Symbolic calculation of k-shortest paths and related measures with the stochastic process algebra tool CASPA

Michael Günther
Universität der Bundeswehr München
micha1.guenther@web.de

Johann Schuster
Universität der Bundeswehr München
joohann.schuster@unibw.de

Markus Siegle
Universität der Bundeswehr München
markus.siegle@unibw.de

ABSTRACT

CASPA is a stochastic process algebra tool for performance and dependability modelling, analysis and verification. It is based entirely on the symbolic data structure MTBDD (multi-terminal binary decision diagram) which enables the tool to handle models with very large state space. This paper describes an extension of CASPA’s solving engine for path-based analysis. We present a symbolic variant of the k-shortest-path algorithm of Azevedo, which works in conjunction with a symbolic variant of Dijkstra’s shortest path algorithm. A non-trivial case study illustrates the use of this kind of path-based analysis.

Keywords

stochastic process algebra, k-shortest paths, MTBDD

1. INTRODUCTION

CASPA is a tool for performance and dependability modelling, based on a stochastic process algebra. Its development began in 2003 [10], and it has since been the environment in which its developers have experimented extensively with symbolic (i.e. MTBDD-based) techniques that enable the tool to generate and analyse Markov chains with very large state spaces in a highly efficient manner [6].

Recently, CASPA’s modelling language has been extended to support immediate actions (beside the usual Markovian actions) [2]. With this extension, CASPA has been proven to be very suitable for dependability evaluation purposes, in particular for analysing the dynamic behaviour of fault tolerant systems. For example, it is also used as a back-end solver of the OpenSESAME modelling tool [9].

In the context of dependability evaluation, the most probable action sequences that lead to an error state are often of interest. In order to calculate those sequences, we propose to use k-shortest-path algorithms (in this paper, we use the term “k-shortest-path” to denote the k-most probable path). This paper presents symbolical variants of Dijkstra’s algorithm and the Azevedo k-shortest-path algorithm. These new algorithms are implemented and used in CASPA.

The paper is organised as follows: Section 2 is dedicated to our symbolic variant of Dijkstra’s algorithm for calculating the shortest (i.e. most probable) path in a given transition system. Section 3 introduces a symbolical derivative of Schmidt’s variant of the Azevedo algorithm for calculating the k-shortest-path. Section 4 presents a non-trivial application case study that illustrates the efficiency of the implemented symbolic data structures and algorithms, and Section 5 concludes the paper. The appendix A is devoted to the MTBDD operations used for the symbolic algorithms presented in the paper.

2. SPANNING TREE ALGORITHM

This Section introduces a variant of Dijkstra’s algorithm which is used for calculating the most probable path. Our variant is a set-theoretical approach, in order to exploit the possibilities of symbolic data structure. It was developed within Guenther’s Master thesis [5]. This variant is called flooding Dijkstra algorithm in the sequel. In order to present a more readable version of the algorithm we use a slight modification of Guenther’s original presentation, i.e. we work on a maximal projection of the transition system of interest. Suppose we are given a set of states S, a set of labels L and a labelled transition system Trans defined as follows:

$$\text{Trans} \subseteq S \times L \times [0,1] \times S,$$

where we further assume that “parallel” transitions carry different labels, i.e. if $(x,a,p,y) \in \text{Trans}$ and $(x,a',p',y) \in \text{Trans}$, then $a \neq a'$ must hold. The real number in the interval $[0,1]$ is the probability of taking the corresponding transition, i.e.

$$\forall x \in S : \sum_{(x,a,p,y) \in \text{Trans}} p = 1.$$

We will also write $x \xrightarrow{a,p} y$ for the tuple (x,a,p,y). The maximal projection Trans_max of Trans is defined as

$$\text{Trans}_\text{max} := \{(x,p,y) \in S \times [0,1] \times S | (\exists a \in L : (x,a,p,y) \in \text{Trans}) \land (\forall a \in L, p' \in [0,1] : (x,a,p',y) \in \text{Trans}) \Rightarrow (p' \leq p))\}.$$

The existence condition ensures that a lifting to Trans exists and the second condition ensures that p is maximal. So these are the maximum transition probabilities one can get by choosing an arbitrary action from a source to a target.
state. Again, we will use \(x \xrightarrow{p} y \) as a synonym for the tuple \((x, p, y)\).

In contrast to Dijkstra’s algorithm we do not only carry out optimal, final updates but there may also be some updates of probabilities that are re-updated later on. The resulting graph is not a real spanning tree, in the sense that we include paths that are equally probable. We will resolve this issue when we read out the most probable path by making choices then. Nevertheless, in the sequel we will call such a quasi-spanning tree a spanning tree. (Alternatively one would have to ensure that in lines 26-28 of Algorithm 1 only one transition for each target \(y \) is added, in order to get a real spanning tree.)

The code of Algorithm 1 is explained as follows. Lines 1-6 perform the necessary initialisations, i.e. all state probabilities are set to zero except the probability of state 0 which is set to 1. The current BorderSet from where the updates start is set to state 0. As the algorithm just starts, the SpanningTree of course is the empty set. Lines 7-31 constitute the main loop that is carried out until there is no state in the BorderSet any more. First, in lines 8-10 the new probabilities of all states are set to zero. The loop from line 11 to 14 then calculates the maximum probability for every state \(y \in S \) to be reached from the BorderSet. The UpdateSet is defined in line 16 to be those states that gained a higher probability in the current round. The update of the state probabilities to the higher probabilities gained by the BorderSet is done in lines 17 to 19. The remaining part is to update the spanning tree for those states that got a higher probability. Therefore the old transitions that reached the UpdateSet are deleted from the SpanningTree in lines 20-24 and the new transitions are added in lines 25-29. Note by looking at the condition in line 26 that by only looking at \(\text{Prob}(y) \) the update in line 27 might not be unique and therefore we do not get a spanning tree but a spanning tree that contains redundant, i.e. equally probable, paths. We will come to this in Sec. 3. Finally in line 30 the BorderSet is set to the UpdateSet and the loop can start again. Of course, the flooding Dijkstra algorithm shown in Algorithm 1 also performs a reachability analysis, since only reachable states will be in the spanning tree.

3. CALCULATION OF \(K \)-SHORTEST PATHS

This Section shows how to calculate \(k \)-shortest-paths, thereby employing the flooding Dijkstra algorithm presented in Sec. 2. First we show the basic procedure of finding the correct action labels for a path within the spanning tree calculated in the previous Section. Then we show how the transition system has to be transformed such that the shortest path of the transformed transition system is the second shortest path of the original transition system. With this algorithms at hand, one can calculate the \(k \)-shortest paths up to a certain fixed \(k \).

3.1 Reading the action labels from a path

Before proceeding with the algorithm, we first have to define a maximal lifting. The maximal lifting of a subset \(T \subseteq \text{Trans}_{\text{max}} \) to \(\text{Trans} \) is given by

\[
T^* := \{ (x, a, p, y) \in \text{Trans} \mid \exists (x, p, y) \in T \}.
\]

You may observe that this lifting is not unique: There can be more than one action fulfilling the maximality condition while \(p \) as the maximum is unique for a certain pair \((x, y)\) in \(S^2 \). Note that the algorithm for reading the most probable path works on the transition system \(\text{Trans} \) and uses the maximal lifting of the path found by flooding Dijkstra in \(\text{Trans}_{\text{max}} \). Let \(\text{Dest} \) be the state which is the target of the path analysis and let \(\text{Init} \) be the starting state of the analysis. Further we use the function \(\text{PickOne}(X) \) that chooses one arbitrary element of a set \(X \). Algorithm 2 prints the shortest path from the \(\text{Dest} \) to \(\text{Init} \) by a traversal of \(\text{SpanningTree} \) choosing unique predecessor states. The explanation is straightforward. Line 1 sets the current state to \(\text{Dest} \). The main loop that jumps back to the current state’s predecessor goes from line 2 to 13 as long as we did

Algorithm 1 Flooding Dijkstra algorithm

```plaintext
1: for all \( x \in S : x \neq 0 \) do
2:   \( \text{Prob}(x) = 0 \)
3: end for
4: \( \text{Prob}(0) = 1 \)
5: \( \text{BorderSet} = \{0\} \subseteq S \)
6: \( \text{SpanningTree} = \emptyset \subseteq \text{Trans}_{\text{max}} \)
7: while \( \text{BorderSet} \neq \emptyset \) do
8:   for all \( y \in S \) do
9:     \( \text{newProb}(y) = 0 \)
10: end for
11: for all \( (x, y) \in \text{BorderSet} \times S \) do
12:   if \( x \xrightarrow{p} y \in \text{Trans}_{\text{max}} \) then
13:     \( \text{newProb}(y) = \max(\text{Prob}(x) \cdot p, \text{newProb}(y)) \)
14:   end if
15: end for
16: \( \text{UpdateSet} = \{ x \in S | \text{newProb}(x) > \text{Prob}(x) \} \)
17: for all \( x \in \text{UpdateSet} \) do
18:   \( \text{Prob}(x) = \text{newProb}(x) \)
19: end for
20: for all \( (x, y) \in S \times \text{UpdateSet} \) do
21:   if \( x \xrightarrow{p} y \in \text{SpanningTree} \) then
22:     \( \text{SpanningTree} = \text{SpanningTree} \setminus \{ x \xrightarrow{p} y \} \)
23:   end if
24: end for
25: for all \( (x, y) \in S \times \text{UpdateSet} \) do
26:   if \( (x, y) \in \text{Trans}_{\text{max}} \setminus (\text{Prob}(x) \cdot p = \text{Prob}(y)) \) then
27:     \( \text{SpanningTree} = \text{SpanningTree} \cup \{ x \xrightarrow{p} y \} \)
28:   end if
29: end for
30: \( \text{BorderSet} = \text{UpdateSet} \)
31: end while
32: return \( \text{SpanningTree} \)
```

Algorithm 2 Reading action labels

```plaintext
1: \( y = \text{Dest} \)
2: while \( y \neq \text{Init} \) do
3:   print --
4:   Predecessors = \( \{ x \in S | \exists (p) \in [0, 1] : (x, p, y) \in \text{SpanningTree} \} \)
5:   \( x = \text{PickOne}(\text{Predecessors}) \)
6:   for all \((a, p) \in L \times [0, 1] \) do
7:     if \( x \xrightarrow{a,p} y \in \text{SpanningTree}^* \) then
8:       print \( a \)
9:       \( \text{Path} = \text{Path} \cup \{ x \xrightarrow{a,p} y \} \)
10: end if
11: end for
12: \( y = x \)
13: end while
14: return \( \text{Path} \)
```
not reach \textit{Init}. In line 3 prints the arrow indicating the next step. Line 4 computes all predecessor states of \(y \) in \textit{SpanningTree} and line 5 arbitrarily chooses one of them. The loop from line 6 to 11 picks out the corresponding transitions from state \(x \) to state \(y \) in \textit{SpanningTree}. In line 8 the corresponding action is printed and line 9 adds the corresponding transition to \textit{Path}. Line 12 sets the current state to the predecessor \(x \).

Note that there can still be concurring actions in the \textit{Path} generated. Of course due to the \textit{SpanningTree}-property it holds that
\[
\forall (x, y, a, a') \in S^2 \times L^2: ((x, a, p, y) \in \textit{SpanningTree}) \land (x, a', p', y) \in \textit{SpanningTree}\Rightarrow p = p'.
\]

So the probabilities of concurring actions in \textit{Path} are equal, no need to distinguish them for further processing.

3.2 Second shortest path

This Subsection will show how to generate a transition system \(\text{Trans}' \) out of a given transition system \(\text{Trans} \) such that the shortest path of \(\text{Trans}' \) corresponds to the second shortest path of \(\text{Trans} \). Inductively follows that by this concept the \(k \) shortest paths can be calculated for an arbitrary but fixed \(k \). The algorithm is due to Azevedo [1] using a refinement of Schmid [7].

Starting from a set of states \(S \) and a set of transitions \(\text{Trans} \) as before we use an additional set of states \(S' \) with \(S \cap S' = \emptyset \) and \(\left| S \right| = \left| S' \right| \). We use a fixed bijection
\[
' : S \rightarrow S'
\]
\[
x \mapsto x'
\]
to identify elements \(x \) of \(S \) with their corresponding copy \(x' \) in \(S' \) and vice versa. Further we define the set of states
\[
S_{\text{new}} := S \cup S'
\]
for the new transition system \(\text{Trans}' \subseteq S_{\text{new}} \times L \times [0, 1] \times S_{\text{new}} \). Let \textit{Path} be the path calculated in Sec. 3.1.

\begin{algorithm}
\caption{Second shortest path}
1: \textit{Trans}' = \textit{Trans}
2: \textit{PathCopy} := \{(x', a, p, y')|\exists (x, a, p, y) \in \textit{Path} \land y \neq \textit{Dest}\}
3: \textit{Trans}' = \textit{Trans}' \cup \textit{PathCopy}
4: \text{SourceStates} := \{x \in S|\exists (x, a, p, y) \in \textit{Path}\}
5: \text{for all} (x, a, p, y) \in \textit{Trans} \text{ do}
6: \text{ if } x \in \text{SourceStates then}
7: \text{ if } x' \not\equiv y \not\in \textit{Path} \text{ then}
8: \text{ Trans}' = \textit{Trans}' \cup \{(x', a, p, y)\}
9: \text{ end if}
10: \text{ end if}
11: \text{ end for}
12: \text{return} (\textit{Trans}', \textit{Init} = \textit{Init}')
\end{algorithm}

Algorithm 3 works as follows: The seed of the new transition system \(\text{Trans}' \) are the old transitions \(\text{Trans} \) (of course the initial state has to be changed in order not to find the same path as before) which are set in line 1. The shortest path (including its parallel actions) is copied to \(S' \) without the last transition to \textit{Dest} in line 2. Line 3 adds this path to \(\text{Trans}' \). Line 4 calculates the source states of the transitions in \textit{Path}. The loop from line 5 to 11 picks all the transitions that emanate from a source state in \textit{Path} but are not on the shortest path and adds them as cross connections from \(S' \) to \(S \) to the transitions of \(\text{Trans}' \). Finally the initial state is set to the copy of the initial state in \(S' \) in line 12.

4. CASE STUDY

To show the applicability of our algorithm we modelled the busbar given in [3] and noticed that the most probable paths published did not fit the textual description there (e.g. an initial failure of trafo 2 would not be possible if it was a cold spare). This is why we give an alternative description of the model that to our best knowledge produces the desired paths.

4.1 Description of the model

The model is shown in Fig. 1. The aim of the model is to provide the busbar with electrical energy. Each of the main lines consists of upper and lower circuit breakers and a transformer. They route electrical energy from the grid to the busbar. If the lines fail or the grid does, the diesel generator has to be used. The initial configuration is as seen in Fig. 1 where only \texttt{CB}_{\text{up}2} and \texttt{CB}_{\text{dw}2} are in the open position, the other switches are closed. The following constraints for the operation and dynamic behaviour are given:

- States of the components can be \texttt{WORKING}, \texttt{STANDBY} or \texttt{FAILED}
- Either line 1, line 2 or the diesel engine is used. Mode switches can only be line 1 \iff line 2 \iff diesel, no direct switches from line 1 to diesel and vice versa are allowed.
- The trafos and the grid are hot spares and always fail with the same rate, no matter if they are active or not.
- The circuit breakers \texttt{CB}_{up} and \texttt{CB}_{dw} are cold spares (i.e. they do not fail as long as no current runs over them) and they can produce on-demand-failures.
- \texttt{CB}_{failed} does only fail on-demand, it does not fail internally.
- An on-demand-failure of a circuit breaker does not change its internal state. Reconfiguration can change the internal state of a component.
- Switching from trafo 1 to trafo 2 means trying to open \texttt{CB}_{up,1} and to close \texttt{CB}_{dw,2}. Note that when trafo 1 fails and \texttt{CB}_{up,1} fails to open, one must try to close \texttt{CB}_{dw,2} even if it’s clear that the diesel engine has to be
used, as the grid is short-circuited by line 1 in this case.

- Switching on the diesel engine means closing CB\(_{\text{dies}}\) and trying to start the engine. Both operations have on-demand failures.
- Switching back after a repair always works without on-demand failures.
- When a trafo fails, its upper circuit breaker has to be opened, otherwise a shortcircuit will make the grid unavailable for the other trafo.

We have introduced a total ordering of all switching actions as follows: (CB\(_{\text{up1}}\) > CB\(_{\text{dw1}}\) > CB\(_{\text{up2}}\) > CB\(_{\text{dw2}}\) > CB\(_{\text{dies}}\) > S\(_{\text{dies}}\)). Whenever there are more switching operations to be done in our model, the greater operation will always be switched first. Following the philosophy of shortest paths to error states we stress that whenever a greater switching action fails, we do not explore the path any further (except for the short circuit situation given above). All intended switches succeeds with probability \(\frac{999}{1000}\), all failure rates are equal to \(10^{-4}\) per hour and all repair rates equal to \(10^{-1}\) per hour.

4.2 CASPA implementation of the model

The model has been built in CASPA using a compositional modelling approach with synchronisations. Each line is the parallel composition of two switches, a transformer and a line administration. Its synchronised actions are given in Fig. 2. The line administration process has in addition to its internal state a counter variable that keeps track of how many components of the line are currently in the FAILED state. From this it can be determined, when the entire line has been repaired. A top-level process synchronises with two line subprocesses and takes care of the grid and the entire diesel line. As the immediate actions used only for synchronising are of no interest for the resulting paths, they are eliminated. The elimination is done by four semisymmetric elision rounds [2] and the resulting model has 774 reachable states.

4.3 Experimental results

All experiments have been carried out on an Intel Xeon 3.06 GHz machine with 2 GB of main memory running SUSE Linux version 9.1. The elimination of the superfluous synchronisations takes 0.285 seconds (including reachability analysis). For the calculation of the first 100 paths, the mean time needed to calculate one path is 0.61 seconds with a minimum of 0.15 seconds for the 4th path and a maximum of 1.14 seconds for the 24th path.

Table 1 shows the 13 most probable paths calculated by our algorithm. The first column is the sequence of actions, the second one the numerical result provided by our algorithm. The third column shows the exact result calculated by hand. For the by-hand calculation one has to take care, which failure event(s) and repair event(s) can occur for a certain state. For example, the most probable path calculates as follows: In the initial configuration no component has to be repaired and Transfo1, CB\(_{\text{up1}}\), CB\(_{\text{dw1}}\), Transfo2 or Grid can fail. Therefore

\[
P\left(\text{Failure}_\text{OF_GRID} \rightarrow \text{Occurrence}_\text{OF_RC_CB_dies}\right) = \frac{10^{-4}}{1000} = \frac{1}{1000}.
\]

Due to the fact that CASPA uses the CUDD library [4] with a default Cudd\(_{\text{Epsilon}}\) of 1.0 \(\cdot\) 10\(^{-12}\), this is the maximum accuracy one can expect from the results. For example the tool calculates

\[
P\left(\text{Failure}_\text{OF_Transfo2} \rightarrow \text{Occurrence}_\text{OF_RC_CB_dies}\right) = \frac{10^{-4}}{1000} + \frac{1}{1000} = \frac{1}{1000}.
\]

but the exact values differ:

\[
\frac{1}{1000} = 10^{-4}
\]

As the difference is below 1.0 \(\cdot\) 10\(^{-12}\), the values are taken as equal. Reducing Cudd\(_{\text{Epsilon}}\) would improve accuracy but also slow down the calculations.
5. CONCLUSION
In this paper we have presented a set of algorithms to calculate the k-most probable paths for CASPA models. Well-known algorithms like Dijkstra and Azevedo have been adapted to fit the symbolic data structure used in the CASPA tool. A non-trivial case study shows the applicability of the approach. The results have been verified to fit the list given in [3] and for the first 13 paths additionally exact formulas are given. The exactness of the algorithms has been shown to be dependent on the exactness of the calculations in the underlying MTBDD package CUDD. With this path-based analysis the CASPA tool provides an alternative analysis method to the numerical analysis. The path-based analysis can further nicely be used for debugging models. Moreover, with the algorithmic framework for the symbolic calculation of the k-most probable paths at hand it is a small step to calculate the MTTF (Mean Time To Failure) and MTTR (Mean Time To Repair) in an approximate, path-based way.

A prototypical implementation of the MTTR/MTTF calculation of the k-most probable paths for CASPA models. In this Section we give the MTBDD versions of the algorithms presented in the paper. In the description of the algorithms the following name conventions for MTBDD variables are used: \vec{a} (action labels), \vec{s} (source states) and t (target states). The variable ordering in the MTBDD is $a_1 < \ldots < a_n < s_1 < t_1 \ldots < s_n < t_m$ according to commonly accepted heuristics. The following MTBDD operations are used to describe the algorithm (see e.g. [8] for a more detailed explanation):

- $\langle \text{MTBDD}_1 \rangle(\text{OP})\langle \text{MTBDD}_2 \rangle$, the general apply operator
- $\langle \text{ITE} \langle \text{MTBDD}_1 \rangle, \langle \text{MTBDD}_2 \rangle, \langle \text{MTBDD}_3 \rangle \rangle$, the general if-then-else operator: MTBDD_1 is a 0-1 MTBDD and MTBDD_2 and MTBDD_3 are MTBDDE otherwise
- $\langle \text{ABSTRACT} \langle \text{MTBDD} \rangle, \langle \text{VAR} \rangle, \langle \text{OP} \rangle \rangle := \langle \text{MTBDD} \rangle(\langle \text{VAR} \rangle = \langle \text{OP} \rangle)(\langle \text{VAR} \rangle = 1)$

Abstraction and restriction of more than one variable is defined in the canonical recursive way. For the general APPLY operation, the following operators are used:

- $\langle \text{MTBDD}_1 \rangle == \langle \text{MTBDD}_2 \rangle$ returns 1 whenever MTBDD_1 and MTBDD_2 coincide, 0 otherwise
- $\langle \text{MTBDD}_1 \rangle > \langle \text{MTBDD}_2 \rangle$ returns 1 whenever $\text{MTBDD}_1 > \text{MTBDD}_2$, 0 otherwise
- $\langle \text{MTBDD}_1 \rangle + \langle \text{MTBDD}_2 \rangle$ returns $\text{MTBDD}_1 + \text{MTBDD}_2$

A.1 Spanning tree algorithm
For the algorithm let us assume we are already given a transition system Trans where for every state s with at least one emanating transition the probabilities of all emanating transitions sum up to one, i.e. they define a discrete probability distribution. Whenever needed, subscripts show to which variable set a MTBDD belongs to (e.g. Prob_s means that MTBDD Prob is defined by s-variables). Let the initial state be stored in the variable Init (by s-variables).

Algorithm 4 shows as follows. In line 1-3 some initialisation assignments are given. Line 4 calculates the maximal projection of Trans. The loop from line 5 to 18 calculates the updates. In line 6, the probabilities for the states in the current border set are calculated and in line 7 they are multiplied by the maximal transition probabilities. Line 8 calculates the new probabilities for successor states of the border set by abstraction of $\text{Prob}_s^{\text{Trans}}$. From this the UpdateSet_i can be calculated that encodes the states that are reached with a higher probability by transitions from the border set. In lines 10-12 the exit condition is checked: Whenever there are no more states to be updated, the algorithm has finished. With the knowledge of the states to be updated, line 13 calculates the correct new probabilities. The new probabilities that have been updated are calculated in line 14 and are used in line 15 to get the transitions that provide the maximum probability for those states (not necessarily unique). Looking at the updated states the spanning tree can be calculated in line 16: All transitions that lead to a state in UpdateSet_i are taken from NewTransitions, the others remain the same. Finally Border_s is updated in line 17.

A.2 Reading the action labels from a path
This code fragment reads one shortest path from the spanning tree calculated in A.1. Note that the path read may include parallel actions, but the predecessor states have to be unique. Suppose that Init encodes the initial state, Dest the destination state of the analysis (by s-variables). It is notable that two versions of the SpanningTree are used: The maximal projection and the maximal lifting. All paths are printed from Dest to Init. The code in algorithm 5 reads as follows: Line 1 calculates the probability of Dest by abstracting over all s-variables. In lines 2-4 some initialisations are done, most notably the maximal lifting of SpanningTree in line 3. The main loop starts at line 5 and terminates when Init is reached. All incoming edges of CurrentState
are read from SpanningTree in line 6. Out of them a single edge is picked in line 7. Line 8 calculates the maximal lifting of Edge_{ast} in SpanningTree. The current Edge_{ast} (with possible parallel actions) is added to ShortestPath in line 9. The loop from line 10-14 prints all parallel actions belonging to Edge_{ast}. Line 16 switches to the next predecessor of CurrentState given by Edge_{ast}.

A.3 Changing the transition system

In this Subsection the symbolic operations for changing the transition system are shown. The transition system is altered in such a way that the shortest path of the new transition system is the second shortest path of the old transition system. Suppose Prob contains the probabilities of states and ShortestPath contains a shortest path with possible parallel actions as calculated in A.2. The Expand function used in the code is just a short-hand notation, given as follows:

$$\text{Expand}(\text{Trans}, s, t) := \text{NewVariable}_{s}(s) \cdot \text{NewVariable}_{t}(t) \cdot \text{Trans}$$

$$\text{Expand}(\text{State}, s) := \text{NewVariable}_{s}(s) \cdot \text{State}$$

Two new variables are introduced (here between action and state variables) in order to encode original and copied states in source and target variables. NewVariable_{s} encodes whether the source state lies in the original or the copied set of states. If it is set to 0 it means that the source state lies in the original set of states, if it is set to 1 the state is a copied one. A similar statement applies to the target states. Algorithm 6 works as follows. First the reachability analysis done by the spanning tree calculation is used to minimise the Trans by leaving out unreachable states (i.e. states that have a maximal probability of 0). This is done in line 1 and 2. Next, the shortest path without the last transition to Dest is calculated in line 3. Line 4 calculates all allowed deviations, i.e. those transitions that emanate from states on the shortest path but do not lie on the shortest path. In lines 5-7 some expansions are done. From the given parameters one sees that PathWithoutDest lies in the copied states, while Deviations lead from copies to original states and Trans still lies in the original states. The new transition system is built in line 8 as the union of the three precalculations and finally in line 9 and 10 Init and Dest are copied.

B. REFERENCES

