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Abstract

A method for analyzing the functional behavior and the performance of programs in distributed
systems is presented. We use hybrid monitoring, a technique which combines advantages of
both software monitoring and hardware monitoring. The paper contains a description of a
hardware monitor and a software package (ZM4/SIMPLE) which make our concepts available
to programmers, assisting them in debugging and tuning of their code. A short survey of related
monitor systems highlights the distinguishing features of our implementation. As an application
of our monitoring and evaluation system, the analysis of a parallel ray tracing program running
on the SUPRENUM multiprocessor is described. It is shown that monitoring and modeling both
rely on a common abstraction of a system’s dynamic behavior and therefore can be integrated
to one comprehensive methodology. This methodology is supported by a set of tools.
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1. Introduction

Users and operators of parallel and distributed systems often find it very difficult to exploit the
immense computing power at their disposal. Writing and debugging parallel programs which
use the underlying hardware in an efficient way proves to be a difficult task even for specialists.
There is typically not enough insight into the internals of the hardware, the system software and
their alternating effect with the user program. Bugs are hard to locate and tuning, which depends
on a detailed knowledge of such factors as idle times, race conditions or access conflicts, is often
not done systematically but by using ad-hoc methods. To analyze the functional behavior and the
performance of a parallel program it is not enough to employ standard methods such as profiling
and accounting. Sophisticated methods and tools are needed to handle these issues. Event-driven
monitoring is a technique well-suited for analyzing programs running on a parallel or distributed
system. It can be done by hardware, software or hybrid monitoring. We prefer hybrid monitoring
which combines advantages of both hardware monitoring and software monitoring.

We agree with Ferrari who argues that in the pdbe“study of performance evaluation as an
independent subject has sometimes caused researchers in the area to lose contact with reality
[Fer86]. Therefore we do not only wish to develop methods, but to implement tools that assist
users in writing real-world applications. We built a distributed hardware monitor (ZM4) which
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is scalable and can be adapted to arbitrary object systems (the system on which the program
under study is running). It has a high-precision global clock which allows to monitor several
nodes of the object system simultaneously, providing globally valid time stamps. Completely
independent of the monitor system ZM4 is the event trace analysis system SIMPLE, which
allows the evaluation of arbitrarily formatted event traces. SIMPLE is designed as a software
package which comprises independent tools that are all based on a new kind of event trace
access: the trace format is described in a trace description language (TDL) and evaluation tools
access the event trace through a standardized interface (POET).

The analysis of parallel programs is not limited to observing the program actually implemented
for an underlying distributed architecture. Many questions can be solved more easily and more
efficiently by setting up a model of the program and the machine, varying parameters in the
model to predict the performance of the program under various circumstances. There is a great
potential to integrate event-based models and event-driven monitoring since both methods are
based on the same abstraction of the dynamic behavior of the program undertbidyent
Integrating modeling and monitoring allows to define events systematically by using a model to
prepare the measurement. It allows to validate the model by comparing it to event traces of the
actual program, and finally the use of measured parameters makes models more realistic.

The paper is organized as follows: the tools, i.e. the hardware monitor ZM4 and the package
SIMPLE are described in section 2. This section also contains a brief survey of other monitor
systems which have been described in the literature. We then present a case study (section 3)
in which a parallel ray tracing program on the SUPRENUM multiprocessor is analyzed. We
show how our tools enabled us to detect unexpected behavior and program bottlenecks, which
helped to improve performance considerably. Current work on the integration of monitoring and
modeling is presented in section 4, which also includes some concluding remarks.

2. The ZM4/SIMPLE Monitoring Environment

The Relevance of Hybrid Monitoring. Event-driven monitoring represents the dynamic
behavior of a program by a sequence of events. Unlike time-driven monitoring, event-driven
monitoring is suitable for efficient program analysis, as the aim of monitoring is gaining
insight into the dynamic behavior of a parallel program [FSZ83]. Time-driven monitoring
(sampling) provides only summary statistical information about program execution and is
therefore insufficient for behavior analysis. Aswventis an atomic instantaneous action. The
definition of events depends on the monitoring technique used. There are three monitoring
techniques: hardware, software and hybrid monitoring. Usiagiware monitoring the event
definition and recognition can be difficult and complex. An event is defined as a bit pattern
on a processor bus or in a register. It is detected by the probes and detection circuitry of a
hardware monitor. In this case it is difficult to relate the recorded signals to the monitored
program, i.e. to find a problem-oriented reference. Usn@iwareor hybrid monitoring the

events are defined by inserting monitoring instructions at certain points in the program under
investigation program instrumentation These instructions write event tokens into a reserved
memory area of the monitored system (software monitoring), or to a hardware system interface
which is accessible for a hardware monitor (hybrid monitoring). In defining events by program
instrumentation, each monitored event token can be clearly assigned to a point in the program;
this provides a source-related reference. Thus, the evaluation of the event trace can be done on
the program level which is familiar to the program designer. As hybrid monitoring combines
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source-related event specification with a small interference on the object system’s behavior, it
is our favorite monitoring technique.

Whenever the monitor device recognizes an event, it stores a data record (a scevald
record. An event record contains the informatiarhat happenedvhenandwhereand consists

of at least arevent tokerand atime stamp The time stamp is generated by the monitor and
represents the acquisition time of the event record. Beside these fields, an event record can
contain optional fields describing additional aspects of the occurred event. The sequence of
events is stored as agwvent trace

It is strongly recommended to wisely restrict instrumentation to essentials. One reason is that
CPU time overhead increases with the number of events issued. The other reason is that a
problem should be analyzed on an adequate level of abstraction. Therefore instrumentation
should be limited to those events whose tracing is considered essential for an understanding of
the problems to be solved. An interesting approach to the limitation of program perturbation is
presented in [RAM92]. It is called adaptive instrumentation control and is used in the Pablo
performance analysis environment.

Monitoring is a great help when analyzing programs running in modern parallel or distributed
systems, but it is a task too complex to be done intuitively. Therefore monitoring and especially
program instrumentation should be carried out in a systematic way. This is discussed in depth
in section 4.1.

2.1. ZM4 — a Universal Distributed Monitor System
2.1.1 Demands and Conceptual Issues
A monitor system, universally adaptable to computer systems with more than one processor,
must fulfil several architectural demands. It must be able to
(a) deal with a large number of processors (nodes in the object system),
(b) cope with spatial distribution of the object nodes,
(c) be adaptable to different node architectures,
(d) supply a global view on all interesting events in the object system for showing causal
relationships between events in different nodes,
(e) provide a problem-oriented (source-related) view.
We have designed and implemented a universal distributed monitor system, called ZM4

(abbreviation for German “Zahlmonitor 47), which fulfils the demands (a) - (d). Its concepts
for meeting these challenges are:

(&) In order to deal with a large number of object nodes the monitor ZM4 Hdistrbuted
architecture scalable by allowing a@arbitrary number of monitor agents

(b) ZM4 interconnects the monitor agents by a local area network. Therefore, monitor agents
need not be spatially concentrated and can also maosptatially distributedobject systems.

(c) ZM4 is not dedicated to just one object system but can record events from arbitrary object
systems with arbitrary physical event representation.

(d) ZM4 has aglobal clock with an accuracy of 100 ns. This provides sufficient precision
for establishing a global view in any of today’s parallel and distributed systems.

(e) A problem-oriented view can be achieved by representing measured events and activities
by the identifiers familiar to the programmer.
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Issues (a) - (d) are dealt with in section 2.1.2, containing the description of the architecture of
ZM4 and its major component DPU. Issue (e) is rather a problem of object instrumentation than
of monitoring hardware. However, the ZM4 hardware monitor supports (e) by accepting a wide
variety of physical event formats.

The following considerations are important for the notiorgtafbal viewin distributed systems:
monitoring distributed systems or multiprocessors provides an event stream for each processor.
When processors are working on a common task, they have to exchange information, resulting in
an interdependence of their event streams. One concept to globally reveal all causal relationships
is to order events. It suffices to locally order the events of each processor and to globally
order events concerning interprocessor communication. Since local ordering is automatically
achieved if the events are recorded in the order of their occurrence, we can restrict the following
arguments to global ordering.

In systems communicating vimessage passing global ordering of the communication events

can be achieved by the inherent causality of Send- and Receive-operations [Lam78]. If
monitoring shall provide not only a functional sequence of correctly ordered events but also
performance, it is necessary to introduce time. Duda et al. describe a mechanism to estimate a
global time from local observations in systems communicating via message passing [DHHB87].

Systems communicating vishared variabledack this easy mechanism to globally order events

and to derive a global time. As the read-access to a shared variable can immediately follow the
(state-changing) write-access, two consecutive accesses to a shared variable must be ordered
correctly. Thus, only a monitor clock with a global resolution less than memory access
time allows to globally order communication events in systems with shared variables. As
these demands of time resolution exceed those for ordering Send/Receive-events by orders of
magnitude, a monitor using a clock with an accuracy less than memory access time can be
used universally.

2.1.2 Architecture of the Hardware Monitor System ZM4

The ZM4 monitor system is structured as a master/slave system witimteol and evaluation
computer(CEC) as the master and an arbitrary numbemaiitor agent{MA) as slaves (see

fig. 1). The distance between these MAs can be up to 1,000 meters. Conceptually, the CEC is
the host of the whole monitor system. It controls the measurement activities of the MAs, stores
the measured data and provides the user with a powerful and universal toolset for evaluation of
the measured data, which is described in section 2.2.

The MAs are standard PC/AT-compatible machines equipped with ugleali¢ated probe units
(DPUs). We use their expandability for configuring ZM4 appropriately to the various object
systems. Each MA provides processing power, memory resources, a hard disk and additionally
a network interface for access to the data channel. The MAs control the DPUs and buffer the
measured event traces on their local disks. The DPUs are printed circuit boards which link the
MA and the nodes of the object system. The DPUs are responsible for event recognition, time
stamping, event recording and for high-speed buffering of event traces.

A local clock with a resolution of 100ns and a time stamping mechanism are integrated into
each DPU. The clock of a DPU gets all information for preparing precise and globally valid
time stamps via the tick channel from tineeasure tick generatofMTG). Time stamps in a
physically distributed configuration may be adjusted after the measurement according to the
known wire length. While the tick channel together with the synchronization mechanism is our
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Figure 1. Distributed Architecture of ZM4

own development, we used commercially available parts for the data channel, i.e. ETHERNET
with TCP/IP. The data channel forms the communication subsystem of ZM4 and it is used to
distribute control information and measured data.

The ZM4’s architectural flexibility has been achieved by two properties: easy interfacing and
a scalable architecture. The DPU can easily be adapted to different object systems. Up to
now interfaces have been built for SUN-4, DIRMU, Transputer, IBM PC, SUPRENUM and
some embedded systems. ZM4 is fully scalable in terms of MAs and DPUs. The smallest
configuration consists of one MA with one DPU (see fig. 1, left), and can monitor up to four
object nodes. Larger object systems are matched by more DPUs and MAs, respectively. In
the following, the DPU architecture, the event recorder and the globally synchronized clock are
discussed in a top-down fashion.

DPU Architecture

The DPUs physically realize a functional separation into the three tasks of event processing:
interfacing, event detection and event recording (see general DPU in fig. 2, left).

Dedicated DPU-Parts. The interfacehas a tight connection to the object system, so it is not
intended to be universal but dedicated to the object system. eVhat detectoinvestigates

the rapidly changing information supplied by the interface in order to recognize the events
of interest and to supply the event recorder with appropriate information about each event.
The complexity of the event detector largely depends on the type of measurement: to recognize
predefined statements in a program running on a processor without instruction cache and memory
management unit, a set of comparators or a memory-mapped comparison scheme suffices. If the
object system uses a processor with a hardware cache, or if predefined sequences of statements
are intended to trigger an event, much more complex recognition circuits will be necessary
[KL86]. In some cases of hybrid monitoring, the object system itself presents event tokens in
form of parallel bit patterns. In this case no event detector is needed and a bitparallel interface
captures the event tokens directly from the object system (see simple DPU in fig. 2, right).

Universal DPU-Part. The universal part of a DPU is thevent recorder It is completely
independent of the object system. It receives a bit pattern from the event detector or the
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Figure 2: Monitor Agent equipped with DPUs

bitparallel interface, triggered by a signal for its occurrence. Its functionality includes event
capturing, time stamping, event record definition and event record buffering.

Universal Event Recorder

The event recorder has to fulfil two tasks: assigning globally valid time stamps to the incoming
event tokens, thereby building event records, and supplying a first level of high-speed buffering.

The interface between event detector or bitparallel interface and event recorder is a data path
transferring the event token itself, and a control path signalling the occurrence of events. The
control path mainly consists of four request lines (RReopd four grant lines (Gpt each pair
Req/Gnt servicing an asynchronous and independent event stream. That means, up to four
object nodes can be monitored with only one DPU.

Each of the four event streams can be furnished with an arbitrary fraction of the data field, which
in total supplies 48 bits. If at least one of the request lines signals an event, the DPU’s capture
logic latches the data field into a 48 bit data buffer in order to establish a stable signal condition
for further processing. The output of this data buffer together with the flag register (8 bit) and
the clock’s display register (40 bit) define a 96 bit physical event record. This is written into
the FIFO memory within one 100 ns cycle of the globally synchronized clock.

Each event stream is associated with a bit (& E4) in the flag register which indicates that

its event stream contributed to a valid event. This mechanism allows to recognize the relevant
part(s) of the data field and ignore the rest of it. Coincidence of events in different streams is
possible. Then more than one bit in the flag register is set, meaning that their corresponding parts
in the data field are valid event descriptions. There is an additionalsbithich indicates that

a fifth event stream — internal to the monitor system — has generated a synchronization event
from decoding the information transmitted via the tick channel. The transmitted synchronization
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Figure 3. Universal Event Recorder

information supports a sophisticated fault-tolerant protocol which allows to prove the correctness
of all time stamps at the synchronization events and confirms a clock skew of less than 5 ns.
This is described below.

Providing a bandwidth of 120 Megabytes/s at the input of the FIFO memory, the event recorder
has a peak performance of 10 million events/s. The high-speed buffering having a depth of 32 K
event records helps to partly overcome the restricted bandwidth (10,000 events/s) of the monitor
agent’s local disc: for a short time bursts of events can be recorded and buffered in the FIFO
even if the mean event rate of the disc will be exceeded by orders of magnitude. In case of a
buffer overflow, a flag is set in the following event record. A second advantage of the FIFO
buffer architecture is the ability to read the FIFO buffer while monitoring is going on. This
enables continuous monitoring, i.e. there is no restricted maximal length of a trace. So, a high
input event rate and arbitrary trace length add to the universality of this event recorder.

Globally Synchronized Clock. In order to achieve the desired global precision of 100 ns at a
guaranteed accuracy, a two-level synchronization mechanism was developed, whose main blocks
are shown in figure 4. The basic PLL-level [Gar79] ensures that all clocks proceed at exactly
the same rate and filters the synchronization signal on the tick channel, whereas the token level
is responsible for the global start and stop of all clocks and allows to prove the correctness of
all time stamps or to correct them in case of an error.

Coming from the tick channel, the Manchester coded signal MT (100 kHz) is split into two
paths. The left one leads to the PLL-level which consists of a clock separator responsible for
converting the Manchester coded signal into a coherent square wave signal that can be used as a
reference for the following PLL-circuitry (right output). Additionally, the clock separator checks
the validity of the input signal and opens the PLL’s control loop (via the switch, left output)

if an error is detected . In this case the local oscillator VCO which was previously correctly
synchronized will not be forced to deviate from this correct frequency.



Figure 4: Synchronization Mechanism for Global Clock

Based on the PLL-level, the token level decodes the Manchester coded MT as follows: the output
signal of the frequency divider is fed into the phase shifter SHIFT(pi/2) in order to generate a
signal for sampling the MT with a timing suitable for retrieving the binary information in every
cycle of MT. This binary data stream is shifted into a shift register within MTDEC and compared

to a set of predefined token values. If one of these values is detected, the appropriate action will
be executed, e.g. the start token leads to starting the display counter, and the stop token stops it.

Under normal conditions, this hardware part of the clocking scheme ensures a robust global time
scale. But in spatially distributed systems, problems can arise from cabling or electromagnetic
influences. In order to quickly recognize problems and to prove their absence, this scheme is
enhanced by the concept of synchronization events: after fixed time intervals the MTG broadcasts
tokens, calledsync_tokenwhich are recorded by the event recorder in the same manner as
regular events from the object system{#t in the flag field). The time stamp assigned to such

a synchronization event is known a priori because of the fixed intervals for generating them. This
feature provides the ability to prove the correctness of all time stamps at such synchronization
events. Supervising the state of the synchronization and recording this in the flag field for each
event, too, allows the extension of the proof to any event between two synchronization events.
Additionally, error recovery for corrupted time stamps is possible, because the differences are
known at the synchronization events.



2.1.3 ZM4 in Relation to Other Monitor Systems

The following table illustrates how the features of the ZM4 architecture are related to some

other interesting monitor concepts.

S Object Monitoring .
Distribution independence technique Global view

ZM4 LAN distance yes hardware and yes
University of accepts events hybrid monitoring | resolution 100 ns
Erlangen from arbitrary clock error

objects correction
NON-INVASIVE | multiprocessor no hardware no
MONITOR interface dedi- | monitoring
University of Ill., cated to 680x0
Chicago
TRAMS/REMS multiprocessor partly hybrid monitoring | yes
NIST, intended for resolution 100 ns
Gaithersburg 80x86, 680x0,

32x32
BLACKBOX multiprocessor currently hardware and yes
University of IIl., dedicated to hybrid monitoring | resolution 85 ns
Urbana CEDAR
NETMON-II LAN distance yes hybrid monitoring | yes
University of resolution 8 us
Karlsruhe
ELAN local no hybrid monitoring | no
ETH Zuerich dedicated to M3

(68000)
TOPSYS local no hybrid monitoring | yes
Techn. Univ. of dedicated to in a local
Munich iIAPX-80386 environment
TMP LAN distance yes hybrid monitoring | no
University of implemented for a
Kaiserslautern 680x0 proc. bus

NON-INVASIVE MONITOR. Tsai et al. describe a monitor system which is called a Non-
Invasive Monitor. It is aimed at monitoring of multi-microprocessors based on the MOTOROLA
68000, which neither use virtual addressing with memory protection nor caching mechanisms
[TFC90]. This monitor works with a shadow-processor for each processor in the object system.
Once armed, it is loaded with the internal status of the object processor and then runs in parallel
with it. After the specified trigger condition is met, the status of the shadow processor, which
is identical with the status of the object processor, can be investigated without disturbing the
object system. The arming for the next investigation is done by issuing an interrupt to the object
processor, which transfers its internal status to the shadow processor. The authors restrict the
range of possible investigations to software without dynamic resources, and there is no discussion
how to establish a global view of the object system.
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TRAMSREMS. The advantages and drawbacks of hardware, software and hybrid monitoring
are analyzed by Mink et al. [MCNR90]. The authors state that hybrid monitoring permits
investigations which are not possible with pure hardware monitoring, e.g. when caches are
involved. They prefer hybrid monitoring since it causes little interference on the object system.
Their monitor system is built of measurement nodes which collect data. They are interconnected
by a VME bus with a central analysis computer. A measurement node consists of a set of VLSI
chips, responsible for gathering the event-defining information from the object system, time
stamping the generated event records and data buffering. As a special feature, event counters
are implemented in one of the VLSI chips in order to reduce the amount of data to be transferred
and evaluated. With a time resolution of 100 ns, this monitor system allows to correctly order
all communication events in locally concentrated multiprocessor systems.

BLACKBOX. Atthe CSRD a highly modular and flexible hardware monitor system (BLACK-
BOX) designed for the CEDAR multiprocessor system was built [Mal89]. It comprises modules
for such different tasks as signal conditioning, counting, timing and data logging. The locally
concentrated monitor system provides a high resolution global time base. It can record buffered
versions of internal signals (hardware monitoring) as well as software controlled signals (hybrid
monitoring). The monitor is generally configurable to the type of measurement experiment
desired. For example, one module can be configured as an interval timer and another as a
counter. In addition to the BLACKBOX monitor, CEDAR has a comprehensive set of other
instrumentation and monitoring facilities, including parallel profiling and software tracing. Some
basic performance measurements of CEDAR are described in [GJW91].

NETMON-II. NETMON-II [ESZ90] is a hybrid monitoring tool for distributed and multipro-
cessor systems. Itis a distributed master/slave system with monitor stations (slaves) and a central
control station (master). Each monitor station contains a monitoring unit, a load generation unit
and a network interface for the communication with the central station, responsible for controlling
the measurement and for data evaluation. The monitoring unit is implemented as an add-on board
for PCs, which is dedicated to hybrid monitoring, and has an 8 bit wide Centronics printer port
as an interface to the object system. Thus, interfacing, event detection and event recording, i.e.
all tasks of a monitor node, are combined on one board. An autonomous clock with a resolution
of 8 us is part of each monitoring unit, making the monitor suitable for object systems which
communicate via Send/Receive mechanisms. In order to establish a global timebase, these clocks
are corrected every 15 ms via the time channel which connects all monitoring units. As this
correction is carried out by directly accessing registers from a signal which is transmitted via
LAN distances, erroneous corrections due to spikes on the time channel can occur.

ELAN. ELAN [BM89] was one of the first monitoring projects to deal with high-level
monitoring tools. It was aimed at the experimental multiprocessor M3 which is a locally
concentrated machine and needs no global clock.

TOPSYS. The original goal of the TOPSYS monitor system was to gather information for
debugging purposes. Later, performance aspects were included. TOPSYS uses a 80386 bond-
out chip for implementing the measurement interface. It has been used for monitoring nodes
of an iPSC/2 configuration [BLT90].

TMP. TMP [WH90] is a hybrid monitor consisting of many TMP nodes which are connected
via the TMP network to a central monitor station. The TMP nodes can monitor object nodes
and object communication activities. The instrumentation philosophy to view monitor

and measuring as an integral and permanent part of any computer systermgsponds to our
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philosophy of restricting measurement to a small set of essential events. TMP has no global
clock.

This short summary of recent monitors shows that many approaches tend to prefer event-driven
hybrid monitoring and that several authors suggest a monitor architecture with many monitoring
nodes and one central computer for data collection.

ZM4 is distinguished from other approaches by the following features:

» The modular design of interfacing, detection and time stamping has proved to be adaptable
to arbitrary object systems with small expense

» A global clock mechanism which guarantees high resolution / precise synchronization over
large distances

» A global clock transmission code which supports detection of synchronization errors in the
DPUs.

Several performance measurements with ZM4 (e.g. [LS90, OQ91]) proved that the ZM4
architecture is flexible and efficient. However, these experiences also show that a well working
monitor needs to be accompanied by an evaluation environment which supports program
instrumentation (event definition), provides a monitor-independent and problem-oriented event
trace description and offers powerful tools for event trace evaluation. The following section
addresses the problem of event trace description and analysis. Tools for program instrumentation
are discussed in section 4.1.

2.2. SMPLE — a Performance Evaluation Environment

SIMPLE (Source-related anthtegratedMultiprocessor and -comput@&erformance evaluation,
modd.ing and visualizatiorEnvironment) is a tool environment designed and implemented for
analysis of arbitrarily formatted event traces. It runs on UNIX and MS-DOS systems. SIMPLE
has a modular structure and standardized interfaces. Therefore it is easily extendible, and tools
which were developed and implemented by others can be integrated into SIMPLE with little
effort.

2.2.1 The Concept for a General Logical Structure of Measured Data
— the Basis for Independence of Measurement and Evaluation

The design and implementation of an evaluation system for measured data is too complex and
expensive a task to be done for one special object system or one monitor system only. The three
following requirements are essential to make the evaluation system capable of efficiently handling

measured data produced by event-driven monitoring of parallel and distributed computer systems:

* Object system independencthere are many differences in structure and function of the
systems to be monitored, e.g. in the node architecture and in the configuration of the
interconnection network. There is a variety of operating systems and applications. An
evaluation system should be applicable to the measured data coming from all these differently
configured computer systems, offering a wide variety of functions.

» Monitor independencethe measured data, recorded by different monitor devices, should be
accessible in a uniform way, even if it is differently structured, formatted and represented.
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» Source referencedata recorded by monitor systems is usually encoded and compressed.
But during analysis and presentation of data, users want to work with the problem-oriented
identifiers of hardware and software objects of the monitored system.

Our approach to fulfilling these requirements is to consider the fundamental structure of the
measured data because this is what the evaluation system sees of the monitored system. All
requirements mentioned are related to the structure, format, representation and semantics of
the measured data. In order to abstract from these properties we develgesaéral logical
structurefor all the different types of measured data. This logical structure can then be used to
define astandardized access methta the measured data. Using event-driven monitoring, the
proposed general logical structure can focus ayeaeral logical event trace structure

This structure of an event trace is given in
fig. 5. It relies on the fact that measurements
store the physical event records sequentially in
a file (event trace filg resulting in a sequence | €venttrace

of event records sorted according to increasin trace segment
time. A section in the event trace which has
been continuously recorded is calledtrace
segment A trace segment describes the dy-
namic behavior of the monitored system during

segment header

event record

) i ) i record record record
a time interval in which none of the detected field field | «.. | field
events was lost. The knowledge of segmen
borders is important, especially for validation event record

tools based on event traces. Usually each trag
segment begins with a special data record, th
so-calledsegment headgwhich contains some
useful information about the following segment,
or is simply used to mark the beginning of
a new trace segment. The segment heads
is followed by an arbitrary number of event
records, each consisting of record fields, ong¢
of which represents the acquisition time of the
event record. With the hierarchgvent trace/
trace segment event record/ record fieldwe Figure 5 General Event Trace Structure
have a general logical structure which enables

us to abstract from the physical structure and

representation of the measured data.

event record

trace segment

2.2.2 TDL/POET — a Basic Tool for Accessing Measured Data

Based on the general logical event trace structure, we designed and implemented the access
tool TDL/POET in order to meet the mentioned requirements. The basic idea is to consider the
measured data a generic abstract data structure. The evaluation system can access the measured
dataonly via a uniform and standardized set of generic procedures. Using these procedures, an
evaluation system is able to abstract from different data formats and representations and thus
becomes independent of the monitor device(s) and of the monitored object systems. The tool
consists of the three components POET, TDL and FDL [Moh91], see fig. 6:
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» TDL (TraceDescriptionLanguage): the language TDL is designed for a problem-oriented
description of event traces. The compilation of a TDL description into a corresponding
binary access key file has the advantage that syntactic and semantic correctness is checked
once and before evaluation. The development of TDL had two principal aims: the first was
to make a language available which clearly and naturally reflects the fundamental structure
of an event trace. The second was to enable even users not familiar with all details of the
language to read and understand a given TDL description. In addition, a TDL description
provides a documentation of the performed measurement.

* POET ProblemOrientedEvent Trace Interface): the POET library is a monitor-independent
function interface which enables the user to access measured data stored in event trace files
in a problem-oriented manner. In order to be able to access and decode the differently
structured measured data, the POET functions useatitess key filavhich contains a
complete description of formats and properties of the measured data. For efficiency, the
key file is in a binary and compact format. In addition, the access key file includes the
user-defined (problem-oriented) identifiers for the recorded values, enabling the required
source reference.

The third component, FDL, extends the capabilities of TDL/POET by allowing user-defined
views on the measured data.

* FDL (Filter DescriptionLanguage) is an approach similar to TDL. It is used for specifying
rules for filtering event records depending on the values of their record fields. The
problem-oriented identifiers of the TDL file are also used for filtering.

A prototype of the tools TDL/POET/FILTER was designed and implemented in 1987. A redesign
took place in 1991 (version 5.2). The tools enable us to analyze event traces which were recorded
by ZM4 or other monitor systems such as network analyzers, logic analyzers, software monitors,
or even traces generated by simulation tools. POET is an open interface. This means that the
user can build his own customized evaluation tools using the POET function library.

2.2.3 Rating of the TDL/POET Approach

Configuration files or some sort of data description language are often used in order to make
a system independent of the format of its input data. Our work on TDL was inspired by the
ISO standard ASN.1AbstractSyntax Notation One), which is used in some protocol analyzers

to describe the format of the data packets. A similar approach to describe and filter monitoring
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data was used by Miller et al. in the DPM proje@igtributed Program Monitor) [MMS86].

Their language allows the description of name, number and size of the components in an event
record. The description of trace structures such as segments and of the physical representation
of data values is not supported. Its main targets are distributed systems with Send/Receive
communication.

In our opinion, the most important work on describing events was the definition of the event
trace description language EDL by Bates and Wileden [BW82]. They also introduced the term
behavioral abstraction. Their work inspired many others, among them our group. The main
purpose of EDL is the definition of complex events out of primitive events. In EDL, attributes
of the primitive events can be defined, but not their format or representation [Bat89].

Finally, a word on standardization: at the moment, efforts are taken to standardize the format of
physical event traces for debugging and evaluation systems [Utt90]. We feel that standardization
of the physical event trace format is not the right approach. No standard format can be flexible

enough to represent all possible event trace formats unless format information is included in the
trace. Furthermore, there is a great variety of existing (hardware) monitors which cannot produce
a standardized format. Therefore, many conversion programs would have to be implemented.
The TDL/POET interface shows that a generalized access method for arbitrary event traces works
well without requiring standardized physical formats. So, we plead for standardizing the event

trace access interface instead of standardizing the trace format.

2.2.4 The Performance Evaluation Tools of SIMPLE

This section gives a short overview of the main components and the flow of data within the
SIMPLE environment (see fig. 7). For a more complete discussion and an application example
see [Moh91].

Global View. Using a distributed monitoassertions) for
system results in several independent event
traces. The first evaluation step is to generate
a global event trace (tool MERGE) in order to
get a global view of the whole object system.
MERGE takes the local event trace files and
the corresponding access key files as an input
and generates a global event trace and the
corresponding access key file. In the global
trace, the event records of the local event traces
are sorted according to their time stamps.

Trace Validation. The next step is often
forgotten but nevertheless necessary. Before
doing any trace analysis it should be tested
whether the measurement was performed
correctly. The tool CHECKTRACE performs
some simple standard tests which can be
applied to all event traces. The tool VARUS
(VAlidating RUIes checkinddystem) enables the
user to specify some rules in a formal language
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Figure 7: Evaluation with SIMPLE

validating the event trace. Trace validation in the context of model-driven monitoring is discussed
in section 4.

Trace Analysis. There are two standard tools fdrace analysis The tool LIST for the
generation of readable trace protocols and the tool TRCSTAT for computation of frequencies,
durations and other performance indices.

For more complex investigations the measured data can be analyzed interactively using the data
analysis package S from AT&T [BCW88]. The event trace is stored in a relational data base and
analyzed via the TDL/POET interface. Typical results are histograms or pie charts. Time-state
diagrams (Gantt-charts) are generated with the tool GANTT.

Trace animation. The dynamic visualization of an event trace presents the monitored dynamic
behavior at a speed which can be followed by the user, exposing properties of the program or
system that might otherwise be difficult to understand or might even remain unnoticed. The
tools SMART Sow Motion AnimatedReview of Traces), which can be used on any character-
oriented terminal, and VISIMON, which offers enhanced graphics capabilities and is based on
X-Windows, support the layout of the animation in an animation description language.

3. Monitoring Program Behavior on SUPRENUM

We have already gained experience using our tools in several different environments. For
example, we have used ZM4/SIMPLE to analyze a communication system for Transputer
networks [OQ91] and a high-speed LAN [LS90]. In this section we describe how the ZM4
hardware monitor and the SIMPLE tools were used to analyze the behavior of a parallel program
on the SUPRENUM multiprocessor.
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Figure 8: The Interface between SUPRENUM and ZM4

SUPRENUM [ST88, BBF91] is a loosely coupled parallel architecture consisting of up to 256
processing nodes. Each node has a CPU, 8 MBytes of memory and several coprocessors (among
them a vector processing unit). Nodes are grouped in clusters of size 16, and the interconnection
network is a two-level bus system: processors within the same cluster communicate via a
fast parallel cluster bus, whereas inter-cluster communication is done via the torus-shaped serial
SUPRENUM bus system. There is a seven segment display on each of SUPRENUM'’s processing
nodes which, under normal operating conditions, displays the internal state of communication
firmware. We use the seven segment display to output measurement data. Since the seven
segment display can only display 16 different patterns (due to limitations of the driving hardware),
we devised a scheme for outputting 48 bits of event data sequentially in portions of size 3 bits.
An event detector was built whose probes are plugged into the socket of the seven segment
display on one side and which connects to the event recorder of ZM4 on the other side (see
fig. 8). The event detector reassembles the original 48-bit events which are then written to the
FIFO buffer of the ZM4 event recorder.

The parallel program under study is a ray tracer. Ray tracing [Gla89] is a computer graphics
method for generating high-quality images from formal descriptions of a scene. For the
scope of this paper, the reader need not be familiar with ray tracing. In the implementation
considered here, the algorithm is parallelized in the following way: there is one master who
does administrative work, distributes jobs to an arbitrary number of servants, receives the results
and writes them to an output file. The master communicates with all of the servants by message
passing, but there is no communication between any two servants. Servants receive a job, work
on the job (this involves mainly geometric intersection computations) and return the results to
the master. One job only constitutes a small fraction of the total work to be done. The basic
structure of the master and servant processes is shown in fig. 9.

A window flow control scheme is employed to ensure that each servant always has work to do:
initially the master has a fixed number of credits from each servant. The master keeps sending
jobs to a servant (thereby decrementing the servant’s credit count) as long as there are credits
from that servant available. With every result a servant returns one credit to the master. Good
load balancing is achieved by this dynamic job assignment and by choosing a small job size.

Evolution of the Parallel Program

Version 1. Mailbox Communication. We started by monitoring a basic version of the ray
tracing program in which SUPRENUM’s mailbox mechanism was used for the communication
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Figure 9: Basic Structure of Master and Servant Processes

between the master and the servants. Mailboxes were used in order to avoid blocking of the
sender while the receiver is not ready to receive the message. The sender of a message does not
hand over the message to the receiver during a rendezvous as in synchronous communication,
but puts the message in the receiver’'s mailbox from where the receiver can pick up the message
at a later time. Monitoring a run of this version of the ray tracing program in which the program
was running on 16 processors (i.e. there are 15 servants) revealed that the servant processor
utilization was only about 15%, which means that the servant processors spent about 85% of total
time waiting for a job to arrive. This lead us to analyze the program’s behavior in more detail.
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Figure 10: Behavior of the Mailbox Communication (Ray Tracer on two Processors)

Fig. 10 shows a Gantt-chart obtained from evaluating a measurement of the ray tracing program
during which the ray tracer was running on two processors only, the master and one servant. In
the chart, the activities of the master and the servant are shown over a common time axis.

One can observe in the chart that the master goes through the following activities in a cyclic
fashion: the activities “Distribute Jobs”(1) and “Send Jobs” (2) are followed by a “Wait for
Results” activity (3). Then results computed by the servant are received (“Receive Results”, 4)
which is followed by the next “Distribute Jobs” activity (5). Since a window flow control scheme

is employed to control the number of outstanding jobs, the results received are not the results
for the job just sent but for a previous job. Some of the master’s cycles also contain a “Write
Pixels” activity (6), during which results are written to the output file. Writing to the output file

is not done in each of the master’s cycles. This is because pixels have to be written to the output
file in correct order. Results may not be received in the order in which the corresponding jobs
have been sent, because the time to process a job varies considerably. Writing to the output file
takes place whenever a continuous stretch of pixels has been processed.

We can observe from the chart in fig. 10 a major drawback. We see that the transition from “Send
Jobs” to “Wait for Results” (2— 3) on the master processor can only take place synchronously
with the transition from “Work” to “Wait for Job” (7— 8) on the servant processor. Contrary to
what we expected, the master becomes blocked during the “Send Jobs” activity, which is exactly
what was to be avoided by using mailbox communication. A lot of time is wasted during the
“Send Jobs” activity.

The reason for this behavior is as follows: with SUPRENUM, a mailbox is a light-weight process
owned by the receiving process and running together with the receiving process on one processor
in a time-sharing manner. The scheduling strategy used is round robin. However, instead of using
time slices each process is allowed to run until it becomes blocked. The master cannot finish his
“Send Jobs” activity because he can put a message in the servant’s mailbox only if this mailbox
process is actually running. This is not the case until the servant relinquishes the processor
because he is waiting for a message. Thus, (asynchronous) mailbox communication behaves
like synchronous communication. As a result for the ray tracing application, the master cannot
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keep 15 servants busy because he is spending too much time being blocked while sending jobs
to the servants.

Version 2: Communication Agents. Having observed this behavior, we decided to implement

our own asynchronous communication in order to overcome the bottleneck at the master. For the
communication from the master to the servants we introduced a pool of light-weight processes
which we call communication agents. They are running on the master processor and communicate
with the master via shared variables. When the master wishes to send a message (i.e. a job) to
one of the servants, he indicates this to an agent who is currently unemployed. If all agents are
busy a new agent is created and added to the pool. It is the agent’s task to forward the master’s
message to the servant. Communication between the agent and the servant is synchronous, i.e.
no mailboxes are used. It is the advantage of this scheme that the master can proceed with his
work, while the agent becomes blocked until the receiving servant is ready to accept the message.

Versions 3 and 4: Reducing Total Communication Volume and Further Tuning. Monitoring
program version 2 showed that there were no significant waiting times at the master, i.e. the
master is busy all the time. However, monitoring the servants over a longer period of time
showed that the servants were busy only about 29% of total time. The servants spend the rest
of the time waiting for a message (another job) from the master. We decided to reduce the total
volume of communication by increasing the job size. So far a job consisted of only a single
pixel, which is certainly not a good choice. By sending jobs containing 50 pixels, the total
number of messages is reduced by the factor 50. A job consisting of 50 pixels is still only a
very small fraction of the total work to be done (256K pixels have to be processed for a 512 by
512 image), and therefore load balancing is not impaired by this step. Measurements showed
that this improved the utilization of the servants to about 46%.

After further tuning which was suggested by the measurements and included the adjustment of
some internal program constants, the program achieved a 60% servant utilization. Fig. 11 shows
the improvement of the servant utilization. Servant utilization is a key performance measure for
this application. It is directly correlated with execution time which was reduced by a factor of
about 4 from version 1 to version 4. It should be mentioned that the scene used for all the above
measurements is of moderate complexity only, which means that there is relatively little work
to be done per pixel, resulting in a high communication overhead. Therefore this test scene
constitutes a difficult test candidate for the ray tracing program. However, we needed a test
scene like this since we wanted to locate all the possible bottlenecks in the program. We verified
that the program performs significantly better when processing more complex scenes (over 90%
servant utilization was achieved with a complex scene) which is a more realistic workload.

4. Current Work and Conclusion

We have presented a modern and powerful tool environment which has been successfully used
in numerous applications, among them the study described above. We will now discuss our
current research on the integration of monitoring and modeling.
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4.1. Mode-driven Monitoring

In order to define events systematically one needs knowledge about the aim of measurement
and about the functional behavior of the system to be analyzed. We agree with Nutt's
statement [Nut75]: The most important questions to be answered before attempting to monitor

a machine are what to measure and why the measurement should b€ takeady in 1981,
Kobayashi postulated [Kob81]:The system tuning requires a clear understanding of the complex
interactions among the individual system components. A systematic procedure of performing this
task is yet to be developé&dn [Rei90] there is a whole chapter titled “The Event Collection
Problem”. These citations show that it is difficult for a designer or programmer to do monitoring
systematically and efficiently.

Integration of Monitoring and Modeling. Our idea of performance evaluation, tuning and
debugging is to integrate modeling and monitoring to a comprehensive methodology. When using
event-based models (e.g. graph models [ST87], Petri nets [ABC84], queueing network models
[Kle75] or formal specifications like CSP [Hoa85] or EXL [Her91]) which explicitly model

the functional interdependence of activities, and event-driven monitoring, there is a common
abstraction — the event — which enables us to integrate both methods. Both in modeling
and monitoring, important points are represented as events of interest, and the overall dynamic
behavior as an event trace. Due to this very close connection between the flow description in
modeling and monitoring it is desirable to use the same set of events for modeling and monitoring.

Since not every detail of the functional model (e.g. a formal specification), which is used for
implementing the program, is of interest in terms of performance evaluation and program
analysis, the analysis of the program is carried out on a different level of abstraction. For
monitoring purposes, the so-calletbnitoring modeis created. This model is derived from the

functional model considering the aim of measurement. It is a subset of the functional model,
i.e. it covers some but not all details of the functional model. In the monitoring model the
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functional dependencies of the implemented program are described on the level of abstraction
on which the program should be monitored.

M odel-driven Instrumentation. Model-driven aim of Cunctional moo@
instrumentation guarantees by construction themMeasurement | (i.e. specification
same set of events in the instrumented program
and in the model. The monitoring model forms
the basis for the instrumentation (see fig. 12). v

There is a one-to-one mapping between the (monitoring mode
model events and the monitoring events. After
specifying instrumentation points in the model, v
a command file for an automatic instrumenta- . model-driven
tion tool is generated. All activities represented Instrumentation
in the model will be instrumented in the pro-

gram at their entry and all exit points [KQS92)].
The difficult questions “Which events should program
be defined?” and “Where should the program Figure 12 Model-driven Instrumentation
be instrumented?” are implicitly answered by

building the monitoring model.

program

Model-driven program instrumentation offers the following advantages over intuitive instrumen-
tation :

* Instrumentation need no longer be an intuitive action, but may be executed systematically.
Therefore, instrumentation can be carried out automatically with the support of tools.

* Instead of a fault-prone manual re-instrumentation of the program in each design phase, it
suffices to modify the model. Then an automatic instrumentation of all model activities is
carried out.

» The monitored event trace can be validated in a systematic way. This leads to automatic,
model-driven event trace validation.

» The interpretations of the instrumented event tokens are known. This knowledge of the
event semantics can be used to generate an event trace description in TDL (cf. section 2.2)
automatically, allowing automatic event trace evaluation and program animation.

* The monitoring model can be transformed into a performance model by adding timing and
frequency attributes (e.g. runtime distributions and transition probabilities). These attributes
can be derived from a measured event trace.

Measurement, Validation and Evaluation. Model-driven instrumentation (fig. 12) is the
foundation for model-driven monitoring. After instrumentation, the instrumented program can

be executed and monitored which produces an event trace as a result. As the sets of events used
in modeling and monitoring are the same, the monitoring model can be used for validating the
dynamic behavior of the program. Validation is necessary in order to draw correct conclusions.

A simple form, such as checking whether time stamps are increasing or whether the set of
monitored event tokens is correct, is addressed in section 2.2.
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Based on the monitoring model, the moni- ( monitoring mode)

program je——-o
tored behavior represented in the event trace
is checked against _the functional beh_avic_)r of model-driven
the model (model-driven event trace validation). ™ instrumentation
The set of possible event sequences is defined
by the model. During validation, it is checked mstruineme
systematically whether the behavior represented
in the monitored event trace is a possible occur-
rence sequence in the model. This kind of vali- monitoring
dation provides hints for finding program errors I
(see fig. 13, arc fromalidationto program). If event trace
the recorded event trace matches the monitoring -
model the trace can be used as a base for evalu- model-driven
ation. For tool-supported automatic event trace - eventtrace |
validation the existing modeling tools PEPP L E ]
(graph models) [DHK 92] and GreatSPN (Petri ' :
nets) [Chi92] were extended. evaluation
There are some other debugging tools for v

checking a specification against an event (performance modg

trace: the debugger ESCP [BDV86] can only

check specified communication behavior and model evaluation
p

evaluation
results

hierarchical fork-join parallelism, and with and
the TSL system [HL85] a specification isPe ormanceprediction
automatically checked against events generated  Figure 13: Model-driven Monitoring
by an Ada tasking program. As with our

approach of model-driven validation, TSL also

requires a linearly ordered event trace.

The results of the trace evaluation allow the computation of performance indices of the
measured program. They can be used for creatipgriormance modelRuntime distributions

and branching probabilities will be assigned to the activities of the monitoring model. The
performance model is a prerequisite for predicting the performance of not yet implemented
program versions, process mappings or other computer configurations. The use of measured
data means model evaluation with realistic parameters and therefore relevant results.

Summary. In model-driven monitoring the monitoring model is used for program instrumenta-
tion, event trace validation, and for creating a performance model. The model-driven approach
enables us to instrument arbitrary statements in the program under investigation on the desired
level of abstraction. So, the overhead caused by instrumenting all procedures as in [AL89]
can be significantly reduced. Also, monitoring is not restricted to inter-process communication
as it is done in [HC89, JLSU87]. In addition to debugging and tuning (critical path analysis
[MCH*90]), the integration of modeling and monitoring enables us to carry out automatic event
trace validation and performance prediction of not yet available systems and implementations.
The following references illustrate that model-driven monitoring is independent of the modeling
paradigm. In [KQS92] the automatic, model-driven instrumentation of a parallel multigrid
algorithm based on a stochastic graph model is described. The graph model can be generated
and evaluated by the tool PEPPefformanceEvaluation ofParallel Programs) which provides
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a command file for model-driven instrumentation with AICO®ifomaticlnstrumentation oC
ObjectSoftware) [DHK*92]. Furthermore we have experiences applying the method to queueing
network models: the dynamic behavior of a communication system for Transputer networks was
modeled and monitored [Sch91, OQ91].

4.2. Conclusion

In this paper we discussed event-driven monitoring, a technique which is very well suited for

analyzing the functional behavior and the performance of parallel and distributed systems. We
presented the scalable distributed hardware monitor ZM4 and the SIMPLE package. Practical
use of ZM4 confirmed that it can easily be adapted to arbitrary object systems and that the global
time stamps are extremely helpful when analyzing concurrent activities on more than one node
of a distributed system. SIMPLE is a highly flexible and comfortable tool with which all kinds

of event traces (not only traces recorded by ZM4) can be evaluated. The concepts of object
system independence and of integrating tools for modeling, monitoring, and trace evaluation
proved to be a big step forward.

As an application of our monitoring and evaluation system, the paper includes a case study in
which a parallel ray tracing program running on the SUPRENUM multiprocessor is analyzed.

Monitoring helped to detect unexpected program behavior and to locate bottlenecks whose
removal resulted in a dramatic improvement of the ray tracer’s performance. Methods such
as ZM4/SIMPLE are a valuable aid to designers and users of parallel and distributed systems.

Finally, we described how event-driven monitoring and event-based modeling can be integrated
into one methodology because they both rely on the same abstraction of the dynamic behavior:
the event. Integration makes it possible to carry out program instrumentation systematically
and with the help of tools, thereby helping to avoid errors which can easily occur in manual
instrumentation. We also explained how a model can be validated by comparing it to the
sequence of events in a monitored event trace.

We wish to further test and improve our concepts and tools for integrating monitoring and
modeling. Validating not only the functional aspects of a model but also considering time
information is a challenging topic. Our current research also includes building a performance
model of the parallel ray tracing program described in section 3. It will be possible to validate
the model by comparing it to event traces of the program. The model will enable us to predict
the runtime of the program on a larger number of processors.
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