
Technique and tool for symbolic representation and

manipulation of stochastic transition systems

�

Markus Siegle

Universit�at Erlangen-N�urnberg, IMMD VII

Martensstra�e 3, 91058 Erlangen

siegle@informatik.uni-erlangen.de

May 22, 1998

Abstract: This paper presents a new approach to the compact symbolic representation

of stochastic transition systems. We introduce Decision Node BDDs, a novel stochastic

extension of BDDs which preserves the strucure and properties of purely functional BDDs.

It is shown how parallel composition of stochastic transition systems can be performed on the

basis of this new data structure. Furthermore, we discuss state space reduction by Markovian

bisimulation, also based on symbolic techniques.

1 Introduction

In many areas of system design and analysis, there is the problem of generating, manip-

ulating and analysing large labelled transition systems (LTS), i.e. transition systems

with a large number of states and a large number of transitions. Such transition sys-

tems are often very di�cult (or even impossible) to handle in practice, due to memory

limitations.

In this paper, the focus is on stochastic LTSs, where each transition is associated with

a stochastic delay. Such stochastic LTSs (SLTS) occur during performance evaluation

and performability analysis of distributed systems. For example, stochastic LTSs are

generated during the analysis of stochastic process algebra (SPA) models, by applying

semantic rules to SPA speci�cations. Under certain conditions, disregarding part of

their information contents, SLTSs can be interpreted as Markov chains, rendering them

amenable to numeric analysis methods.

We propose a novel approach to SLTS representation and manipulation which is based

�

Universit�at Erlangen-N�urnberg, TR IMMD 7, 2/98, March 1998

1

on symbolic techniques. Our work has been motivated by the fact that, in recent

years, the problem of large LTS analysis has been very successfully approached by

using symbolic representations, in particular binary decision diagrams (BDD). Most of

this work took place in the context of formal veri�cation and model checking, i.e. it deals

exclusively with functional behaviour, see e.g. [5, 8, 10]. This experience showed that

symbolic representations make it possible to handle larger state spaces than traditional

methods.

The success of symbolic techniques for functional analysis induced us to experiment

with BDD-based representations of stochastic LTS. Representation of non-functional

information in a symbolic form is possible [6], but representation of stochastic LTS has

not got much consideration in the past. Among the few publications in this line are

[14] and [9].

The contribution of this paper is as follows: A novel data structure, DNBDD, is intro-

duced, which can capture not only functional, but also temporal (stochastic) informa-

tion. This data structure is tailored for SLTS, it allows a very compact representation.

It is shown that known algorithms for BDDs can be adapted and enhanced for the new

data structure. Furthermore, we describe a minimisation algorithm for stochastic LTS

which is based on the concept of Markovian bisimulation and works entirely on the

new data structure. The paper shows the feasability and the advantages of the new

method. We also briey discuss the practical implementation of our concepts in the

form of a prototype tool.

In a previous publication we had informally described the basic idea and given an

intuitive overview of DNBDDs [27].

2 Process algebras and transition systems

2.1 Stochastic process algebras

Process algebras are languages for specifying the behaviour of concurrent processes

[20, 23]. In recent years, process algebras have enjoyed increasing popularity. In

particular, they have been extended in order to describe not only functional, but also

temporal properities of processes. For the purpose of performance and dependability

analysis, stochastic concepts have been incorporated, leading to stochastic process

algebras (SPA).

We briey introduce a simple SPA, which is de�ned by the following grammar:

P ::= 0 j X j (a; �):P j P + P j P k

S

P j recX : P j P n L

The non-terminal symbol P represents a process. The symbol a 2 Act is an action

with its associated rate �. The rate is interpreted as the parameter of an exponential

2

distribution. Thus, the stochastic delay after which an action takes place is speci�ed

through a rate parameter. 0 denotes a stopped process. X 2 V ar is a process variable.

The operators for pre�xing, choice, parallel composition, recursion and hiding have

the usual meaning (cf., e.g. [16, 13]). S � Act is the set of synchronising actions for

parallel composition of two processes. L � Act is the set of actions which are hidden

from the environment.

During the analysis of a process algebra description, the application of semantic rules

leads to labelled transition systems. In case of stochastic process algebras, stochastic

labelled transition systems are generated. When modelling a real-life system, it is

often the case that the transition systems generated from the SPA description become

very large. They may become even intractable due to memory and CPU limitations.

This well-known state space explosion problem has been addressed in the past by

many researchers (some of our own work on state space reduction can be found in

[25, 26]). In the present paper we investigate a new symbolic approach to the storing

and manipulating of large stochastic transition systems.

2.2 Stochastic Transition Systems

Informally, a transition system consists of states and transitions between states. The

transitions are labelled with symbols from a set L which usually correspond to the

set of actions Act. In case of stochastic transition systems, each transition has as a

second attribute a real number, the rate of the transition. A SLTS can be graphically

interpreted as a directed graph (potentially with a distinguished initial node) whose

edges are labelled with tuples from L� IR. Fig. 1 shows an example stochastic LTS.

a; �

a; �c; �

s

2

b; �

s

1

s

4

s

3

Figure 1: example of a stochastic labelled transition system (SLTS)

We now give a formal de�nition of STLS:

Def: Stochastic Labelled Transition System (SLTS)

Let S = fs

1

; s

2

; : : :g be a �nite set of states, s

1

being the initial state.

Let L = fl

1

; l

2

; : : :g be a set of labels.

Let f be a function

f : S � L� S ! IR

3

We call T = (S;L; f) a stochastic Labelled Transition System.

If f(x; a; y) = � 6= 0 we say that there is an a-transition from state x to state y with

rate �. We write x

a;�

! y. If f(x; a; y) = 0 we say that there is no a-transition from x

to y.

Remark: Instead of the above function f : S � L� S ! IR, most de�nitions of SLTS

use a transition relation ! � S � L � IR � S, which allows multiple transitions with

the same action label between a �xed pair of states. We chose the above de�nition in

order to explicitely exclude such multiple transitions. Instead of two separate tansitions

x

a;�

! y and x

a;�

! y, we would represent this situation by x

a;�+�

! y.

Note that in our de�nition the set of states S is assumed to be �nite. Finiteness of the

state space is a prerequisite for the symbolic encoding of states and transitions which

is described in the next section.

The real-valued rates specify the time spent in a particular state, which is a random

value, drawn from an exponential distribution. The mean of this distribution is given

by the inverse of the sum of all rates of transitions leaving that state. For example, in

�g. 1, the mean time spent in state s

1

is 1=�, and the mean time spent in state s

2

is

1=(�+ �). There is a close relation between SLTSs and continuous time Markov chains

(CTMC). The CTMC corresponding to a SLTS is obtained by abstracting from the

action labels. Vice versa, a SLTS can be considered a CTMC whose transitions carry

additional labels taken from a set of actions.

3 Symbolic representation of transition systems

3.1 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [4, 1] is a symbolic representation of a Boolean

function f : f0; 1g

n

! f0; 1g. Its graphical interpretation is a rooted directed acyclic

graph (DAG) with one or two (terminal) leaf nodes. The graph is essentially a collapsed

binary decision tree in which isomorphic subtrees are merged and don't care nodes are

skipped. As a simple example, �g. 2 (left) shows the BDD for the function a t+ a s t.

The function value for a given truth assignment can be determined by following the

corresponding edges (one-edges drawn solid, zero-edges dashed) from the root until a

terminal node is reached. In the graphical representation of a BDD, for reasons of

simplicity, the terminal false node and its adjacent edges are usually omitted, see �g. 2

(right).

Next, we give a formal de�nition of BDD:

Def: Binary Decision Diagram

A (reduced, ordered) Binary Decision Diagram is de�ned by

4

a

s

t

0 1 1

Figure 2: BDD for a t+ a s t, simpli�ed graphical representation (right)

� a set of nodes Nodes = fn

1

; : : : ; n

k

g = T [NT , where T (NT) is the set of

(Non-) terminal nodes, jNodes j � 1, T � ffalse; trueg (instead of ffalse; trueg

we often use f0; 1g),

� a set of Boolean variables V ars = fv

1

; : : : ; v

n

g with a �xed ordering relation \<",

such that v

1

< : : : < v

n

,

� a function var : NT ! V ars,

� a function low : NT ! Nodes,

� a function high : NT ! Nodes,

with the following constraints:

1. 8x 2 NT : low(x) 2 T _ var(low(x)) > var(x)

8x 2 NT : high(x) 2 T _ var(high(x)) > var(x) (respect ordering relation),

2. 8x 2 NT : low(x) 6= high(x) (no redundant (don't care) nodes),

3. 8x; y 2 NT : var(x) 6= var(y)

_ low(x) 6= low(y)

_ high(x) 6= high(y) (no isomorphic nodes),

4. 1 �jT j� 2 (one or two terminal nodes),

5. 9n x

1

; x

2

2 Nodes : low

�1

(x

1

) = high

�1

(x

1

) = ;

^ low

�1

(x

2

) = high

�1

(x

2

) = ;

(only one node without predecessor, i.e. only one root node).

A BDD unambiguously de�nes a Boolean function. The de�nition is based on the

so-called Shannon expansion which states that

f(v

1

; : : : ; v

n

) = v

1

� f(1; v

2

; : : : ; v

n

) + v

1

� f(0; v

2

; : : : ; v

n

).

5

Def: Boolean function Bool(x)

The Boolean function Bool(x) represented by a BDD-node x 2 Nodes is recursively

de�ned as follows:

� if x 2 T then Bool(x) = x, i.e. either true or false,

� else (if x 2 NT) Bool(x) = var(x) �Bool(low(x)) + var(x) �Bool(high(x)).

For convenience, we de�ne the following function:

Def: Boolean result value Bool res(b

m

; : : : ; b

n

)

Let b

m

; : : : ; b

n

(1 � m � n; b

i

2 ftrue; falseg) be a �xed assignment to the Boolean

variables v

m

; : : : ; v

n

. Let x 2 NT and var(x) = v

m

. The Boolean result value of the

function represented by node x under this assignment is

Bool res(b

m

; : : : ; b

n

) = Bool(x)j

v

m

=b

m

;:::;v

n

=b

n

.

Most times one is interested in the case m = 1, i.e. the case in which x corresponds to

the BDD root.

It is known, that BDDs provide a canonical representation for Boolean functions, i.e. a

given Boolean function has a unique BDD representation (assuming a �xed ordering

of the Boolean variables) [4]. For this reason, some computationally hard problems

(e.g. satisfyability, test-for-tautology, equivalence) can be solved in constant or linear

time, once the BDD representation of the Boolean functions involved is known [1].

Algorithms for BDD construction from a Boolean expression basically follow a recursive

scheme according to the above Shannon expansion. Thus they are inherently slow. The

same can be said about algorithms for the Boolean operations (and, or, not) on BDD

arguments. It should be noted that, given a Boolean function, the size of the resulting

BDD is highly dependent on the chosen variable ordering.

3.2 Symbolic representation of LTS

We �rst de�ne, how elements from �nite sets (e.g. set of actions, set of states), are

represented as Boolean vectors.

Def: Encoding

An encoding of a �nite set S = fs

1

; : : : ; s

n

g is a mapping S ! f0; 1g

dlog

2

ne

. For x 2 S,

we write enc(x) = (b

1

; : : : ; b

dlog

2

ne

), i.e. enc(x) is a Boolean vector of length dlog

2

ne.

The next de�nition states the way of how to represent LTSs by BDDs.

Def: Symbolic Representation of a LTS by a BDD

Let T = (S;L; f) be a SLTS. For the moment, let us abstract from the rate value of

the transition, i.e. let us regard f not as a real-valued function but as a Boolean-valued

function f : S � L � S ! f0; 1g (each non-null rate corresponds to true).

6

Let B = (Nodes; V ars; var; low; high) be a BDD.

We say that B is a symbolic representation of T i�

x

a

! y

,

Bool res(Enc(x

a

! y)) = true

,

Bool res(enc(a); enc(x); enc(y)) = true

Note that we introduced the function Enc to denote the encoding of the whole of a

transition of the LTS, comprising the action label, the source and the target state.

Remark: Naturally, we wish to consider \good" variable orderings to achieve \small"

BDDs. Let the action label, the source and the target state be encoded by Boolean

variables a

1

; : : : ; a

n

a

, s

1

; : : : ; s

n

s

, and t

1

; : : : ; t

n

s

, respectively. Experience has shown

that the resulting BDD is small if the ordering of Boolean variables is chosen in the

following way [1]:

a

1

< : : : < a

n

a

< s

1

< t

1

< s

2

< t

2

< : : : < s

n

s

< t

n

s

i.e. the variables encoding the action come �rst, followed by the variables for source

and target state interleaved. In particular, this ordering is advantageous in view of the

parallel composition operator discussed below (see sec. 4.1).

Fig. 3 shows a LTS, the way transitions are encoded and the corresponding BDD.

0
1

a

a

b

a

s

t

a; s; t

0

a

! 1 ! (0; 0; 1)

1

a

! 1 ! (0; 1; 1)

1

b

! 0 ! (1; 1; 0)

1

Figure 3: LTS, transition encoding and corresponding BDD

The algorithm for constructing the BDD representation from a given SLTS works as

follows: Transitions from the SLTS are processed one by one, each transition being

\encoded" in a simple BDD which is subsequently combined by a Boolean \or" opera-

tion with the BDD representing all the previously processed transitions. The algorithm

can be sketched like this:

7

T := false

for each transition x

a

! y of the LTS

Newtrans := Enc(x

a

! y)

T := T _ Newtrans

On the �rst line, the BDD to be constructed, T , is initialised as false. i.e. it does not

represent any transition. On the third line, one transition of the SLTS is encoded in

BDD Newtrans := Enc(x

a

! y), which has only a single path from the root to the

terminal true node, corresponding to action label a and source and target states x and

y. On the last line, the \or" between the previous result and the new transition is

computed.

4 New data structure: Decision Node BDD

In the previous section we explained the basic idea of representing LTSs symbolically

with the help of BDDs. However, we did not specify how to incorporate the rate

information into the symbolic representation. Clearly, pure BDDs do not o�er any

mechanism for representing numerical information.

The basic questions for which we have to �nd an answer are: How can we map each

Boolean assignment (b

1

; : : : ; b

n

) to a real number, and how can this information be

incorporated into the BDD, possibly without changing the basic BDD-structure? In

other words, BDDs should be extended in order to represent functions of the type

f : f0; 1g

n

! f0; 1g � IR. This section explains a new concept to achieve this goal.

We start with the de�nition of path:

Def: Path

A path through a BDD is a vector of nodes (x

1

; : : : ; x

k

), 1 � k � n + 1, where

x

i

2 Nodes, x

1

is the BDD root node and x

k

2 T (x

k

is a terminal node) and 8i :

x

i+1

= low(x

i

) _ x

i+1

= high(x

i

).

A path is called a true-path i� x

k

= true, otherwise it is called a false-path.

We denote the set of all paths through a BDD by Paths.

The set of all true-paths through a BDD is denoted True-Paths.

For a given Boolean assignment (b

1

; : : : ; b

n

) 2 f0; 1g

n

, the function path(b

1

; : : : ; b

n

) =

(x

1

; : : : ; x

k

) returns the corresponding path through the BDD.

We de�ne the length of a path by length(x

1

; : : : ; x

k

) = k.

Remark: If a given path (x

1

; : : : ; x

k

) has length k = n+1, which is the maximal possible

length for a path, that path contains a node for every Boolean variable, formally

8 1 � i � n : var(x

i

) = v

i

. This means that the path corresponds to exactly one

Boolean assignment (b

1

; : : : ; b

n

). In this case, we say that the path does not contain

any don't cares. If a path is of length k < n+1, it contains n+ 1� k = d don't cares.

8

Such a path corresponds to 2

d

di�erent Boolean assignments (because for every don't

care two Boolean assignments are possible).

Every Boolean assignment is mapped onto exactly one path. Several Boolean assign-

ments (always a power of 2) may be mapped onto the same path, in which case the

path has one or more don't cares. Therefore we assign to each path a real-valued

vector, a vector of rates, also called a rate list, whose length (a power of 2) is deter-

mined by the number of don't cares of the path. Formally, we introduce the function

rates(x

1

; : : : ; x

k

) = (r

1

; : : : ; r

2

n+1�k
). Thus, the correspondence of Boolean assignments

to rates is one to one, uniquely de�ned by the lexical ordering of the Boolean assig-

ments. We illustrate this concept in �g. 4.

True-Paths

False-Paths

paths rate listsBoolean assignments

n : 1 1 : 1

(x

1

; : : : ; x

k

)

(x

1

; : : : ; x

k

)

(x

1

; : : : ; x

k

)

.

.

.

(x

1

; : : : ; x

k

)

(x

1

; : : : ; x

k

)

.

.

.

(b

1

; : : : ; b

n

)

(b

1

; : : : ; b

n

)

(b

1

; : : : ; b

n

)

.

.

.

(b

1

; : : : ; b

n

)

(r

1

)

(r

1

; r

2

; r

3

; r

4

)

(r

1

)

(b

1

; : : : ; b

n

)

(b

1

; : : : ; b

n

)

(b

1

; : : : ; b

n

)

(b

1

; : : : ; b

n

)

function path function rates

Figure 4: correspondence between Boolean assignments, paths and rate lists

We can now give the central de�nition for our new data structure. Note that the name,

Decision Node BDD, will become clear from the discussion below about the practical

realisation of the concept.

Def: Decision Node BDD

A Decision Node BDD (DNBDD) is a BDD extended by a function

rates : True-Paths ! IR

2

n+1�k

i.e. a real-valued vector is assigned to every true-path. The length of the vector depends

on the length of the true-path (k = length(true-path) is not a global constant but

depends on the individual true-path).

9

So far, we decided that every true-path is mapped onto a real-valued vector whose

dimension is given by the number of Boolean assignments corresponding to the path.

Next we must �nd a practical method for attaching that information to the BDD.What

are the characteristics of a path? A subset of the BDD nodes, the so-called Decision

Nodes play a key role in this consideration.

Def: Decision Node

A non-terminal BDD-node x 2 NT is called decision node i� low(x) 6= false ^

high(x) 6= false, i.e. i� the terminal true-node can be reached via both outgoing

edges of node x. The set of decision nodes is denoted DN .

Let (x

1

; : : : ; x

k

) 2 True-Paths. Let x

j

be the \last" decision node on that path, i.e. x

j

2

DN ^ 8 j < l � k : x

l

62 DN . We then attach the rate-vector rates(x

1

; : : : ; x

k

) =

(r

1

; : : : ; r

2

n+1�k) to the edge (x

j

; x

j+1

). This concept is illustrated in �g. 5 (in the �gure,

decision nodes are drawn black). In this example, there are four Boolean assignments

evaluating to true, each of which is mapped onto a rate as shown in the left part of the

�gure. The �rst two assignments are mapped onto the same path, a path which has a

don't care in the Boolean variable s. Therefore, the corresponding rate list (�; �) has

length two.

a

s

t

1

�; �

�

�

(a; s; t) ! rate

(0; 0; 1) ! �

(0; 1; 1) ! �

(1; 0; 1) ! �

(1; 1; 0) ! �

Figure 5: mapping of Boolean assignments to rates and corresponding DNBDD

The practical realisation of the DNBDD concept introduced so far induces the following

problem: There are situations, where several true-paths share their last decision node.

This is the case if and only if there exists a decision node which can be reached from

the root by more than one path. In such a case, several rate lists would be assigned to

the same edge. This would result in a confusion, since it would not be clear any more

which rate list corresponds to which true-path. As an example, see �g. 6 (left), where

a decision node has more than one incoming edge. In order to overcome this problem,

we introduce a pointer structure as illustrated in �g. 6 (right). We refer to this pointer

structure as the rate tree of a DNBDD. Using rate trees in the practical realisation of

DNBDDs, the mapping from true-paths to rate lists is one-to-one, as it should be.

In addition to the function Bool res, which can remain unchanged as de�ned before,

10

a

1

a

0

s

t

1

a

1

a

0

s

t

1

�

�

�

�

�

�

�

�

Figure 6: two true-paths sharing their last decision node, DNBDD with rate tree

we now de�ne a function Num res, which, given a Boolean assignment, computes the

numerical result.

Def: Numeric result value Num res(b

1

; : : : ; b

n

)

Let (b

1

; : : : ; b

n

) be a �xed assignment to the Boolean variables v

1

; : : : ; v

n

.

If Bool res(b

1

; : : : ; b

n

) = false then the function Num res(b

1

; : : : ; b

n

) is unde�ned.

Else let path(b

1

; : : : ; b

n

) = (x

1

; : : : ; x

k

) and rates(x

1

; : : : ; x

k

) = (r

1

; : : : ; r

2

n+1�k
). Then

Num res(b

1

; : : : ; b

n

) = r

i

where i is determined unambiguously by those positions of

(b

1

; : : : ; b

n

) which correspond to don't cares. In other words, each of the 2

n+1�k

Boolean

assignments sharing path (x

1

; : : : ; x

k

) corresponds to exactly one element of the rate list

(r

1

; : : : ; r

2

n+1�k), and this correspondence is according to the lexicographical ordering

of the Boolean assignments.

We are now able to de�ne how to represent a SLTS by a DNBDD:

Def: Symbolic Representation of a SLTS by a DNBDD

Let T = (S;L; f) be a SLTS.

Let B = (Nodes; V ars; var; low; high; rates) be a DNBDD.

We say that B is a symbolic representation of T i�

x

a;�

! y

,

(Bool res(Enc(x

a

! y)) = true) ^ (Num res(Enc(x

a

! y)) = �)

,

(Bool res(enc(a); enc(x); enc(y)) = true) ^ (Num res(enc(a); enc(x); enc(y)) = �)

11

Fig. 7 shows two example SLTSs and their DNBDD representation. Note that the �rst

example is the same as the one given in �g. 3, augmented by the rate information. In

the second example, there are four di�erent actions which are encoded in two bits (a

1

and a

0

). This example has a slightly more complex rate tree.

0
1

0 1

a; �

a; �

b; �

c;

2

c;

1

b; �

1

a; �

1

d; �

a; �

2

b; �

2

a

s

t

�

�; �

1

s

t

a

1

a

0

�

2

; �

2

2

�

1

1

�

1

; �

1

Figure 7: SLTS and corresponding DNBDD

4.1 Operations on DNBDD

The method of generation of a DNBDD from a given STLS is basically the same

as explained earlier for the purely functional case (see sec. 3.2), i.e. transitions are

processed one by one. Each transition is �rst translated into a very simple DNBDD

which is then combined by an or-operation with the previously obtained intermediate

result. Of course, the or-operation used in this procedure has to be capable of building

and manipulating the rate-tree.

12

For DNBDDs representing LTSs which originate from stochastic process algebras, an

important operation is parallel composition. The parallel composition operator of

the SPA can be realised directly on the DNBDD representation of the two operand

processes. Suppose we wish to perform the parallel composition of two processes,

P = A k

S

B, where S denotes the set of synchronising actions, i.e. those actions which

both partners perform simultaneously together. We assume that the DNBDDs which

correspond to processes A and B have already been generated and are denoted A and

B. The set S can also be coded as a BDD, namely S (note that S is a BDD and not

a DNBDD, since it does not contain any rate information). The DNBDD P which

corresponds to the resulting process P can then be written as a Boolean expression:

P = (A^ S) ^ (B ^ S)

_ (A^ S ^ Stab

B

)

_ (B ^ S ^ Stab

A

)

The term on the �rst line is for the synchronising actions in which both A and B

participate. The term on the second (third) line is for those actions which A (B)

performs independently of B (A) | these actions are all from the complement of S.

The meaning of Stab

A

(Stab

B

) is a BDD which expresses stability. i.e. the fact that

the source state of process A (B) equals its target state.

An important question is about the result rate of synchronising actions. Depending on

the application, di�erent expressions for the result rate may apply. Typical examples

are the maximum, minimum, sum or product of the two partner rates. If the product

of the two partner rates is chosen, the concept of compositionality is supported [19].

Using DNBDDs, the result rate will be calculated from the two partner rates during the

and-operation at the center of the �rst line of the above equation. This and-operation

is exible enough to realise any of the above alternatives (maximum, minimum, . . .),

i.e. DNBDDs cover any of those cases.

The result, P, describes all transitions which are possible in the product space of the

two processes. Given a pair of initial states for A and B, only part of the product

space may be reachable due to synchronisation conditions. Reachability analysis can

be performed on the DNBDD representation, restricting P to those transitions which

originate in reachable states.

4.2 Symbolic minimisation of SLTS, working on DNBDD

This subsection describes how a SLTS can be minimised based on an equivalence rela-

tion de�ned on the set of states. The idea is to reduce the state space by representing

all equivalent states by a single macro state. It is shown how such a minimisation tech-

nique can be applied to the DNBDD representation of the SLTS, i.e. the minimisation

is entirely based on DNBDD operations. Symbolic minimisation based on BDDs for the

13

purely functional case has been described before, see e.g. [2]. To the best of our knowl-

edge, BDD-based minimisation of stochastic LTSs, i.e. BDD-based minimisation which

takes into account the stochastic rate information, is a new approach. The advantages

for performance analysis are obvious: The stochastic LTSs of a complex system can

be built from small components by applying the DNBDD-based parallel composition

operator step by step. After every parallel composition step, the intermediate result

can be minimised without leaving the DNBDD world. Thus, the use of DNBDDs quite

ideally supports the concept of compositional reduction.

The equivalence relation on which we focus is known as Markovian bisimulation [19].

Informally, two states are Markov-bisimilar (members of the same equivalence class) i�

from both states all equivalence classes can be reached in one step by the same actions

and with the same cumulative rate (de�ned below). There is a strong connection

between Markovian bisimulation and classical Markov chain lumpability [22].

We start by de�ning the notion of partition:

Def: Partition

Let S be a �nite set. A family of subsets (also called \classes") C

i

; 1 � i � n, with

C

i

� S, is called partition of S, i�

� C

i

\ C

j

= ; for i 6= j, and

�

[

1�i�n

= S

Fig. 8 illustrates how the state space S is partitioned into three disjoint subsets.

x

2

x

1

a; �

SC

1

C

3

C

2

a; �

a; �

Figure 8: Partitioning of state space S

Next, we need to de�ne the concept of cumulative rate:

14

Def: Cumulative Rate

Let C

1

; : : : ; C

n

be a partition of the state space S of a SLTS. Let x 2 S. The cumulative

rate of action a from state x to class i is de�ned as

�(x; a; i) =

X

x

a;�

!y; y2C

i

�

For example, in �g. 8, �(x

1

; a; 2) = � and �(x

2

; a; 2) = �+ �.

Remark: When using DNBDDs, the cumulative rate of action a

k

from state x to class i

can be easily computed in the following way. Let T (a; s; t) be the DNBDD representing

a SLTS (a, s and t are vectors of Boolean variables). For convenience, T is usually

broken up into individual DNBDDs T

a

k

(s; t), one for every action a

k

:

T

a

k

(s; t) = (T (a; s; t)^ (a = a

k

))

In order to obtain a DNBDD which represents all transitions from state x to states

from class i we restrict T

a

k

(s; t) to the single source state x and to target states from

class i (class i is represented by a BDD C

i

(t)):

T

x

a

k

!C

i

(s; t) = (T

a

k

(s; t) ^ (s = x) ^ C

i

(t))

The cumulative rate is then computed by applying the function soar (sum of all rates)

to T

x

a

k

!C

i

(s; t). This function simply sums up all the entries in the rate tree of a DNBDD.

We can now give the formal de�nition of Markovian bisimulation.

Def: Markovian Bisimulation

Let C

1

; : : : ; C

n

be a partition of the state space S of a SLTS. Let

M

� be the equivalence

relation corresponding to this partition.

M

� is called a Markov Bisimulation i�

8x

1

; x

2

2 S : x

1

M

� x

2

) 8a : 8C

i

: �(x

1

; a; i) = �(x

2

; a; i)

Algorithms for Markovian bisimulation traditionally follow an iterative re�nement

scheme [24, 11, 21]. For instance, an implementation in the context of the TIPP tool

[17, 18] is decribed in [12]. This means that starting from an initial partition which

consists of a single class (containing all states), classes are re�ned until the obtained

partition corresponds to a Markovian bisimulation. The result thus obtained is the

largest existing Markovian bisimulation, in a sense the \best" such bisimulation, since

it has a minimal number of equivalence classes.

For the re�nement of a partition, the notion of a \splitter" is very important. A splitter

is a pair (a;C

spl

), consisting of an action a and a class C

spl

. During re�nement, a class

C

i

is split with respect to a splitter, which means that subclasses C

i1

; C

i2

; : : : ; C

ik

are

15

computed (k � 1), such that the cumulative rate �(x; a; spl) is the same for all the

states x belonging to the same subclass.

In the following, a DNBDD-based bisimulation algorithm is presented, in which the

transition system is represented by DNBDDs T

a

(s; t), one for each action a, and in

which the current partition is stored as a set of BDDs, one for each class. The algorithm

uses a dynamic set of splitters, denoted Splitters, which can be realised as a pointer

structure. Note that here we only present a basic version of the algorithm which can

be optimised in many ways [7, 15].

1. Initialisation

Partition := fC

1

g = fSg

/* the initial partition consists of only one class which contains all states */

Splitters := Act� C

1

/* all pairs of actions and classes have to be considered as splitters*/

2. Main loop

while (Splitters 6= ;)

choose splitter (a;C

spl

)

forall C

i

split(C

i

; a; C

spl

)

/* all classes (including C

spl

itself) are split */

Splitters := Splitters� (a;C

spl

)

/* the processed splitter is removed from the splitter set */

It remains to specify the procedure split. Its task is to split a class C

i

, using the

combination (a;C

spl

) as a splitter. Procedure split uses a data structure split tree

which is shown in �g. 9. The input class C

i

is split into subclasses C

i1

; : : : ; C

ik

according

to the cumulative rate from a state in C

i

to class C

spl

(regarding transitions labelled

with action a). The subclasses C

i1

; : : : ; C

ik

are represented by BDDs.

procedure split(C

i

; a; C

spl

)

forall s

x

2 C

i

�

s

x

= soar(T

a

(s; t) ^ (s = s

x

) ^ C

spl

(t))

/* the cumulative rate from state s

x

to C

spl

is computed */

insert(split tree; s

x

;�

s

x

)

/* state s

x

is inserted into the split tree */

if (k > 1) /* if C

i

has been split into k > 1 subclasses */

Partition := Partition [fC

i1

; C

i2

; : : : ; C

ik

g � C

i

Splitters := Splitters [(Act� fC

i1

; C

i2

; : : : ; C

ik

g)�Act� C

i

/* the partition and the splitter set are updated */

16

. . .

split tree

�

1

�

k

C

i1

C

ik

Figure 9: split tree used by procedure split

Remark: In the forall loop of procedure split, the cumulative rate is computed for

every state s

x

in class C

i

, and state s

x

is inserted into the split tree accordingly. If

splitting has taken place, the partition must be re�ned and the set of splitters must be

updated.

5 Tool

The concept of DNBDDs which we introduced in this paper has been fully realised

in a tool [3], whereby the feasibility of our approach has been proved. The tool is

still a prototype which is not highly optimised in terms of memory requirements and

e�ciency (our human resources were quite limited). Therefore, so far, the tool is not

capable of handling very large state spaces. The tool is written in C and up to now

only o�ers a rudimentary textual user interface. Its main capabilities are:

� generation of a DNBDD from a given SLTS. Currently, the tool reads SLTS �les

generated by the TIPP tool [17, 18], a tool for the speci�cation and analysis of

SPA models.

� parallel composition of two processes whose behaviour had been encoded into

DNBDD form in previous steps. Afterwards, if the user desires, reachability

analysis can be performed in order to restrict the potential behaviour of the

resulting process to the states which are actually reachable.

� minimisation on the basis of Markovian bisimulation. We implemented a version

of the bisimulation algorithm which uses the splitter set administration technique

explained earlier (see sec. 4.2). As a result, the tool outputs the �nal partition

of the state space and generates the DNBDD representation of the reduced tran-

sition system.

17

� all results computed by the tool in DNBDD form can be converted back into

their SLTS representation.

6 Conclusion

The problem of state space explosion remains the most serious problem of analytical

performance and dependability modelling. A lot of research has been done on how to

best avoid or tolerate large state spaces, some of which produced very valuable results.

Nevertheless it remains important to look out for new ideas which may improve the

tractability of complex models. In this sense, symbolic techniques, in particular BDDs,

are very promising, since they have been highly successfully used in state-space-based

techniques in the area of functional analysis. It must be noted that, in the past,

the symbolic approach had not received much consideration from the performance

community, which seems to make it all the more important to be looked into now.

We developed DNBDDs, a new data structure which is an extension of basic BDDs,

tailored to represent stochastic transition systems in a compact way. We were able

to show that all the algorithms which are generally needed to build, manipulate and

analyse SLTSs have a corresponding algorithm which works on the more compact

DNBDD representation. Using our new technique, the advantages of the symbolic

approach can be enjoyed not only while working on purely functional considerations,

but also during analyses which make use of the numerical information of a SLTS.

Therefore the use of DNBDDs has the potential to handle more complex stochastic

performance models than before.

Acknowledgements: The author had many fruitful discussions with Holger Her-

manns, in particular on the subject of bisimulation. Hannes Bruchner, in addition to

implementing the tool as part of a student's project, contributed many helpful ideas.

References

[1] H.R. Andersen. An Introduction to Binary Decision Diagrams. Technical report,

Department of Computer Science, Technical University of Denmark, December

1994.

[2] A. Bouali and R. de Simone. Symbolic Bisimulation Minimisation. In Computer

Aided Veri�cation, pages 96{108, 1992. LNCS 663.

[3] H. Bruchner. Symbolische Manipulation von stochastischen Transitionssystemen.

Internal study, Universit�at Erlangen{N�urnberg, IMMD VII, 1998. in German.

18

[4] R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE

ToCS, C-35(8):677{691, August 1986.

[5] R.E. Bryant. Symbolic Boolean Manipulation woth Ordered Binary Decision Di-

agrams. ACM Computing Surveys, 24(3):293{318, September 1992.

[6] R.E. Bryant and Y. Chen. Veri�cation of Arithmetic Functions with Binary Mo-

ment Diagrams. Technical Report CMU-CS-94-160, CMU, 1994.

[7] P. Buchholz. A Framework for the Hierarchical Analysis of Discrete Event Dy-

namic Systems. Habilitation thesis, Universit�at Dortmund, 1996.

[8] J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic Model Checking: 10

20

States and Beyond. Information and Computation, (98):142{170, 1992.

[9] E.M. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-

terminal Binary Decision Diagrams: An e�cient data structure for matrix repre-

sentation. In IWLS: International Workshop on Logic Synthesis, Tahoe City, May

1993.

[10] R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic model

checking in CCS. Distributed Computing, (6):155{164, 1993.

[11] J.C. Fernandez. An Implementation of an E�cient Algorithm for Bisimulation

Equivalence. Science of Computer Programming, 13:219{236, 1989.

[12] R. Foldenauer. Implementierung von Algorithmen zur

�

Aquivalenz�uberpr�ufung

in das TIPPtool. Internal study, Universit�at Erlangen{N�urnberg, IMMD VII,

Dezember 1996. in German.

[13] N. G�otz, H. Hermanns, U. Herzog, V. Mertsiotakis, and M. Rettelbach. Stochastic

Process Algebras { Constructive Speci�cation Techniques Integrating Functional,

Performance and Dependability Aspects. In F. Baccelli, A.J. Marie, and I. Mitrani,

editors, Quantitative Methods in Parallel Systems. Springer, 1995.

[14] G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian Analysis of Large

Finite State Machines. IEEE Trans. on CAD, 15(12):1479{1493, Dec. 1996.

[15] H. Hermanns. Interactive Markov Chains. PhD thesis, Universit�at Erlangen-

N�urnberg, 1998. to appear.

[16] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras as a

Tool for Performance and Dependability Modelling. In Proc. of IEEE International

Computer Performance and Dependability Symposium, pages 102{111, Erlangen,

April 1995. IEEE Computer Society Press.

19

[17] H. Hermanns and V. Mertsiotakis. A Stochastic Process Algebra Based Modelling

Tool. In M. Merabti, M. Carew, and F. Ball, editors, Performance Engineering of

Computer and Telecommunications Systems, pages 187{201. Springer, 1996.

[18] H. Hermanns, V. Mertsiotakis, and M. Rettelbach. A Construction and Analysis

Tool Based on the Stochastic Process Algebra TIPP. In Proc. of 2nd Int. Workshop

on Tools and Algorithms for the Construction and Analysis of Systems, pages 427{

430. Springer, LNCS 1055, 1996.

[19] H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for

MTIPP. In U. Herzog and M. Rettelbach, editors, Proc. of the 2nd Workshop on

Process Algebras and Performance Modelling, pages 71{88, Erlangen-Regensberg,

July 1994. IMMD, Universit�at Erlangen-N�urnberg.

[20] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood

Cli�s, NJ, 1985.

[21] P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and Three

Problems of Equivalence. Information and Computation, 86:43{68, 1990.

[22] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.

[23] R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

[24] R. Paige and R. Tarjan. Three Partition Re�nement Algorithms. SIAM Journal

of Computing, 16(6):973{989, 1987.

[25] M. Rettelbach and M. Siegle. Compositional Minimal Semantics for the Stochas-

tic Process Algebra TIPP. In U. Herzog and M. Rettelbach, editors, Proc. of the

2nd Workshop on Process Algebras and Performance Modelling, pages 89{106, Re-

gensberg/Erlangen, July 1994. Arbeitsberichte des IMMD, Universit�at Erlangen-

N�urnberg 27 (4).

[26] M. Siegle. Structured Markovian Performance Modelling with Automatic Sym-

metry Exploitation. In G. Haring and H. Wabnig, editors, Short Papers and Tool

Descriptions Proc. of the 7th Int. Conf. on Modelling Techniques and Tools for

Computer Performance Evaluation, pages 77{81, Vienna, Austria, May 1994.

[27] M. Siegle. BDD extensions for stochastic transition systems. In D. Kouvatsos,

editor, Proc. of 13th UK Performance Evaluation Workshop, pages 9/1 { 9/7,

Ilkley/West Yorkshire, July 1997.

20

