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Abstract— In the past, logics of several kinds have been pro-
posed for reasoning about discrete- or continuous-time Magov
chains. Most of these logics rely on either state labels (atdc
propositions) or on transition labels (actions). Howeverjn several
applications it is useful to reason about both state-propdfes
and action-sequences. For this purpose, we introduce the d&
asCSL which provides powerful means to characterize execution
paths of Markov chains with actions and state labels.asCSL
can be regarded as an extension of the purely state-based log
CSL (continuous stochastic logic). InasCSL, path properties
are characterized by regular expressions over actions andate-
formulas. Thus, the truth value of path-formulas does not oty
depend on the available actions in a given time interval, butlso
on the validity of certain state formulas in intermediate states. We
compare the expressive power o€SL and asCSL and show that
even the state-based fragment adisCSL is strictly more expressive
than CSL if time intervals starting at zero are employed. Using
an automaton-based technique, amsCSL formula and a Markov
chain with actions and state labels are combined into a prodect
Markov chain. For time intervals starting at zero we establsh
a reduction of the model checking problem forasCSL to CSL
model checking on this product Markov chain. The usefulness
of our approach is illustrated by through an elaborate model
of a scalable cellular communication system for which sevet
properties are formalized by means of asCSL-formulas, and
checked using the new procedure.

Index Terms— Protocol verification, performance of systems,
model checking, automata, Markov processes

|. INTRODUCTION

Beside being functionally correct, an ever larger share

of these high-level models into a (finite-state) Markov dhai
on which the actual analysis is carried out.

For the model-based verification of functional properties,
temporal logics provide powerful means to specify complex
requirements that a system has to satisfy, cf. [2]. Over the
past 10 years, several researchers have adapted the témpora
logic approach to reason about probabilistic propertiese O
result of these forts is the logicCSL (continuous stochastic
logic), introduced in [3] and extended in [4], which is a
continuous-time variant d?CTL (probabilistic computational
tree logic) [5], that can be used as specification formalism
for performance and dependability properties. For inganc
the CSL-formula Psoge(legal U= goal) specifies the state-
property asserting that “there is at least a 99% probability
to reach agoal state within the next 5 time units while
passing onlylegal states before”. The goal states and legal
states can be formalized, e.g., by atomic propositionsdteat
attached to the states or by complésL-formulas. A so-
called steady-state operator allows to reason about séatio
probabilities. Formula&,q 75(green) states that, in equilibrium,
the accumulated probability mass for green states is at leas
75%. An extension ofCSL to reason about rewards has
been introduced in [6]. Notice that the specification of thes
measures is completely state-oriented.

For action-oriented modeling formalisms, such as stoahast
process algebraCSL is not an adequate specification for-
malism, since it is not possible to characterize sequentes o
attions. In [7] an action-based variant ©6L, calledaCSL,

computer and communication systems, especially in the aigas proposed, and in [8] it was shown how to employ this
of embedded systems, has to meet severe performance f@ggt for performability modeling.

dependability constraints. Such constraints are typicali-

Although the state- and action-labeled approach are simila

malized in a stochastic framework. To reason about sughtheir expressivity and transformations between them can
stochastic phenomena, a variety of high-level models sugB provided as in the non-stochastic case [9], reasonirty wit

as stochastic Petri nets, stochastic process algebraseigge
networks, etc., have been established, cf. [1]. Typicdhg,
verification of quantitative properties relies on a transfation
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doubly labeled models is often more intuitive, or evéiiceent.

A similar observation was made in [10] for non-probabitisti
systems. A first step towards the combination of state-teten
and action-oriented features in logics for Markov chains is
the logicaCSL+ [11] which employs regular expressions for
characterizing more general path-based properties.

In this paper, we introduce a new logic, calladCSL (for
CSL with actions andstate labels), which combines aspects
of all the above mentioned logics. Preliminary work on I@gic
similar toasCSL has been published in [12] and [13kCSL

can be seen as being motivated either by the method of
path-based reward variables as described in [14], or by the
propositional dynamic logic [15] and extended linear tenapo



logic [16]. With asCSL, paths are characterized by regulaNotice that we do not explicitly define an initial state or

expressions, also called programs, but in addition it isisds an initial state distribution as these are not relevant far o

to express that a program is executable only if the curremé stpurposes.

satisfies a given state property. This provides an elegapt wa

to reason about state- and action-oriented behaviorské&nlExample 2 Figure 1 represents an ASMC that serves as a

extended linear temporal logic [16], we do not allow for running example throughout this paper. It models a data

regular expressions (representing infinite behavior)tebu$, transmission system that receives four data packets in a

in asCSL the regular expressions are used in combinatisow and then processes them jointly. The set of states is

with lower and upper time bounds. Thus, the switch fromiven by S = {s,..., S0}, the set of actions isAct =

CSL to asCSL is orthogonal to the extensiddCTL" [17] of {arrive,correct,no_correct,retransmit, process}. The

PCTL which is concerned with specifying complex propertiesate matrixR becomes clear from Figure 1.

of infinite computations, whereasCSL focuses on complex

properties of finite computations with real-time consttsin

(e.g., hard or soft deadlines).

We finally note that we published a short conference paper o@ arrive, 4 @ arrive, 4 O arrive, 4 @ arrive, 4
ct,

asCSL [18] that resulted from a jointfEort to combine the two arriv arrive . arrive arrives @
earlier extended abstracts @athCSL [12] and SPDL [13].

The current paper extends that 10-page paper in that defigiti \/\/ \/ \/
of syntax and semantics are given in more detail, with more correct,y @)correct,y orre y @orrect,y

e,u
examples. Also, the sections that compare the expressive @

process,w

power with other logics as well as bisimulation results have \ S
. no_correct, no_correct,
been extended. Furthermore, the model checking procedure
is described in more detail and an elaborated example is no-corrects no-correct. s
presenteq. Fmall_y, to ease the reading of the paper, amgnni retransmit
example illustrating the complete model checking procedur @

has been added.

This paper is further organized as follows. In Section Il w
define Markov chains with actions and state labels. Secti
Il presents syntax and semantics of the new |lag€SL. In

Eig. 1. ASMC for the simple data transmission system of EXan2p

n . . :

?n more detail, an arrival is modeled by actiarrrive.

Section IV we relateasCSL to other logics, and in Section VThe transmission of data packets can be errc_>r-free @pte
Qy, erroneous (rate)). An erroneous packet might be cor-

we present an important bisimulation equivalence prope . )
for asCSL. Section VI is dedicated to the model checkin gcted Correct,y) or the. system is not able to correct it
o_correct,d). In case it cannot be corrected, thefiieu

procedure forasCSL. Throughout these sections, we use tied and all dat kets h o b i itted
“running example” to illustrate the new concepts. In Sactio> ©MPUe ) an I? "afa p?jc te S ivf 0 be re r?nsml €
VII we then apply the new technique to a non-trivial examplgetransmlt’ k). If all four data-packets are error-free or

in order to derive properties of the handover procedure incgg?ﬁted’ tthe rece|_\t/ed da;a tcarjrhbe p[O?eSth.céSS’ ) i
cellular radio network. The paper ends with a short summal € system awalls new dala. 1he set ot alomic proposition

and conclusions. IS AP = {empty, full, error}, with
« L(s1) = {empty},
s L(s) = L(ss) = L) = 2,
Il. M ARKOV CHAINS WITH ACTIONS AND STATE LABELS o L(ss) = {full},

o L =L(s;)=L =L =L = {error}.
In this section we explain the notation for Markov chainshwit () (sr) () (%) (510 =1 }

actions and state labels. The reader is supposed to bedamili

with Markov chains, cf. [19]. Action names are used to labehtuitively, if R(s,a,s) = 4 > 0, then there is am-labeled

the transitions. The state labels are drawn from aAsef transition from states to states’ whose delay is specified by

atomic propositions, which, e.g., can assert that the Syéte an exponential distribution with raté. For S’ ¢ S we write

one of its subprocesses) is at a certain control point orghaR(s a,S') = Y45 R(S a S) to denote the total rate to move

program variable has a certain value. A functiomssigns to from states via actiona to state-sef’.

any state the set of atomic propositions that are assumedrtee underlying CTM& of an ASMC is given as a tuple

hold in the given state. (S,AP,L,R’) that arises fromM by removing the action-set
and accumulating the rates of “parallel” transitions, tet

Definition 1 (Markov chain with actions and state labels) R (85) = ZacacR(S 2, S).

A continuous-time Markov chain with actions and state label . - . . -
(ASMC) is a tupleM = (S, Act, AP, L, R), where S is a finite Definition 3 (Paths in M) A finite path inM is a finite word

set of statesAct is a finite set of action label#\P is a finite 7 = (S0, @0, o), (S1, @1, 1), -+ -5 (Sh-1, @n-1, Tn-1), S € (S X Act X

; s . AP ;
set O_f atomic propositions, L S — 2 a stgte Iabellng IHere and in the sequel, we use the abbreviation CTMC for draans-
function, andR : S x Act x S — R, a rate matrix. O  time Markov chain with just state labels.

O



R.o)* X S, whereR(s,a,5,1) > 0fori =0,....n-1 An M(ss) = Ilm_ . 7M(ss,t). For S’ c S, we define
infinite path inM is an infinite words = (S0, ao, to), (S1, a1,t1), 7M(SS') = Dges 7M(S 9).

... € (SxActx R.0)® with R(s,a,s:1) >0 foralli >0 and

such that the infinite serieg; t; is divergent (i.e.,d+1t1 +t; + I1l. SYNTAX AND SEMANTICS OF asCSL

.. = o), with § the time spent in;sA special case arises 1 |ogicCSL (continuous stochastic logic) [3], [4] specifies
if M_c_ontalns absorbmg_states, i.e., states W|th_0L_Jt _OUtgo'%@ate-based properties for CTMCs, built out of proposition
transitions. We _then defl_ne a second type of infinite paﬂ?&gic (with atomsq € AP), a steady-state operator that refers
Such an absorbing path is a wokd= (S, a0, 1o), (S1.81. 1), 5 the stationary probabilities, and a probabilistic opara
"',(5”—1’ -1, t”—l)’(sﬂ’t“_) € (SxActxRs0)" x (Ax{co}), where ¢, reasoning about transient state probabilities, but alan
A is the set of absorbing states M and R(s, &, S+1) > 0 gynress other probabilistic properties with or withoutlea
forall 0 <i <n-1. The sojourn time of an absorbing statgjne constraints. We present here an extensiog S, called
is alwaysco. O ascsL, that allows one to specify probability bounds for
We write paths as sequences of transitions, e.g., for thie fin‘rf‘_Ct_ion' andstate_z-sequ_ences. Later we will di_scuss th_e expres-
patho- above, we use the notation sivity of asCSL in relf_mon to that of other I0_g|cs (Sec_:tlon V),
as well as the relation between the equivalence induced by
=% %ol s aly S i B Sh-1 i Sh. asCSL and action- and state-labeled bisimulation equivalence

Section V).
Let o be a finite or absorbing path as before, teh = n (Section V)

denotes the length af, i.e., number of transitions ior, and

let o{i] = s the (+1)st state onr. We refer tor(or) = 373t A. Syntax obsCSL

as the execution time aof. Fort < 7(o), c@t denotes the The syntax ofasCSL is defined according to Def. 5 (state
state that is occupied at timen patho, that is,c@t = o[k], formulas) and Def. 6 (programs or path formulas). Here,
wherek is the smallest index for which< 3% t;. We write  we assume that the seft of actions andAP of atomic
a(i, j) to denote the fragment of pathstarting at thei@+1)-st propositions are fixed.

states and ending at thej¢1)-st states; (i < j). In particular,

o(i,i) = s is a path of length 0. Definition 5 (State formulas of asCSL) State formulas of

If o1, 0 are finite paths such that the first statevofagrees asCSL are given by the following grammar:

with the last state obr; then the concatenatioorio, is a o |

path of lengthio1| + |o2| which is defined in the obvious way. ¢ == 4d | R4 | ¢V | Sep(¢) | Pepl@) .

Similar notation is used i#; is an infinite pathPatthi;‘ denotes whereq € AP is an atomic proposition, g [0, 1] denotes
the set of all finite paths itM, whereasPath! stands for the a probability value< € {<,<,>,>} a comparison operator,

set of infinite paths inM. By PathQ;‘(s), resp.Path’!(s), we | = [t,t'] C Ry a time interval and» a program as defined in
denote the set of all finite, resp. infinite, pathsttiwith initial  Def. 6. We refer ta' as apath-formulaand use® to denote
states. the set of state formulas @sCSL. O

Example 4 The following is a path in the ASMC of ExampIeTh? logical _c:onnecuve_g and.v have their usual meaning.
Using negation- and disjunctionv, the constantsrue, false

2. It describes the successful transmission, correctiath an . ; )
: and all other boolean connectives such as conjunctipn
processing of three related data packets.

implication —, etc., can be derived. The so-called steady-state

S arrivell S arrivel2 < arrive0.8 operatorS..p(¢) asserts that the probability of being inga
state on the long run obeys the bourdp. The operator
P.p(a') asserts that the probability measure of all infinite

d paths which have a prefix that satisfie, where o is a
program andl is a real interval specifying the time bound,

a =
correct,0.5 process,2.0 arrive,2.1
— — —

The second state of the pathd$l] = s, the state occupie

at time 3 isc@3= . . . . )
@3= s e . obeys the bounek p. We omit the time-interval if | = [0, co]
If we concatenate an infinite number of copies ®of we : . . :
. S hich does not impose any proper real-time constraints. If
obtain an infinite path where the data packets never need to X ;
be retransmitted = [0, t] we write <t instead.

The progranu specifies a property for finite paths via a regular

In the sequel, we deal with the standard probability measi#@t of finite. words whose atomic symbols are paipsbj
PrM onPath?(s) (where the underlying-field can be defined (When no confusion can arise, we sometimes simply wiie
with the help of basic cylinders as in [4]). For measurabgPnsisting of arasCSL-state formulag (which is viewed as
X c Path?(s), we often omit the paramete¥! andor s and @ test for the current state of a path) and an actloe Act
simply write Pr(X) or Pr*(X). The transient state probabilities? P = v (where v/ ¢ Act). The symboly/ can be viewed as

(s ¢, 1) are given by a pseudo-action which is always immediately executable and
™ M M does not change the current state in the ASMC. Formally, the
(s, s,t) = Pr¥is € Pathi(s)lc@t = s}, programs are regular expressions over the alphabet

and the steady state probability of being in stateon the ¥ =@ x (Act U {v}) = {(¢.b) | pe®Abe (Actu (V).
long run, provided that the system started in stateis



Definition 6 (Programs) asCSL-programs are defined by the Example 9 In the context of the data transmission system of

following grammar: Example 2, the formula
a = ¢ | (p,b) | aa ' aUa | at, Y= P>o((true, arrive); (full, \/))
where (¢,b) € X. The languageL(a) C X" is defined in the characterizes exactly sta®, because it is the only state
standard way. O from which afull-state can be reached with a singlerive-
transition.

The reader should notice thefiérence between the pSGUdOIn the sequel we illustrate several concepts by means of the
action symbokl/ and the empty word (viewed as an element]c lowi ? la- pts by

of *) as the use o/ is only allowed in combination with a oflowing formuia.

state formula. _ _ O=P go.l(ag's),

In the context ofasCSL, the meaning of a program (which

will be formally defined in the next subsection) is a set dihere
finite paths in the underlying ASMC. The intuitive meaning

of ¢b is that the current state fulfills ¢ (that is, the state- ’ .
formula¢ can be viewed as a test for the current sgtand, U (true, arrive); (error, correct))’;
if b € Act, states has an outgoing-transition. Ifb = +/, (¥, arrive); (error, correct); (full, ).
no statement about outgoing transitions is made. The ayer
; denotes sequential composition (concatenationjlenotes
alternative choice (union), ariddenotes then-fold sequential
composition for arbitraryn > 0 (Kleene star).

a = ((true, arrive)

alzormulad) states that the probability that thefter is full after
at most 7.3 time units, the last packet contains a correztabl
error and that all other packets are either error free or with
correctable error, is at most 10%. m]

Example 7 Letp, g, r ands be atomic propositions arajb, ¢
actions. B. Semantics odsCSL
The language of the program,@); ((g, v) U (r, b)) consists of

The formal semantics ofisCSL is provided by means of a
words of length 2 that

satisfaction relatiot= for the state- and path-formulas. In the

- start with p,2) and sequel, we assume a fixed ASMM = (S, Act, AP, L, R). For
- end either with §, v) or (1, b). states in M and state formula, M,s E ¢ means that the
Thus, state-property specified by holds for s. Similarly, for an
) _ infinite pathg, M, s k= ' denotes that the behavior specified
LC (P, a): (@ V) U (b)) = {(p. 8)(a, V) » (b, A)(r, b)) by the path formula' is fulfilled by ¢. The formal definition
has exactly two members. of the satisfaction relatiok= for the state and path formulas

The language of the programp(@); (g, b); (r,v))* ; (s,c) is by structural induction on the syntax of the formulas.
involving the Kleene star is infinite. It contains

« (s,c) (aword inZ* of length 1), Definition 10 (Semantics ofasCSL) The satisfaction rela-
« (p,a)(q,b)(r,V)(s,c) (a word inZ* of length 4), tion  for the state formulas is defined as follows:
« (p,a)(a, b)(r, V)(p, 8)(a, b)(r, V)(s, ) (a word in X* of M, SEq o qel(y
length 7), M, SE —¢ o MSské
and so on. o MSE@1Ves © MsSk¢or Msk g,

M M
Note that the test can be empty, i.¢.= true. This gives the M. sk SMP(@I e 7 (s,MSat l(¢)) > P
possibility to speak about action-sequences of paths witho M, sEPup(a’) & Prob™(sa’) > p

any (further) constraints for the intermediate states. where Sat™(#) = (s € SIM, s E ¢} denotes the satisfaction
set of¢ in M and

Example 8 The asCSL-formula
Prob™(s ') = Pr™{s € Path}(9|M. ¢ E o'}.

on,gg((true, arrive)”; (true, process))
- ) The meaning of the path formulas is formalized as follows. If
denotes that the probability for an action-sequence {Nis an infinite path inM then

arrive®;process is at least 0.99, whereas

M sE o
on.gg((true, arrive)”; (true, process)55) SE

asserts the same probability bound for action-se ueni Sthere exists a finite prefir of ¢ with o € Pathé‘;‘(a/) and
P Y 9 7(0) € 1.% Here, the sePath{i‘rf(a) consists of all finite paths

arrive®;process to be performed within 5 time units. As. . i
another intuitive example, thesCSL-formula in M that can be viewed as an instancenofFormally, the sets

Path}(a) are defined as shown in Fig. 2, whe#?! = a; o
. *. <5 rb — i) 3
on_gg((true, arrive)”; (full, ) ) and a” = ¢ (the empty word irk*). O

asserts at least a 99% chance to reach a state labelefulith 2gecall thatr(o) denotes the execution time of
via anarrive*-labeled path within 5 time units. O 3Note that all pathsr with |o| = 0 belong toPath *(a*).

fin



s Pathf/i‘:(g) iff |o]=0

o € Path)!(¢a) iff 3t>0sto=s—5%

o € Path(¢v) iff o =s(a path of length 0) andM, sf= ¢
o€ Path)(as;a2) iff Jie{0,1,...,|o0} s.t.o(0,i) € Path

o€ Pathf/i\rq((al Uap) iff o€ Pathé\:(a/l) U Pathf/i‘;((ag)

o€ Path]fi‘:(a*) iff di>0stoe Pathé\:(a/i)

s and M,skE ¢

M M

(@1) ando(i, o) € Pathg (a2)

fin

Fig. 2. Semantics of the programs

In the sequel, we often writs £ ¢ and¢ | o' rather than
M, sk ¢ and M, s E o' respectively. Moreovergy B) stands
short for | Jaeg(®, a).

the possibilities to express th@SL-modalitiesU' and X' in
asCSL by providingasCSL-formulas that are similar to the
CSL-formulasP..p(¢1U' ¢2) and Poep(X'¢).

The reader should notice thefldirence between the programdVe first observe that state-based formulas that abstract fro

ay = (true, Act)* (¢4, +)

and
az = (true, Act)*(¢, Act).

Programa; defines all finite pathgr that end in ag-state,

whereasy; defines all finite paths whose pre final state satisfies

@.

Example 11 Consider an infinite patly which has the finite
path

arrive,1.1 arrive,1.2 arrive,0.8
— — —

correct,0.5 process,2.0 arrive,2.1
—> —> —>

of Example 4 as prefix. Thepl o="2 wherea is the program
of Example 9. Note that the last two transitions of are
actually irrelevant for the validity of'. m|

IV. COMPARISON OF EXPRESSIVE POWER

In the following subsections we discuss the expressivity
asCSL in relation to that ofCSL, aCSL, andaCSL+.

A. asCSL vs.CSL

We now study the relation betweasCSL andCSL [3], [4].
The syntax ofCSL-state formulas is as iasCSL, except for

the probabilistic operator which takes as input a probgbili

bounds p (as inasCSL) and aCSL-path formula of the form
#1U'¢, or X'¢ (rather than a time-boundeasCSL-program
a'). U' is called time-bounded until operator aiXl a time-
bounded next step operator.

For the formal definition of the syntax and semantic<C8L,
we refer to [4]. Intuitively,p,U'p, asserts that there is som
time pointt € | such that the given path is in¢g-state at time
pointt and in¢;-states at all earlier time points. Similarly, th
CSL-path formulax'¢ holds for a pathg if the second state

in ¢ fulfills ¢ and the first transition ig is taken at some time

pointt € I.

A CSL-formulay is said to be equivalent to asCSL-formula
¢ iff for any ASMC M and all states in M, ¢ holds forsiff
¥ holds forsin the underlying CTMC ofM. We now discuss

the action sequences and &L -like time-bounded operators
can be derived from the syntax a@fsCSL path formulas.
A CSL-like time-bounded until operatot{' is obtained in
asCSL as follows?

S U b2 = (1. Act)”; (62, V).

fe=% 2 St 2ty ... Is an infinite path in an ASMC then

SE p1U' ¢, iff there exists some indéx> 0 such thals | ¢,
Sicbtcel, andsj | ¢q for all j <i.

From this, we may derive the time-bounded eventually-
operatoro' ¢ = true U' ¢. We then have: = ¢'¢ (as opposed

to the CSL-formula ¢'¢) iff there exists some indeixwith

s E ¢ and ZL;lotk € 1. For instancePoos(¢=>error) states
that the probability to reach an error state within 5 timetsini
is at most 0.05. Its dual, the time-bounded always-operator
is obtained (as irCSL) by using the duality of the temporal
modalities "eventually” and "always” and the duality of lew
and upper probability bounds. For instance, we may define

¢ Pzp(mlfls) & Psl—p(<>I —¢).
0
Intuitively, the aboveasCSL-formula states thap continu-

ously holds in the time intervdlwith probability at leasp. In

an analogous way, time-bounded always with other protmgbili
bounds can be defined.

A CSL-like time-bounded next operator can be expressed as

((true, Act); (qﬁ\/))l.

We haves E X'¢ iff ¢ has the forms, ] ¢’ wheretg € |
and¢ holds for the first state of'.

def

X'

The asCSL-semantics of the derived time-bounded until or
next step operatoré/' and X' agrees with the corresponding
€csL-semantics o' and X! if inf | = O for the time-interval

I. In fact, as long as we restrict our attention to time-bounds
€f the form< t or < t wheret € RU {eo}, thenCSL can be
viewed as a sub logic ofisCSL. More precisely, anyCSL-
formula can be transformed into an equivales€SL-formula

by replacingX<t with X<* andu=t with ¢/<!, where< € {<, <}.

4We will use calligraphic letteré/ andX for the until and next step operator
in asCSL and the letterd) and X for until and next step operator i@SL.



(The proof can be provided by induction on the length of thehere p €]0,1] andqg,p € AP cannot be described iGSL.
given CSL-formula.) Thus, we obtain: We skip here a formal argument, but observe ihatates a
non-trivial probability bound for reaching q-state with the

Proposition 12 CSL with lower time bound equal to zero isfirst transition and g@-state with the second transition. @SL,
a sub logic ofasCSL. however, we can formalize the possibility to reacly-atate

) N ) o followed by ap-state via two next step operators, but each of
For time bounds specified by intervalswith inf | > 0 there them has to be augmented with a probability bound.
is a slight diference between the semantics of H®#ESL- A final example that illustrates that even the state-based

. !
programy = ¢1(1/|I' ¢2 = (91, Act)"; (42, V) and theC/SL-path fragment ofasCSL is strictly more expressive tha@SL is
formulay = ¢1U'¢,. Let us consider the cade= [t,t'] where given by theasCSL-formula

0<t<t. The reason why andy are not equivalent is that

¢ E ¢ butg i ¢ if ¢ is an infinite path that starts with a prefix ¢ = Po(((true, Act); (0. Act))"; (p. V).
T = S which states that p-state is reachable via a finite path where

any state at an odd position is labeled dpyUsing a formal
such that argument similar to [16], it can be shown that there is no
(1) skE¢1,i=01,....,n-1, CSL-formula equivalent tap’.
(2) s E 11 ¢2,

(3) S1 g1V o B. asCSL vs.aCSL andaCSL+

4) to+...+thy<t<to+...+th 1 +1tn i ) .
Note that theCSL-semantics captures the possibility of time.:rhe logicaCsL [7] is the action-based counterpart O5L,

passage in thep,-state s,, whereas theasCSL-semantics just asaCTL [20] is the action-based counterpart GfTL.

requires theg,-state to be entered at some time instal?tCSL’ which does not provide atomic propositions, is in-

5 € [t,t']. However, assuming; and ¢, to be disjoint (i.e., terpreted_ over a CTMC_ with _a<_:ti0n labels only, i.e., an
1 A ¢, = false) the CSL- and asCSL-semantics of the until ASMC without state labeling. Similar t6SL, aCSL offers a

operator agree. In cagg andg¢, can hold in the same state,pmb"jlbility operator ®..p) and a steady-state operatdi. ).

the CSL and theasCSL semantics of the until operator areln aCSL only time intervals with lower time bound equal to

zero can be defined. Similar ®aCTL, aCSL offers means to

different. _ o . . :
We now restrict our attention to the fragment G5L and characterize sat|_sfy|ng paths via action-decorated wssof
asCSL where infl = 0 for all time-intervalsl. It is not the next and until operators.

SAs we have shown foICSL, it can also be demonstrated
that everyaCSL formula can be translated into an equivalent
asCSL formula. Using an argument similar to the one in
Section IV-A, it can be proven thasCSL is strictly more
expressive thamCSL.

¢ = P1((true, a); (true, b)) In [11] the logicaCSL+ was introduced; it extendsCSL in

surprising thatasCSL-formulas that refer to the action label
in a non-trivial way cannot be expressed B%L-formulas.

For example, there is n@SL-formula ¢ which is equivalent
to theasCSL-formula

. . hwo ways:
which holds exactly for those states where all outgoing pat . . . .
start with actiona followed by b. . aCSL+ supports atomic propositions and its semantic

model is an ASMC (as in the case a§CSL);

a1 « satisfying paths are characterized by regular expressions
- /\*@ e of actions, but not tests.
reen reen
? = ’ By means of elementary examples it can be shown that using
b, the test feature oAsCSL it becomes possible to filerentiate

between paths which were indistinguishablea®SL+.
Fig. 3. A simple ASMCM

For instance, in the ASMC shown in Fig. 3, statesand s, V. aSCSL-EQUIVALENCE AND BISIMULATION
only differ in the action-name of the outgoing transition, but is well-known that bisimulation equivalence on CTMCs is
have the same labelirigreen} and exit rate. Hence, they fulfill the coarsest equivalence that identifies all states of a CTMC
the sameCSL-formulag, buts; ands, can be distinguished fulfilling the same CSL-formulas [21], [4], [22]. We now

by theasCSL-formula¢ as we haves; | ¢ and s, I ¢. establish a similar result foasCSL which we need in the
We finally restrict ourselves to the state-based fragment egrrectness proof of the model checking algorithm presente
asCSL, i.e., the fragment ofsCSL in which the programs in Section VI.

a are regular expressions using the atogmsAtt) and @, ).

First, we observe that thesCSL-formula Definition 13 (Bisimulation equivalence) Bisimulation
equivalence- for an ASMC

M= (S,Act, AP, L, R) is the coarsest equivalence on S such

SFormally, this follows from the observation thsit ands; are bisimulation tha:t for all states £~ %
equivalent in the underlying CTMC (see Section V). () L(s1) = L(s2) and

¢ = Pop((true, Act); (g, Act); (p, Act))



(i) R(s1,a,C) = R(s,8,C) for all actions ac Act and all
equivalence classes €S/ ~.

VI. M obeL CHEckING asCSL

The model checking procedure fasCSL is similar to that for

For CTMCs with just state labels, bisimulation equivaleice CTL [28]. Given theasCSL state formulap and an ASMC

defined in the same way by ignoring the action labelgii)n
m]

Bisimulation equivalence can be viewed as a refinement pfopositions.

ordinary lumpability of Markov chains [23], [24], since bis
ulation equivalence takes both the state labelling anddtiera

M, we successively consider the sub formula®f ¢ and
calculate the satisfaction seSat"(y) = {s € SIM,s E y}.
This technique allows us to treat sub formulas as atomic
The treatment of sub formulas whose topteve
operator is a boolean connective (negation or disjunctien)
obvious. Sub formulas of the forn$..;(¢) can be handled

labelling into account. It essentially agrees with Markovi with the same procedure as f@SL, see [4]. The new and

bisimulation for action-labelled Markov chains as introdd
in [25], [26] (which takes the action labelling, but not thate
labelling into account).

In the sequel,asCSL-equivalence denotes the equivalence
relation which identifies exactly those states that canreot $
distinguished byasCSL formulas. We now show that bisimu-
lation equivalence on ASMCs agrees witsCSL-equivalence.

Using structural induction on the syntax of state-formwaad
programs ofasCSL, the preservation property fasCSL and

bisimulation equivalence can be established in the folgwi

sense: Ifs; ~ s then we have

s E ¢ iff 5 E ¢ for all state-formulag of asCSL, (1)

challenging case is the treatment of formulas of type-
P..p(a'). For each stats we have to compute the probability

Prob™(s a') = PM{g € Path)!(s) | M,s E o'}

nd check whether it lies within the specified bourdp.
he approach to calculate the valuesb*(s,a') is to build
the product of M and a finite automatorA, (representing
the programa), which yields a new Markov chain, denoted
MxA,, and then to apply th€SL model checking procedure
to calculate the probabilities iMx A, to reach a statés, ),
with s’ a state inM and g an accepting state irfl,, within
the time intervall .

Section VI-A is devoted to the construction of the automaton
A, from the programz, whereas Section VI-B presents the
construction of the product Markov chaifl x A,.

ProbM(sy, a') = Prob™(s,, @') for all path-formulasy' of asCSL.

)

The argumentation for (1) is straightforward and omittecehe A The program automatos,
In order to prove (2), a more general result can be estallist®&ince programs are regular expressions, we can apply standa
by structural induction on the syntax of programs whichestattechniques to construct a finite automaton for a given progra

that for each programx we have:
ProbM(sy,a',C) = ProbM(s, a',C)

for all bisimulation equivalent states, s, all time intervals
| and all bisimulation equivalence classése S/ ~. Here,
ProbM(s, o', C) denotes the probability to reactCastate from
s via a finite patho € Path}!(a). The fact that

ProbM(s ¢') = ProbM(s ', S),

finally yields the claim. Thus, bisimulation-equivalenatsts

are asCSL-equivalent. To show the converse, similar arg

ments as in [22] can be used, to obtain:

We call this a nondeterministic program automaton (NPA).

Definition 15 (NPA) An - NPA is a quintuple A
(Z,%,6,20,F), where Z is a finite set of stateg’ a
finite subset ok (the input alphabef) 6 : Zx ¥’ — 27 is the
transition function, g C Z the set of initial states and E Z
the set of accepting (final) state£(A) C (¥')* denotes the
accepted language ofl which is defined in the standard way.
i

We now describe how a program automatd@ncan be used
Jo describe the path—s@athé‘;‘(a) for a programa. Thus, we
consider NPA asicceptors for finite pathis M (rather than as
acceptors for finite words over the alphaBét The intuitive

behavior of an NPA#A for the input patho = s 2L s

Proposition 14 Bisimulation equivalence for ASMCs agreeas follows. The automaton starts in one of its initial states

with asCSL-equivalence.

Zo € Zo. If the current automaton-state s then A chooses
nondeterministically between one of the outgoing traosgi

More precisely, using the arguments of [22], it can be shown ?°, Z, wheres [ ¢ and eitherb = v/ or b = a, and then
that even the sub logic &fsCSL consisting of formulae built ,oyes to stater. In the latter case, i.e., b = a, A proceeds
by conjunctions of. atomic propositions and probapll!st)c-f in the same way for stat¢ and the patho’. In the former
mulae with upper time bou_nds and programs consisting c_)f th8se, i.e., ifb = v, no input symbol is consumed, i.e., the
base symbolsg( b) is suficient to provide a charactenzanonmocedure is repeated with stateand the pathr. If there is

of bisimulation equivalence for ASMCs.

no outgoing transition frorz which can be taken for the input

As Markovian testing equivalence [27] is weaker than bisimyath o then A rejects. As soon as reaches a final state (a

lation equivalence, states that fulfill the saas€SL-formulas
are also Markovian testing equivalent.

65 is the alphabet of programs as defined in Def. 6.



state inF) and the whole input path has been consumed, thefinition of & is similar to the definition of the transition
automaton accepts. relation of the deterministic finite automaton obtainedfr@l

The acceptance for paths is defined by means of runs, whiefiewed as an acceptor for finite words) via the standard powe
are sequences of automaton-states that can be generatedebgonstruction. However, the following remark shows that
the operational behavior af as sketched above, as definegrocess of making the NPA deterministic as an acceptor for
formally in the following definition. finite paths inM has to be done “in conjunction” witiM.

Definition 16 (Runs in NPA, accepted paths)Let A be a Remark 19 An NPA A = (Z,%',6,Z, F) is called determin-
NPA andM an ASMC as above,zZ ando a finite path in jstic if Z, is a singleton set anth(z, ¢b)| < 1 for all states

M. Then, we definBuns(z o) as the greatest set of sequenceg ¢ 7 and input symbolssb € ¥’. Given a deterministic
22,...,zy € Z* such that the following two conditions areNpPA A, the “behavior” of A for an input word over ¥’
fulfilled: is deterministic, i.e., there is at most one run, whereas the

(i) ze Runs(z,0) iff lo] =0
(i) Ifz,z,...,Z, € Runs(z o) and n> 1 then there exists
¢b € ¥ such that

« 71 €6(z ¢b),

« o[0] E¢ )

o« if b € Act theno = s N o’ with z,...,z, €
Runs(z, o)

. if b=+/then g,...,2, € Runs(z, o).

The existence of such a greatest set follows by Tarski's-fix
point theorem for monotonic operatop$” — 27,

Let Z C Z. The elements ®Runs(Z’, o) = Uzz Runs(z o)
are called runs foro in A with starting state in Z A run
2,21,...,2Z, for o is called acceptingff it is initial (i.e., zp €
Zo) and z € F. The set of accepted pattfmthé‘;‘(ﬂ), denotes
the set of finite paths iM that have an accepting run iAl.
O

“behavior” of a deterministic NPAA for aninput patho can
be nondeterministiceven if A does not contair/-transitions
(i.e., transitions that are labeled with an input symbgle X').

The reason is that the current automaton-statéeght have two

transitionsz —> 7 andz - Z’, wherea is the first action of
the input patho- and where the first state of satisfies both
¢ andy. m|

e now return to the formal definition of the extended
§ransition relations™. If o is a path of length 0, i.eq = s
for some states, thensM(Z’, o) = 6*(Z’,9) consists of all
automaton-statesthat are reachable Al from aZ’-state via

. ¢, .
+/-transitionsz; —‘/> 2> Where states fulfills the state formulas
¢. This corresponds to the so-callgclosure ofZ’ for state
s which is defined as follows.

Definition 20 (v/-closure) +/ClosuréZ’, s) denotes the least

Acceptance ofA as an ordinary finite automaton (acceptor fog§ypset of Z such that

finite words oveZ’) and acceptance off as an NPA (acceptor

for finite paths) are related in the same way as the language

L(a) of a programa and the induced path-sétathf/i‘:

Hence, it is easy to verify the following proposition:

(@).

M
fin

M
fin

Proposition 17 If L(e) = L(A) thenPath. (a) = Path,” (A).

Example 18 Figure 4 shows an NPAA, for the language
defined by the progranmr in Example 9.

2
[ ]

true,
arrive

error
correct

—
Zl.

¥
<> arrive

true
arrive

error full

correct

Fig. 4. NPAA, for the programxe in Example 9.

Statez; is the single initial state, that iZy = {z}. The set of
final statesk consists of the single state. O

We now extend the transition functighof A to a transition
relation * which associates with any paif’( o) consisting
of a setz’ of automaton-states and a finite patlfin the ASMC
M, the set of automaton statessuch thatz is the last state

of a run for o that starts in a&’-state. The idea behind the 3M(Z’,(r) ={zeZ|3z,z,.

Z U U U 6(z ¢v) € \/ClosurézZ’, s).

7 Q) #S.t.
ze+/ClosuréZ’,s) )

The existence of this least set follows from Tarski’s fixeittp
theorem for monotonic operato2¢ — 27, ]

We now have all ingredients to defiad!(Z’, o) by induction
on the length ofr:

Definition 21 (Extended transition function) The function
M 22 x Path — 27 is given by:

SM(Z', 9) = \/ClosuréZ’, s)
and Mz, s 25 o) = $M (Y, 0”) where

Y = U U 6(z ¢a).

’ #S.t.
ze+/ClosurdZ’,s) )

i

Note thatY stands for the set of all automaton stagethat

are reachable itA from a statez € Z’ via transitions labeled
with elementsy+/ € T such thats =  followed by a transition
with a labelga € T such thats E ¢.

It can be shown by induction drr| that6*(Z’, o) consists of
all states that are reachable # via a run starting inZ’ for

...Zy € Runs(Z',0):z, = Z.



For ZZ = Zo, we obtain thatdé™(Zo,o) consists of all if Zp = éM(Zy, 51 — ), and R*(-) = 0 otherwise. 0
automaton-states that can be reached via an initial ruwr-for

From this observation we obtain: The idea behind the definition & is to copy the transitions

from M, provided that the corresponding transition is possible

Proposition 22 If « is a program andA an NPA with£(e) = [N the current set of states of.

L(A) then we have: , )
Example 25 Figure 5 shows the product Markov chain re-

Path}(a) = {0 € Path}! | §"(Zo,0) N F # 0}. sulting from the ASMC in Example 2 and the automaton in
Example 18. Recall tha, is the only ASMC state satisfying
Example 23 We consider the ASMC of the running examplep, Only product states reachable from one of the “initial”
shown in Fig. 1 and the program of Example 9. The stateqs Z) are shown. There is exactly one state labeled with
corresponding program automatgh= A, is shown in Fig. 4. accept where the automaton component contains the final state
Consider the finite path zs; in the figure it is drawn bold. Any transitions leaving the
arrive,  arrive. _ arrive, _ correct, final state or one of the sink states (automaton component is

1=% — % M 7 % % @) are omitted. o
with arbitrary sojourn times in the states. We then have Our goal is to show that the valudgrob™(s o) can be
S (zi}, 1) = {71, 24, 7). calculated using a model checking procedure fdx A and
the simpler path formul&'accept (which means that a state
labeled with the atomic propositicaccept will be reached at
some point in the time intervd). To establish this result, we

M
fin

The patho; belongs toPath'(A,), becauses € 5 ({z), o).

For the following path

o arrive, S no_correct, Si0 retransmit, , firstlobserve thatm and M x A are state-wi_sg bisi_mulation
equivalent when the set of atomic propositions M x A

we have R is restricted toAP, i.e., we deal with the labeling function
6 ({(za}),02) = @. Lxp Which is given byLy,((s,Z)) = L(s) rather thanL*.

This follows by the fact that the coarsest equivale®®en
S (S x 2%) which identifies any state with any of its copies
. (s,Z’y whereZ’ C Z is a bisimulation. Hences ~ (s, Z’) for
B. The product Markov chaim x A all statessin M and all subsetg’ of Z. Using Equation (2),
We now return to the question of how to calculate thee obtain:

satisfaction setSat™(¢) with ¢ = P.p(@'). We first apply

recursively anasCSL-model checking algorithm to the stateProposition 26 For any state s of\ we have:

formulas that occur in the program As soon as the satis- M N MxA |

faction setsSat™(y) are known for all state formulasin o we Prob™(s a’) = Prob (S Zo), ).
can treat them as atomic propositions. Then, we apply stendglext we observe the one-to-one-correspondence betweles pat
algorithms to construct a (nondeterministic) finite auttona in M and paths inM x A (when we fix the stategs, Zo)

A for o (viewed as an ordinary regular expression over thg starting states). Clearly, by removing the automaton-
alphabetX). We then considerA as an NPA and build the component of any state in a path i x A one obtains a
product of the ASMCM and.A (which is defined below) and path in M. Vice versa, each finite path

This path is not contained iRath(A,,). m|

fin

finally apply aCSL model checking algorithm to\l x A to dote Aty Anatns .
calculate the probability to reach a final automaton statkimwi TC=%"—%—" " Sin M
the given time interval. can be lifted to a path™ in M x A by extending the states

o ) by sets of automaton-states with the helrﬁM‘:
Definition 24 (Product Markov chain M x A) Let M = ali At

(S, Act, AP,L,R) be an ASMC andA = (Z,%, 6, Zp,F) an 0 = (S, Zo) >l (S1,Z1) — -+ — (S, Zn)
NPA. The product ASMC is defined as

MxA = (S Act’, AP*,LX,R)

where fork=1,...,n

A~ A1,
Z =M (Zk—l, Sc1 5 S<)

with

« SX={(SZ')|seSAZ €2 Hence, if £(a) = L(A) then (by Proposition 22):

o Act* = Act; ($h,Zn) = accept iff accept € L*({(Sh, Zn))

« AP* = AP U {accept} (whereaccept ¢ AP); iff Z,NnF#0
The labeling function is defined by: iff M (2o, (fzwﬂ F+0 "

L*(s.2')) = L(s) U {accept}, if Z’NF £0, Iff o € Pathy, (A) = Pathg, ().
S R REGH otherwise. Thus, for all infinite pathg™ € Path**7((s, Zy)) we have:

The rate matrix is given by: Mx A, E olaccept iff MxA ¢ Ea'.

R*({(s1,21), a,{S, Z2)) = R(s1, 4, &), Hence, for all states in M we have



process, w
S5, {21}

retransmlt I's /
s10, {21}

process, w

arrive, l arrive, l arrive, l arrive, l

arrive,u correct, y \:rrlve N correct, y \arrlve L1 correct y arrlve m correct 7

error,d error,d
error,d error,d

error, error,§
error,d error,d

Corm Corm Corm corm

Fig. 5. Product Markov chain

Prob™ (s Zp), @') = Prob™A((s Zp), ' accept). e calculate the product ASMQM x A, where it sifices to
calculate the reachable part ofl x A with an on-the-
fly construction that starts with the statésZy), and to
ignore the action labels in the sense that rates of “patallel
] . transitions are accumulated;
Theorem 271f o is an asQSL-program, A an NPA with e apply aCSL model checker to calculate the valups =
L(a) = L(#) and s a state inM then Prob™A((s, Zy), ©=taccept) for all statessin M, e.g., with
ProbM(s ') = ProbM?((s Zp), ©'accept). the help of a transient analysis of the Markov chain which
is obtained fromMx A when all states labeled witliccept
and all states from which one cannot reach a state labeled
| aswem | || with accept (especially those that have an empty automaton
part) are made absorbing [21], [4];

e return the sefs e S|ps> p}.

Using this observation and Proposition 26 we obtain the
following theorem.

Example 28 We want to check the formul@ = P, 1(a<7 3)

/ for @ as defined in Example 9 on the running example ASMC
M shown in Figure 1. An automata#, for the programue

has been shown in Figure 4. Figure 5 presents the resulting
product ASMCM x A,. Let A =9, u=1,y=3,6 =1,
i SSEmodel checking for w = 2 andk = 20. Applying aCSL model checker (which uses
= uniformization to compute the transient probabilitiesyuits
in the following probabilities:

P, = 0.0695 pg, = 0.0713 ps, = 0.0731 pe, = 0.075

In the casel = [0,t] the eventually-operators afsCSL and ¢, states, where packets can arrive and
CSL agree (Proposition 12). Theorem 27 then states that
the problem of computing the satisfaction t"(¢) for Ps; = Pss = Ps; = Py = Psy = Psyo = 0
the asCSL-formula ¢ = P.p(e=') can be reduced to the
problem of calculating the satisfaction seat**?*(¢cs,) for
the CSL-state formulagcs. = Pwp(O="accept), as illustrated
in Figure 6. In summary, to calculagat™(¢) where¢ is as
above we In the casel = [t,t'] wheret > 0, the model checking
e apply standard techniques to generate a nondeterminigiiocedure forP..,(e') has to be modified as follows: For
finite automatonA for « (viewed as an ordinary regularevery statex = (s Z’) of the product Markov chain with
expression over the alphabe, accept € L*(X) a duplicate stat& with L*(X) = {accept}

Fig. 6. Schema for the handling of the probabilistic pathrafue

for states where the program cannot be followed for strattur
reasons. Since all these probabilities &ré.1 the satisfaction
setSat™(®) = S. o




is generated, wheraccept is a new atomic proposition.
These duplicate states are made absorbing (note xthat
not necessarily absorbing). The analysis now consists of tw

phases: 2
1) In the first phase, the duplicate states are not yet reach-

able. A transient analysis for time pointis carried

out, yielding a probability vectof(t), where for each G 6

duplicate stat&, the corresponding probabilityx(t) is %

zero (because these states are unreachable). Q “
2) In the second phase the product Markov chain is modi- 9

fied by redirecting all incoming arcs of a state- (s, 2’)
with accept € L*(x) to the corresponding duplicate staterig. 7. Hexagon of cells foM = 2 andM = 3.
X. On this modified Markov chain a transient analysis _

for the time pointt’ —t is carried out, taking the vector s >

7(t) obtained in the first phase as initial distribution. This enctivae T e
. - . . —_—

yields the probability vecta#(t’—t) from which the final

result is computed as

handoverComplete handoverCommand

ProbM(s ') = Z st — 1) Lo v

X = accept Handover

loss

In [4] it was shown that the time complexity of the
uniformization-based model checking algorithm fQ@SL-
formulas of typeP.p(¢1UM1g,) is O(M - q - t'), where M
is the number of transitions in the CTMC argl is the
uniformization rate (given by the largest exit-rate of atesta A The model
in the CTMC). In our approach, aasCSL-formula of type "~
P.p(a') is checked by first constructing an NRA, which The distinguished MS is situated in one of several GSM cells
has |Z| = O(le|) states, and then constructing the produeind is allowed to move between neighboring cells. Each cell
Markov chain, which has at mod#l - 2¥ transitions. The has hexagonal shape. Together cells are arranged in such a
uniformization rate and the time bourttl are not &ected way that they form again a hexagon. The size of this hexagon
by the product automaton construction. Therefore, theallveris described by the numbevl of cells that constitute one
time complexity of our algorithm to calculate the satisfast edge of it. In Figure 7 one can see the cell topologies for
set for anasCSL-formula of typeP..p(al*'1) is bounded by M =2 andM = 3. It also illustrates the unique cell identifiers.
OM - 2. q-t). The parameteM is used for scaling the model; the complete
hexagon has/?+ M(M - 1)+ (M —1)? = 3BM(M - 1)+ 1 cells.
VII. HANDOVER IN A CELLULAR MOBILE COMMUNICATION NETWORK  \\e now describe the model of the MS functional behavior.
In this section we present an elaborated example in orderihen not being active with a connection, the MS is idle. At
illustrate the techniques we have developed. We considerry time, the MS can become active, meaning that it either
scalable cellular mobile communication network. Each cediccepts or establishes a (radio) connection. After a wihike,
is ruled by a base station subsystem (BSS). We are espennection can be terminated and the MS becomes idle again.
cially interested in the behavior of the system concernirfjit moves from one cell to another while being active, the
a distinguished mobile radio station (MS) (also called theorresponding BSS commands a handover to the new cell from
distinguished user) moving from one cell to another, therelthe MSC. If the handover is eventually completed, the MS
possibly triggering a so-called handover procedure. Haado returns to active state (note that the connection is coetinu
between the dierent cells are managed by the corresponduring the entire handover procedure). If the handover pro-
ing BSSs and the global mobile switching center (MSC¥edure is not completed in time, the connection is lost. The
Depending on the load of the MSC and the availability afonnection is then terminated (assume that the distandesto t
channels at the BSSs, a handover might succeed or fail. Themer cell has become too large) and the MS returns to the
model is inspired by the description of the GSM handovédle state.
procedure in [29] and [30]. We describe the system as a $@gjure 8 shows a state-transition diagram for the distisiged
of synchronizing processes, namely the switching center, tMS. Transitions are labeled with action names. Note that in
distinguished user’s spatial movement and the user'siiomat ASMCs we allow more than one transition between two states,
behavior. The properties of interest are expressedasi@@SL- as long as they are labeled withffdrent action names. Such
formulas involving programs. We show the correspondirgarallel” (or coexisting) transitionsreceive andactivate)
NPA and relate the size of the resulting product Markov chaican be found between statiele andActive. Themove transi-
to the size of the original model. Finally we us€8L-model tion synchronizes with the user’'s spatial movement wheneve
checking tool to evaluate the formulas. active.

Fig. 8. State machine for the distinguished MS behavior



The mobile services switching center (MSC) is modeled by itee following asCSL formula: ¢s = Sso08s5(¢p). It holds if the
load. It has either low, medium or high load. The time needeateady-state probability of states that satisfyis at least 85%.
for the handover procedure depends on the current load.rUnde

high load, the MSC does not process any request for handof Qut-dated handoverWhen the MS moves from one cell

at all. Table 1 states the rates for transitions labeled wiEﬂ the next, the BSS requests a handover to the new cell.

the given actions. Note that all numbers are educated wegggwever, the model dqes not prlevgnt the MS frpm rr_lo_v_ing on
made on the basis of [31]. to yet another cell. This behavior is not explicitly visikte

the model: here a handover is simply made to the cell the MS

. is in, no matter where it has been in between. In reality this

B. asCSL-properties type of movement could cause a problem. So, we would like
In the following section we present seveesCSL-formulas to know whether the probability of such an outdated handover

which are constructed with two goals in mind. On the onig lower than, say, 3.5%. AasCSL-formula, this becomes:
hand they demonstrate the expressive poweas@iSL. On . = 5030'035(&[:0,00])’ with

the other hand they formalize interesting properties of the
handover procedure. For each formula, the model checking

procedure involves the construction of a product ASMC. The @c = (Active, move); . )
results are interpreted in Section VII-D. (RequestHandover v WaitForHandover, (4)
a) Move: The MS is always free to move from one cell to Act\{handoverComplete,move})*; (5)
one of its neighboring cells. We ask whether the probabilfty (RequestHandover v WaitForHandover, move)  (6)

moving within the next two minutes (120 seconds) is at least

98%. A program describing this behavior is A move while the MS is active triggers a handover. Ling8)4

@a = (true, Act\{move})*; (true, move) describe the system inside the handover procedure. A mgve (6
leads to an outdated handover. An NPA for the progeans

First, the ASMC is allowed to perform arbitrary transiticas given in Fig. 9(c).

long as they are not labelatbve. If then amove transition

occurs, the ASMC has shown the specified behavior. Figulg Return without interruption:‘Assume that the MS initiates
9(a) shows an NPA fou,. a connection while in the center ceM(M). It is free to move
The completeasCSL formula become®, = P-oos(@X'??). between cells. We would like it to leave the center cell and
In this case, we could still state@SL formula which has the to return within 10 minutes (600 seconds) without termimgti
same meaning. Moving is equivalent to being in one cell ar losing the connection. Is the probability for this scémar
one moment and in another cell at the next moment. So theleast 10%? Coded into asCSL-formula this readsyy =
following CSL path formula describes moving out of a ceIP>0.1(ago’60°]), with

(i, J) within 120 seconds:

(i, j) = InCell(i, j) U[O’lzo]—'InCeII(i, i). ag = (InCenterCell,activate); @)

. . o true, Act\{deactivate,l * 8

A CSL formula equivalent tg, is theny = \/; j P-0.08(¢(l, j))- (true, Act\(deac lfla e, loss)) ®)
It has to account for every cell the MS might be in. This makes (=InCenterCell, ); ©)
the formula lengthy. We think that tresCSL version is much (true, Act\{deactivate, loss}); (20)
more readable and elegant. Note, however, that propgrty (InCenterCell, v) (11)

can be expressed (in a straightforward mannegGsL by a
single until operator, decorated with the actiasve as final

action The regular expression first ensures that the user actieates

connection while being in the center cell (7). Then the user ¢
b) Inbound connection:In this paragraph we describe arbehave arbitrarily, as long as the connection is not endaa vi
asCSL formula that relies on a special feature of ASMCs: th@eactivate or loss event (8). At some time, the user must
possibility of having more than one transition between twhave left the center cell (9) and can again behave arbitraril
states. In our model both transitioastivate andreceive as long the connection remains established (10). Finadly, h
lead from stateldle to stateActive. We can never find out should return to the center cell (11). Figure 9(d) shows an
whether a connection is inbound or outbound by just lookingPA for the programyg.

at state properties, unless we split (duplicate) statety e . ,

transitions tell us what is the case. The following program h® Ping-pong: Sometimes there are handovers from a cell

a similar structure as, but cannot be replaced byesL path (1) to @ neighboring celli(; j) and back to celli( j) within
formula. a short time interval. From a performance point of view tBis i

not desirable since presumably the call could have remained
ap = (true, Act\{activate, receive})”; (Idle, receive) in cell G, j).

You can see an NPA fom, in Figure 9(b). With¢, = A ping-pong between celli(j) and its neighboring cells is
P03(l%?°% we check whether the probability of receivinglescribed by the program fe j):

an inbound connection within the next 2500 seconds (without
activating an outbound call) is at least 30%. Consider also (InCell(i, j), v); (Active, move); (true, B1)*;



TABLE |

ACTION LABELS AND RATES OF THE TRANSITIONS OF THE CELLULAR NETWORK MODEL

process action rate description
MS position move 0.02 from celii(j) to up to six neighboring cells (equi-probable)
(on average, 50 seconds residence per cell)

MS behavior  activate 0.0006250 average time between omtboannections is 1600 seconds
receive 0.0003125 average time between inbound conneci$o8200 seconds
deactivate 0.008 connections last on average 125 seconds
handoverCommand 1@5 for lowmedium load of MSC, not available if MSC is blocking
handoverComplete 1.0 connection has been transferredwaelé
loss 0.1 might happen during handover procedure

MSC lowtoMedium 0.5 from low load to medium load
mediumToHigh 1.0 from medium load to high (blocking) load
highToMedium 3.0 from high (blocking) load to medium load
mediumToLow 1.0 from medium to low load

atomic propositions related to the position of the MS, tisat i
InCell(i, i) or InCenterCell.

((InCell(i’, j"),handoverComplete); |; Programs are described directly via their corresponding.NP
@) (InCell(i’, J’), B2)"; Our prototype implementation takes the ASMC and the NPA
ne'%r?)or °'(InCell(i’, '), move)) as input and computes the reduced product Markov chain
where only reachable states are generated and vevesgpt-
(true, By)*; (InCell(i, j), handoverComplete), states and reject statés 0) with an empty automaton part are

merged into two special states.
whereB; = Act\{move, loss, handoverComplete} and B, = The final computation of the satisfaction relation of the-cor
Act\{deactivate,move}. If (i, J) is an inner cell, that is, has respondingcSL formula is done usingSL model checking
all six neighbors, an NPA for the prograf.j) is given in  yrocedures. The size of the ASMCs was restricted by the run-

Fig. 9(e). All possible ping-pong situations are describ§d time of the prototype implementation computing the reduced
@e = Ug.pBi.p- The NPA forae consists of one replica proquct Markov chain.

of the automaton in Fig. 9(e) for each cell j). It has an

initial and a final state for each cell. ThesCSL-formula

e = Poor(@®1%) formalizes the following question: “During D Results

an active connection, is the probability of such a ping-pora) Product Markov chainsFigure 10 shows (a) the number of
handover to occur within 10 seconds at most 1%?” states and (b) the number of transitions of the original ASMC
model of a cellular radio network and of the product Markov
chains needed for the model checking procedure of the given
asCSL-formulas as a function of the numb&ft of cells per

A prototype that performs the construction of the produttexagon edge that ranges from 2 to 10.

Markov chain given an ASMC and an NPA has been implé&he original model has 3252 states and 27900 transitions for
mented in G-+. M = 10. For all presented programs, the number of states in
For the modeling and evaluation we employ a stochastite product Markov chain is equal to or larger than in the
Petri net (SPN) model of the cellular system. All componentsiginal ASMC. This could be expected, since the state space
of the systems are described by simple state machines, iwe subset of the Cartesian prod&k 22, For the “move”
therefore do not show their SPN representation here. The SR and “inbound connection” (b) programs, the state space i
is described in an extension of CSPL [32], which also allowthe original state space plus the two special merge states fo
the specification of marking-dependent properties, whah crejecting and accepting states. No additional states aedent

be seen as atomic propositions in the underlying Markowchabecause after arbitrary behavior the automata directlyogo t
The state space generation code of [33] has been extenttedr final states once the decisive actianye or receive)

in order to record these properties and the transition nanmsurs. For the programs of “outdated handover” (c) and
(as action labels) and generates an ASMC, including afeturn without interruption” (d), the size of the state spa
coexisting transitions. A state of the ASMC generated fas roughly scaled by a factor of 1.75. This is the result of
this example is a triple consisting of the current cell theaving more than one automaton state visited before regchin
MS resides in, the state of the MS and the load of thefinal state.

MSC. An example for such a state is @2 Idle,low). The The largest state space is the one of the ping-pong property
actions inAct are listed in Table VII-A. The set of atomic(e), it has more than 44000 states fdr = 10. Because we
propositionsAP is given by the possible states of the MS, thdteep only those states from which thecept-state is reachable

is, Idle, Active, RequestHandover andWaitForHandover, and and merge the others into one absorbing state, the number of

C. Tool suppoytmplementation
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Fig. 9. NPA for the programas, ..., ag andf,j

6000 T T T

. : - . 30000 T T T T — T
original model, move, inbound —+— original model —+—
outdated handovep*---x--- MOVey—— X
return without interruptiph ------
plng—,ppng o
5000 . ] 25000 -

4000 /’ 1 20000

ISl

3000 + g @ 15000

2000 |

B 10000

1000 | B 5000

(@) 157 (b) |R¥|
Fig. 10. Size of state space (a) and number of transitions (b) in tiggnat ASMC and the product Markov chains

states can also become smaller than the original state .spaaterruption”, the number of transitions in the product ar
However, with the presented examples and formulas thistis rtain is smaller than in the original ASMC as well. The
the case. corresponding program automata are very restrictive, @ th
The program for “inbound connection” leads to a produsiense that in each state of the original ASMC only a subset of
Markov chain in which there is exactly one transition forkeacall outgoing transitions is allowed by the NPA. The NPA for
transition in the original model. Transitions labeleeceive “ping-pong” allows a broad range of fitkrent combinations
now lead into the newly createdccept state, transitions of states and transitions. Consequently, it shows the $arge
labeledactivate lead into thereject state. growth in state space, and the number of transitions is much
Even though the program for “move” has exactly the sanarger than in the original model (147175 fit = 10).

structure as the program for “inbound connection”, it gates

fewer transitions. This is because of the mergingacéept-

states into one state, which causes alsaalle-transitions (up b) The model checkingApplying a CSL model checker to

to six) leaving a state to be aggregated into a single tiansit the “move” product Markov chains reveals that all states of
For the properties “outdated handover” and “return withodthe ASMC satisfy the “move” formulg, for all parameters



M. This is not surprising, since thsove transition exists in
every state and the mean time between two movegd92 =
50 seconds. This results in afaiently high probability of
moving within two minutes.

The “inbound connection” formulap, is only satisfied by
part of the states. That means that for some of the states e
probability of having an inbound call within the next 25003
seconds is less than 30%. To see the satisfactiah, oh the
long run, we consider the formulss = Sso85(¢p). Since the
ASMC is strongly connected, the satisfaction sep ¢fs either
empty or equals the complete state space. Mot 2,...,6, [8]
no state satisfies the steady-state formula. The accurdulate
steady-state probability for afhy-states is smaller than 85%. ()
ForM =7,...,10, all states satisfy formulas.

Not all states satisfy the “outdated handover” formula. FO[
states where the MS isctive and the MSC has low load
there are some states that do not fuliy. The cells are
arranged in rings around the center céll, (M), as can be
seen in Figure 7. If the MS resides in one of tile- 2 inner
rings (and is active and the MSC load is low), the probabilityo]
of following the behavior defined hy, is above 3.5% and the
state does not satisfy..

Formulagg (“return without interruption”) is not valid in any [10]
state. For most of the states the probability of following a
path specified byry is 0 anyway, because the MS is not i 1]
the center cell. But also for those states where the MS is in
the center cell, the probability of returning with an ongpin
call is too small to meet the bound. (12]
Finally, in all states of the ASMC the “ping-pong” formuja
holds. This is not surprising when making a comparison with
the result of checkingyq: already the less restrictive specificaf13]
tion of returning to the same cell yields very low probahskt

and the probability of having a ping-pong handover is evdm]
always below 1%.

(1]

(4]

(8]

[15]
VIII. ConNcLUSIONS

In this paper we introduced the logiasCSL as a new
temporal logical framework for reasoning about perforngang, 7
and dependability measures for Markov chains with both
action labels and state labedsCSL subsumegSL (with time
intervals [Qt]) as well as several other logics that have recent{)llg]
been suggested in the literature, sucha@sL, aCSL+ [7],

[11], [12],[13]. Although the proposed logiasCSL is quite
expressive, it still yields a simple and intuitive specifica [19]
formalism, as illustrated by the example provided in Serctig2o]
VII where complex properties referring to both state labels
and actions have been formalized by means of rather simb"l
asCSL-formulas.

The model checking problem fasCSL can be solved by a [22]
procedure that combines well-known techniques for finite au
tomata and for verifying continuous-time Markov chainseThj23
calculation of the satisfaction set for formulas of typey(a')  [24]
relies on a reduction to theSL model checking problem via a [25]
product construction of the Markov chai and an automaton
for the path formula/', while the treatment of other formulas[26]
is exactly as irCSL. Thus, established techniques and tools for
CSL model checking are still applicable for reasoning abo&tﬂ
complex properties specified asCSL-formulas.

[16]
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