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Abstract. Stochastic process algebra have been proven useful because

they allow behaviour-oriented performance and reliability modelling. As

opposed to traditional performance modelling techniques, the behaviour-

oriented style supports composition and abstraction in a natural way.

However, analysis of stochastic process algebra models is state-oriented,

because standard numerical analysis is typically based on the calculation

of (transient and steady) state probabilities. This shift of paradigms ham-

pers the acceptance of the process algebraic approach by performance

modellers. In this paper, we develop an entirely behaviour-oriented anal-

ysis technique for stochastic process algebra. The key contribution is an

action-based temporal logic to describe behaviours-of-interest, together

with a model checking algorithm to derive the probability with which a

stochastic process algebra model exhibits a given behaviour-of-interest.

1 Introduction

The analysis of systems with respect to their performance is a crucial aspect in

the design cycle of concurrent information systems. Although huge e�orts are

often made to analyse and tune system performance, these e�orts are usually iso-

lated from contemporary hardware and software design methodology [15, 18, 28].

This insularity of performance analysis has numerous drawbacks. Most severe,

it is unclear how to incorporate performance analysis into the early stages of a

design, where substantial changes are still not too costly. In these design stages,

system models are nowadays developed by means of semi-formal methods such

as UML or SDL.

In order to overcome the insularity problem, there is a growing tendency towards

the integration of performance modelling and analysis into (semi-)formal meth-

ods, such as Petri nets [1], process algebra [21], or SDL [12]. This integration has

potential bene�ts for the application of both formal methods and performance

analysis: Using a formal method, performance models of interest are readily
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available for analysis. Conversely, the availability of quantitative insight into a

design clearly adds extra value to a formal design.

Process algebra is an inuential approach to the modelling of concurrent sys-

tems using formal methods. Developed in the 80ies, process algebra is radi-

cally behaviour-oriented. Systems are modelled by describing the possible be-

haviours they can exhibit to the external environment. This approach led to

powerful composition operators as means to compose behaviours hierarchically.

The behaviour-oriented approach also enables one to employ abstraction mech-

anisms to compress behaviours to only those fragments relevant in a speci�c

environment.

In a behaviour-oriented setting, the notion of a state is an auxiliary one. To iden-

tify a state is of no importance, since a state is completely characterized by the

behaviour it exhibits. As a consequence, states exhibiting the same behaviour are

considered to be indistinguishable, and hence are (or can be) collapsed to just a

single state, using an appropriate notion of equivalence (such as bisimulation).

During the last decade, stochastic process algebra (SPA) has emerged as a

promising way to carry out compositional performance and reliability modelling,

mostly on the basis of continuous-time Markov chains (CTMCs) [21]. Following

the same philosophy as ordinary process algebra, the stochastic behaviour of a

system is described as the composition of the stochastic behaviours of its com-

ponents.

However, all standard analysis algorithms for stochastic models are purely state-

based. They compute interesting information about the model on the basis of

state probabilities derived by either transient or steady-state analysis [35]. As

a consequence, there is a disturbing shift of paradigms when it comes to the

analysis of stochastic process algebra models: While the model is speci�ed in

a behaviour-oriented style, the performance properties-of-interest are de�ned in

terms of states, on a very di�erent level of abstraction. This shift of paradigms

clearly hampers the acceptance of the SPA approach to performance modellers.

In the context of model checking of ordinary (i.e. non-stochastic) process algebra

models, a similar mismatch has been attacked successfully. Model checking is a

successful technique to establish the correctness of a given model, relative to a

set of temporal logic properties which the model should satisfy [9, 10]. The most

e�cient model checkers use the logics LTL or CTL. Though di�erent in nature,

both logics are state-oriented, their basic building blocks are state propositions.

So, at �rst sight they do not �t well to a behaviour-based formalism.

To import the success of model checking to behaviour-oriented formalisms, de

Nicola and Vaandrager have pioneered the development of an action-based vari-

ant ofCTL, called aCTL [33, 34]

2

. aCTL is behaviour-oriented, yet it naturally

corresponds to CTL. In particular, [33, 34] provide a translation from aCTL

to CTL that allows one to perform (behaviour-oriented) aCTL model checking
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The logic aCTL should not be confused with the logic ACTL, the restriction of

CTL to universal path quanti�ers.



by means of a (state-oriented) CTL model checker (on a transformed model)

with only linear overhead. (It should however be noted that direct aCTL model

checkers are more popular by now [14, 32].)

In this paper, we develop a behaviour-oriented analysis technique for CTMCs,

and hence for the SPA approach modelling and analysis become entirely

behaviour-oriented. This is the central contribution of the paper. Our analy-

sis complements behaviour-oriented CTMC modelling with SPA in the same

sense as De Nicola and Vaandrager's work complements ordinary process alge-

braic modelling.

We develop an action-based, branching-time stochastic logic, called aCSL

(action-based Continuous Stochastic Logic), that is strongly inspired by CSL,

the continuous stochastic logic �rst proposed in [2] and further re�ned in [5, 3].

Similar to CSL, aCSL provides means to reason about CTMCs, but opposed to

CSL, it is not state-oriented. Its basic constructors are sets of actions, instead

of atomic state propositions. The logic provides means to specify temporal and

timed properties, and means to quantify their probability. aCSL allows one to

specify properties such as \there is at least a 30% chance that action SEND will

be observed within at most 4 time units". After de�ning syntax and semantics,

we develop a dedicated model-checking algorithm for aCSL. As an application

example, we study behaviour-oriented performance and reliability properties of a

multiprocessor mainframe example taken from [23]. Furthermore, we show that

Markovian bisimulation, an equivalence notion that can be used to compress

SPA speci�cations compositionally, preserves aCSL-formulas. This property is

exploited in our case study.

For e�ciency reasons, our model checking algorithm is not based on a transla-

tion from aCSL to CSL. Instead, it checks aCSL properties directly. A transla-

tional approach would allow one to use a state-based CSL model checker (such

as E T MC

2

[24]), but with an increase of the state space. We briey sketch the

translation from aCSL to CSL, which is inspired by Emerson and Lei [13], and

discuss why the linear translation in the style of Nicola and Vaandrager [33, 34]

fails in the stochastic setting.

The paper is organised as follows. Section 2 introduces action-labelled Markov

chains, the basic model considered in this paper. In Section 3, we de�ne syntax

and semantics of aCSL, derive a number of convenient operators, and discuss

Markovian bisimulation. Section 4 focuses on model checking of aCSL. Sec-

tion 5 studies aCSL-properties of the multiprocessor example, while Section 6

briey discusses the translational approach to model checking aCSL. Section 7

concludes the paper.



2 Action-labelled Markov chains

The operational semantics of purely

3

Markovian process algebra such as

TIPP [16], PEPA [29] and (the core of) EMPA [7] is de�ned in terms of la-

belled transition systems where transitions are labelled with pairs of actions and

rates. In this section we briey recall this notion and de�ne some notations that

are convenient for our purpose.

Action-labelled Markov chains. Let Act denote a set of actions, ranged over

by a; b. We will use A;B as subsets of Act and adopt the convention that for

singleton sets curly brackets are omitted; i.e., we write a for f a g.

De�nition1. An action-labelled Markov chain (AMC)M is a triple (S;A; �! )

where S is a set of states, A � Act is a set of actions, and �! � S�(A�IR

>0

)�S

is the transition relation.

Throughout this paper we assume that any AMC is �nite, i.e., has a �nite number

of states and is �nitely branching. Transition s

a;�

���! s

0

denotes that the system

can move from state s to s

0

while o�ering action a after a delay determined by

an exponential distribution with rate �. We use the following notations:

R

A

(s; s

0

) =

X

a2A

f� j s

a;�

���! s

0

g

E(s) =

X

s

0

2S

R

Act

(s; s

0

)

P

A

(s; s

0

) = R

A

(s; s

0

)=E(s):

Stated in words, R

A

(s; s

0

) denotes the cumulative rate of moving from state

s to s

0

while o�ering some action from A, E(s) denotes the total rate with

which some transition emanating from s is taken, and �nally, P

A

(s; s

0

) is the

probability of moving from state s to s

0

by o�ering an action in A. For absorbing

s, E(s) = 0 and P

A

(s; s

0

) = 0 for any state s

0

and any set A. Further note that

R

?

(s; s

0

) = P

?

(s; s

0

) = 0 for any states s; s

0

.

Paths. An in�nite path � is a sequence s

0

a

0

;t

0

����! s

1

a

1

;t

1

����! s

2

a

2

;t

2

����! : : : with for

i 2 IN , s

i

2 S, a

i

2 Act and t

i

2 IR

>0

such that R

a

i

(s

i

; s

i+1

) > 0. For i 2 IN

let �[i] = s

i

, the (i+1)-st state of �, and �(�; i) = t

i

, the time spent in s

i

. For

t 2 IR

>0

and i the smallest index with t 6

P

i

j=0

t

j

let �@t = �[i], the state in

� at time t.

A �nite path � is a sequence s

0

a

0

;t

0

����! s

1

a

1

;t

1

����! s

2

: : : s

l�1

a

l�1

;t

l�1

�������! s

l

where s

l

is absorbing, and R(s

i

; s

i+1

) > 0 for all i < l.

For �nite �, �[i] and �(�; i) are only de�ned for i 6 l; they are de�ned as above

for i < l, and �(�; l) = 1. For t >

P

l�1

j=0

t

j

let �@t = s

l

; otherwise, �@t is as

above.

3

We call a stochastic process algebra purely Markovian if the delay of any action is

governed by an exponential distribution.



We denote �[i]

A

��!�[i+1] whenever �[i] can move to �[i+1] by performing some

action in A, i.e., if a

i

2 A. Note that �[i] 6

?

��! . Let Path(s) denote the set of

paths starting in s. A Borel space over Path(s) can be de�ned in a similar way

as in [5] and is omitted here.

3 An action-based continuous stochastic logic

This section describes the action-based stochastic logic aCSL which is inspired

by the action-based logic aCTL by De Nicola and Vaandrager [33] and the

stochastic logic CSL by Baier et al. [5], which in turn is based on the work of

Aziz et al. [2].

3.1 Syntax and semantics of aCSL

Syntax. For p 2 [0; 1] and ./ 2 f6; <;>; > g, the state-formulas of aCSL are

de�ned by the grammar

� ::= true

�

�

�

� ^ �

�

�

�

:�

�

�

�

S

./p

(�)

�

�

�

P

./p

(')

where path-formulas are de�ned for t 2 IR

>0

[ f1g by

' ::= �

A

U

<t

�

�

�

�

�

A

U

<t

B

�:

Note that atomic propositions are absent. The boolean connectives such as _ and

) are derived in the obvious way. The probabilistic operator P

./p

(:) replaces

the CTL path quanti�ers 9 and 8 that can be re-invented | up to fairness [6]

| as the extremal probabilities P

>0

(:) and P

>1

(:). The state formulas are di-

rectly adopted from CSL: S

./p

(�) asserts that the steady-state probability for

a �-state meets the bound ./ p and P

./p

(') asserts that the probability measure

of the paths satisfying ' meets the bound ./ p.

The path-formula �

1 A

U

<t

�

2

is ful�lled by a path if a �

2

-state is eventually

reached via visiting only �

1

-states before, while taking only A-transitions; be-

sides, going from the beginning of the path until reaching the �

2

-state should

last at most t time units. The formula �

1 A

U

<t

B

�

2

requires in addition that

(i) a move to a �

2

-state is actually made and that (ii) this transition is la-

belled by some action in B. We remark the following. Due to the fact that the

�

2

-state must be reached via a B-transition, the formula �

1 A

U

<t

B

�

2

is invalid

in a (:�

1

^ �

2

)-state s: although the state satis�es �

2

, it is not able to move

from a �

1

-state to a �

2

-state via a B-transition as it does not ful�ll �

1

. The

formula �

1 A

U

<t

�

2

is, however, valid in state s, since for the validity of this for-

mula it is not required that a transition into a �

2

-state is made. Thus, whereas

for �

1 A

U

<t

�

2

it su�ces to currently be in a �

2

-state, this is not the case for



�

1 A

U

<t

B

�

2

.

4

The major di�erences with a `standard' until-formula �

1

U �

2

of linear and

branching temporal logics are that restrictions are put on (i) the action labels

of transitions to be taken and on (ii) the amount of time that is needed to reach

a �

2

-state. This can be made precise in the following way:

�

1

U �

2

= �

1 Act

U

<1

�

2

:

In the sequel, we use �

1 A

U

B

�

2

as an abbreviation of �

1 A

U

<1

B

�

2

and

�

1 A

U �

2

as an abbreviation of �

1 A

U

<1

�

2

. These are the untimed versions

of the until-operators

A

U

<t

B

and

A

U

<t

.

An interesting aspect of aCSL is that the following set of next-operators are all

derived operators:

X

<t

A

� = true

?

U

<t

A

�

X

A

� = X

<1

A

�

X � = X

Act

�:

The formula X

<t

A

� asserts that from the current state an A-transition can be

made to a �-state before time t. Remark that the �-state must be reached by

the �rst transition, as | due to the empty set of actions | further transitions

are disallowed. X

A

is the action-labelled next-operator from aCTL, whereas X

is the traditional state-based next-operator.

Note 2. In our logic, the next operator is derived from the until-operator. In

aCTL the reverse holds [33]. This stems from the special treatment of inter-

nal, i.e., � -labelled, transitions in aCTL. For instance in aCTL, X

?

� allows

to reach a �-state by an internal transition (but not any other). In our setting,

internal transitions are treated as any other transition, and accordingly, X

?

� is

invalid for any state. We have made this di�erence deliberately: whereas aCTL

is aimed to characterize branching bisimulation { a slight variant of weak bisimu-

lation equivalence { we focus on characterizing a strong equivalence like lumping

equivalence (since exact weak equivalences on AMCs cannot be obtained [21]).

The temporal operator 3 and its variants are derived in the following way:

A

3

<t

� = true

A

U

<t

�

A

3 � =

A

3

<1

�

3

<t

� =

Act

3

<t

�

4

If we enlarged the set of path-formulas such that conjunction and negation of path-

formulas is allowed (in a similar way as for CTL

�

), the relationship between

A

U

<t

B

and

A

U

<t

could be made precise as follows:

�

1 A

U

<t

�

2

= �

2

_ (�

1 A

U

<t

A

�

2

):



A path ful�lls

A

3

<t

� if it reaches a �-state within t time units by only per-

forming A-actions. Formulas

A

3 � and 3

<t

� denote the generalisations to in-

�nite time and arbitrary actions. Their combination, 3 �, corresponds to the

well-known \eventually" operator. An even more discerning 3-operator can be

de�ned by

A

3

<t

B

� = true

A

U

<t

B

� and

A

3

B

� =

A

3

<1

B

�

Here, the path leading to the �-state consists of an arbitrary number of A-

actions, followed by a single B-action. Dual to these 3-operators is the set of

2-operators, of which we only mention the following:

P

./p

(

A

2

<t

�) = :P

./p

(

A

3

<t

:�) and P

./p

�

A

2

<t

B

�

�

= :P

./p

�

A

3

<t

B

:�

�

with the obvious generalisations to in�nite time and/or arbitrary sets of actions.

Finally, existential and universal quanti�cation are introduced as

9' = P

>0

(') and 8' = P

>1

(')

Note that by this de�nition formula 8' holds even if there exists a path that

does not satisfy ', if that path has zero probability mass.

We consider the modal operators from Hennessy-Milner logic [19] and the �-

calculus [30] as derived operators. They are obtained as follows:

hAi� = P

>0

(X

A

�) and [A]� = :hAi :�:

The modal operator hAi� states that there is someA-transition from the current

state to a �-state, whereas [A]� states that for allA-transitions from the current

state a �-state is reached.

Note 3. The modal operator hai

p

� from the probabilistic modal logic PML [31]

cannot be obtained as a derived operator in our setting. The state-formula hai

p

�

asserts that, given that an a-transition happens, the probability of moving to

a �-state is at least p. This interpretation �ts well to the reactive probabilistic

setting used in [31] in which over each set of equally labelled transitions a discrete

probability space is de�ned. Since we consider a generative setting | having a

discrete probability space over all, possibly di�erent labelled, transitions | the

probability in a formula like hai

p

� is relative to all transitions, and not just the

ones labelled with a. In the continuous variant of PML [8] a similar approach

as in [31] is taken, and a reactive interpretation is used.

Semantics.The aCSL state-formulas are interpreted over the states of an AMC

(S;A; �! ). Let Sat(�) = f s 2 S j s j= � g.

s j= true for all s 2 S

s j= :� i� s 6j= �

s j= �

1

^ �

2

i� s j= �

i

; for i=1; 2

s j= S

./p

(�) i� �(s; Sat(�)) ./ p

s j= P

./p

(') i� Prob(s; ') ./ p



Here, �(s; S

0

) denotes the steady-state probability to be in a state of set S

0

when

starting in s. It is de�ned by means of a probability measure

5

Pr on the set of

paths Path(s) emanating from s.

�(s; S

0

) = lim

t!1

Prf� 2 Path(s) j �@t 2 S

0

g

Prob(s; ') denotes the probability measure of all paths satisfying ' given that

the system starts in state s, i.e.,

Prob(s; ') = Prf� 2 Path(s) j � j= ' g:

The fact that these sets are measurable follows by easy veri�cation from the

Borel space construction given in [5].

The meaning of the path-operators is de�ned by a satisfaction relation, also

denoted by j=, between a path and a path-formula. We de�ne: � j= �

1 A

U

<t

�

2

if and only if:

9k > 0:

�

�[k] j= �

2

^ (8i < k: �[i] j= �

1

^ �[i]

A

��!�[i+1]) ^ t >

P

k�1

i=0

�(�; i)

�

(1)

where we recall that �(�; i) denotes the sojourn time in state �[i]. Thus,

�

1 A

U

<t

�

2

is valid for a path if at some time instant before t a �

2

-state is

reached | assume this is the (k+1)-st state (for k > 0) in the path so far | by

visiting only �

1

-states, while taking only A-transitions along the entire path.

For the other until-formula we have: � j= �

1 A

U

<t

B

�

2

if and only if:

9k > 0:

�

�[k] j= �

2

^ (8i < k�1: �[i] j= �

1

^ �[i]

A

��!�[i+1])

^�[k�1] j= �

1

^ �[k�1]

B

��!�[k] ^ t >

P

k�1

i=0

�(�; i)

�

Note the subtle di�erence with (1): For �

1 A

U

<t

B

�

2

to be valid, there should

be a single transition leading to a �

2

-state labelled by some action in B.

It is left to the interested reader to check that s j= X

<t

A

� i�

�[1] j= � ^ �[0]

A

��!�[1] ^ t > �(�; 0):

This agrees with the intuitively expected semantics for X

<t

A

�.

5

The probability measure Pr is de�ned by means of a Borel space construction on

paths. We refer to [5] for a formal de�nition.



3.2 Markovian bisimulation

In this section, we show that aCSL is invariant under the application of Marko-

vian bisimulation.Markovian bisimulation, a variant of Larsen-Skou bisimulation

[31], is a congruence for the stochastic process algebras TIPP [16] and PEPA

[29]. In the context of process algebraic composition operators, a congruence

relation can be used to compress the state space of components before composi-

tion, in order to alleviate the state space explosion problem, under the condition

that the relation equates only components obeying the same properties. Hence

the question arises whether a Markovian bisimulation R can be applied to com-

press models (or model components) prior to model checking aCSL-formulas.

In general, this requires that the validity of aCSL-formulas is preserved when

moving from an AMCM to its quotient AMCM=R. We establish this property

in Theorem 5.

De�nition4. A Markovian bisimulation on M = (S;A; �! ) is an equivalence

R on S such that whenever (s; s

0

) 2 R then R

a

(s; C) = R

a

(s

0

; C) for all C 2

S=R and all a 2 Act. States s and s

0

are Markovian bisimilar i� there exists a

Markovian bisimulation R that contains (s; s

0

).

Here, S=R denotes the quotient space andR

a

(s; C) abbreviates

P

s

0

2C

R

a

(s; s

0

).

LetM=R be the AMC that results from building the quotient space ofM under

R, i.e.,M=R = (S=R;A; �! ). In the following we write j=

M

for the satisfaction

relation j= (on aCSL) on M.

Theorem5. Let R be a Markovian bisimulation on M and s a state in M.

Then:

(a) For all state-formulas �: s j=

M

� i� [s]

R

j=

M=R

�

(b) For all path-formulas ': Prob

M

(s; ') = Prob

M=R

([s]

R

; ').

In particular, Markovian bisimilar states satisfy the same aCSL formulas.

In the appendix, we sketch the proof of Theorem 5. The detailed proof can be

found in [25]. This result allows to verify aCSL-formulas on the potentially much

smaller AMCM=R rather than on M. The quotient with respect to Markovian

bisimilarity can be computed by a modi�ed version of the partition re�nement

algorithm for ordinary bisimulation without an increase in complexity [26]. In

addition, due to the congruence property of Markovian bisimularity on TIPP

and PEPA, a speci�cation can be reduced in a compositional way, thus avoiding

the need to model check the (possibly very large) state space S. This feature is

exploited in the case study discussed in Section 5.

4 Model checking aCSL

The general strategy for model checking aCSL proceeds in the standard way: For

a given state formula �, the algorithm recursively computes the sets of states



satisfying the sub-formulas of �, and constructs from them the set of states

satisfying �. For boolean connectives, the strategy is obvious. Model checking

steady-state properties S

./p

(�) involves solving linear systems of equations, af-

ter determining (bottom) strongly connected components, exactly as in the CSL

context [5].

Model checking the probabilistic quanti�er P

./p

(') is the crucial di�culty. It

relies on the following characterizations of Prob(s; '). We discuss the character-

izations by structural induction over '. For the sake of simplicity, we �rst treat

the simple untimed until-formulas.

Untimed until. For ' = �

1 A

U �

2

we have that Prob(s; ') is given by the

following equations: Prob(s; ') = 1 if s j= �

2

,

X

s

0

2S

P

A

(s; s

0

) � Prob(s

0

; ')

if s j= �

1

^ :�

2

, and 0 otherwise. For A = Act we obtain the equation for

standard until as for DTMCs [17].

Let ' = �

1 A

U

B

�

2

. For s 6j= �

1

, the formula is invalid. As for s j= �

1

the

situation is more involved let us, for the sake of simplicity, assume that A and

B are disjoint, i.e. A \ B = ?. Then the only interesting possibilities starting

from s are (i) to directly move to a �

2

-state via a B-transition, in which case the

formula ' is satis�ed with probability 1, or (ii) to take an A-transition leading

to �

1

-state s

0

which satis�es ' with probability Prob(s

0

; '). Accordingly, for

A \B = ?, Prob(s; ') can be characterized by:

X

s

0

j=�

2

P

B

(s; s

0

) +

X

s

0

j=�

1

P

A

(s; s

0

) � Prob(s

0

; '): (2)

In the general case we have to take into account that A and B may not be

disjoint. Equation (2) does not apply now, since an (A \ B)-transition into a

state that satis�es both �

1

and �

2

is \counted" twice. We therefore obtain that

Prob(s; ') is the least solution of the following set of equations:

X

s

0

j=�

2

P

B

(s; s

0

) +

X

s

0

j=�

1

P

A

(s; s

0

) � Prob(s

0

; ')�

X

s

0

j=�

1

^�

2

P

A\B

(s; s

0

) � Prob(s

0

; ')

if s j= �

1

, and 0 otherwise. Note that

Prob(s;X

B

�) = Prob(s; true

?

U

B

�) =

X

s

0

j=�

P

B

(s; s

0

)

which coincides, for B = Act, with the characterization of next for DTMCs [17].

Thus, the probability that s satis�es X

B

� equals the sum of the probabilities

to move to a �-state via a single B-transition. The reader is also invited to

check that for B = ? there is no state that satis�es �

1 A

U

B

�

2

with positive

probability.



Timed until. For ' = �

1 A

U

<t

�

2

we have that Prob(s; ') is the least solution

of the following set of equations: Prob(s; ') = 1 if s j= �

2

, and

Z

t

0

e

�E(s)�x

�

X

s

0

2S

R

A

(s; s

0

) � Prob(s

0

; �

1 A

U

<t�x

�

2

) dx

if s j= �

1

^:�

2

, and 0 otherwise. For state s satisfying �

1

^ :�

2

, the probability

of reaching a �

2

-state within t time units from s equals the probability of reaching

some direct successor s

0

of s within x time units, multiplied by the probability of

reaching a �

2

-state from s

0

within the remaining time t�x. Since there may be

di�erent paths from s to �

2

-states, the sum is taken over all these possibilities.

(Note that by taking t =1 we obtain, after some straight-forward calculations,

the characterisation for untimed until

A

U given before).

For ' = �

1 A

U

<t

B

�

2

we have that Prob(s; ') is the least solution of the following

set of equations:

Z

t

0

e

�E(s)�x

�

0

@

X

s

0

j=�

2

R

B

(s; s

0

) +

X

s

0

j=�

1

R

A

(s; s

0

) � Prob(s

0

; �

1A

U

<t�x

B

�

2

)

�

X

s

0

j=�

1

^�

2

R

A\B

(s; s

0

) � Prob(s

0

; �

1 A

U

<t�x

B

�

2

)

1

A

dx

if s j= �

1

, and 0 otherwise. This characterization can be justi�ed in the same

way as for its untimed counterpart, i.e., �

1 A

U

B

�

2

, given the above explanation

for the simpler timed until variant. Let us consider what this yields for X

<t

B

�:

Prob(s;X

<t

B

�) = Prob(s; true

?

U

<t

B

�) =

Z

t

0

e

�E(s)�x

�

X

s

0

j=�

R

B

(s; s

0

)

which, after some straight-forward calculations, leads to

X

s

0

j=�

P

B

(s; s

0

) �

�

1� e

�E(s)�t

�

:

The �rst term of the product denotes the discrete probability to move via a sin-

gle B-transition to a �-state, whereas the second term denotes the probability

to leave state s within t time units.

This equational characterization allows one to model check aCSL formulas

by means of approximate numerical techniques. The concrete implementation

closely follows the one for CSL outlined in [5] and implemented in [24]. We are

currently investigating whether the solution of the above integral equations can

be reduced to standard transient analysis via uniformisation, as in [3].



5 Case study: multiprocessor mainframe with software

failures

We consider a multiprocessor mainframe which was �rst introduced in [27] and

has since then served as a standard SPA example, see e.g. [23, 11]. Here we only

briey repeat the main features of the model.

5.1 Speci�cation of multiprocessor mainframe

The multiprocessor mainframe serves two purposes: It has to process database

transactions submitted by users, and it provides computing capacity to program-

mers maintaining the database. The system is subject to software failures which

are modelled as special jobs. On the top level, the system is composed of two

processes (cf. Fig. 1).

System := Load j[putUserJob; putProgJob; fail]jMachine

Process Load represents the system load caused by the database users, the pro-

grammers and the failures. The mainframe itself is modelled by the Machine

process. The three di�erent system load components are modelled as so-called

Machine

finishUserJob

finishProgJob

Load

Load

Load

Load

level change c

R

Q

P

3

putProgJob

putUserJob

highest priority

lowest priority

Failure

User

Programmer

P

1

P

2

P

4

fail

getProgJob

getUserJob

Fig. 1. Mainframe model structure

Markov modulated Poisson processes, see [27]. The intensity of the load alters

between di�erent levels. To realize a synchronous change of load level, a syn-

chronizing action c is used.

Load := ProgLoad j[c]jUserLoad j[c]jFailLoad

The Machine component consists of two �nite queues and four identical proces-

sors. The queues bu�er incoming jobs. They are controlled by a priority mecha-

nism to ensure that programmer jobs have the lowest priority, while failures have



the highest priority. The priority mechanism is realised by appropriate synchro-

nisation of the queue processes. For instance, process Q can only deliver a job

to a processor if queue R is empty and no failure is present. Furthermore, the

insertion of new jobs into the system is prohibited once a failure has occured,

until the system is repaired.

Each of the four processors executes user or programmer jobs waiting in the

respective queues, unless a failure occurs. As failures have preemptive priority

over the other two job classes, all processors stop working once action fail has

occured and then wait until the system will recover (via action repair).

5.2 Properties of interest

This section contains some example properties which are of interest for the mul-

tiprocessor mainframe model. For each property, a description in plain English,

its aCSL formulation and some explanation are given. We �rst introduce some

purely functional requirements to ensure that the priority mechanism is prop-

erly realised by the model. Then we turn to the performance and reliability

requirements which the system should satisfy. For A � Act we let A denote

ActnA. We use the following sets of actions: Get := fgetUserJob; getProgJobg,

Put := fputUserJob; putProgJobg, Fin := ffinishUserJob; finishProgJobg

and FailRep := ffail; repairg. We omit brackets for singleton sets.

�

1

: If there are user jobs waiting, the processors will not start programmer jobs.

�

UserJobWaiting

) :hgetProgJobi true

where �

UserJobWaiting

is de�ned by 9 (

putUserJob

3

getUserJob

true), charac-

terizing at least one user job waiting in the queue.

�

2

: Whenever a failure occurs, no jobs can be inserted into the queues until the

system is repaired.

[fail] 8 (

Put

3

repair

true)

�

3

: Whenever a failure occurs, the processors will be blocked until the system

is repaired.

[fail] 8 (

Get[Fin

3

repair

true)

�

4

: After a repair, both queues are empty.

[repair] ( : �

UserJobWaiting

^ : �

ProgJobWaiting

)

where �

ProgJobWaiting

characterizes at least one waiting programming job,

de�ned in a similar way as �

UserJobWaiting

. This is an example of a property

which is not true, since a failure does not cause the queues to be ushed.

�

5

: In steady state, the probability of low priority programming jobs having to

wait because of user jobs being served is smaller than 0.01.

S

<0:01

(hfinishUserJobitrue ^ �

ProgJobWaiting

)



�

6

: At least two processors are occupied by user jobs.

hfinishUserJobi hfinishUserJobi true

�

7

: In steady state, the probability that at least two processors are occupied by

user jobs is greater than 0.002.

S

>0:002

(�

6

)

�

8

: There is at least a 30% chance that some job will be �nished within at most

4 time units.

P

>0:3

�

Fin

3

<4

Fin

true

�

�

9

: In steady state, the probability of the system being unavailable (i.e. waiting

for repair) is at most 0.05.

S

60:05

�

9(

FailRep

3

repair

true)

�

�

10

: After a system failure, there is a chance of more than 90% that it will come

up again within the next 5 time units.

[fail] P

>0:9

�

repair

3

<5

repair

true

�

The fact that the above property holds for all states can be expressed by 8 2 �

10

.

Slightly weaker, one might require the above property to hold on the long run,

formulated as S

>1

(�

10

).

5.3 Veri�cation results

In this section we report on our experience with the veri�cation of the above

properties. The results have been obtained by means of a trial implementation,

basically an extension of the model checker E T MC

2

[24]. The implementation

does not yet support the full logic aCSL, therefore property �

8

has not been

checked.

For the properties listed in the previous section we present the veri�cation run-

times in Table 1. We checked three models: A small model with 4 (2) programmer

(user) bu�er places, an intermediate model with 10 (4) programmer (user) bu�er

places and a large model with 40 (10) programmer (user) bu�er places. The small

model has 3690 states and 24009 transitions, the intermediate model has 13530

states and 91069 transitions and the large model has 110946 states and 761989

transitions. However, we did not perform model checking on the original models

but on models with compressed state spaces which we gained through the ap-

plication of Markovian bisimilarity (in the example multiprocessor system, the

main potential for reduction stems from the symmetry of the four identical pro-

cessors). By Theorem 5, the compressed models satisfy the same properties as

the original ones. After bisimilarity compression, the small model has 720 states

and 3219 transitions, the intermediate model has 2640 states and 12295 transi-

tions and the large model has 21648 states and 103471 transitions. All steady

state properties given in the table were double checked with TIPPtool [22].



states (original) 3690 13530 110946

(compressed) 720 2640 21648

property veri�cation runtimes (in seconds)

�

1

0.012 0.037 0.268

�

2

0.008 0.049 0.864

�

3

0.008 0.039 0.319

�

4

0.003 0.005 0.036

�

5

0.642 2.371 18.750

�

6

0.001 0.002 0.014

�

7

0.558 2.122 18.814

�

9

0.554 2.009 18.819

�

10

2.557 11.404 92.324

Table 1. Veri�cation runtimes

6 On translating aCSL to CSL

The design of aCSL closely follows the work of De Nicola and Vaandrager on

aCTL [33]. For what concerns model checking, they propose a translation K

from aCTL into CTL, and a transformation (also denoted K) from action-

labelled to state-labelled transition systems in such a way that for an arbitrary

aCTL formula � and arbitrary action-labelled transition system M (with the

obvious notation):

s j=

M;aCTL

� i� K(s) j=

K(M);CTL

K(�) (3)

In this way, aCTL model checking can be reduced to CTL model checking,

by checking a translated formula K(�) on a transformed model K(M). The

bypass via K blows up the model and the formula, but only by a factor of 2,

whence it follows that model checking aCTL has the same worst case (space

and time) complexity as CTL. The key idea of this transformation is to break

each transition of M in two, connected by a new auxiliary state. The new state

is labelled with the action label of the original transition, playing the role of

an atomic state proposition. (The original source and target states are labelled

with a distinguished symbol ?). Formula � is manipulated by K in such a way

that starting from some state K(s) essentially all the labellings of original states

(?) do not matter, while the ones of auxiliary states do. Unfortunately, this

approach does not carry over to the Markov chain setting, because splitting a

Markovian transition in two implies splitting an exponential distribution in two.

However, no sequence of two exponential distribution agrees with an exponential



distribution. Since aCSL is powerful enough to detect di�erences in transient

probabilities, this approach is infeasible.

Even though a translation in the style of De Nicola and Vaandrager does not

allow one to reduce aCSL to CSL, this does not imply that such a reduction

is generally infeasible. For the sake of completeness, we remark that it is indeed

possible to reduce model checking aCSL to model checking (slight variants of)

CSL. We briey sketch two possibilities:

b; �

a; �c; �

�

�

�

�

�

�

� �

�

�

��

� �

c; �

(s

2

; c)

(s

1

; c)
(s

1

;?)

s

2

s

1

s

3

(s

3

;?)

(s

3

; b)

(s

2

; a)

(s

2

;?)

s

3

s

1

s

2

fcgfcg fag

fbg

fag

f?g

fcg

f?g

f?g

f?g

fcg

f?g

f?g

fbg

Fig. 2. Transformation example from AMC (left) to IMC (middle) and SMC (right)

{ Apply the transformation of [33] and map AMCs to interactive Markov

chains (IMC) [20]. This transformation is exempli�ed in Figure 2 (from left

to middle), where state labellings appear as sets, and dashed transitions are

supposed to be immediate. In general, IMC allow for nondeterminism, but

this phenomenon is not introduced by the translation. Therefore, the model

checking algorithm of [5] can be lifted to this subset of IMC.

{ Transform AMCs to state-labelled CTMCs (SMC), using a transformation

inspired by Emerson and Lei [13]. The main idea is to split each state into

a number of duplicates, given by the number of di�erent incoming actions

it possesses, and label each duplicate with a di�erent action, and distribute

the incoming transitions accordingly. (In order to track the �rst transition

delay correctly, one additional ?-labelled duplicate per state is needed.) To

give an intuitive idea, this transformation is depicted in Figure 2 (from left

to right). A mapping K from aCSL to a minor variant of CSL exists that

ensures s j=

M

� to hold if and only if (s;?) j=

K(M)

K(�) holds. (The

satisfaction relation j=

K(M)

on CSL requires a subtle { but straight-forward

to implement { modi�cation.) Details can be found in [25]. In the worst

case, the state space is blown up by a factor given by the maximal number

of distinct actions entering a state.



Notice that both translations sketched above require a small modi�cation of

the model checking algorithm for CSL [3, 5]. Furthermore, both approaches

induce a blow up of the model by a linear factor. To avoid these drawbacks,

we have decided to develop a direct model checking algorithm, as sketched in

Section 4. Remark that despite the aforementioned translations from aCTL to

CTL, dedicated model checkers for aCTL are more popular by now [14, 32].

7 Concluding remarks

This paper has introduced a behaviour-oriented analysis approach for Marko-

vian stochastic process algebra. From a conceptual as well as from a pragmatic

point of view, this approach closes a disturbing gap in the process algebraic ap-

proach to performance and dependability modelling. In particular, performance

engineers are no longer confronted with the need to switch from a behaviour-

oriented to a state-oriented view when it comes to model analysis.

The behaviour-oriented modelling and analysis approach outlined in this paper

has four ingredients: (1) A standard stochastic process algebra (such as TIPP,

PEPA, EMPA) is used to model the system under consideration as an action-

labelled CTMC. (2) The action-based logic aCSL serves as a powerful means

to specify properties of interest. (3) A model checking algorithm decides which

properties are satis�ed by the Markov chain model. (4) Since Markovian bisim-

ilarity preserves aCSL properties, it can be used to compress the model (or

the model components, due to the congruence property for TIPP and PEPA)

before model checking. We have illustrated all four ingredients by means of the

multiprocessor mainframe case study.

PML

�

[8], the continuous-time variant of PML [31], is another logic on action-

labelled CTMCs. PML

�

and aCSL are incomparable, because PML

�

takes a

reactive point of view, while our view is generative (see Note 3). PML

�

is not

considered in the context of model checking, instead it serves as the foundation

of a formalism to assign rewards to states, i.e., to construct Markov reward mod-

els. The thus obtained models are then analyzed with standard (steady-state)

numerical analysis. PML

�

does neither provide means to quantify probability

nor to reason about time intervals.

For the future, we intend to study to what extent aCSL can be extended to-

wards the analysis of Markov reward models. In the state-based setting, we have

recently developed a continuous reward logic (CRL) that allows bounds on re-

wards to be checked, and naturally combines with CSL [4].

Acknowledgements. The authors are grateful to Lennard Kerber, Frits Vaan-

drager and Moshe Vardi for highly valuable discussions.
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A Appendix: Sketch of the proof of Theorem 5

In order to verify Theorem 5(a), we prove that (u; v) 2 R implies 8�:(u j=

M

� i�

v j=

M

�). We do so by structural induction on �. The only non-trivial cases are that

� is of the form S

./p

(	), or P

./p

('). In the former case, S

./p

(	), we use the induction

hypothesis, the fact that Markovian bisimulation implies lumpability, and that lumpa-

bility ensures that steady-state probabilities can be obtained from the lumped quotient

Markov chain [21]. In the latter case, P

./p

('), we can apply Theorem 5(b), together

with the induction hypothesis. So, only Theorem 5(b) remains to be veri�ed. For this

purpose, it is su�cient to show that (u; v) 2 R implies

Prf� 2 Path(u) j � j= ' g = Prf� 2 Path(v) j � j= ' g

We have to distinguish two cases, ' = �

1 A

U

<t

B

�

2

and ' = �

1 A

U

<t

�

2

. Only the

�rst of them is elaborated below. The other case proceeds in a similar, but simpler,



way. For n > 1 and t > 0 we de�ne the set of paths A

u

n

(t) as

A

u

n

(t) = f � 2 Path(u) j �[n] j= �

2

^ 8 0 6 i < n: �[i] j= �

1

^ 8 0 6 i < n � 1: �[i]

A

��! �[i + 1]

^ �[n � 1]

B

��! �[n]

^

P

n�1

i=0

�(�; i) < t g

(observe the similarity to the semantics of �

1 A

U

<t

B

�

2

) and the set of paths B

u

i

(t)

for i > 1 by B

u

1

(t) = A

u

1

(t), and B

u

n+1

(t) = A

u

n+1

(t) n

S

n

i=1

B

u

i

(t). Intuitively, A

u

n

(t) is

the set of paths starting in u and reaching a �

2

-state within t time units in n steps,

where the �rst n� 1 steps are A-transitions and the last step is a B-transition. B

u

n

(t)

denotes the subset of A

u

n

(t) consisting of paths that reach a �

2

-state in n steps without

performing an A \ B-transition to a �

2

-state in the previous steps.

Note that B

u

i

(t), B

u

j

(t) are pairwise disjoint (for i 6= j). By exploiting the fact that

f � 2 Path(u) j � j= �

1 A

U

<t

B

�

2

g =

S

n>1

B

u

n

(t), we obtain:

Prf � 2 Path(u) j � j= �

1 A

U

<t

B

�

2

g =

1

X

i=1

Prf� 2 B

u

i

(t) g:

Hence, it is su�cient to show that for arbitrary t > 0,

1

X

i=1

Prf� 2 B

u

i

(t) g =

1

X

i=1

Prf� 2 B

v

i

(t) g:

We �x some t > 0, and prove the above by showing the stronger property that for

all positive n, Prf� 2 B

u

n

(t) g = Prf � 2 B

v

n

(t) g. This proof proceeds by induction

on n, the length of the paths in B

u

n

(t) and B

v

n

(t). So, we perform a nested induction,

the (inner) induction on n is nested in the (outer) induction on the structure of the

formula �.

In the base case n = 1 of the inner induction, let us �rst assume u 6j= �

1

. But then

v 6j= �

1

(by the outer induction hypothesis) and hence Prf � 2 B

u

1

(t) g = 0 = Prf � 2

B

v

1

(t) g. If, conversely, u j= �

1

, we obtain v j= �

1

by the outer induction hypothesis,

and therefore

Prf � 2 B

u

1

(t) g =

P

wj=�

2

P

B

(u;w) �

�

1� e

�E(u)�t

�

=

P

C2MnR; Cj=�

2

P

w2C

P

B

(u;w) �

�

1� e

�E(u)�t

�

(�)

=

P

C2MnR; Cj=�

2

P

w2C

P

B

(v;w) �

�

1� e

�E(v)�t

�

=

P

wj=�

2

P

B

(v;w) �

�

1� e

�E(v)�t

�

=

Prf � 2 B

v

1

(t) g

Here, C j= �

2

denotes that all states in the equivalence class C satisfy �

2

, which we

can assume by the outer induction hypothesis. The transformation labelled (�) uses

that (u; v) 2 R implies

P

w2C

P

A

(u;w) =

P

w2C

P

A

(v;w), since C is the class of a

Markovian bisimulation.

To complete the inner induction we now assume that for arbitrary n > 1 we have that

Prf� 2 B

u

n

(t) g = Prf � 2 B

v

n

(t) g, and aim to show that this also holds for n+1. The



case u 6j= �

1

proceeds as above. The remaining case, u j= �

1

, leads to the following

transformation, using the same arguments as above.

Prf � 2 B

u

n+1

(t) g =

R

t

0

e

�E(u)�x

�

P

wj=�

1

R

A

(u;w)� Prf � 2 B

w

n

(t� x) g dx =

R

t

0

e

�E(u)�x

�

P

C2MnR; Cj=�

1

P

w2C

R

A

(u;w)� Prf � 2 B

w

n

(t� x) g dx

(�)

=

R

t

0

e

�E(v)�x

�

P

C2MnR; Cj=�

1

P

w2C

R

A

(v;w)� Prf � 2 B

w

n

(t� x) g dx =

R

t

0

e

�E(v)�x

�

P

wj=�

1

R

A

(v;w)� Prf � 2 B

w

n

(t� x) g dx =

Prf � 2 B

v

n+1

(t) g

This completes the proof sketch, details can be found in [25].

This article was processed using the L

A

T

E

X macro package with LLNCS style


