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Abstract
The performance of parallel and distributed systems is highly dependent on the degree of
parallelism and the efficiency of their communication systems. Both, efficiently parallelizing
big jobs and successfully designing high-speed communication systems, need insight into the
dynamic behavior of at least two computers at a time. Getting insight is usually needed in
debugging, here it is a means for improving performance.

First, we present a comprehensive methodology for monitoring and modeling programs in parallel
and distributed systems. In using event-driven monitoring and event-oriented models there is a
common abstraction, the event, which enables us to integrate both approaches.

A second part describes implementation concepts in hardware and software which render the
methodology generally applicable and fruitful for practical performance evaluation problems.
The hardware monitor ZM4 uses many distributed monitor agents and a global clock mechanism
for achieving generality, and the evaluation environment SIMPLE uses new trace description and
access principles which allow for accessing arbitrarily formatted traces, thus making standardized
formats in the measured event traces superfluous.

Keywords:

parallel systems, distributed systems, hardware monitoring, hybrid monitoring, event-driven
monitoring, event trace, modeling, instrumentation, performance evaluation, debugging, program
visualization.

1. Introduction

Parallel and distributed data processing is intended to increase performance by distributing a
workload on many computers. This way of getting high-performance from multicomputer
architectures is a big leap forward; but it also produces new problems like races between
concurrent programs, mutual waiting of processes, or access conflicts on interconnection
networks. Obviously, it is highly desirable to understand why and where such problems exist.
Event-driven measurements with appropriate monitors can provide insight and knowledge about
the dynamic behavior of parallel activities and the communication between them.

To appear in: T.L. Casavant and M. Singhal, eds., Advances in Distributed Computing:
Concepts and Design, IEEE Computer Society Press, 1992.



One basic idea of our performance evaluation methodology is to do more than just monitoring,
but to integrate performance monitoring and modeling. Both rely on the same abstraction of
dynamic program behavior: strategic points are represented asevents of interestand the overall
dynamic behavior as anevent trace1. Thus, the dynamic behavior of the program(s) is abstracted
to an event trace. In this paper we show how models support a systematic event specification
for monitoring and how monitoring validates the models. Monitoring helps to identifycurrent
performance problems and to find hints for tuning (e.g. improved scheduling, mapping). The
integration of monitoring and modeling is the basis for extending the (measured) knowledge about
implemented programs in existing computer systems via models ontoperformance predictionof
future programs and of programs in future systems. Using measured parameters makes the
performance prediction more relevant.

Another basic idea of our performance evaluation concept is to bring performance evaluation out
of the ghetto of splendid isolation [Fer86]. A systematic methodology is indispensable. However,
it does not automatically solve real world problems. It is the desire of our research to extend the
theoretical relevance of the methodology to practical use. We agree with Ferrari who argues that
in the past “the study of performance evaluation as an independent subject has sometimes caused
researchers in the area to lose contact with reality”. Practical relevance means tools which
help to make performance evaluation a natural part of system design and software engineering.
Therefore, a set of tools puts our methodology into effect: we built a distributed hardware monitor
(ZM4) and implemented a software tool environment for performance evaluation (SIMPLE).

Two architectural features have been used in the design of the ZM4 monitor. They enable ZM4
to measure multiprocessor systems as well as computer networks. The first is a distributed
and open-ended monitor architecture which matches the usually distributed architecture of the
observed system. The observed computer system is calledobject system. The second feature
is a high-precision global monitor clock mechanism which provides globally valid time stamps.
This allows for simultaneous observation of many computersover a common time scale. Our
decision to use a hardware monitor does not mean that we are primarily interested in measuring
hardware events. On the contrary, it is the dynamic behavior and the performance of concurrent
software in multicomputers we are interested in. Therefore, hybrid monitoring is our favored
method: the object software initiates source referenced event tokens and the hardware monitor
ZM4 collects them.

The tool environment SIMPLE is a modular, comprehensive set of tools for performance
evaluation and visualization based on event traces, be they monitored or generated by simulators.
These event traces of arbitrary structure, format, and representation are described by the versatile
eventTraceDescriptionLanguage TDL. All tools of SIMPLE use theProblem-OrientedEvent
Trace access interface POET, a library of procedures for accessing and decoding information
in event traces. The paper emphasizes the importance of this access interface TDL/POET as a
means for evaluating event traces of arbitrary origin, for making trace format standardization
superfluous, and for enabling the evaluation environment SIMPLE to cope with the flexibility
of the distributed monitor ZM4.

The paper is organized as follows: the next section describes fundamentals of event-driven
monitoring. Section 3 deals with the integration of monitoring and modeling. Section 4
a

1 In our project, event traces are analyzed in terms of performance. However, there is an interesting bridge todebugging of concurrent
programs. Event-based debuggers examine recorded event histories, i.e. traces, for finding errors [MH89]. Performance evaluation tools
do almost the same. They examine event histories for getting insight into how and where to improve performance.
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describes the hardware monitor system ZM4 and section 5 the tools of the evaluation environment
SIMPLE. In section 6 we briefly present three typical applications. It is shown that SIMPLE
may be operationally independent of ZM4 and that using ZM4/SIMPLE in combination provides
successful evaluation of high-speed communication software as well as of parallel programs.

2. Fundamentals of Event-driven Monitoring
Monitoring is either time-driven or event-driven.Time-driven monitoring(sampling) only allows
statistical statements about the program behavior [Svo76, FSZ83].Event-driven monitoring,
however, reveals the dynamic flow of program activities represented by sequences of events.
An event is an atomic instantaneous action. It can be represented as a particular value on a
processor bus or in a register, or a certain point in a program. With this monitoring method the
dynamic behavior of the program is abstracted to a sequence of events.

There are three monitoring techniques: hardware, software, and hybrid monitoring. Using
hardware monitoringthe event definition and recognition can be difficult and complex. An
event is defined as a bit pattern and detected by the hardware monitor’s probes, and it is difficult
to find a problem-oriented reference2 to the monitored programs. Using software or hybrid
monitoring the events are defined by inserting instructions into the program to be measured.
This is calledprogram instrumentation. These measurement instructions write event tokens to
a hardware interface which is available for a hardware monitor (hybrid monitoring) or into a
reserved memory area (software monitoring). Program instrumentation is not needed in sampling,
it always implies the use of event-driven monitoring. If events are defined by instrumenting a
program, each measured event token can be clearly assigned to a point in a program, it provides a
problem-oriented reference. Thus, the evaluation can be done on a level familiar to the program
designer.

The essential questions, however, which occur in event driven-monitoring — regardless of the
monitoring technique — are:

• What is the aim of measurement?

• Which events are necessary for modeling the functional behavior?

• Whereshould the program be instrumented so that the modeled behavior can be monitored?

As the CPU time overhead increases with the number of events detected, the instrumentation of
events must be limited to those events whose tracing is considered essential for an understanding
of the problems to be solved. Therefore, to define events systematically one needs knowledge
about the aim of measurement (“The most important questions to be answered before attempting
to monitor a machine arewhat to measure andwhy the measurement should be taken.” [Nut75]).
Also, knowledge about the functional behavior of the program is necessary (“The workload and
its evolution in time must be at least roughly known.” [FSZ83]).

Using event-driven monitoring, the dynamic behavior is represented by events which are stored
as anevent trace. Whenever the monitor device recognizes an event, it stores a data record.
We call such a data record an event record orE-record for short. It contains the information
what happenedwhen and where and consists of at least anevent identification (token)and a
time stamp. This time stamp is generated by the monitor and does not reflect a duration but the
a

2 In many cases identifiers in the source code of the object program like procedure names are already intelligible problem-oriented references.
Then, "problem-oriented" and "source-reference" are synonymous. Sometimes an interesting event has no problem-oriented identifier as
a counterpart. Then, it is necessary to give the respective event a problem-oriented name which is not yet defined in the source code of
the object.
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acquisition time of the event record. Beside these fields, an E-record contains optional fields
describing additional aspects of the occurred event, e.g. a field describing the processor where
the event token came from. An important performance measure is the runtime of a program. A
program or a program part delimited by two events is calledactivity. The duration of an activity
is defined as the difference between the time stamps of its end- and start-event.

3. Integrating Monitoring and Modeling
Being interested in the functional and dynamic behavior of parallel and distributed systems
and in getting insight, we decided to use function-oriented models which explicitly model the
functional interdependence of activities.

aim of
measurement

event
specification

functional 
implementation model

selection of
an algorithm

functional model

program

instrumented
program

monitoring  model
model-driven

instrumentation

computer configuration/
implementation strategy

problem

measured
results

modeled 
results

time attributes

event trace

performance  model
evaluation

with SIMPLE

monitoring
with ZM4

prediction validation

Figure 1: Model-driven monitoring
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Fig. 1 shows the use of models in monitoring: specification of the problem and selection of an
algorithm are a prerequisite for building afunctional modelwhich disregards all implementation
aspects. In this model, properties of an algorithm which determine the functional behavior of a
program are described. Mapping the functional model onto a given computer configuration leads
to one or several implementation strategies which are modeled in thefunctional implementation
model. The functional implementation model forms the basis for the implementation of the
program and for themonitoring model. The monitoring model is a subset of the functional
implementation model, i.e. it covers some but not all of the details of the implementation model.
It describes the functional dependencies of the implemented program on that level of abstraction,
on which the program should be monitored. The chosen level of abstraction is determined by the
aim of measurement. The instrumented program results from an already implemented program
and the respective monitoring model. Running the instrumented program, i.e. execution and
measurement, produces an event trace as a result. The subsequent evaluation of the event
traces provides overall results for validation and detailed performance parameters for assigning
realistic time attributes to the program’s activities. Monitoring model and time attributes build a
performance model[Lut89]. The performance model is a prerequisite for tuning and predicting
the performance of not yet implemented systems. Beside systematic event specification and
performance prediction, the monitoring model can be used for automatic trace validation and as
a graphical template for dynamic trace visualization (animation).

3.1. Systematic Event Specification

Instrumenting a program for event-driven monitoring means not only defining events but also
defining the respective level of abstraction3. Here the relationship between monitoring and
modeling is obvious: both techniques are based on the same definition of events. In the same
way as modeling describes the flow by transitions between model states, monitoring describes
transitions between program activities by events. Due to the very close connection between
the flow description in modeling and monitoring, it is desirable to use the same set of events
for modeling and for monitoring. The monitoring model describes the flow of the program
on a level of abstraction desired for measurement and performance evaluation. The level of
abstraction described in the monitoring model depends on the intention of the analysis. Thereby
it is useful to first model and observe the flow on a coarse level, e.g. process level. This model
reveals process concurrency, process interdependence, and process interactions but dispenses with
instrumenting all procedures at the same time. Coarse level monitoring avoids an intractable
flood of events. Therefore, stepwise refinement, usually used in software engineering, should
also be applied for monitoring.

With modeling and monitoring integrated, the instrumentation will be simplified since the
important phases of the program are regarded as black boxes and represented by states in the
model. In this case the difficult question of how to instrument a program is implicitly already
answered by the monitoring model, and it is tempting to derive the instrumentation automatically
from the model. Thus the instrumentation need no longer be an intuitive action, it may be done
systematically. A systematic procedure offers two great advantages:

• Program instrumentation can be carried out automatically with the support of tools.

a

3 The idea of analyzing parallel programs in different levels of abstraction is also called "analysis using multiple views" [LMF90].
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• The necessary input parameters for a performance model, e.g. runtime distributions of
program phases or transition probabilities between them, can be derived from a measured
event trace.

The systematic model-driven instrumentation guarantees by construction the same set of events
in the monitored event trace as in the model. There is a one-to-one mapping between the model
events and the measurement events. Therefore, no distinction is made between them.

The automatic instrumentation of a multigrid algorithm implemented on a multiprocessor system
in the programming language C is described in [KQS91]. The modeling is done with stochastic
graph models which can be generated and evaluated by the tool PEPP (PerformanceEvaluation
of Parallel Programs). Beside modeling, PEPP provides a command file for the model-
driven automatic instrumentation with the tool AICOS (AutomaticInstrumentation ofC Object
Software). AICOS can be used for automatic instrumentation of programs written in C as a
preprocessor. Both PEPP and AICOS have been developed at the University of Erlangen.

Another advantage of this method is the direct feedback between the monitoring results and the
model. Building a model always includes intuitive deliberations. Intuition, however, can fail.
Therefore it is absolutely necessary to validate the model with the help of the monitoring results.
Due to the same set of events in monitoring and modeling validation is possible, i.e. it can be
checked whether the model matches with the monitored behavior of the program. If the model
does not match the monitored behavior there are two kinds of feedback between monitoring and
modeling, i.e. for bringing monitoring into line with modeling and vice versa:

• If it may be assumed that there is a correct implementation which is to be described by a
model, the original model has to be adapted to the implementation.

• If a specification given in a model is correct and should be implemented, then the
implementation must be changed according to the model.

Such a correction demands a change of the program instrumentation before the next measurement.
The advantages of using systematic and tool-supported automatic event specification and
instrumentation are obvious: instead of a demanding and fault-prone manual re-instrumentation
of the object program we can modify the monitoring model. Then a systematic, automatic
instrumentation of all states described in the model is carried out. This tool support is especially
helpful for the instrumentation of all ending points of a C-function which is too tedious and
error-prone a task using a text editor.

The model-driven approach enables us to instrument arbitrary statements in the program under
investigation on the desired level of abstraction. So, the overhead caused by instrumenting all
procedures as in [AL89] can be significantly reduced. Also, monitoring is not restricted to
interprocess-communication as it is done in [HC89], [JLSU87]. In [MCH+90] an automatic
approach to program instrumentation is presented which causes an overhead of up to 45%. We
use the same multiple view concept as Leblanc [LMF90], but we support it by model-driven
instrumentation which allows very easy re-instrumentation of a program. In addition to finding
suspicious behavior as in debugging [MH89] and finding performance bottlenecks [BM89],
the integration of modeling and monitoring enables us to predict the performance of not yet
available systems and implementations.
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3.2. Performance Prediction
Adding runtime distributions to the activities of a functional model, we get a performance model.
Modeling enables us to compare the performance of various implementations and mappings.
The use of measured distribution functions means model evaluation with realistic data and
more relevant results. One application of integrating monitoring and modeling is shown in the
following example.

We used stochastic graph models as performance models to predict the speed-up of a parallel
multigrid implementation on a16–processor system. Each node of the model represented
an activity like relaxation and interpolation. The analysis was started by implementing and
measuring a parallel algorithmA1. The achieved speed-up was disappointing. Analyzing
the measured data, we detected a poor parallelization strategy being responsible for the bad
speed-up. Using the same level of abstraction in the monitoring model as in the graph model,
the measured distribution functions of algorithmA1were valuable parameters for modeling
different implementation alternatives. We were able to predict the speed-up of an improved
implementation. The predicted speed-up could be confirmed by further measurements. In
addition to that, the runtime of the algorithm on not yet available configurations with more
than16 processors was predicted based on the measured runtimes. According to this prediction
the speed-up for this algorithm cannot be further improved by using more than20 processors.

In this way performance prediction is integrated with monitoring. Dependent on the modeled
problem, we use various modeling techniques like queueing models, timed petri nets, or stochastic
graph models. Here, we describe the tools we currently use for modeling parallel programs.

For modeling parallel programs we prefer stochastic graphs. A stochastic graph consists of nodes
and arcs. The nodes represent the activities of the parallel program. An arc from activityA to
B means that activityA must be finished before activityB can be started. The runtime behavior
of each activity is modeled by a distribution function.

Analyzing a graph we compute the runtime distribution function or the mean runtime of the
modeled program. Let us consider problems which can be modeled with seriesparallel graphs4.
If we have a seriesparallel graph, the overall runtime distribution function can be obtained by
reducing the graph to one single node. The operators convolution (series reduction) and product
(parallel reduction) are applied to the activities’ runtime distributions. The operator convolution
can be applied to the nodesA andB if the only successor ofA isB andA is the only predecessor
of B. The parallel reduction can be applied to the nodesA andB if the predecessor and the
successor nodes are the same.

There are two ways of using the measured data for performance prediction.

1. The empirical distribution functions are approximated with appropriate parametric distribu-
tion functions.

2. The operators are directly applied to the empirical distribution functions.

Good approximations can be obtained by using exponential polynomials [Sah86], branching
Erlang distributions like in MEDA [Sch87, Sch89], or distributions consisting of one deter-
ministically and one exponentially distributed phase like in PEPP [Söt90]. The problem is that
in many cases of practical relevance the analysis must be done by simulation because of the
high computational costs of the known mathematical methods.
a

4 For analyzing non-seriesparallel graphs we use the state space analysis.
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The advantage of the second method is that the activities’ runtime distributions may be arbitrarily
distributed. In spite of this advantage the graph can be evaluated very efficiently [Kle82]. In
order to compare the execution time of different implementation schemes we developed the tool
SPASS (Series PArallel Structures Solver) [Pin88]. Using the empirical method, we can evaluate
graphs consisting of 1000 and more nodes [SW90] in some minutes, independent of the runtime
distribution shape.

4. ZM4 – a Universal Distributed Monitor System

4.1. Demands and Conceptual Issues
A monitor system, universally adaptable to computer systems with more than one processor,
must fulfil several architectural demands. It must be able to

• deal with a large number of processors (nodes in the object system)

• cope with spatial distribution of the object nodes

• supply a global view of the object system

• be adaptable to different node architectures

In order to deal with a large number of processorsthe monitor should be decentralized into a
network of an arbitrary number of nodesinstead of being one huge monitor for the whole object
system. Extending the concept of decentralization tospatial distribution of the monitor nodes
allows the monitor system to cope with spatial distribution of the object system, too.

Supplying a global view needs methods for showing causal relationships between activities in
different processors. The following considerations show that aglobal clock with an accuracy
better than 500 nsprovides a means to do this in any of today’s parallel and distributed systems.

In distributed systems as well as in multiprocessors there is an event stream associated with
each processor. As the processors are co-workers on a common task, they have to exchange
information about each other, resulting in an interdependence of their event streams.In order to
globally reveal all causal relationships it suffices to order the events internal to each processor
locally, and to order events concerning interprocessor communication globally. Local ordering
is automatically achieved if the events are recorded in the order of their occurrence.

A global ordering of the communication events can be achieved by the inherent causality of
SEND- and RECEIVE-operations in systems communicating via message passing [Lam78]:
a message can only be received after it was previously sent. But monitoring also has to
show performance indices, introducing the necessity of physical time. Duda et al. describe
a mechanism to estimate a global time from local observations in systems communicating
via message passing [DHHB87]. Systems communicating via shared variables lack this easy
mechanism to globally order events and to derive a global time. Here one processor’s change
of a shared variable alters the state of all processors using this variable, too. As the sequence
of such accesses is arbitrary, it cannot be foreseen and there is no means to globally order such
events without a global time scale.

The change of a shared variable actually affects another processor’s state when it reads this
variable. As the read-access to this variable can immediately follow the (state-changing) write-
access, two consecutive accesses to a shared variable must be ordered correctly. Due to the
asynchronous nature of multiprocessor and multicomputer systems, access conflicts can occur.
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They are solved with an arbitration logic, which serializes conflicting access requests, but needs
time to reach a stable state. So, a monitor clock with a global accuracy better than about half
a microsecond allows to globally order communication events in systems with shared variables.
As these demands on time resolution exceed those from ordering SEND-/RECEIVE-events by
orders of magnitude, a monitor using a clock with that accuracy can be used universally.

A powerful monitor system should not be dedicated to just one object computer architecture. In
order to enable an easy adaptation to arbitrary object systems and to fulfil the already mentioned
demands, one prerequisite is a distributed architecture with a global clock. Other capabilities
must be provided by the monitor nodes. These can be functionally separated into the following
tasks

• interfacing to the object system: The monitor system must be adapted to the object system,
i.e. appropriate signals in the object system must be transformed to be compatible with
the monitor kernel.

• event detection: There must be a unit in the monitor system which is responsible for
recognizing the predefined events. This unit has to prepare the event-defining signals in
such a manner that the later steps of the monitoring process are supplied with compact
and useful information about the events occurring in the object system.

• time stamping and event recording: Each event must instantaneously be assigned a
globally valid time stamp allowing the ordering of all events with global interdependence.
Recording of the events is necessary for post-processing, and multi-stage buffering is
necessary to uncouple the event rate of the object system from the speed for writing
high-volume trace files.

A pragmatic aspect is the handling of the monitor system. It must be applicable to large (i.e.
many processors and/or spatial distribution) object systems as well as to small object systems.
Therefore it must be flexible enough to support upgrading from small and rudimentary monitor
configurations to very large ones.

Combining the features of typical monitor systems, these demands can nearly be fulfilled. Plattner
developed a hardware monitor for monitoring software in real time [Pla84]. His monitor is
dedicated to a single processor. This is fully adequate for his investigation: he shows that non-
invasive monitoring of systems with dynamic resources, i.e. procedures with local variables,
recursive calls, dynamic memory allocation etc., is very complicated.

Tsai et al. describe a monitor system which is also called a non-invasive monitor. It is aimed at
monitoring of multi-microprocessors with the MOTOROLA 68000, which neither uses virtual
addressing with memory protection nor caching mechanisms [TFC90]. This monitor works with
a shadow-processor for each processor in the object system. Once armed, it is loaded with the
internal status of the object processor and then runs in parallel with it. After the specified trigger
condition is met, the status of the shadow processor, which is identical with the status of the
object processor, can be investigated without disturbing the object system. The arming for the
next investigation is done by issuing an interrupt to the object processor, which transfers its
internal status to the shadow processor. The authors restrict the range of possible investigations
to software without dynamic resources, and there is no discussion how to establish a global
view of the object system.

The advantages and drawbacks of hardware, software and hybrid monitoring are analyzed by
Mink et al. [MCNR90]. The authors state that hybrid monitoring allows investigations which
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are not possible with pure hardware monitoring, e.g. when caches are involved. They prefer
hybrid monitoring since it causes little interference on the object system. Their monitor system
is built of measurement nodes which carry out the data collection. Together with a central
analysis computer they are interconnected with a VME bus. A measurement node consists of
a set of VLSI chips, responsible for gathering the event-defining information from the object
system, time stamping the generated event records, and data buffering. As a special feature,
event counters are implemented in one of the VLSI chips in order to reduce the amount of data
to be transferred and evaluated. With a time resolution of 100 ns, this monitor system allows to
correctly order all communication events in locally concentrated multiprocessor systems.

NETMON-II [ESZ90] is a hybrid monitoring tool for distributed and multiprocessor systems.
It is a distributed master/slave system with monitor stations (slaves) and a central control
station (master). Each monitor station contains a monitoring unit, a load generation unit, and a
network interface for the communication with the central station, responsible for controlling the
measurement and for data evaluation. The monitoring unit is implemented as an add-on card for
PCs, which is dedicated to hybrid monitoring, and has an 8 bit wide Centronics printer port as
the interface to the object system. Thus, interfacing, event detection, and event recording, i.e.
all tasks of a monitor node, are combined on one board.

An autonomous clock with a resolution of 8�s is part of each monitoring unit, making the
monitor suitable for object systems which communicate via Send/Receive-Mechanisms. In order
to establish a global timebase, these clocks are corrected every 15 ms via the time channel which
connects all monitoring units. As this correction is carried out by directly accessing registers
from a signal which is distributed over distances in the LAN-area, erroneous corrections due to
spikes on the time channel can occur. This results in incorrect time stamps, which cannot be
detected, because the clock circuitry does not distinguish between correct and incorrect pulses
on the time channel.

In our opinion universal monitor systems need two more features:

• modular design of interfacing, detection, and time stamping in order to provide easy
adaptability to arbitrary object systems.

• a global clock mechanism which combines high resolution, precise synchronization over
large distances, and detection of synchronization errors.

4.2. Architecture of the ZM4

We have designed and implemented a universal distributed monitor system, called ZM4 (see
fig. 2), which fulfils all the previously mentioned demands. It is structured as a master/slave-
system with thecentral control and evaluation computer(CEC) as the master, and an arbitrary
number ofmonitor agents(MA) as slaves. The distance between these MAs can be up to 1,000
meters. Conceptually, the CEC has the task to build the user interface of the whole monitor
system, i.e. control the measurement activity of the MAs, store the measured data, and support
the user with a powerful and universal toolset for evaluation of the measured data (see section 5).

The MAs are the nodes of the distributed monitor system. They are equipped with up to 4
dedicated probe units(DPUs). The MAs control the DPUs and buffer the measured event traces
on their local disks. The DPUs interface the nodes of the object system and are responsible
for event recognition, time stamping, and event recording with the first, high-speed stage of
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Figure 2: Distributed architecture of the ZM4

buffering. As can be seen in the following section, the DPUs are separated into specialized
and general parts.

In order to establish a global time scale with the necessary resolution, a time stamping mechanism
is integrated into the DPU by combining a globally synchronized clock with the event recording
mechanism. The clock of each DPU gets all information necessary for preparing precise time
stamps via the tick channel from themeasure tick generator(MTG) which forms the master
part of the clock synchronization.

While the tick channel together with the synchronization mechanism is our own development,
we used commercially available parts for the data channel, i.e. Ethernet with TCP/IP. The data
channel forms the communication subsystem of the ZM4 and it is used to distribute control
information between the MAs and the CEC as well as measured data. Together with the MAs,
the MTG, and the CEC, the general part of the DPU forms the universal kernel of the ZM4.

The ZM4’s architectural flexibility has been achieved by two properties: Easy interfacing and
a scalable architecture. The DPU can easily be adapted to different object systems, see section
4.3. ZM4 is fully scalable in terms of MAs and DPUs. The smallest configuration consists of
one MA and one DPU, and can monitor up to four object nodes. Larger object systems are
matched by more DPUs and MAs respectively.

4.3. Dedicated Probe Units in the Monitor Agent
The monitor agents are standard PC/AT-compatible machines. We use their expandability for
adapting the kernel of the ZM4 to the various object systems. Each PC/AT provides processing
power, memory resources, a hard disk, and additionally a network interface for access to the
data channel.

In order to achieve the goal of a universal monitor system, the DPUs physically implement the
demanded functional separation (see general DPU in fig. 3). According to the three tasks of
event processing, there are also three levels of achievable generality. Theinterfacehas a tight
connection to the object system, so it will never be universal (except probes similar to those
unhandy ones of Logic Analyzers). Interfacing the object system is usually a small fraction of
the whole monitoring effort and it can be done without interaction of the MA’s processor. As
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building a simple interface is the only effort to adapting a new object system, the functional
separation makes the ZM4 a truly universal monitor system.

The event detectorinvestigates the rapidly changing information supplied by the interface, in
order to recognize the events of interest and to supply the event recorder with appropriate
information about each event. This information must reveal (1) the event itself, i.e. one element
out of the set of possible and predefined events, and (2) the point of time at which the event
occurred. The complexity of the event detector largely depends on the type of measurement:
for recognizing predefined statements in the program running on a processor without instruction
cache and memory management unit, a set of comparators or a memory-mapped comparison
scheme suffices. If the object system uses a processor with a hardware cache, or if predefined
sequences of statements are intended to trigger an event, much more complex recognition circuits
will be necessary [KL86].

data channel

tick

channel

memoryprocessornetwork-
interface

tick channelevent detector

interface

up to four object nodes

general DPU

event recorder

tick channel

up to four object nodes

hybrid interface

simple DPU
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Figure 3: Monitor agent equipped with DPUs

At the output of the event detector a stream of events, consisting of a bit pattern and a signal
for their occurrence, is available for theevent recorder. This part is needed in general and if
implemented carefully it can be used for any type of event and object (see next section).

Using hybrid monitoring, the object system itself carries out the event recognition and sends
suitable event tokens to the monitor. In this case the interface and event detector can be combined
to a hybrid interface which captures the information from the object system and transforms it to
the protocol used by the event recorder (see simple DPU in fig. 3).
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In a simple version, which we successfully use, a hybrid interface is a board containing four
input connectors for a printer port on one side and the connectors for interfacing the event
recorder on the other side. Between these connectors the signal lines for the data are directly
routed, while the strobe lines, signalling the occurrence of the events, are filtered and buffered
before routing them to the event recorder. An example of a more complex interface is our
socket adapter for hybrid monitoring of Transputers. Here the signal pins of the Transputer are
monitored in order to capture memory write cycles of the processor, triggered by the software
instrumentation of the program.

4.4. Universal Event Recorder with a Global Clock
The event recorder has to fulfil a task common to every kind of event-driven monitoring:
assigning globally valid time stamps to the incoming events, thereby building event records,
and supplying a first level of high-speed buffering. We designed and implemented the event
recorder for arbitrary monitoring applications. This is made possible by the architecture shown
in fig. 4 and the decisions for dimensioning this component.

We start our description with one of the key features of this event recorder, i.e. the interface
to the event detector. This interface is built by two functionally disjoint bundles of signals, the
data path being responsible for the event description itself, and the control path signalling the
occurrence of events. The signalling path is connected to the capture logic and mainly consists
of four request lines (Reqi), each of them servicing an asynchronous and independent event
stream. That means, up to four object nodes can be monitored with only one DPU. Additionally,
each request line is paired with a grant line (Gnti). The grant line signals the capture of an
event record. While ignoring the grant line makes no problem, Gnti can be used to facilitate
the design of the event detector or the hybrid interface. We used this feature to ease the task of
writing out event tokens via parallel ports which autonomously handle a request/grant protocol.
This helped to cut down an instrumentation statement to a single output statement.

Each of the four event streams can be furnished with an arbitrary fraction of the data field, which
in total supplies 48 bits. The decision how to split up this datafield and do the assignment to the
event streams is postponed to the definition of the event detector’s architecture. For example the
event recorder can be used for one event stream with an event coding scheme using the whole
width of the data path, or four event streams with eight or 16 bits, or any combination thereof.

If at least one of the request lines signals an event, the capture logic latches the data field into
the data buffer in order to establish a stable signal condition for further processing of the event
record. The event record is composed of the output of the data buffer, the flag register, and the
clock’s display register. It is written into the FIFO-memory within one cycle of the globally
synchronized clock of 100 ns.

Each event stream is associated with a bit in the flag register whose active condition in the event
record signals that its event stream contributed to the recording of this event (E1 to E4). This
mechanism allows for recognizing the relevant part of an event record and ignoring the rest of
the data field. A fifth event stream — internal to the monitor system — is established for the
information transmitted via the tick channel (Es). The concept of these synchronization events
is described later. Coincidence of events simply causes more than one bit in the flag register
to be set, meaning that their corresponding parts in the data field are valid event descriptions5.
a

5 The meaning of the ES bit is defined by itself and has no corresponding part in the data field
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The overflow bit (Ov) means that at least one event has been lost due to buffer overflow. SOK

signals the correct operation of the event recorder clock (see later).

The synchronized oscillator together with the display register forms the slave part of a
master/slave clocking scheme which is responsible for preparing globally valid time stamps with
a resolution of 100 ns. This clocking scheme works on two levels, the PLL level and the token
level. The PLL level is implemented as a distributed frequency synthesizer [Gar79], allowing
to choose the clock frequency of the master (1 MHz) and the slave (10 MHz) according to their
individual needs. Especially the data transfer rate on the tick channel (100 kHz) can be chosen to
meet specifications for low-cost cabling and interfacing (RS 485) without significantly affecting
the clock’s precision. We have analyzed this scheme, and the measurements taken confirm a
clock skew of less than 5 ns in the worst case. On the PLL level the availability of the signal on
the tick channel and the lock condition of the PLL circuitry are supervised, and combined into
the SOK–bit in the flag register. The token level of the synchronization uses the PLL level for
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the decoding of tokens, which are Manchester coded and distributed by the MTG via the tick
channel. We use two different tokens, thestart_token for starting the measurement and the
stop_token for terminating it. While the PLL level of the clocking scheme ensures that all
clocks run at the same rate, the token level is responsible for globally starting all clocks at the
same 100 ns interval, thus creating a unique time scale over all event recorders.

In order to ensure the correctness of the generated time stamps the clocking scheme was extended
by the concept of synchronization events, which use the previously mentioned internal event
stream in the following fault tolerant protocol:

1. On a command from the CEC, transmitted via the data channel, all monitor agents reset
their event recorders. This resets all clocks to zero and arms the event recorders waiting
for the start_token .

2. After all event recorders have been armed the MTG sends thestart_token to all event
recorders via the tick channel.

3. On the receipt of thestart_token all event recorders start their clocks and start recording
events.

4. The receipt of astart_token creates an event on the internal event stream which is
recorded as an event record with the ES–bit in the flag register set. If thissync_event
coincides with events from other streams, also the corresponding bits Ei of the active channels
are set.

5. After fixed time intervals (selectable from 2 ms to 65536 ms in ms steps) the MTG repeats
broadcasting thestart_token which results in the correspondingsync_events at the
event recorders.

6. A measurement is globally terminated by the MTG which broadcasts thestop_token to
all event recorders.

In this fault tolerant protocol, the concept ofsync_events allows to prove the correctness of
all time stamps atsync_events , because the correct time stamp assigned to async_event
is known a priori as a result of the fixed intervals for generating them. Supervising the state of
the synchronization and recording this in the flag field for each event allows the extension of
the proof forsync_events to any event between them.

If a sync_event is lost the interval for proving the correctness of time stamps is prolonged
until the nextsync_event . Unless there is a synchronization error in the prolonged interval,
loosing async_event is irrelevant. Additionally, error recovery for corrupted time stamps
is possible by this means.

Providing a bandwidth of 120 Megabytes/s at the input to the FIFO-memory, the event recorder
has a peak performance of 10 million events/s. The high-speed buffering having a depth of
32 K event records not only allows hybrid monitoring but works for all kinds of event-driven
monitoring which always deals with deliberately selected events and the resulting comparatively
low event rates. The event rate exceeding this bare minimum necessary for event-driven
monitoring can be used to record additional information. For example, if the program is
instrumented in order to get a global overview and additionally a detailed view on a certain
procedure, then a burst of events will be generated each time the procedure is executed. Within
these bursts, the mean event rate will be exceeded by orders of magnitude.

Going down one step in fig. 4 leads us to the host interface, which is used for configuring the
event recorder and for reading out the collected event records. This read-out can only be done
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at the maximal rate of the host-PC/AT, resulting in a mean event rate of about 10000 events/s
for one monitor agent. The buffering mechanism of the FIFO-memory allows high peak event
rates; the ability to read out the FIFO-buffer while monitoring removes the restriction on the
maximal length of a trace. So, a high input event rate on the one side and online buffering on
the other side add to the universality of this event recorder.

The control logic is responsible for the correct operation of the event recorder. It handles the
configuration information transferred over the host interface and supplies the monitor agent with
status information. The configuration information defines the actually used width of the data
field (16,32,48 bits), and other parameters for setting up a measurement or correctly terminating
it. As status information, the clock is monitored as well as the amount of accumulated data
in the FIFO-memory.

5. SIMPLE - a Performance Evaluation Environment
SIMPLE is a tool environment designed and implemented for performance evaluation of arbitrary
event traces. We use it on our central evaluation computer of the ZM4. The name SIMPLE
(Source-related andIntegratedMultiprocessor and -computerPerformance evaluation, modeLing,
and visualizationEnvironment) indicates that it is easy to use. SIMPLE has a modular structure
and standardized interfaces, so that tools, which were developed and implemented by others,
can be integrated into SIMPLE very easily.

5.1. The Concept for a General Logical Structure of Measured Data -
the Basis for Independence of Measurement and Evaluation

The design and implementation of an evaluation system for measured data is too complex and
expensive a task to be done for one special object system or monitor system only. But if the
evaluation system is able to handle data produced by monitoring arbitrary parallel and distributed
computer systems, the three following requirements are essential:

• monitor independence: As there is a great variety of parallel and distributed computer
systems and applications, it is necessary to use different monitoring techniques and
methods. But the measured data, recorded by different monitor devices and therefore
usually differently structured, formatted, and represented, should be accessible in a uniform
way.

• source reference: Data recorded by monitor systems are usually encoded and in a
compressed form. But in the analysis and presentation of the data, the user wants to work
with the problem-oriented identifiers of hardware and software objects of the monitored
system.

• object system independence: There are many differences in structure and function of the
single nodes and in the configuration of the interconnection system. There are a variety
of operating systems and applications. But an evaluation system should be applicable to
differently configured computer systems with a wide variety of functions.

To handle these requirements, we have to look at the measured data because this is what the
evaluation system sees of the monitored system. All requirements mentioned have an effect on
the structure, format, representation, and meaning of the measured data. In order to abstract
from these properties we have to find a general logical structure for all the different types of
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measured data. This logical structure can then be used to define astandardized access method
to the measured data.

Using event-driven monitoring, the data resulting from the monitor is a sequence of E-records,
each describing one event. An E-record consists of an arbitrary number of components, called
record fields, each containing a single value describing one aspect of the event that occurred.
In most cases an E-record has record fields containing the event identification and the time the
event was recognized. It is also possible that a record field or a group of record fields is not
always present in the current E-record or that a record field is interpreted differently, depending
on the actual value of another record field. Therefore, it is possible that E-records have different
lengths even in one event trace.

E-record fields can be classified in four basicfield types:

TOKEN Record fields of type token contain onlyonevalue out of a fixed and well-defined set
of constant values. A token record field is a construction similar to the enumeration
types in the usual programming languages. They can be used to describe encoded
information like event or processor identifications. Each value has a special, fixed
meaning called interpretation.

FLAGS Record fields of type flags are like token record fields but theycancontainmore than
onevalue out of a fixed well-defined set. This is done by encoding the individual
values as bits which are set or not set. Similar to token values, each bit set or not
set can have a special meaning also called interpretation.

TIME Record fields of type time are used to describe timing information contained in an
E-record. This timing information can be of arbitrary resolution and mode (point in
time or distance from previous time value).

DATA Record fields of type data in most cases contain the value of a variable of the
monitored software or the contents of a register of the object system. They can
be compared with variables in programming languages. It is only specified how to
interpret their value. This format specification is a simple data type like integer,
unsigned, or string.

Additionally, there are other types of E-record fields which are only relevant to the decoding
system: first, there are record length fields, which contain the length of the current or previous
E-record, and checksums. Second, fields containing irrelevant or uninteresting data, like blank
fields are called filler.

Now, if during the measurement one stores the event records sequentially in a file (event trace
file), one gets a sequence of E-records sorted according to increasing time. A section in the event
trace which has been continuously recorded is called atrace segment. A trace segment describes
the dynamic behavior of the monitored system during a completely observed time interval. The
knowledge of segment borders is important, especially for validation tools based on event traces.
It is possible that each trace segment begins with a special data record, the so-calledsegment
header, which contains some useful information about the following segment, or is simply used
to mark the beginning of a new trace segment.

With the hierarchyevent trace/ trace segment/ E-record/ record fieldwe have a general logical
structure which enables us to abstract from the physical structure and representation of the
measured data. An E-record with its fields represents an event with its assigned attributes, and
the event trace file the dynamic behavior expressed in streams of events.
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5.2. TDL/POET - a Basic Tool for Accessing Measured Data

Based on the logical structure introduced in the last section, we designed and implemented the
TDL/POET tool in order to meet the requirements listed in section 5.1. The basic idea is to
consider the measured data a generic abstract data structure or an object as in object oriented
programming languages. The evaluation system can access the measured dataonly via a uniform
and standardized set of generic procedures. Using these procedures, an evaluation system is able
to abstract from different data formats and representations and thus becomes independent of the
monitor device(s) and of the object systems monitored. The tool consists of three components
as shown in fig. 7:

• POET (Problem Oriented Event Trace interface): The POET library is a simple and
monitor-independent function interface which enables the user to access measured data,
stored in event trace files, in a problem-oriented manner. In order to be able to access
and decode the different measured data, the POET functions use theaccess key filewhich
contains a complete description of formats and properties of the measured data. For
efficiency, the key file is in a binary and compact format. In addition to describing data
formats and representation of the single values, the access key file includes the user-
defined (problem-oriented) identifiers for the recorded values. These identifiers can now
be used by the evaluation tools, thus enabling the required source reference. There is
a great variety of POET functions: for example, there are functions to process the E-
records in an event trace in any desired order. It is possible to process the E-records in
an event trace in the order they have been recorded (get_next ), or to move the current
decoding position in the event trace relative (forward , backward ) or absolute (goto )
to a desired E-record. For each type of E-record fields POET provides an efficient and
representation-independent way of getting the decoded values of a certain E-record field
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(get_token , get_time , ...). POET also provides a user-friendly way of handling time
values (set_resolution , print_time , ...).

• TDL (event Trace Description Language): In order to make the construction of the
access key file more user-friendly, we developed the language TDL which is designed
for a problem-oriented description of event traces. The TDL compiler checks the TDL
description for syntactic and semantic correctness and transforms it into the corresponding
binary access key file. The development of TDL had two principal aims: the first was to
make a language available which clearly and naturally reflects the fundamental structure of
an event trace. The second was that even a user not familiar with all details of the language
should be able to read and understand a given TDL description. Therefore, TDL is largely
adapted to the English language. The notation of syntactic elements of the language and
the general structure of a TDL description are closely related to similar constructs in the
programming languages PASCAL and C. By writing an event trace description in TDL
one provides at the same time a documentation of the performed measurement.

• Beyond that, we use a similar approach for filtering event records depending on the
values of their record fields. There is an additional function to the POET library
(get_next_filtered ), which can be used to move the current decoding position
within the event trace to an E-record which matches the user-specified restrictions given
in a so-called filter file. These filter rules can be specified in FDL (Filter Description
Language). Since the FDL compiler does not only read the filter description (FDL file)
but also the event description (key file), the problem-oriented identifiers of the TDL file
are also used for filtering.

The monitor independence enables us to analyze measured data with SIMPLE which were
recorded by other monitor systems like network and logic analyzers, software monitors, or even
traces generated by simulation tools. We are independent of all properties of an object system,
especially of its operating system and the programming languages used. In order to adapt our
environment to another kind of measurement, one only has to write a TDL description of the
event trace to be analyzed. Being independent of the object system and the monitor device(s),
the TDL/POET interface inherently has another advantage: as it provides a uniform interface,
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the evaluation of measured data is independent of their recording. This enabled us to design
and implement the tool environment SIMPLE in parallel to the design of our distributed monitor
system ZM4. Additionally, POET is an open interface. This means that the user can build his
own customized evaluation tools using the POET function library.

The tools TDL/POET/FILTER are implemented under the operating system UNIX in the
programming language C. A prototype was designed and implemented in 1987. The growing
interest and two years of experience in the use of the tool led to a complete redesign and
reimplementation of the language and the related tools in 1989. The now available version 5.2
is much faster and provides more functions than the prototype [Moh90] (for details see [Moh89]).

5.3. Rating of the TDL/POET Approach

The idea of using configuration files or some sort of data description language, in order to make
a system independent of the format of its input data, is used very often. Our work on TDL
was inspired by the ISO standard ASN.1 (AbstractSyntaxNotation One), which is used in some
protocol analyzers to describe the format of the data packets. To the best of our knowledge, the
first to use a description language for describing and filtering monitoring data was Miller in the
DPM project (DistributedProgramMonitor) [MMS86]. His language allows the description of
name, number, and size of the components in an E-record. The description of trace structures
like segments and of the physical representation of data values are not supported. Its main targets
are distributed systems with send/receive communication. Unfortunately, regarding today’s great
number of evaluation tools, each depending on its own trace format, his approach seems not
to be noticed.

In our opinion, the most important work on describing events was the definition of the event
trace description language EDL by Bates and Wileden [BW82]. They also introduced the term
behavioral abstraction. Their work inspired many others, among them our group. The main
purpose of EDL is the definition of complex events out of primitive events. In EDL, attributes
of the primitive events can be defined, but not their format or representation [Bat89].

Finally, a word on standardization: At the moment, efforts are taken to standardize the format
of event traces for debugging and evaluation systems [Utt90]. We feel that standardization of
the event trace format is not the right approach. No standard format can be flexible enough
to represent all possible event trace formats unless format information is included in the trace,
which is somewhat unhandy. Also, there is a great variety of existing (hardware) monitors which
cannot produce a standardized format. Therefore, many conversion programs would have to be
implemented. The TDL/POET interface shows that a generalized access method for arbitrary
event traces works well. The only assumption about the trace is that it is a sequence of records
each of which is a sequence of a variable number of fields. No further assumptions are made.
This is flexible enough to handle all existing and future event trace formats. So, instead of
standardizing the trace format we plead for standardizing the event trace access interface.

5.4. The Performance Evaluation Tools of SIMPLE
Performance evaluation of measured data, especially in large projects, can only be done if
a powerful set of tools is provided. In this section, we give a short overview of the main
components and the flow of data within the SIMPLE environment (see fig. 8). For a more
complete overview and an example of how to use these tools see [Moh91].
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Sometimes the measured data are recorded with one monitor only, but using a distributed monitor
system returns a set of more than one independently recorded event traces. The first step is to
generate a global event trace in order to have a global view of the whole object system (merging).
It is necessary to have such a global view in order to detect and evaluate the interactions between
the interdependent activities of the local object nodes. This task can be done by the tool MERGE.
It takes the local event trace files and the corresponding access key files as input and generates
the global event trace and the corresponding access key. The E-records of the local event traces
are sorted according to increasing time.

merging

global trace
trace

validation

trace1 tracen

trace
animation

performance
modeling

trace
analysis

Figure 8: SIMPLE: overview

The next step is often forgotten but nevertheless necessary. Before doing any analysis it should
be tested whether the measurement was performed without errors and the monitor devices have
worked correctly (trace validation). There is a tool CHECKTRACE that performs some simple
standard tests which can be applied to all event traces, and the tool VARUS (VAlidating RUles
checkingSystem) in which the user can specify some rules in a formal language (assertions) to
validate the event trace. If the validation tests were successful, we can start to analyze the data.
There are three basic uses for event traces:

• The main use is what we calltrace analysis. This can be astandard trace analysisfor
the generation of readable trace protocols (tool LIST) and computation of frequencies,
durations, and other performance indices (tool TRCSTAT). The standard tools work well
if overall questions are to be answered. If more complex investigations have to be done,
it is better to analyze the measured data interactively and with graphics support. We call
this approachinteractive trace analysis: the event trace is stored in a relational data base
(we use the commercial data analysis package S from AT&T [BCW88]) and can be used
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to analyze the dynamic behavior as well as to compute performance indices. We extended
the S package with additional functions to access the event traces and there description
via the TDL/POET interface. The user can analyze the data interactively with a high-
level programming language and has powerful graphical methods to visualize the data like
histograms or time-state diagrams. An example taken from the BERKOM study, referred
to in section 6, can be seen in fig. 9. Here, the transfer of one data block from the sender
(host attachment) to the receiver (workstation) is depicted in time-state diagrams with a
common time scale.

• The trace analysis gives performance measures such as frequencies of events and runtime
distributions. These results can then be used forperformance modeling and predictionas
described in section 3.

• Third, the event traces can be used fortrace animation. The dynamic visualization of an
event trace presents the monitored dynamic behavior in a speed which can be followed by
the user, exposing properties of the program or system that might otherwise be difficult to
understand or might even remain unnoticed. By only displaying a single instant of time,
more state information can be displayed simultaneously than in a time-state diagram. We
developed the tools SMART (Slow Motion AnimatedReview of Traces), which can be
used on any character-oriented terminal, and VISIMON, which offers enhanced graphic
capabilities and is based on X-Windows. Here the user can specify the course and the
layout of the animation in an animation description language.

For each measurement one gets a lot of related files like event trace, key, filter description, and
VARUS assertion files. For theadministrationof all these files SIMPLE provides an additional
tool (ADMIN). It is based on the UNIX filesystem and has a menu-driven interface. It classifies
all files in the hierarchyproject / experiment/ measurementand stores additional information
like date, reason, and experimenter of a measurement.

6. Experiences and Conclusion
In this article, we presented the monitor system ZM4 and the performance evaluation environment
SIMPLE. The design of these tools has been guided by the idea of integrating monitoring and
modeling. ZM4 is a universal hardware monitor which we have used for measurements on
several parallel and distributed computer systems. Due to the modular structure of the DPUs,
we could easily adapt it to different object systems. Also SIMPLE, a set of tools, proved to be
capable of evaluating event traces either recorded by the ZM4 or originating from other hardware
and software monitors. Three applications are now briefly presented:

Synchronous software monitoring of a parallel operating system [Qui89]

Accompanying the implementation of a parallel version of the UNIX operating system for a
Concurrent 3280 MPS multiprocessor, the behavior of that system was analyzed. The 3280
MPS is a three-processor asymmetric architecture, in which only one processor can do I/O. For
our analysis we used a software monitor which was implemented as an operating system function
executable on all three processors independently. From each processor an event trace was written
into a reserved memory area. Since the 3280 MPS has a common clock with a resolution of
1 microsecond which is available on all three processors, there exists a common time scale for
all three event traces. In the 3280 MPS system a process can be scheduled to run on all three
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processors alternately. One aim of the measurement was to verify and improve the operating
system’s scheduling strategy. This goal was achieved by detecting portions of inefficient code
in a mutual exclusion mechanism of the operating system. Furthermore, an implementation bug
that caused unfairness was detected by trace evaluation, and could be removed.

Monitoring a high-speed communication system [HKL+90]
As a second example, we present a study of the BERKOM6 network, which was carried out
together with the European Networking Center of IBM. BERKOM is a government-funded
project for the development of fiber-based Broadband-ISDN. For this study, event traces were
recorded using the ZM4 hardware monitor. The workload considered for our measurements
was the transmission of rasterized images from one network node (host attachment) to another
(workstation). Fig. 9 shows a typical result of this analysis.
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Figure 9: Example of time-state diagram

Luttenberger and Stieglitz [LS90] report that monitoring helped to eliminate two major bot-
tlenecks in the communication system: the amount of memory-to-memory copy operations
in the receive path of the transport system could be reduced. Also, the message-oriented
buffer management scheme, which caused interrupts on every "buffer-return" message, could be
replaced by a procedure-oriented buffer management scheme. Thus, monitoring gave valuable
hints for improving the throughput.

Monitoring a communication system for a Transputer network [OQM91]
In another recent project, the behavior of a packet-oriented communication system, TRACOS,
developed at the University of Erlangen, was observed. On Transputers, without using
a communication system, process communication is implemented following the rendezvous
concept, and only communication between neighboring Transputers is supported. With TRACOS,
a

6 BERKOM stands forBERliner KOMmunikationssystem
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packets are buffered so that the sender does not have to wait for a packet to be received by
the receiver. The other major task of TRACOS is the routing of packets between any pair
of Transputers in the network. For our measurements we used a basic testbed consisting
of three Transputers (T1, T2, and T3). All properties of interest could be monitored in this
configuration. The hardware monitor ZM4 was adapted to each Transputer via a link and the
INMOS link adapter. The application running on the Transputer network was a data transfer
between Transputers T1 and T3 via T2, and an application process on Transputer T2. The effect
of the communication on the application process was to be studied. For a given packet size,
the CPU availability for the workload process decreased linearly with increasing packet rate.
This behavior can be explained by the fact that the time for packet management and memory
allocation is constant for each packet. It was found that only 65% of the theoretically possible
transfer rate on a Transputer link were achieved for 1 kbyte packets. A reimplementation was
suggested by the results of the measurements, which improved the performance of TRACOS
by about 30 percent, so that the overall performance was close to optimal (about 85% of the
link bandwidth).

Experiences gained during these and other projects showed that the design principles of ZM4
and SIMPLE are sound. Practical use of ZM4/SIMPLE confirmed that the hardware monitor
ZM4 can easily be adapted to arbitrary object systems and that SIMPLE is a highly flexible and
comfortable tool with which all kinds of event traces can be evaluated. Using the TDL/POET
interface makes it possible to access event traces of any format and origin by simply giving a
TDL description of the trace. The concept of object system independence and of integrating
monitoring and evaluation tools proved to be a big step forward. Methods like ZM4/SIMPLE
provide a valuable aid to designers and users of parallel and distributed systems.

References

[AL89] T.E. Anderson and E.D. Lazowska. Quartz: A Tool for Tuning Parallel Program Performance.
Technical Report TR # 89-10-05, Dept. of Computer Science, Univ. of Washington, Seattle,
WA 98195 USA, September 1989.

[Bat89] P. Bates. Debugging Heterogeneous Distributed Systems Using Event-Based Models of
Behavior.ACM Sigplan Notices, Workshop on Parallel and Distributed Debugging, 24(1):11–
22, Januar 1989.

[BCW88] R.A. Becker, J.M. Chambers, and A.R. Wilks.The New S Language, a Programming
Environment for Data Analysis and Graphics. Wadsworth & Brooks/Cole Advanced Books
& Software, Pacific Grove, California, 1988.

[BM89] H. Burkhart and R. Millen. Performance Measurement Tools in a Multiprocessor
Environment.IEEE Transactions on Computers, 38(5):725–737, May 1989.

[BW82] P. Bates and J.C. Wileden, editors.A Basis for Distributed System Debugging Tools, Hawaii,
1982. Hawaii International Conference on System Sciences 15.

[DHHB87] A. Duda, G. Harrus, Y. Haddad, and G. Bernard. Estimating Global Time in Distributed
Systems. InDistributed Systems, Proceedings of 7th Int. Conf., Berlin, September 1987.

[ESZ90] O. Endriss, M. Steinbrunn, and M. Zitterbart. NETMON–II a monitoring tool for distributed
and multiprocessor systems. InProceedings of the 4th International Conference on Data
Communication and their Performance, Barcelona, June 1990.

24



[Fer86] D. Ferrari. Considerations on the Insularity of Performance Evaluation.IEEE Transactions
on Software Engineering, SE–12(6):678–683, June 1986.

[FSZ83] D. Ferrari, G. Serazzi, and A. Zeigner.Measurement and Tuning of Computer Systems.
Prentice Hall, Inc., Englewood Cliffs, 1983.

[Gar79] F.M. Gardner.Phaselock Techniques. John Wiley & Sons, New York, 2nd edition, 1979.

[HC89] A.A. Hough and J.E. Cuny. Initial Experiences with a Pattern–oriented Parallel Debugger.
ACM Sigplan Notices, Workshop on Parallel and Distributed Debugging, 24(1):195–205,
Januar 1989.

[HKL+90] R. Hofmann, R. Klar, N. Luttenberger, B. Mohr, A. Quick, and F. Sötz. Integrating
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