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Abstract— In the past, logics of several kinds have been pro-
posed for reasoning about discrete- or continuous-time Markov
chains. Most of these logics rely on either state labels (atomic
propositions) or on transition labels (actions). However,in several
applications it is useful to reason about both state-properties
and action-sequences. For this purpose, we introduce the logic
asCSL which provides powerful means to characterize execution
paths of Markov chains with actions and state labels.asCSL
can be regarded as an extension of the purely state-based logic
CSL (continuous stochastic logic). In asCSL, path properties
are characterized by regular expressions over actions and state-
formulas. Thus, the truth value of path-formulas does not only
depend on the available actions in a given time interval, butalso
on the validity of certain state formulas in intermediate states. We
compare the expressive power ofCSL and asCSL and show that
even the state-based fragment ofasCSL is strictly more expressive
than CSL if time intervals starting at zero are employed. Using
an automaton-based technique, anasCSL formula and a Markov
chain with actions and state labels are combined into a product
Markov chain. For time intervals starting at zero we establish
a reduction of the model checking problem for asCSL to CSL
model checking on this product Markov chain. The usefulness
of our approach is illustrated by through an elaborate model
of a scalable cellular communication system for which several
properties are formalized by means of asCSL-formulas, and
checked using the new procedure.

Index Terms— Protocol verification, performance of systems,
model checking, automata, Markov processes

I. I

Beside being functionally correct, an ever larger share of
computer and communication systems, especially in the area
of embedded systems, has to meet severe performance and
dependability constraints. Such constraints are typically for-
malized in a stochastic framework. To reason about such
stochastic phenomena, a variety of high-level models such
as stochastic Petri nets, stochastic process algebras, queueing
networks, etc., have been established, cf. [1]. Typically,the
verification of quantitative properties relies on a transformation
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of these high-level models into a (finite-state) Markov chain,
on which the actual analysis is carried out.

For the model-based verification of functional properties,
temporal logics provide powerful means to specify complex
requirements that a system has to satisfy, cf. [2]. Over the
past 10 years, several researchers have adapted the temporal-
logic approach to reason about probabilistic properties. One
result of these efforts is the logicCSL (continuous stochastic
logic), introduced in [3] and extended in [4], which is a
continuous-time variant ofPCTL (probabilistic computational
tree logic) [5], that can be used as specification formalism
for performance and dependability properties. For instance,
the CSL-formula P≥0.99(legal U≤5goal) specifies the state-
property asserting that “there is at least a 99% probability
to reach agoal state within the next 5 time units while
passing onlylegal states before”. The goal states and legal
states can be formalized, e.g., by atomic propositions thatare
attached to the states or by complexCSL-formulas. A so-
called steady-state operator allows to reason about stationary
probabilities. FormulaS≥0.75(green) states that, in equilibrium,
the accumulated probability mass for green states is at least
75%. An extension ofCSL to reason about rewards has
been introduced in [6]. Notice that the specification of these
measures is completely state-oriented.
For action-oriented modeling formalisms, such as stochastic
process algebra,CSL is not an adequate specification for-
malism, since it is not possible to characterize sequences of
actions. In [7] an action-based variant ofCSL, calledaCSL,
was proposed, and in [8] it was shown how to employ this
logic for performability modeling.
Although the state- and action-labeled approach are similar
in their expressivity and transformations between them can
be provided as in the non-stochastic case [9], reasoning with
doubly labeled models is often more intuitive, or even efficient.
A similar observation was made in [10] for non-probabilistic
systems. A first step towards the combination of state-oriented
and action-oriented features in logics for Markov chains is
the logicaCSL+ [11] which employs regular expressions for
characterizing more general path-based properties.
In this paper, we introduce a new logic, calledasCSL (for
CSL with actions andstate labels), which combines aspects
of all the above mentioned logics. Preliminary work on logics
similar toasCSL has been published in [12] and [13].asCSL
can be seen as being motivated either by the method of
path-based reward variables as described in [14], or by the
propositional dynamic logic [15] and extended linear temporal



logic [16]. With asCSL, paths are characterized by regular
expressions, also called programs, but in addition it is possible
to express that a program is executable only if the current state
satisfies a given state property. This provides an elegant way
to reason about state- and action-oriented behaviors. Unlike
extended linear temporal logic [16], we do not allow forω-
regular expressions (representing infinite behavior). Instead,
in asCSL the regular expressions are used in combination
with lower and upper time bounds. Thus, the switch from
CSL to asCSL is orthogonal to the extensionPCTL∗ [17] of
PCTL which is concerned with specifying complex properties
of infinite computations, whereasasCSL focuses on complex
properties of finite computations with real-time constraints
(e.g., hard or soft deadlines).
We finally note that we published a short conference paper on
asCSL [18] that resulted from a joint effort to combine the two
earlier extended abstracts onpathCSL [12] and SPDL [13].
The current paper extends that 10-page paper in that definitions
of syntax and semantics are given in more detail, with more
examples. Also, the sections that compare the expressive
power with other logics as well as bisimulation results have
been extended. Furthermore, the model checking procedure
is described in more detail and an elaborated example is
presented. Finally, to ease the reading of the paper, a running
example illustrating the complete model checking procedure
has been added.
This paper is further organized as follows. In Section II we
define Markov chains with actions and state labels. Section
III presents syntax and semantics of the new logicasCSL. In
Section IV we relateasCSL to other logics, and in Section V
we present an important bisimulation equivalence property
for asCSL. Section VI is dedicated to the model checking
procedure forasCSL. Throughout these sections, we use a
“running example” to illustrate the new concepts. In Section
VII we then apply the new technique to a non-trivial example
in order to derive properties of the handover procedure in a
cellular radio network. The paper ends with a short summary
and conclusions.

II. M      

In this section we explain the notation for Markov chains with
actions and state labels. The reader is supposed to be familiar
with Markov chains, cf. [19]. Action names are used to label
the transitions. The state labels are drawn from a setAP of
atomic propositions, which, e.g., can assert that the system (or
one of its subprocesses) is at a certain control point or thata
program variable has a certain value. A functionL assigns to
any state the set of atomic propositions that are assumed to
hold in the given state.

Definition 1 (Markov chain with actions and state labels)
A continuous-time Markov chain with actions and state labels
(ASMC) is a tupleM = (S,Act,AP, L,R), where S is a finite
set of states,Act is a finite set of action labels,AP is a finite
set of atomic propositions, L: S → 2AP a state labeling
function, andR : S × Act × S→ IR≥0 a rate matrix. �

Notice that we do not explicitly define an initial state or
an initial state distribution as these are not relevant for our
purposes.

Example 2 Figure 1 represents an ASMC that serves as a
running example throughout this paper. It models a data
transmission system that receives four data packets in a
row and then processes them jointly. The set of states is
given by S = {s1, . . . , s10}, the set of actions isAct =
{arrive, correct, no correct, retransmit, process}. The
rate matrixR becomes clear from Figure 1.

s1 s2 s3 s4 s5

s6 s7 s8 s9

s10

arrive, λ

retransmit, κ

process, ω

correct, γ correct, γ correct, γ correct, γ

arrive, µ arrive, µ arrive, µ arrive, µ

arrive, λarrive, λ arrive, λ

no correct, δ no correct, δ

no correct, δ no correct, δ

Fig. 1. ASMC for the simple data transmission system of Example 2.

In more detail, an arrival is modeled by actionarrive.
The transmission of data packets can be error-free (rateλ)
or erroneous (rateµ). An erroneous packet might be cor-
rected (correct, γ) or the system is not able to correct it
(no correct, δ). In case it cannot be corrected, the buffer
is emptied and all data packets have to be retransmitted
(retransmit, κ). If all four data-packets are error-free or
corrected, the received data can be processed (process, ω)
and the system awaits new data. The set of atomic propositions
is AP = {empty, full, error}, with
• L(s1) = {empty},
• L(s2) = L(s3) = L(s4) = ∅,
• L(s5) = {full},
• L(s6) = L(s7) = L(s8) = L(s9) = L(s10) = {error}.

�

Intuitively, if R(s, a, s′) = λ > 0, then there is ana-labeled
transition from states to states′ whose delay is specified by
an exponential distribution with rateλ. For S′ ⊆ S we write
R(s, a,S′) =

∑

s′∈S′ R(s, a, s′) to denote the total rate to move
from states via actiona to state-setS′.
The underlying CTMC1 of an ASMC is given as a tuple
(S,AP, L,R′) that arises fromM by removing the action-set
and accumulating the rates of “parallel” transitions, thatis,
R′(s, s′) =

∑

a∈Act R(s, a, s′).

Definition 3 (Paths inM) A finite path inM is a finite word
σ = (s0, a0, t0),(s1, a1, t1), . . . , (sn−1, an−1, tn−1), sn ∈ (S×Act×

1Here and in the sequel, we use the abbreviation CTMC for a continuous-
time Markov chain with just state labels.



IR>0)∗ × S , whereR(si , ai, si+1) > 0 for i = 0, . . . , n − 1. An
infinite path inM is an infinite wordς = (s0, a0, t0), (s1, a1, t1),
. . . ∈ (S×Act × IR>0)ω with R(si , ai , si+1) > 0 for all i ≥ 0 and
such that the infinite series

∑

i ti is divergent (i.e., t0+ t1+ t2+
. . . = ∞), with ti the time spent in si . A special case arises
if M contains absorbing states, i.e., states without outgoing
transitions. We then define a second type of infinite paths.
Such an absorbing path is a wordς = (s0, a0, t0), (s1, a1, t1),
. . . (sn−1, an−1, tn−1), (sn, tn) ∈ (S×Act× IR>0)∗×(A×{∞}), where
A is the set of absorbing states ofM and R(si , ai, si+1) > 0
for all 0 ≤ i ≤ n− 1. The sojourn time of an absorbing state
is always∞. �

We write paths as sequences of transitions, e.g., for the finite
pathσ above, we use the notation

σ = s0
a0,t0−→ s1

a1,t1−→ s2
a2,t2−→ · · · an−2,tn−2−→ sn−1

an−1,tn−1−→ sn.

Let σ be a finite or absorbing path as before, then
∣

∣

∣σ
∣

∣

∣ = n
denotes the length ofσ, i.e., number of transitions inσ, and
let σ[i] = si the (i+1)st state onσ. We refer toτ(σ) =

∑n−1
j=0 t j

as the execution time ofσ. For t ≤ τ(σ), σ@t denotes the
state that is occupied at timet on pathσ, that is,σ@t = σ[k],
wherek is the smallest index for whicht <

∑k
j=0 t j . We write

σ(i, j) to denote the fragment of pathσ starting at the (i+1)-st
statesi and ending at the (j+1)-st statesj (i ≤ j). In particular,
σ(i, i) = si is a path of length 0.
If σ1, σ2 are finite paths such that the first state ofσ2 agrees
with the last state ofσ1 then the concatenationσ1σ2 is a
path of length|σ1|+ |σ2| which is defined in the obvious way.
Similar notation is used ifσ2 is an infinite path.PathMfin denotes
the set of all finite paths inM, whereasPathMω stands for the
set of infinite paths inM. By PathMfin(s), resp.PathMω (s), we
denote the set of all finite, resp. infinite, paths inM with initial
states.

Example 4 The following is a path in the ASMC of Example
2. It describes the successful transmission, correction and
processing of three related data packets.

σ = s2
arrive,1.1−→ s3

arrive,1.2−→ s4
arrive,0.8−→

s9
correct,0.5−→ s5

process,2.0−→ s1
arrive,2.1−→ s2

The second state of the path isσ[1] = s3, the state occupied
at time 3 isσ@3= s4.
If we concatenate an infinite number of copies ofσ, we
obtain an infinite path where the data packets never need to
be retransmitted. �

In the sequel, we deal with the standard probability measure
PrMs onPathMω (s) (where the underlyingσ-field can be defined
with the help of basic cylinders as in [4]). For measurable
X ⊆ PathMω (s), we often omit the parameterM and/or s and
simply writePr(X) or PrM(X). The transient state probabilities
πM(s, s′, t) are given by

πM(s, s′, t) = PrM
{

ς ∈ PathMω (s)|ς@t = s′
}

,

and the steady state probability of being in states′ on the
long run, provided that the system started in states, is

πM(s, s′) = lim t→∞ πM(s, s′, t). For S′ ⊆ S, we define
πM(s,S′) =

∑

s′∈S′ π
M(s, s′).

III. S    asCSL

The logicCSL (continuous stochastic logic) [3], [4] specifies
state-based properties for CTMCs, built out of propositional
logic (with atomsq ∈ AP), a steady-state operator that refers
to the stationary probabilities, and a probabilistic operator
for reasoning about transient state probabilities, but canalso
express other probabilistic properties with or without real-
time constraints. We present here an extension ofCSL, called
asCSL, that allows one to specify probability bounds for
action- andstate-sequences. Later we will discuss the expres-
sivity of asCSL in relation to that of other logics (Section IV),
as well as the relation between the equivalence induced by
asCSL and action- and state-labeled bisimulation equivalence
(Section V).

A. Syntax ofasCSL

The syntax ofasCSL is defined according to Def. 5 (state
formulas) and Def. 6 (programs or path formulas). Here,
we assume that the setsAct of actions andAP of atomic
propositions are fixed.

Definition 5 (State formulas of asCSL) State formulas of
asCSL are given by the following grammar:

φ ::= q
∣

∣

∣

∣
¬φ
∣

∣

∣

∣
φ ∨ φ

∣

∣

∣

∣
S⊲⊳p(φ)

∣

∣

∣

∣
P⊲⊳p(αI ) ,

where q ∈ AP is an atomic proposition, p∈ [0, 1] denotes
a probability value,⊲⊳ ∈ {<,≤, >,≥} a comparison operator,
I = [t, t′] ⊆ IR≥0 a time interval andα a program as defined in
Def. 6. We refer toαI as apath-formulaand useΦ to denote
the set of state formulas ofasCSL. �

The logical connectives¬ and ∨ have their usual meaning.
Using negation¬ and disjunction∨, the constantstrue, false
and all other boolean connectives such as conjunction∧,
implication→, etc., can be derived. The so-called steady-state
operatorS⊲⊳p(φ) asserts that the probability of being in aφ-
state on the long run obeys the bound⊲⊳ p. The operator
P⊲⊳p(αI ) asserts that the probability measure of all infinite
paths which have a prefix that satisfiesαI , where α is a
program andI is a real interval specifying the time bound,
obeys the bound⊲⊳ p. We omit the time-intervalI if I = [0,∞[
which does not impose any proper real-time constraints. If
I = [0, t] we write ≤ t instead.
The programα specifies a property for finite paths via a regular
set of finite words whose atomic symbols are pairs (φ, b)
(when no confusion can arise, we sometimes simply writeφb)
consisting of anasCSL-state formulaφ (which is viewed as
a test for the current state of a path) and an actionb ∈ Act
or b =

√
(where

√
< Act). The symbol

√
can be viewed as

a pseudo-action which is always immediately executable and
does not change the current state in the ASMC. Formally, the
programs are regular expressions over the alphabet

Σ = Φ × (Act ∪ {√}) = {(φ, b)
∣

∣

∣ φ ∈ Φ ∧ b ∈ (Act ∪ {√})}.



Definition 6 (Programs) asCSL-programs are defined by the
following grammar:

α ::= ε
∣

∣

∣

∣

(φ, b)
∣

∣

∣

∣

α;α
∣

∣

∣

∣

α ∪ α
∣

∣

∣

∣

α∗,

where (φ, b) ∈ Σ. The languageL(α) ⊆ Σ∗ is defined in the
standard way. �

The reader should notice the difference between the pseudo-
action symbol

√
and the empty wordε (viewed as an element

of Σ∗) as the use of
√

is only allowed in combination with a
state formula.
In the context ofasCSL, the meaning of a program (which
will be formally defined in the next subsection) is a set of
finite paths in the underlying ASMC. The intuitive meaning
of φb is that the current states fulfills φ (that is, the state-
formulaφ can be viewed as a test for the current states) and,
if b ∈ Act, state s has an outgoingb-transition. If b =

√
,

no statement about outgoing transitions is made. The operator
; denotes sequential composition (concatenation),∪ denotes
alternative choice (union), and∗ denotes then-fold sequential
composition for arbitraryn ≥ 0 (Kleene star).

Example 7 Let p, q, r ands be atomic propositions anda, b, c
actions.
The language of the program (p, a); ((q,

√
)∪ (r, b)) consists of

words of length 2 that
• start with (p, a) and
• end either with (q,

√
) or (r, b).

Thus,

L( (p, a); ((q,
√

) ∪ (r, b))
)

= {(p, a)(q,
√

) , (p, a)(r, b)}

has exactly two members.
The language of the program ((p, a); (q, b); (r,

√
))∗ ; (s, c)

involving the Kleene star is infinite. It contains
• (s, c) (a word inΣ∗ of length 1),
• (p, a)(q, b)(r,

√
)(s, c) (a word inΣ∗ of length 4),

• (p, a)(q, b)(r,
√

)(p, a)(q, b)(r,
√

)(s, c) (a word in Σ∗ of
length 7),

and so on. �

Note that the test can be empty, i.e.,φ = true. This gives the
possibility to speak about action-sequences of paths without
any (further) constraints for the intermediate states.

Example 8 The asCSL-formula

P≥0.99

(

(true, arrive)∗; (true, process)
)

denotes that the probability for an action-sequence in
arrive∗; process is at least 0.99, whereas

P≥0.99

(

(true, arrive)∗; (true, process)≤5
)

asserts the same probability bound for action-sequences
arrive∗; process to be performed within 5 time units. As
another intuitive example, theasCSL-formula

P≥0.99

(

(true, arrive)∗; (full,
√

)≤5
)

asserts at least a 99% chance to reach a state labeled withfull
via anarrive∗-labeled path within 5 time units. �

Example 9 In the context of the data transmission system of
Example 2, the formula

Ψ = P>0

(

(true, arrive); (full,
√

)
)

characterizes exactly states4, because it is the only state
from which afull-state can be reached with a singlearrive-
transition.
In the sequel we illustrate several concepts by means of the
following formula:

Φ = P≤0.1

(

α≤7.3
)

,

where

α =
(

(true, arrive)

∪ (true, arrive); (error, correct)
)∗;

(Ψ, arrive); (error, correct); (full,
√

).

FormulaΦ states that the probability that the buffer is full after
at most 7.3 time units, the last packet contains a correctable
error and that all other packets are either error free or with
correctable error, is at most 10%. �

B. Semantics ofasCSL

The formal semantics ofasCSL is provided by means of a
satisfaction relation|= for the state- and path-formulas. In the
sequel, we assume a fixed ASMCM = (S,Act,AP, L,R). For
states in M and state formulaφ, M, s |= φ means that the
state-property specified byφ holds for s. Similarly, for an
infinite pathς, M, ς |= αI denotes that the behavior specified
by the path formulaαI is fulfilled by ς. The formal definition
of the satisfaction relation|= for the state and path formulas
is by structural induction on the syntax of the formulas.

Definition 10 (Semantics ofasCSL) The satisfaction rela-
tion |= for the state formulas is defined as follows:

M, s |= q ⇔ q ∈ L(s)
M, s |= ¬φ ⇔ M, s 6|= φ
M, s |= φ1 ∨ φ2 ⇔ M, s |= φ1 or M, s |= φ2

M, s |= S⊲⊳p(φ) ⇔ πM(s,SatM(φ)) ⊲⊳ p
M, s |= P⊲⊳p(αI ) ⇔ ProbM(s, αI ) ⊲⊳ p

where SatM(φ) =
{

s ∈ S|M, s |= φ
}

denotes the satisfaction
set ofφ in M and

ProbM(s, αI ) = PrM
{

ς ∈ PathMω (s)
∣

∣

∣M, ς |= αI }.

The meaning of the path formulas is formalized as follows. If
ς is an infinite path inM then

M, ς |= αI

iff there exists a finite prefixσ of ς with σ ∈ PathMfin(α) and
τ(σ) ∈ I.2 Here, the setPathMfin (α) consists of all finite pathsσ
inM that can be viewed as an instance ofα. Formally, the sets
PathMfin (α) are defined as shown in Fig. 2, whereαi+1 = α;αi

andα0 = ε (the empty word inΣ∗).3 �

2Recall thatτ(σ) denotes the execution time ofσ.
3Note that all pathsσ with |σ| = 0 belong toPathMfin (α∗).



σ ∈ PathMfin (ε) iff |σ| = 0

σ ∈ PathMfin (φa) iff ∃t > 0 s.t.σ = s
a,t−→ s′ andM, s |= φ

σ ∈ PathMfin (φ
√

) iff σ = s (a path of length 0) andM, s |= φ
σ ∈ PathMfin (α1;α2) iff ∃i ∈ {0, 1, . . . , |σ|} s.t.σ(0, i) ∈ PathMfin (α1) andσ(i, |σ|) ∈ PathMfin(α2)
σ ∈ PathMfin (α1 ∪ α2) iff σ ∈ PathMfin(α1) ∪ PathMfin(α2)
σ ∈ PathMfin (α∗) iff ∃i ≥ 0 s.t.σ ∈ PathMfin(αi)

Fig. 2. Semantics of the programs

In the sequel, we often writes |= φ and ς |= αI rather than
M, s |= φ andM, ς |= αI respectively. Moreover, (φ, B) stands
short for

⋃

a∈B(φ, a).
The reader should notice the difference between the programs

α1 = (true,Act)∗(φ,
√

)

and
α2 = (true,Act)∗(φ,Act).

Programα1 defines all finite pathsσ that end in aφ-state,
whereasα2 defines all finite paths whose pre final state satisfies
φ.

Example 11 Consider an infinite pathς which has the finite
path

σ = s2
arrive,1.1−→ s3

arrive,1.2−→ s4
arrive,0.8−→

s9
correct,0.5−→ s5

process,2.0−→ s1
arrive,2.1−→ s2

of Example 4 as prefix. Thenς |= α≤7.3 whereα is the program
of Example 9. Note that the last two transitions ofσ are
actually irrelevant for the validity ofαI . �

IV. C   

In the following subsections we discuss the expressivity of
asCSL in relation to that ofCSL, aCSL, andaCSL+.

A. asCSL vs. CSL

We now study the relation betweenasCSL andCSL [3], [4].
The syntax ofCSL-state formulas is as inasCSL, except for
the probabilistic operator which takes as input a probability
bound⊲⊳ p (as inasCSL) and aCSL-path formula of the form
φ1UIφ2 or XIφ (rather than a time-boundedasCSL-program
αI ). UI is called time-bounded until operator andXI a time-
bounded next step operator.
For the formal definition of the syntax and semantics ofCSL,
we refer to [4]. Intuitively,φ1UIφ2 asserts that there is some
time pointt ∈ I such that the given path is in aφ2-state at time
point t and inφ1-states at all earlier time points. Similarly, the
CSL-path formulaXIφ holds for a pathς if the second state
in ς fulfills φ and the first transition inς is taken at some time
point t ∈ I .
A CSL-formulaψ is said to be equivalent to anasCSL-formula
φ iff for any ASMCM and all statess inM, φ holds fors iff
ψ holds fors in the underlying CTMC ofM. We now discuss

the possibilities to express theCSL-modalitiesUI and XI in
asCSL by providing asCSL-formulas that are similar to the
CSL-formulasP⊲⊳p(φ1UIφ2) andP⊲⊳p(XIφ).
We first observe that state-based formulas that abstract from
the action sequences and useCSL-like time-bounded operators
can be derived from the syntax ofasCSL path formulas.
A CSL-like time-bounded until operatorUI is obtained in
asCSL as follows:4

φ1UIφ2
def
=
(

(φ1,Act)∗; (φ2,
√

)
)I
.

If ς = s0
a0,t0−→ s1

a1,t1−→ . . . is an infinite path in an ASMC then
ς |= φ1UIφ2 iff there exists some indexi ≥ 0 such thatsi |= φ2,
∑i−1

k=0 tk ∈ I , and sj |= φ1 for all j < i.
From this, we may derive the time-bounded eventually-
operator�Iφ

def
= true UIφ. We then haveς |= �Iφ (as opposed

to the CSL-formula^Iφ) iff there exists some indexi with
si |= φ and

∑i−1
k=0 tk ∈ I . For instance,P≤0.05(�≤5error) states

that the probability to reach an error state within 5 time units
is at most 0.05. Its dual, the time-bounded always-operator,
is obtained (as inCSL) by using the duality of the temporal
modalities ”eventually” and ”always” and the duality of lower
and upper probability bounds. For instance, we may define

P≥p(⊡Iφ)
def
= P≤1−p(�I¬φ).

Intuitively, the aboveasCSL-formula states thatφ continu-
ously holds in the time intervalI with probability at leastp. In
an analogous way, time-bounded always with other probability
bounds can be defined.
A CSL-like time-bounded next operator can be expressed as

XIφ
def
=
(

(true,Act); (φ
√

)
)I
.

We haveς |= XIφ iff ς has the forms0
a0,t0−→ ς′ where t0 ∈ I

andφ holds for the first state ofς′.

The asCSL-semantics of the derived time-bounded until or
next step operatorsUI andXI agrees with the corresponding
CSL-semantics ofUI andXI if inf I = 0 for the time-interval
I . In fact, as long as we restrict our attention to time-bounds
of the form≤ t or < t where t ∈ IR∪ {∞}, then CSL can be
viewed as a sub logic ofasCSL. More precisely, anyCSL-
formula can be transformed into an equivalentasCSL-formula
by replacingXEt with XEt andUEt with UEt, whereE ∈ {<,≤}.

4We will use calligraphic lettersU andX for the until and next step operator
in asCSL and the lettersU andX for until and next step operator inCSL.



(The proof can be provided by induction on the length of the
given CSL-formula.) Thus, we obtain:

Proposition 12 CSL with lower time bound equal to zero is
a sub logic ofasCSL.

For time bounds specified by intervalsI with inf I > 0 there
is a slight difference between the semantics of theasCSL-
programϕ = φ1UIφ2 =

(

(φ1,Act)∗; (φ2,
√

)
)I and theCSL-path

formulaψ = φ1UIφ2. Let us consider the caseI = [t, t′] where
0 < t < t′. The reason whyϕ andψ are not equivalent is that
ς |= ψ but ς 6|= ϕ if ς is an infinite path that starts with a prefix

s0
a0,t0−→ s1

a1,t1−→ · · · an−2,tn−2−→ sn−1
an−1,tn−1−→ sn

an,tn−→ sn+1

such that

(1) si |= φ1, i = 0, 1, . . . , n− 1,
(2) sn |= φ1 ∧ φ2,
(3) sn+1 6|= φ1 ∨ φ2

(4) t0 + . . . + tn−1 < t < t0 + . . . + tn−1 + tn.

Note that theCSL-semantics captures the possibility of time-
passage in theφ2-state sn, whereas theasCSL-semantics
requires theφ2-state to be entered at some time instant
δ ∈ [t, t′]. However, assumingφ1 and φ2 to be disjoint (i.e.,
φ1 ∧ φ2 ≡ false) the CSL- and asCSL-semantics of the until
operator agree. In caseφ1 andφ2 can hold in the same state,
the CSL and theasCSL semantics of the until operator are
different.
We now restrict our attention to the fragment ofCSL and
asCSL where infI = 0 for all time-intervals I . It is not
surprising thatasCSL-formulas that refer to the action labels
in a non-trivial way cannot be expressed byCSL-formulas.
For example, there is noCSL-formula φ which is equivalent
to theasCSL-formula

φ = P≥1
(

(true, a); (true, b)
)

which holds exactly for those states where all outgoing paths
start with actiona followed by b.

s1 s2

a, λ

b, λ

{green} {green}

Fig. 3. A simple ASMCM

For instance, in the ASMC shown in Fig. 3, statess1 and s2

only differ in the action-name of the outgoing transition, but
have the same labeling{green} and exit rate. Hence, they fulfill
the sameCSL-formulas5, but s1 and s2 can be distinguished
by theasCSL-formulaφ as we haves1 |= φ and s2 6|= φ.
We finally restrict ourselves to the state-based fragment of
asCSL, i.e., the fragment ofasCSL in which the programs
α are regular expressions using the atoms (φ,Act) and (φ,

√
).

First, we observe that theasCSL-formula

φ = P⊲⊳p
(

(true,Act); (q,Act); (p,Act)
)

5Formally, this follows from the observation thats1 ands2 are bisimulation
equivalent in the underlying CTMC (see Section V).

where p ∈]0, 1[ and q, p ∈ AP cannot be described inCSL.
We skip here a formal argument, but observe thatφ states a
non-trivial probability bound for reaching aq-state with the
first transition and ap-state with the second transition. InCSL,
however, we can formalize the possibility to reach aq-state
followed by ap-state via two next step operators, but each of
them has to be augmented with a probability bound.
A final example that illustrates that even the state-based
fragment ofasCSL is strictly more expressive thanCSL is
given by theasCSL-formula

φ′ = P>0
((

(true,Act); (q,Act)
)∗; (p,

√
)
)

,

which states that ap-state is reachable via a finite path where
any state at an odd position is labeled byq. Using a formal
argument similar to [16], it can be shown that there is no
CSL-formula equivalent toφ′.

B. asCSL vs. aCSL and aCSL+

The logic aCSL [7] is the action-based counterpart ofCSL,
just as aCTL [20] is the action-based counterpart ofCTL.
aCSL, which does not provide atomic propositions, is in-
terpreted over a CTMC with action labels only, i.e., an
ASMC without state labeling. Similar toCSL, aCSL offers a
probability operator (P⊲⊳p) and a steady-state operator (S⊲⊳p).
In aCSL only time intervals with lower time bound equal to
zero can be defined. Similar toaCTL, aCSL offers means to
characterize satisfying paths via action-decorated versions of
the next and until operators.
As we have shown forCSL, it can also be demonstrated
that everyaCSL formula can be translated into an equivalent
asCSL formula. Using an argument similar to the one in
Section IV-A, it can be proven thatasCSL is strictly more
expressive thanaCSL.
In [11] the logicaCSL+ was introduced; it extendsaCSL in
two ways:

• aCSL+ supports atomic propositions and its semantic
model is an ASMC (as in the case ofasCSL);

• satisfying paths are characterized by regular expressions
of actions, but not tests.

By means of elementary examples it can be shown that using
the test feature ofasCSL it becomes possible to differentiate
between paths which were indistinguishable inaCSL+.

V. asCSL-  

It is well-known that bisimulation equivalence on CTMCs is
the coarsest equivalence that identifies all states of a CTMC
fulfilling the same CSL-formulas [21], [4], [22]. We now
establish a similar result forasCSL which we need in the
correctness proof of the model checking algorithm presented
in Section VI.

Definition 13 (Bisimulation equivalence) Bisimulation
equivalence∼ for an ASMC
M = (S,Act,AP, L,R) is the coarsest equivalence on S such
that for all states s1 ∼ s2:

(i) L(s1) = L(s2) and



(ii) R(s1, a,C) = R(s2, a,C) for all actions a∈ Act and all
equivalence classes C∈ S/∼.

For CTMCs with just state labels, bisimulation equivalenceis
defined in the same way by ignoring the action labels in(ii).
�

Bisimulation equivalence can be viewed as a refinement of
ordinary lumpability of Markov chains [23], [24], since bisim-
ulation equivalence takes both the state labelling and the action
labelling into account. It essentially agrees with Markovian
bisimulation for action-labelled Markov chains as introduced
in [25], [26] (which takes the action labelling, but not the state
labelling into account).

In the sequel,asCSL-equivalence denotes the equivalence
relation which identifies exactly those states that cannot be
distinguished byasCSL formulas. We now show that bisimu-
lation equivalence on ASMCs agrees withasCSL-equivalence.
Using structural induction on the syntax of state-formulasand
programs ofasCSL, the preservation property forasCSL and
bisimulation equivalence can be established in the following
sense: Ifs1 ∼ s2 then we have

s1 |= φ iff s2 |= φ for all state-formulasφ of asCSL, (1)

ProbM(s1, α
I ) = ProbM(s2, α

I ) for all path-formulasαI of asCSL.
(2)

The argumentation for (1) is straightforward and omitted here.
In order to prove (2), a more general result can be established
by structural induction on the syntax of programs which states
that for each programα we have:

ProbM(s1, α
I ,C) = ProbM(s2, α

I ,C)

for all bisimulation equivalent statess1, s1, all time intervals
I and all bisimulation equivalence classesC ∈ S/ ∼. Here,
ProbM(s, αI ,C) denotes the probability to reach aC-state from
s via a finite pathσ ∈ PathMfin(α). The fact that

ProbM(s, αI ) = ProbM(s, αI ,S),

finally yields the claim. Thus, bisimulation-equivalent states
are asCSL-equivalent. To show the converse, similar argu-
ments as in [22] can be used, to obtain:

Proposition 14 Bisimulation equivalence for ASMCs agrees
with asCSL-equivalence.

More precisely, using the arguments of [22], it can be shown
that even the sub logic ofasCSL consisting of formulae built
by conjunctions of atomic propositions and probabilistic for-
mulae with upper time bounds and programs consisting of the
base symbols (φ, b) is sufficient to provide a characterization
of bisimulation equivalence for ASMCs.
As Markovian testing equivalence [27] is weaker than bisimu-
lation equivalence, states that fulfill the sameasCSL-formulas
are also Markovian testing equivalent.

VI. M C asCSL

The model checking procedure forasCSL is similar to that for
CTL [28]. Given theasCSL state formulaφ and an ASMC
M, we successively consider the sub formulasψ of φ and
calculate the satisfaction setsSatM(ψ) = {s ∈ S|M, s |= ψ}.
This technique allows us to treat sub formulas as atomic
propositions. The treatment of sub formulas whose top-level
operator is a boolean connective (negation or disjunction)is
obvious. Sub formulas of the formS⊲⊳p(φ) can be handled
with the same procedure as forCSL, see [4]. The new and
challenging case is the treatment of formulas of typeφ =

P⊲⊳p(αI ). For each states we have to compute the probability

ProbM(s, αI ) = PrM
{

ς ∈ PathMω (s)
∣

∣

∣M, ς |= αI }

and check whether it lies within the specified bound⊲⊳ p.
The approach to calculate the valuesProbM(s, αI ) is to build
the product ofM and a finite automatonAα (representing
the programα), which yields a new Markov chain, denoted
M×Aα, and then to apply theCSL model checking procedure
to calculate the probabilities inM×Aα to reach a state〈s′, q〉,
with s′ a state inM and q an accepting state inAα, within
the time intervalI .
Section VI-A is devoted to the construction of the automaton
Aα from the programα, whereas Section VI-B presents the
construction of the product Markov chainM×Aα.

A. The program automatonAα

Since programs are regular expressions, we can apply standard
techniques to construct a finite automaton for a given program.
We call this a nondeterministic program automaton (NPA).

Definition 15 (NPA) An NPA is a quintuple A =

(Z,Σ′, δ,Z0, F), where Z is a finite set of states,Σ′ a
finite subset ofΣ (the input alphabet)6, δ : Z × Σ′ → 2Z is the
transition function, Z0 ⊆ Z the set of initial states and F⊆ Z
the set of accepting (final) states.L(A) ⊆ (Σ′)∗ denotes the
accepted language ofA which is defined in the standard way.
�

We now describe how a program automatonA can be used
to describe the path-setPathMfin (α) for a programα. Thus, we
consider NPA asacceptors for finite pathsinM (rather than as
acceptors for finite words over the alphabetΣ′). The intuitive
behavior of an NPAA for the input pathσ = s

a,t−→ σ′ is
as follows. The automaton starts in one of its initial states
z0 ∈ Z0. If the current automaton-state isz, thenA chooses
nondeterministically between one of the outgoing transitions

z
φb
−→ z′, wheres |= φ and eitherb =

√
or b = a, and then

moves to statez′. In the latter case, i.e., ifb = a, A proceeds
in the same way for statez′ and the pathσ′. In the former
case, i.e., ifb =

√
, no input symbol is consumed, i.e., the

procedure is repeated with statez′ and the pathσ. If there is
no outgoing transition fromz which can be taken for the input
pathσ thenA rejects. As soon asA reaches a final state (a

6Σ is the alphabet of programs as defined in Def. 6.



state inF) and the whole input path has been consumed, the
automaton accepts.
The acceptance for paths is defined by means of runs, which
are sequences of automaton-states that can be generated by
the operational behavior ofA as sketched above, as defined
formally in the following definition.

Definition 16 (Runs in NPA, accepted paths)Let A be a
NPA andM an ASMC as above, z∈ Z andσ a finite path in
M. Then, we defineRuns(z, σ) as the greatest set of sequences
z, z1, . . . , zn ∈ Z+ such that the following two conditions are
fulfilled:

(i) z ∈ Runs(z, σ) iff |σ| = 0
(ii) If z, z1, . . . , zn ∈ Runs(z, σ) and n≥ 1 then there exists

φb ∈ Σ′ such that

• z1 ∈ δ(z, φb),
• σ[0] |= φ
• if b ∈ Act then σ = s

b,t−→ σ′ with z1, . . . , zn ∈
Runs(z1, σ

′)
• if b =

√
then z1, . . . , zn ∈ Runs(z1, σ).

The existence of such a greatest set follows by Tarski’s fixed-
point theorem for monotonic operators2Z∗ → 2Z∗ .
Let Z′ ⊆ Z. The elements ofRuns(Z′, σ) =

⋃

z∈Z′ Runs(z, σ)
are called runs forσ in A with starting state in Z′. A run
z0, z1, . . . , zn for σ is called accepting iff it is initial (i.e., z0 ∈
Z0) and zn ∈ F. The set of accepted paths,PathMfin(A), denotes
the set of finite paths inM that have an accepting run inA.
�

Acceptance ofA as an ordinary finite automaton (acceptor for
finite words overΣ′) and acceptance ofA as an NPA (acceptor
for finite paths) are related in the same way as the language
L(α) of a programα and the induced path-setPathMfin(α).
Hence, it is easy to verify the following proposition:

Proposition 17 If L(α) = L(A) thenPathMfin(α) = PathMfin (A).

Example 18 Figure 4 shows an NPAAα for the language
defined by the programα in Example 9.

true
arrive

error
correct

Ψ

arrive

error
correct

full√

arrive

true

z1

z2

z3 z4 z5

Fig. 4. NPAAα for the programα in Example 9.

Statez1 is the single initial state, that is,Z0 = {z1}. The set of
final statesF consists of the single statez5. �

We now extend the transition functionδ of A to a transition
relation δ̂M which associates with any pair (Z′, σ) consisting
of a setZ′ of automaton-states and a finite pathσ in the ASMC
M, the set of automaton statesz such thatz is the last state
of a run forσ that starts in aZ′-state. The idea behind the

definition of δ̂M is similar to the definition of the transition
relation of the deterministic finite automaton obtained fromA
(viewed as an acceptor for finite words) via the standard power
set construction. However, the following remark shows thatthe
process of making the NPA deterministic as an acceptor for
finite paths inM has to be done “in conjunction” withM.

Remark 19 An NPA A = (Z,Σ′, δ,Z0, F) is called determin-
istic if Z0 is a singleton set and|δ(z, φb)| ≤ 1 for all states
z ∈ Z and input symbolsφb ∈ Σ′. Given a deterministic
NPA A, the “behavior” ofA for an input word over Σ′

is deterministic, i.e., there is at most one run, whereas the
“behavior” of a deterministic NPAA for an input pathσ can
be nondeterministic, even ifA does not contain

√
-transitions

(i.e., transitions that are labeled with an input symbolφ
√ ∈ Σ′).

The reason is that the current automaton-statezmight have two

transitionsz
φa
−→ z′ andz

ψa
−→ z′′, wherea is the first action of

the input pathσ and where the first state ofσ satisfies both
φ andψ. �

We now return to the formal definition of the extended
transition relationδ̂M. If σ is a path of length 0, i.e.,σ = s
for some states, then δ̂M(Z′, σ) = δ̂M(Z′, s) consists of all
automaton-states ˜z that are reachable inA from a Z′-state via
√

-transitionsz1
φ,
√
−→ z2 where states fulfills the state formulas

φ. This corresponds to the so-called
√

-closure ofZ′ for state
s which is defined as follows.

Definition 20 (
√

-closure)
√

Closure(Z′, s) denotes the least
subset of Z such that

Z′ ∪ ⋃

z∈√Closure(Z′ ,s)

⋃

φs.t.
s|=φ

δ(z, φ
√

) ⊆ √Closure(Z′, s).

The existence of this least set follows from Tarski’s fixed-point
theorem for monotonic operators2Z → 2Z. �

We now have all ingredients to defineδ̂M(Z′, σ) by induction
on the length ofσ:

Definition 21 (Extended transition function) The function
δ̂M : 2Z × PathMfin → 2Z is given by:

δ̂M(Z′, s) =
√

Closure(Z′, s)

and δ̂M(Z′, s
a,t−→ σ′) = δ̂M (Y, σ′) where

Y =
⋃

z∈√Closure(Z′ ,s)

⋃

φs.t.
s|=φ

δ(z, φa).

�

Note thatY stands for the set of all automaton statesy that
are reachable inA from a statez′ ∈ Z′ via transitions labeled
with elementsψ

√ ∈ Σ such thats |= ψ followed by a transition
with a labelφa ∈ Σ such thats |= φ.
It can be shown by induction on|σ| that δ̂M(Z′, σ) consists of
all states that are reachable inA via a run starting inZ′ for
σ, i.e.,

δ̂M(Z′, σ) =
{

z ∈ Z | ∃z0, z1, . . . , zn ∈ Runs(Z′, σ):zn = z
}

.



For Z′ = Z0, we obtain that δ̂M(Z0, σ) consists of all
automaton-states that can be reached via an initial run forσ.
From this observation we obtain:

Proposition 22 If α is a program andA an NPA withL(α) =
L(A) then we have:

PathMfin (α) =
{

σ ∈ PathMfin | δ̂M(Z0, σ) ∩ F , ∅}.

Example 23 We consider the ASMC of the running example
shown in Fig. 1 and the programα of Example 9. The
corresponding program automatonA = Aα is shown in Fig. 4.
Consider the finite path

σ1 = s2
arrive,·−→ s3

arrive,·−→ s4
arrive,·−→ s9

correct,·−→ s5

with arbitrary sojourn times in the states. We then have

δ̂ ({z1}, σ1) = {z1, z4, z5}.

The pathσ1 belongs toPathMfin(Aα), becausez5 ∈ δ̂ ({z1}, σ1).
For the following path

σ2 = s1
arrive,·−→ s6

no correct,·−→ s10
retransmit,·−→ s1,

we have
δ̂ ({z1}, σ2) = ∅.

This path is not contained inPathMfin(Aα). �

B. The product Markov chainM×A
We now return to the question of how to calculate the
satisfaction setSatM(φ) with φ = P⊲⊳p(αI ). We first apply
recursively anasCSL-model checking algorithm to the state
formulas that occur in the programα. As soon as the satis-
faction setsSatM(ψ) are known for all state formulasψ in α we
can treat them as atomic propositions. Then, we apply standard
algorithms to construct a (nondeterministic) finite automaton
A for α (viewed as an ordinary regular expression over the
alphabetΣ). We then considerA as an NPA and build the
product of the ASMCM andA (which is defined below) and
finally apply aCSL model checking algorithm toM×A to
calculate the probability to reach a final automaton state within
the given time intervalI .

Definition 24 (Product Markov chain M×A) Let M =

(S , Act, AP, L,R) be an ASMC andA = (Z,Σ, δ, Z0, F) an
NPA. The product ASMC is defined as

M×A = (S×,Act×,AP×, L×,R×)

with

• S× = {〈s,Z′〉
∣

∣

∣ s ∈ S ∧ Z′ ∈ 2Z};
• Act× = Act;
• AP× = AP ∪ {accept} (whereaccept < AP);

The labeling function is defined by:

L×(〈s,Z′〉) =
{

L(s) ∪ {accept}, if Z′ ∩ F , ∅,
L(s), otherwise.

The rate matrix is given by:

R×(〈s1,Z1〉, a, 〈s2,Z2〉) = R(s1, a, s2),

if Z2 = δ̂
M(Z1, s1

a,·−→ s2), andR×(·) = 0 otherwise. �

The idea behind the definition ofR× is to copy the transitions
fromM, provided that the corresponding transition is possible
in the current set of states ofA.

Example 25 Figure 5 shows the product Markov chain re-
sulting from the ASMC in Example 2 and the automaton in
Example 18. Recall thats4 is the only ASMC state satisfying
Ψ. Only product states reachable from one of the “initial”
states〈s,Z0〉 are shown. There is exactly one state labeled with
accept where the automaton component contains the final state
z5; in the figure it is drawn bold. Any transitions leaving the
final state or one of the sink states (automaton component is
∅) are omitted. �

Our goal is to show that the valuesProbM(s, αI ) can be
calculated using a model checking procedure forM×A and
the simpler path formula�I accept (which means that a state
labeled with the atomic propositionaccept will be reached at
some point in the time intervalI ). To establish this result, we
first observe thatM andM× A are state-wise bisimulation
equivalent when the set of atomic propositions inM × A
is restricted toAP, i.e., we deal with the labeling function
L×AP which is given by L×AP(〈s,Z〉) = L(s) rather thanL×.
This follows by the fact that the coarsest equivalenceR on
S⊎ (S×2Z) which identifies any states with any of its copies
〈s,Z′〉 whereZ′ ⊆ Z is a bisimulation. Hence,s ∼ 〈s,Z′〉 for
all statess in M and all subsetsZ′ of Z. Using Equation (2),
we obtain:

Proposition 26 For any state s ofM we have:

ProbM(s, αI ) = ProbM×A(〈s,Z0〉, αI ).

Next we observe the one-to-one-correspondence between paths
in M and paths inM × A (when we fix the states〈s,Z0〉
as starting states). Clearly, by removing the automaton-
component of any state in a path inM × A one obtains a
path inM. Vice versa, each finite path

σ = s0
a0,t0−→ s1

a1,t1−→ · · · an−1,tn−1−→ sn in M

can be lifted to a pathσ× in M×A by extending the states
by sets of automaton-states with the help ofδ̂M:

σ× = 〈s0,Z0〉
a0,t0−→ 〈s1,Z1〉

a1,t1−→ · · · an−1,tn−1−→ 〈sn,Zn〉

where fork = 1, . . . , n

Zk = δ̂
M
(

Zk−1, sk−1
ak−1,·−→ sk

)

.

Hence, ifL(α) = L(A) then (by Proposition 22):

〈sn,Zn〉 |= accept iff accept ∈ L×(〈sn,Zn〉)
iff Zn ∩ F , ∅
iff δ̂M(Z0, σ) ∩ F , ∅
iff σ ∈ PathMfin(A) = PathMfin (α).

Thus, for all infinite pathsς× ∈ PathM×Aω (〈s,Z0〉) we have:

M×A, ς× |= �I accept iff M×A, ς× |= αI .

Hence, for all statess in M we have



s1, {z1} s2, {z1, z2}

s6, {z1, z2}

s3, {z1, z2}

s3, {z1}

s4, {z1, z2}

s4, {z1}

s5, {z1, z2, z3}

s2, {z1}

s7, {z1, z2} s8, {z1, z2} s9, {z1, z2, z3}

s10,∅

s1,∅s10, {z1}

s7, {z1}s6, {z1} s8, {z1} s9, {z1}

s2,∅ s3,∅ s4,∅ s5,∅

s5, {z1, z4, z5}

s5, {z1}

arrive, µarrive, µ arrive, µ arrive, µ

error, δerror, δ

error, δ error, δ

error, δ

error, δ error, δ

error, δ

correct, γ correct, γ correct, γ correct, γ

retransmit, κ

arrive, λ arrive, λ arrive, λ arrive, λ

correct, γcorrect, γcorrect, γcorrect, γ

process, ω

process, ω

Fig. 5. Product Markov chain

ProbM×A(〈s,Z0〉, αI ) = ProbM×A(〈s,Z0〉,�I accept).

Using this observation and Proposition 26 we obtain the
following theorem.

Theorem 27 If α is an asCSL-program, A an NPA with
L(α) = L(A) and s a state inM then

ProbM(s, αI ) = ProbM×A(〈s,Z0〉,�I accept).

ASMCM asCSL formula
φ = P⊲⊳p(α≤t)

NPAA

ProductM×A

CSLmodel checking for
M×A andP⊲⊳p(^≤taccept)

Fig. 6. Schema for the handling of the probabilistic path operator

In the caseI = [0, t] the eventually-operators ofasCSL and
CSL agree (Proposition 12). Theorem 27 then states that
the problem of computing the satisfaction setSatM(φ) for
the asCSL-formula φ = P⊲⊳p(α≤t) can be reduced to the
problem of calculating the satisfaction setSatM×A(φCSL) for
the CSL-state formulaφCSL = P⊲⊳p(^≤taccept), as illustrated
in Figure 6. In summary, to calculateSatM(φ) whereφ is as
above we
• apply standard techniques to generate a nondeterministic

finite automatonA for α (viewed as an ordinary regular
expression over the alphabetΣ);

• calculate the product ASMCM × A, where it suffices to
calculate the reachable part ofM × A with an on-the-
fly construction that starts with the states〈s,Z0〉, and to
ignore the action labels in the sense that rates of “parallel”
transitions are accumulated;

• apply a CSL model checker to calculate the valuesps =

ProbM×A(〈s,Z0〉,^≤taccept) for all statess inM, e.g., with
the help of a transient analysis of the Markov chain which
is obtained fromM×A when all states labeled withaccept
and all states from which one cannot reach a state labeled
with accept (especially those that have an empty automaton
part) are made absorbing [21], [4];

• return the set
{

s ∈ S|ps ⊲⊳ p
}

.

Example 28 We want to check the formulaΦ = P≤0.1

(

α≤7.3
)

for α as defined in Example 9 on the running example ASMC
M shown in Figure 1. An automatonAα for the programα
has been shown in Figure 4. Figure 5 presents the resulting
product ASMCM × Aα. Let λ = 9, µ = 1, γ = 3, δ = 1,
ω = 2 andκ = 20. Applying aCSL model checker (which uses
uniformization to compute the transient probabilities) results
in the following probabilities:

ps1 = 0.0695, ps2 = 0.0713, ps3 = 0.0731, ps4 = 0.075

for states, where packets can arrive and

ps5 = ps6 = ps7 = ps8 = ps9 = ps10 = 0

for states where the program cannot be followed for structural
reasons. Since all these probabilities are≤ 0.1 the satisfaction
setSatM(Φ) = S. �

In the caseI = [t, t′] where t > 0, the model checking
procedure forP⊲⊳p(αI ) has to be modified as follows: For
every statex = (s,Z′) of the product Markov chain with
accept ∈ L×(x) a duplicate statex with L×(x) = {accept}



is generated, whereaccept is a new atomic proposition.
These duplicate states are made absorbing (note thatx is
not necessarily absorbing). The analysis now consists of two
phases:

1) In the first phase, the duplicate states are not yet reach-
able. A transient analysis for time pointt is carried
out, yielding a probability vector~π(t), where for each
duplicate statex, the corresponding probabilityπx(t) is
zero (because these states are unreachable).

2) In the second phase the product Markov chain is modi-
fied by redirecting all incoming arcs of a statex = (s,Z′)
with accept ∈ L×(x) to the corresponding duplicate state
x. On this modified Markov chain a transient analysis
for the time pointt′ − t is carried out, taking the vector
~π(t) obtained in the first phase as initial distribution. This
yields the probability vector~π(t′−t) from which the final
result is computed as

ProbM(s, αI ) =
∑

x |= accept

πx(t
′ − t)

.
In [4] it was shown that the time complexity of the
uniformization-based model checking algorithm forCSL-
formulas of typeP⊲⊳p(φ1U[t,t′]φ2) is O(M · q · t′), where M
is the number of transitions in the CTMC andq is the
uniformization rate (given by the largest exit-rate of a state
in the CTMC). In our approach, anasCSL-formula of type
P⊲⊳p(αI ) is checked by first constructing an NPAAα which
has |Z| = O(|α|) states, and then constructing the product
Markov chain, which has at mostM · 2|Z| transitions. The
uniformization rate and the time boundt′ are not affected
by the product automaton construction. Therefore, the overall
time complexity of our algorithm to calculate the satisfaction
set for anasCSL-formula of typeP⊲⊳p(α[t,t′]) is bounded by
O(M · 2|α| · q · t′).

VII. H      

In this section we present an elaborated example in order to
illustrate the techniques we have developed. We consider a
scalable cellular mobile communication network. Each cell
is ruled by a base station subsystem (BSS). We are espe-
cially interested in the behavior of the system concerning
a distinguished mobile radio station (MS) (also called the
distinguished user) moving from one cell to another, thereby
possibly triggering a so-called handover procedure. Handovers
between the different cells are managed by the correspond-
ing BSSs and the global mobile switching center (MSC).
Depending on the load of the MSC and the availability of
channels at the BSSs, a handover might succeed or fail. The
model is inspired by the description of the GSM handover
procedure in [29] and [30]. We describe the system as a set
of synchronizing processes, namely the switching center, the
distinguished user’s spatial movement and the user’s functional
behavior. The properties of interest are expressed withasCSL-
formulas involving programs. We show the corresponding
NPA and relate the size of the resulting product Markov chains
to the size of the original model. Finally we use aCSL-model
checking tool to evaluate the formulas.
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Fig. 8. State machine for the distinguished MS behavior

A. The model

The distinguished MS is situated in one of several GSM cells
and is allowed to move between neighboring cells. Each cell
has hexagonal shape. Together cells are arranged in such a
way that they form again a hexagon. The size of this hexagon
is described by the numberM of cells that constitute one
edge of it. In Figure 7 one can see the cell topologies for
M = 2 andM = 3. It also illustrates the unique cell identifiers.
The parameterM is used for scaling the model; the complete
hexagon hasM2+M(M−1)+ (M−1)2 = 3M(M−1)+1 cells.
We now describe the model of the MS functional behavior.
When not being active with a connection, the MS is idle. At
any time, the MS can become active, meaning that it either
accepts or establishes a (radio) connection. After a while,the
connection can be terminated and the MS becomes idle again.
If it moves from one cell to another while being active, the
corresponding BSS commands a handover to the new cell from
the MSC. If the handover is eventually completed, the MS
returns to active state (note that the connection is continued
during the entire handover procedure). If the handover pro-
cedure is not completed in time, the connection is lost. The
connection is then terminated (assume that the distance to the
former cell has become too large) and the MS returns to the
idle state.
Figure 8 shows a state-transition diagram for the distinguished
MS. Transitions are labeled with action names. Note that in
ASMCs we allow more than one transition between two states,
as long as they are labeled with different action names. Such
“parallel” (or coexisting) transitions (receive andactivate)
can be found between statesIdle andActive. Themove transi-
tion synchronizes with the user’s spatial movement whenever
active.



The mobile services switching center (MSC) is modeled by its
load. It has either low, medium or high load. The time needed
for the handover procedure depends on the current load. Under
high load, the MSC does not process any request for handover
at all. Table 1 states the rates for transitions labeled with
the given actions. Note that all numbers are educated guesses
made on the basis of [31].

B. asCSL-properties

In the following section we present severalasCSL-formulas
which are constructed with two goals in mind. On the one
hand they demonstrate the expressive power ofasCSL. On
the other hand they formalize interesting properties of the
handover procedure. For each formula, the model checking
procedure involves the construction of a product ASMC. The
results are interpreted in Section VII-D.
a) Move: The MS is always free to move from one cell to
one of its neighboring cells. We ask whether the probabilityof
moving within the next two minutes (120 seconds) is at least
98%. A program describing this behavior is

αa = (true,Act\{move})∗; (true, move)

First, the ASMC is allowed to perform arbitrary transitionsas
long as they are not labeledmove. If then amove transition
occurs, the ASMC has shown the specified behavior. Figure
9(a) shows an NPA forαa.
The completeasCSL formula becomesφa = P>0.98(α

[0,120]
a ).

In this case, we could still state aCSL formula which has the
same meaning. Moving is equivalent to being in one cell at
one moment and in another cell at the next moment. So the
following CSL path formula describes moving out of a cell
(i, j) within 120 seconds:

ϕ(i, j) = InCell(i, j) U[0,120]¬InCell(i, j).

A CSL formula equivalent toφa is thenψ =
∨

i, j P>0.98(ϕ(i, j)).
It has to account for every cell the MS might be in. This makes
the formula lengthy. We think that theasCSL version is much
more readable and elegant. Note, however, that propertyφa

can be expressed (in a straightforward manner) inaCSL by a
single until operator, decorated with the actionmove as final
action.

b) Inbound connection:In this paragraph we describe an
asCSL formula that relies on a special feature of ASMCs: the
possibility of having more than one transition between two
states. In our model both transitionsactivate andreceive
lead from stateIdle to stateActive. We can never find out
whether a connection is inbound or outbound by just looking
at state properties, unless we split (duplicate) states. Only the
transitions tell us what is the case. The following program has
a similar structure asαa but cannot be replaced by aCSL path
formula.

αb = (true,Act\{activate, receive})∗; (Idle, receive)

You can see an NPA forαb in Figure 9(b). With φb =

P≥0.3(α[0,2500]
b ) we check whether the probability of receiving

an inbound connection within the next 2500 seconds (without
activating an outbound call) is at least 30%. Consider also

the following asCSL formula:φS = S≥0.85(φb). It holds if the
steady-state probability of states that satisfyφb is at least 85%.

c) Out-dated handover:When the MS moves from one cell
to the next, the BSS requests a handover to the new cell.
However, the model does not prevent the MS from moving on
to yet another cell. This behavior is not explicitly visiblein
the model: here a handover is simply made to the cell the MS
is in, no matter where it has been in between. In reality this
type of movement could cause a problem. So, we would like
to know whether the probability of such an outdated handover
is lower than, say, 3.5%. AsasCSL-formula, this becomes:
φc = P≤0.035(α

[0,∞]
c ), with

αc = (Active, move); (3)

(RequestHandover ∨WaitForHandover, (4)

Act\{handoverComplete, move})∗; (5)

(RequestHandover ∨WaitForHandover, move) (6)

A move while the MS is active triggers a handover. Lines (4/3)
describe the system inside the handover procedure. A move (6)
leads to an outdated handover. An NPA for the programαc is
given in Fig. 9(c).

d) Return without interruption:Assume that the MS initiates
a connection while in the center cell (M,M). It is free to move
between cells. We would like it to leave the center cell and
to return within 10 minutes (600 seconds) without terminating
or losing the connection. Is the probability for this scenario
at least 10%? Coded into anasCSL-formula this readsφd =

P>0.1(α
[0,600]
d ), with

αd = (InCenterCell, activate); (7)

(true,Act\{deactivate, loss})∗; (8)

(¬InCenterCell,
√

); (9)

(true,Act\{deactivate, loss})∗; (10)

(InCenterCell,
√

) (11)

The regular expression first ensures that the user activatesa
connection while being in the center cell (7). Then the user can
behave arbitrarily, as long as the connection is not ended via a
deactivate or loss event (8). At some time, the user must
have left the center cell (9) and can again behave arbitrarily,
as long the connection remains established (10). Finally, he
should return to the center cell (11). Figure 9(d) shows an
NPA for the programαd.

e) Ping-pong: Sometimes there are handovers from a cell
(i, j) to a neighboring cell (i′, j′) and back to cell (i, j) within
a short time interval. From a performance point of view this is
not desirable since presumably the call could have remained
in cell (i, j).
A ping-pong between cell (i, j) and its neighboring cells is
described by the program forβ(i, j):

(InCell(i, j),
√

); (Active, move); (true, B1)∗;



TABLE I

A           

process action rate description

MS position move 0.02 from cell (i, j) to up to six neighboring cells (equi-probable)

(on average, 50 seconds residence per cell)

MS behavior activate 0.0006250 average time between outbound connections is 1600 seconds

receive 0.0003125 average time between inbound connections is 3200 seconds

deactivate 0.008 connections last on average 125 seconds

handoverCommand 1.0/0.5 for low/medium load of MSC, not available if MSC is blocking

handoverComplete 1.0 connection has been transferred to new cell

loss 0.1 might happen during handover procedure

MSC lowtoMedium 0.5 from low load to medium load

mediumToHigh 1.0 from medium load to high (blocking) load

highToMedium 3.0 from high (blocking) load to medium load

mediumToLow 1.0 from medium to low load
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;

(true, B1)∗; (InCell(i, j), handoverComplete),

whereB1 = Act\{move, loss, handoverComplete} and B2 =

Act\{deactivate, move}. If ( i, j) is an inner cell, that is, has
all six neighbors, an NPA for the programβ(i, j) is given in
Fig. 9(e). All possible ping-pong situations are describedby
αe =

⋃

(i, j) β(i, j). The NPA for αe consists of one replica
of the automaton in Fig. 9(e) for each cell (i, j). It has an
initial and a final state for each cell. TheasCSL-formula
φe = P≤0.01(α

[0,10]
e ) formalizes the following question: “During

an active connection, is the probability of such a ping-pong
handover to occur within 10 seconds at most 1%?”

C. Tool support/Implementation

A prototype that performs the construction of the product
Markov chain given an ASMC and an NPA has been imple-
mented in C++.
For the modeling and evaluation we employ a stochastic
Petri net (SPN) model of the cellular system. All components
of the systems are described by simple state machines, we
therefore do not show their SPN representation here. The SPN
is described in an extension of CSPL [32], which also allows
the specification of marking-dependent properties, which can
be seen as atomic propositions in the underlying Markov chain.
The state space generation code of [33] has been extended
in order to record these properties and the transition names
(as action labels) and generates an ASMC, including any
coexisting transitions. A state of the ASMC generated for
this example is a triple consisting of the current cell the
MS resides in, the state of the MS and the load of the
MSC. An example for such a state is ((2.2), Idle, low). The
actions inAct are listed in Table VII-A. The set of atomic
propositionsAP is given by the possible states of the MS, that
is, Idle, Active, RequestHandover andWaitForHandover, and

atomic propositions related to the position of the MS, that is,
InCell(i, i) or InCenterCell.
Programs are described directly via their corresponding NPA.
Our prototype implementation takes the ASMC and the NPA
as input and computes the reduced product Markov chain
where only reachable states are generated and whereaccept-
states and reject states〈s, ∅〉 with an empty automaton part are
merged into two special states.
The final computation of the satisfaction relation of the cor-
respondingCSL formula is done usingCSL model checking
procedures. The size of the ASMCs was restricted by the run-
time of the prototype implementation computing the reduced
product Markov chain.

D. Results

a) Product Markov chains:Figure 10 shows (a) the number of
states and (b) the number of transitions of the original ASMC
model of a cellular radio network and of the product Markov
chains needed for the model checking procedure of the given
asCSL-formulas as a function of the numberM of cells per
hexagon edge that ranges from 2 to 10.
The original model has 3252 states and 27900 transitions for
M = 10. For all presented programs, the number of states in
the product Markov chain is equal to or larger than in the
original ASMC. This could be expected, since the state space
is a subset of the Cartesian productS × 2|Z|. For the “move”
(a) and “inbound connection” (b) programs, the state space is
the original state space plus the two special merge states for
rejecting and accepting states. No additional states are created
because after arbitrary behavior the automata directly go to
their final states once the decisive action (move or receive)
occurs. For the programs of “outdated handover” (c) and
“return without interruption” (d), the size of the state space
is roughly scaled by a factor of 1.75. This is the result of
having more than one automaton state visited before reaching
a final state.
The largest state space is the one of the ping-pong property
(e), it has more than 44000 states forM = 10. Because we
keep only those states from which theaccept-state is reachable
and merge the others into one absorbing state, the number of
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Fig. 10. Size of state space (a) and number of transitions (b) in the original ASMC and the product Markov chains

states can also become smaller than the original state space.
However, with the presented examples and formulas this is not
the case.
The program for “inbound connection” leads to a product
Markov chain in which there is exactly one transition for each
transition in the original model. Transitions labeledreceive
now lead into the newly createdaccept state, transitions
labeledactivate lead into thereject state.
Even though the program for “move” has exactly the same
structure as the program for “inbound connection”, it generates
fewer transitions. This is because of the merging ofaccept-
states into one state, which causes also allmove-transitions (up
to six) leaving a state to be aggregated into a single transition.
For the properties “outdated handover” and “return without

interruption”, the number of transitions in the product Markov
chain is smaller than in the original ASMC as well. The
corresponding program automata are very restrictive, in the
sense that in each state of the original ASMC only a subset of
all outgoing transitions is allowed by the NPA. The NPA for
“ping-pong” allows a broad range of different combinations
of states and transitions. Consequently, it shows the largest
growth in state space, and the number of transitions is much
larger than in the original model (147175 forM = 10).

b) The model checking:Applying a CSL model checker to
the “move” product Markov chains reveals that all states of
the ASMC satisfy the “move” formulaφa for all parameters



M. This is not surprising, since themove transition exists in
every state and the mean time between two moves is 1/0.02=
50 seconds. This results in a sufficiently high probability of
moving within two minutes.
The “inbound connection” formulaφb is only satisfied by
part of the states. That means that for some of the states the
probability of having an inbound call within the next 2500
seconds is less than 30%. To see the satisfaction ofφb on the
long run, we consider the formulaφS = S≥0.85(φb). Since the
ASMC is strongly connected, the satisfaction set ofφS is either
empty or equals the complete state space. ForM = 2, . . . , 6,
no state satisfies the steady-state formula. The accumulated
steady-state probability for allφb-states is smaller than 85%.
For M = 7, . . . , 10, all states satisfy formulaφS.
Not all states satisfy the “outdated handover” formula. For
states where the MS isactive and the MSC has low load
there are some states that do not fullfilφc. The cells are
arranged in rings around the center cell (M,M), as can be
seen in Figure 7. If the MS resides in one of theM − 2 inner
rings (and is active and the MSC load is low), the probability
of following the behavior defined byαc is above 3.5% and the
state does not satisfyφc.
Formulaφd (“return without interruption”) is not valid in any
state. For most of the states the probability of following a
path specified byαd is 0 anyway, because the MS is not in
the center cell. But also for those states where the MS is in
the center cell, the probability of returning with an ongoing
call is too small to meet the bound.
Finally, in all states of the ASMC the “ping-pong” formulaφe

holds. This is not surprising when making a comparison with
the result of checkingφd: already the less restrictive specifica-
tion of returning to the same cell yields very low probabilities
and the probability of having a ping-pong handover is even
always below 1%.

VIII. C

In this paper we introduced the logicasCSL as a new
temporal logical framework for reasoning about performance
and dependability measures for Markov chains with both
action labels and state labels.asCSL subsumesCSL (with time
intervals [0, t]) as well as several other logics that have recently
been suggested in the literature, such asaCSL, aCSL+ [7],
[11], [12],[13]. Although the proposed logicasCSL is quite
expressive, it still yields a simple and intuitive specification
formalism, as illustrated by the example provided in Section
VII where complex properties referring to both state labels
and actions have been formalized by means of rather simple
asCSL-formulas.
The model checking problem forasCSL can be solved by a
procedure that combines well-known techniques for finite au-
tomata and for verifying continuous-time Markov chains. The
calculation of the satisfaction set for formulas of typeP⊲⊳p(αI )
relies on a reduction to theCSL model checking problem via a
product construction of the Markov chainM and an automaton
for the path formulaαI , while the treatment of other formulas
is exactly as inCSL. Thus, established techniques and tools for
CSL model checking are still applicable for reasoning about
complex properties specified byasCSL-formulas.
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