering. To see the advantage
of using this heuristic, the MTBDD sizes of the cyclic polling system under
each of these orderings are given in Fig. 16. The “bad” ordering obviously
yields much larger MTBDDs than the “good” one. It is interesting to observe
that, while the figures in the column “before reachability” are still close to the
corresponding ones (only up to 1.25 times larger), the figures in the column
“after reachability” are dramatically worse for the “bad” ordering (up to 724
times larger).

16 Since the lowest level components are not likely to have large MTBDD represen-
tations, NP-completeness of the exact algorithm is not a problem in practice.

51

MTBDD size

d before reachability after reachability

“good” ordering “bad” ordering “good” ordering “bad” ordering

3 169 163 203 200

5 387 386 563 623

7 624 658 1,087 1,734

10 1,163 1,281 2,459 10,598

15 2,191 2,641 6,317 297,942

20 3,704 4,632 13,135 9,507,435

Fig. 16. Statistics for the polling system (obtained with IM-CAT).

8.4 Action and choice variable ordering

The heuristics from Sec. 8.3 can be interpreted at the MTBDD level: place
variables that influence the values of each other close together in the ordering,
and place variables that influence many other variables towards the root of
the MTBDD.

We now consider where the MTBDD variables representing both the non-
deterministic choices and actions should go in the ordering. First, the value of
the variables corresponding to the target states of the system clearly depends
both on the non-deterministic choice made and which action is performed.
Also, what actions can be performed depends on how the non-determinism
is resolved. Therefore, the above interpretation of the heuristics justifies the
ordering of the variables we introduced in Sec 5.1: we place the choice variables
first in the ordering (closest to the root), followed by the action variables, and
finally the variables which represent the state set of the system. This issue is
considered in greater depth in [64].

8.5 Reachability analysis and bisimulation

In the examples given in this paper, we observed that the restriction to the
reachable part of an SPTS typically increases the size of its MTBDD represen-
tation. We have made another, related observation, namely that established
techniques for state space compression, such as lumping [65] or bisimulation
[66,7], are often counterproductive in the MTBDD setting, i.e. the size of the
symbolic representation grows although the number of states and transitions
shrinks (in the non–stochastic case a similar observation has been made in
[67]). One reason for this increase is that bisimulation on MTSs, CPSs, or
SPTSs cumulates transitions by adding up the respective parameters. This
implies that, while the minimised model may have far fewer transitions than

52

the original one, the former involves more distinct parameters than the lat-
ter. Since these parameters are represented as MTBDD terminal vertices, the
minimised model has more terminal vertices, and hence sharing of common
subgraphs is reduced. Another reason is simply that the minimised transition
system is less regular and therefore not so likely to have a compact symbolic
representation. Together, these factors can outweigh the gain due to the re-
duction of the number of states and transitions to be encoded.

8.6 Space and time efficiency

We have shown that the MTBDD encoding of a transition system can be
extremely compact if it is constructed in a compositional fashion, and that
this compactness carries over to the symbolic representation of the iteration
matrix. Unfortunately, the MTBDDs representing the iteration vectors tend
to be significantly larger than the ones for the iteration matrix. By way of
example, for the polling system (d = 10), the MTBDD for the iteration matrix
has only 1,632 vertices, but the size of the MTBDD representing the solution
vector grows to 20,000 vertices in only 30 iterations.

For vectors to be represented compactly by MTBDDs, the main requirement
is a limited number of distinct elements. However, in general, when performing
numerical analysis, either to calculate steady-state probabilities of an MTS or
during PCTL model checking of a CPS, the iteration vector quickly acquires
almost as many distinct values as there are states in the system under study.
We have seen that in certain cases, where there is sufficient structure in the
iteration vector, MTBDDs have been able to analyse much larger models than
would be feasible with a sparse implementation (for example, this holds for the
case of the shared coin protocol introduced in Sec 7.3.3 and certain examples
presented in [68], where systems of up to 33 million states were analysed
using MTBDDs). However, it is difficult to predict when these vectors will be
represented compactly, as this depends both on the structure of the model
and on the property being verified.

One of the most important lessons learned, as demonstrated through the case
studies, is the time inefficiency of MTBDD-based numerical analysis [15]. This
has to do with the nature of the MTBDD algorithms, where many recursive
function calls must be made and many pointers followed in order to access
individual vector or matrix elements (stored in the terminal vertices of the
MTBDDs). Contrary to typical BDD algorithms, the use of a computed table
(where intermediate results are cached) is of little value in a situation where the
MTBDD representing the iteration vector contains (almost) as many different
numerical entries as there are states. Such a situation spoils one of the main
features of the BDD approach, namely that most recursions can terminate

53

early since the result was found in the cache.

The fact that in numerical analysis the MTBDDs representing the iteration
vectors become significantly larger than the MTBDD for the transition ma-
trix means that little or no advantage is gained from using the often smaller
MTBDD representing the transition matrix of the potential (before reachabil-
ity) rather than the actual state space (after reachability).

To overcome this inefficiency while maintaining the advantages of MTBDDs
(compact representation of systems), PRISM has been extended to include a
hybrid approach [69], which uses an MTBDD representation for storing matri-
ces and a conventional representation for probability vectors. More information
will be available in [64].

9 Conclusion

In this paper we presented space-efficient symbolic representations for a gen-
eral class of probabilistic, stochastic and non-deterministic models. We showed
that the MTBDD data structure is very well suited to compactly represent
huge transition systems, provided that models are constructed composition-
ally with insight into the structure of the system under investigation. We
showed that all steps of model construction and analysis, including PCTL
model checking and numerical analysis of stationary measures, can be per-
formed on the MTBDD data structure. While the analysis of purely functional
properties is very efficient, we pointed out that existing symbolic implementa-
tions of linear algebra operations, which are needed for numerical analysis, do
not match the speed of state-of-the-art sparse implementations. Improving the
speed of these operations is therefore a challenging topic for future research.
Furthermore, it would be interesting to compare our experience with MTB-
DDs with related work from the area of quantitative model checking, such
as the one reported in [70] where MTBDDs are used to store the transition
relation of probabilistic transition systems.

References

[1] M. Puterman, Markov Decision Processes, Wiley, 1994.

[2] C. Courcoubetis, M. Yannakakis, The complexity of probabilistic verification,
Journal of the ACM 42 (4) (1995) 857–907.

[3] R. Segala, Modelling and verification of randomized distributed real time
systems, Ph.D. thesis, Massachusetts Institute of Technology (1995).

54

[4] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[5] T. Bolognesi, E. Brinksma, Introduction to the ISO specification language
LOTOS, in: P. van Eijk, C. Vissers, M. Diaz (Eds.), The Formal Description
Technique LOTOS, North-Holland, Amsterdam, 1989, pp. 23–73.

[6] N. Götz, U. Herzog, M. Rettelbach, Multiprocessor and distributed system
design: The integration of functional specification and performance analysis
using stochastic process algebras, in: Proc. of the 16th International
Symposium on Computer Performance Modelling, Measurement and
Evaluation, PERFORMANCE 1993, Tutorial, Vol. 729 of Lecture Notes in
Computer Science, Springer, 1993, pp. 121–146.

[7] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge
University Press, 1996.

[8] H. Hermanns, U. Herzog, J.-P. Katoen, Process algebra for performance
evaluation, Th. Comp. Sci. 274 (1-2) (2002) 43–87.

[9] P. Courtois, Decomposability, queueing and computer system applications,
ACM monograph series, 1977.

[10] B. Plateau, On the synchronization structure of parallelism and synchronization
models for distributed algorithms, in: Proceedings of the ACM Sigmetrics
Conference on Measurement and Modeling of Computer Systems, Austin, TX,
1985, pp. 147–154.

[11] P. Buchholz, A class of hierarchical queueing networks and their analysis,
Queueing Systems 15 (1994) 59–80.

[12] H. Hermanns, J. Katoen, Automated compositional Markov chain generation
for a plain-old telephony system, Science of Computer Programming 36 (1)
(1999) 97–127.

[13] M. Siegle, Structured Markovian performance modelling with automatic
symmetry exploitation, in: G. Haring, H. Wabnig (Eds.), Short Papers and Tool
Descriptions Proc. of the 7th Int. Conf. on Modelling Techniques and Tools for
Computer Performance Evaluation, Vienna, Austria, 1994, pp. 77–81.

[14] R. Bryant, Graph-based algorithms for boolean function manipulation, IEEE
ToC C-35 (8) (1986) 677–691.

[15] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, F. Somenzi,
Algebraic Decision Diagrams and their Applications, in: ICCAD-93: Int.
Conference on Computer-Aided Design, ACM/IEEE, Santa Clara, CA, 1993,
pp. 188–191, also available in Formal Methods in System Design, 10(2/3), 1997.

[16] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, X. Zhao, Multi-
Terminal Binary Decision Diagrams: an effificient data structure for matrix
representation, in: Proc. International Workshop on Logic Synthesis (IWLS’93),
Tahoe City, 1993, pp. 6a:1–15, also available in Formal Methods in System

Design, 10(2/3):149–169, 1997.

55

[17] H. Hansson, B. Jonsson, A framework for reasoning about time and reliability,
in: Proc. of 10th IEEE Real-Time Systems Symposium, IEEE Computer Society
Press, Orlando, Fl., 1990, pp. 102–111.

[18] C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, On the logical
characterisation of performability properties, in: ICALP, Vol. 1853 of Lecture
Notes in Computer Science, Springer, 2000, pp. 780–792.

[19] H. Hermanns, U. Herzog, V. Mertsiotakis, Stochastic process algebras - between
LOTOS and Markov chains, Computer Networks and ISDN (CNIS) 30 (9-10)
(1998) 901–924.

[20] H. Hermanns, Interactive Markov chains, Ph.D. thesis, Universität Erlangen-
Nürnberg (1998).

[21] M. Bernardo, R. Gorrieri, A tutorial on EMPA: A theory of concurrent processes
with nondeterminism, priorities, probabilities and time, Theoretical Computer
Science 202 (1998) 1–54.

[22] M. Bravetti, M. Bernardo, Compositional Asymmetric Cooperations for Process
Algebras with Probabilities, Priorities, and Time, in: Proc. of the 1st Int.
Workshop on Models for Time Critical Systems (MTCS 2000), Electronic Notes
in Theoretical Computer Science 39(3), State College (PA), 2000.

[23] E.-R. Olderog, C. Hoare, Specification-oriented semantics for communicating
processes, Acta Informatica 23 (1) (1986) 9–66.

[24] G. Plotkin, A structural approach to operational semantics, technical report,
Computer Science Department FN-19, DAIMI, Aarhus University (September
1981).

[25] A. Bianco, L. de Alfaro, Model checking of probabilistic and nondeterministic
systems, in: P. Thiagarajan (Ed.), Proc. Foundations of Software Technology
and Theoretical Computer Science, Vol. 1026 of Lecture Notes in Computer
Science, Springer-Verlag, 1995, pp. 499–513.

[26] C. Baier, M. Kwiatkowska, Model checking for a probabilistic branching time
logic with fairness, Distributed Computing 11 (1998) 125–155.

[27] S. Hart, M. Sharir, A. Pnueli, Termination of probabilistic concurrent programs,
ACM Transactions on Programming Languages and Systems 5 (1983) 356–380.

[28] L. de Alfaro, From fairness to chance, in: C. Baier, M. Huth, M. Kwiatkowska,
M. Ryan (Eds.), Proc. First International Workshop on Probabilistic Methods
in Verification (PROBMIV’98), Vol. 22 of Electronic Notes in Theoretical
Computer Science, 1998.

[29] E. Clarke, E. Emerson, A. Sistla, Automatic verification of finite-state
concurrent systems using temporal logics, in: 10th ACM Symposium on
Principles of Programming Languages, 1983, pp. 24–26, the full version is
available in ACM Transactions on Programming Languages and Systems, 1(2),
1986.

56

[30] C. Baier, On algorithmic verification methods for probabilistic systems,
Habilitation thesis, Fakultät für Mathematik & Informatik, Universität
Mannheim (1999).

[31] L. de Alfaro, Stochastic transition systems, in: D. Sangiorgi, R. de Simone
(Eds.), Proc. CONCUR’98, Lecture Notes in Computer Science, Springer-
Verlag, 1998, pp. 423–438.

[32] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, R. Segala, Symbolic
Model Checking for Probabilistic Processes using MTBDDs and the Kronecker
Representation, in: S. Graf, M. Schwartzbach (Eds.), TACAS’2000, LNCS 1785,
Berlin, 2000, pp. 395–410.

[33] G. Ciardo, R. Zijal, Well-defined stochastic Petri nets, in: MASCOTS, 1996,
pp. 278–284.

[34] M. Qureshi, W. Sanders, A. van Moorsel, R. German, Algorithms for the
generation of state-level representations of stochastic activity networks with
general reward structures, IEEE Transactions on Software Engineering 22 (9)
(1996) 603–614.

[35] D. Deavours, W. Sanders, An efficient well-specified check, in: P. Bucholz,
M. Silva (Eds.), Proc. of the 8th Int. Workshop on Petri Nets and Performance
Models (PNPM ’99), Zaragoza, Spain, 1999, pp. 124–133.

[36] H. Hermanns, M. Siegle, Bisimulation algorithms for stochastic process algebras
and their BDD-based implementation, in: J.-P. Katoen (Ed.), ARTS’99, 5th
Int. AMAST Workshop on Real-Time and Probabilistic Systems, Vol. 1601 of
Lecture Notes in Computer Science, Springer, 1999, pp. 144–264.

[37] M. Ajmone Marsan, G. Balbo, G. Conte, A class of generalized stochastic
Petri nets for the performance evaluation of multiprocessor systems, ACM
Transactions on Computer Systems 2 (2) (1984) 93–122.

[38] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis,
Modelling with generalized stochastic Petri nets, Wiley, 1995.

[39] A. Shiryaev, Probability, 2nd Edition, Vol. 95 of Graduate Texts in
Mathematics, Springer, 1996.

[40] W. Stewart, Introduction to the numerical solution of Markov chains, Princeton
University Press, 1994.

[41] A. Jensen, Markoff chains as an aid in the study of Markoff processes, Skand.
Aktuarietiedskr. 36 (1953) 87–91.

[42] W. Grassmann, Transient solutions in Markovian queues, European Journal of
Operational Research 1 (1977) 396–402.

[43] E. Clarke, K. McMillan, X. Zhao, M. Fujita, J. Yang, Spectral transforms
for large boolean functions with applications to technology mapping, in: 30th
Design Automation Conference, ACM/IEEE, 1993, pp. 54–60.

57

[44] K. Brace, R. Rudell, R. Bryant, Efficient implementation of a BDD package,
in: 27th ACM/IEEE Design Automation Conference, 1990, pp. 40–45.

[45] R. Enders, T. Filkorn, D. Taubner, Generating BDDs for symbolic model
checking in CCS, Distributed Computing 6 (3) (1993) 155–164.

[46] K. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.

[47] M. Kwiatkowska, G. Norman, D. Parker, R. Segala, Symbolic model checking
of concurrent probabilistic systems using MTBDDs and Simplex, Tech. rep.,
School of Computer Science, University of Birmingham (1999).

[48] M. Kwiatkowska, G. Norman, D. Parker, PRISM: Probabilistic symbolic model
checker, in: T. Field, P. Harrison, J. Bradley, U. Harder (Eds.), Proc. 12th
International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS’02), Vol. 2324 of LNCS, Springer, 2002, pp.
200–204.

[49] F. Somenzi, Cudd: Colorado university decision diagram package, release
2.3.0, user’s Manual and Programmer’s Manual, http://vlsi.colorado.edu/˜fabio
(September 1998).

[50] R. Alur, T. Henzinger, Reactive modules, in: Proc. 11th Annual IEEE
Symposium on Logic in Computer Science (LICS’96), IEEE Computer Society
Press, 1006, pp. 207–218.

[51] E. Frank, Codierung und numerische analyse von transitionssystemen unter
verwendung von MTBDDs, student’s thesis, Universität Erlangen–Nürnberg,
IMMD 7 (in German) (1999).

[52] E. Frank, Erweiterung eines MTBDD-basierten Werkzeugs für die Analyse
stochastischer Transitionssysteme, Tech. Report Informatik 7, No. 01/00,
Universität Erlangen–Nürnberg, (in German) (January 2000).

[53] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, M. Siegle, Compositional
performance modelling with the TIPPtool, Performance Evaluation 39 (1-4)
(2000) 5–35.

[54] C. Kelley, Iterative Methods for Linear and Nonlinear Systems, Series on
Frontiers in Applied Mathematics, SIAM, 1995.

[55] O. Ibe, K. Trivedi, Stochastic Petri net models of polling systems, IEEE Journal
on Selected Areas in Communications 8 (9) (1990) 1649–1657.

[56] H. Hermanns, J. Meyer-Kayser, M. Siegle, Multi terminal binary decision
diagrams to represent and analyse continuous time Markov chains, in:
B. Plateau, W. Stewart, M. Silva (Eds.), 3rd Int. Workshop on the Numerical
Solution of Markov Chains, Prensas Universitarias de Zaragoza, 1999, pp. 188–
207.

[57] J. Aspnes, M. Herlihy, Fast Randomized Consensus Using Shared Memory,
Journal of Algorithms 11 (3) (1990) 441–460.

58

[58] M. Vardi, Automatic Verification of Probabilistic Concurrent Finite State
Programs, in: Proc. IEEE Symposium on Foundations of Computer Science
(FOCS’85), 1985, pp. 327–338.

[59] B. Bollig, I. Wegener, Improving the variable ordering of OBDDs is NP-
complete, IEEE Transactions on Computers 45 (9) (1996) 993–1006.

[60] S. Tani, K. Hamaguchi, S. Yajima, The complexity of optimal variable ordering
of a shared binary decision diagram, in: Proc. 45th ISAAC, Vol. 762 of Lecture
Notes in Computer Science, Springer, 1993, pp. 389–398.

[61] R. Rudell, Dynamic variable ordering for ordered binary decision diagrams, in:
Proc. IEEE ICCAD’93, 1993, pp. 42–47.

[62] M. Fujita, Y. Matsunaga, T. Kakuda, On variable ordering of Binary Decision
Diagrams for the application of multi-level logic synthesis, in: Proc. European
Design Automation Conference (EDAC 91), IEEE Computer Society Press,
1991, pp. 50–54.

[63] J. Bern, C. Meinel, A. Slobodova, Global rebuilding of OBDD’s - tunneling
memory requirement maxima, in: P. Wolper (Ed.), Proc. International
Conference On Computer Aided Verification, Vol. 939 of Lecture Notes in
Computer Science, Springer-Verlag, 1995, pp. 4–15.

[64] D. Parker, Implementation of symbolic model checking for probabilistic systems,
Ph.D. thesis, School of Computer Science, University of Birmingham (2002 to
appear).

[65] J. Kemeny, J. Snell, Finite Markov Chains, Springer, 1976.

[66] K. Larsen, A. Skou, Bisimulation through probabilistic testing, Information and
Computation 94 (1) (1991) 1–28.

[67] E. M. Clarke, S. Jha, R. Enders, T. Filkorn, Exploiting symmetry in temporal
logic model checking, Formal Methods in System Design 9 (1/2) (1996) 77–104.

[68] J. Katoen, M. Kwiatkowska, G. Norman, D. Parker, Faster and symbolic CTMC
model checking, in: L. de Alfaro, S. Gilmore (Eds.), Proc. Process Algebra and
Probabilistic Methods (PAPM-PROBMIV 2001), Vol. 2165 of Lecture Notes in
Computer Science, Springer, 2001, pp. 23–38.

[69] M. Kwiatkowska, G. Norman, D. Parker, Probabilistic symbolic model checking
with PRISM: A hybrid approach, in: J.-P. Katoen, P. Stevens (Eds.), Proc. 8th
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’02), Vol. 2280 of LNCS, Springer, 2002, pp. 52–
66.

[70] P. D’Argenio, B. Jeannet, H. Jensen, K. Larsen, Reachability Analysis of
Probabilistic Systems by Successive Refinements, in: L. de Alfaro, S. Gilmore
(Eds.), Process Algebra and Probabilistic Methods. Joint Int. Workshop PAPM-
PROBMIV 2001, Springer, LNCS 2165, 2001, pp. 39–56.

59

