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Abstract. Stochastic process algebras have been introduced in ar@grable
compositional performance analysis. The size of the stateesis a limiting fac-
tor, especially if the system consists of many cooperatomgponents. To fight
state space explosion, various proposals for compositagtaegation have been
made. They rely on minimisation with respect to a congrueataion. This pa-
per addresses the computational complexity of minimisagigorithms and ex-
plains how efficient, BDD-based data structures can be graglfor this purpose.

1 Introduction

Compositional application of stochastic process alge{8&4,) is particularly success-
ful if the system structure can be exploited during Markowiohgeneration. For this
purpose, congruence relations have been developed wisitfy joninimisation of com-
ponents without touching behavioural properties. Exaspfesuch relations are strong
equivalence [22], (strong and weak) Markovian bisimilafit6] and extended Marko-
vian bisimilarity [2]. Minimised components can be pluggdetb the original model in
order to circumvent the state space explosion problem.Sthasegy, known asompo-
sitional aggregatiorhas been applied successfully to handle, for instancegptehy
system model [18]. Without compositional aggregation, stete space turned out to
consist of more than 10 million states, while only 720 statese actually required
using compositional aggregation.

Applicability of compositional aggregation relies on thdstence ofalgorithms
to compute minimised components. In this paper, we discfiigseat algorithms for
strong equivalence, and (strong and weak) Markovian bilsitin. The algorithms are
variants of well-known partition refinement algorithms [29, 24]. They compute par-
titions of equivalent states of a given state space by iteraéfinement of partitions,
until a fixed point is reached.

For the practical realisation of the algorithms we introelB®D-based data struc-
tures. During the recent years, BDDs [6] have been showndbleran efficientsym-
bolic encoding of state spaces. In particular, the parallel caitipa operator can be
defined on BDDs in a way which avoids the usually observed egptial blow-up due
to interleaving of causally independent transitions [1@}his paper, we highlight how
parallel composition and compositional aggregation cah lbbe performed symboli-
cally in a stochastic setting.

* A preliminary version of this paper has been presented a@ARM’98 workshop [20].



This paper is organised as follows: Sec. 2 contains the defindf the languages
and of the bisimulation relations which we consider. Secres@nts the basic bisim-
ulation algorithm for non-stochastic process algebras. 8eand Sec. 5 do the same
for the purely Markovian case and for the case where both Maak and immediate
transitions are allowed. In Sec. 6, we focus on BDDs and dhice a novel stochastic
extension, DNBDDs. Furthermore, we show how algorithmspfanallel composition
and bisimulation can benefit from the use of these data stregtThe paper concludes
with Sec. 7.

2 Basic definitions

This section introduces the scenario that will be consillémethe sequel. We define
a language and its operational semantics. In addition, wa&lIrthe notions of strong
and weak Markovian bisimilarity. We refer to [16] for moretdiés and motivating

examples.

Definition 1. Let Act be the set of valid action names afeb the set of process names.
We distinguish the action as an internal, invisible activity. Let € Act, P, P, € L,

A C Act\ {i }, and X € Pro. The setl of expressions consists of the following
language elements:

stop inaction

a; P action prefix (a,\) ; P Markovian prefix

P P choice Py |[A]| P, parallel composition
hide a in P hiding X process instantiation

A set of process definitions (of the forkn:= P) constitutes a process environment.

The following operational semantic rules define a labelteddition system (LTS) con-

taining action transitions-%-=, and Markovian transitions,a’—km. The semantic rule
for synchronisation of Markovian transitions is parameini a functiong determining
the rate of synchronisation, in response to the fact th&réifit synchronisation poli-
cies (minimum, maximum, product, ...) are possible. Notayéwver, that the apparent
rate construction of PEPA [22] requires a functiofP, Q, \, 1) instead.
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Strong and weak Markovian bisimilarity are defined in a vatriaf Larsen & Skou
style [27], using the function : £ x Act x 2% — IR, often called theumulative rate
defined as follows (we usgand|} to denote multiset brackets):

Y(P,a,C) == Yrcppacy A WhereE(P.a,C) = {| A | P—22< P'AP' e C .

Definition 2. An equivalence relationB is a strong Markovian bisimulation, if
(P,Q) € B implies that
(i) P --%-« P’ impliesQ --%-2 @', for someQ’ with (P",Q’) € B,
(i) for all equivalence classe§' of B and all actionsu it holds that

V(Pa a, C) = V(Qa a, C)
Two expression® and (@ are strong Markovian bisimilar (writted® ~ Q) if they are
contained in a strong Markovian bisimulation.

Weak bisimilarity is obtained from strong bisimilarity bysically replacing-2-+
with ==¢==. Here,==%=s1 denotes an observabietransition that is preceded and fol-
lowed by an arbitrary number (including zero) of invisibletigities, i.e. ==%== :=

| a |

R R g--2--- . If aisinternal ¢ =i ), === abbreviates-!---s. As discussed in
[16], the extension from strong to weak Markovian bisinitiahas to take into account
the interplay of Markovian and immediate transitions. Riyoof internal immediate
transitions gives rise to the following definition [15].

Definition 3. An equivalence relatioi is a weak Markovian bisimulation, {f°, Q) €
B implies that
(i) P ==%== P’ impliesQ ==%== @', for someR’ with (P",Q’) € B,

for all equivalence classes of B and all actionsz
Y(P',a,C) =4(Q',a,C).
Two expression® and @ are weak Markovian bisimilar (writtel® =~ Q) if they are
contained in a weak Markovian bisimulation.

In this definition, P '/l“'J denotes thaf’ does not possess an outgoing internal im-
mediate transition. We call such a statagiblestate, as opposed t@nishingstates

It can be shown that strong Markovian bisimilarity is a caregrce with respect to
the language operators, provided thais distributive over summation of real values.
The same result holds for weak Markovian bisimilarity exclp congruence with
respect to choice, see [15].

In the sequel, we consider two distinct sub-languages.ofhe first, £,, arises
by disallowing Markovian prefix. This sub-language giveserto an ordinary, non-
stochastic process algebra, a subset of Basic LOTOS [3]enmmdy action transitions
appear in the underlying LTS. On this language, strong anakviarkovian bisim-
ilarity coincide with Milner's non-stochastic strong andak bisimilarity [28]. The
complementary subsefy, is obtained by disallowing the other prefix, action prefix.
The resulting language coincides with MTIPP a la [17]4i§ instantiated with multi-
plication), and both strong and weak Markovian bisimiladbincide with Markovian
bisimilarity on MTIPP. Note that Markovian bisimilarity eges with Hillston’s strong
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Fig. 1. LTS of the queueing system example, before and after agplyeak bisimilarity

equivalence [22]. The semantics®f only contains Markovian transitions, and we will
refer to such a transition system as a stochastic LTS (SLT®).complete language,
where both prefixes coexist involves both types of trans#tj@nd we shall call such a
transition system an extended SLTS (ESLTS).

3 Bisimulation minimisation in non-stochastic process algbras

In this section, we introduce the general idea of iteratiadifion refinement, working
with the language®,. We aim to set the ground for an understanding of the follgwin
sections. To illustrate the key ideas, we use as an examplewseg system, consisting
of an arrival process and a finite queue. First, we model avehprocess as an infinite
sequence of incoming arrivalgi(rive), each followed by an enqueue actiemg).
Arrival := arrive; eng; Arrival
The behaviour of the queue is described by a family of prassme for each value of
the current queue population.
Queueg := eng; Queuey
Queue; := eng; Queue;t1 [| deq; Queue;_q 1 <i < mazx
Queuemaz = deq; Queuemazfl
These separate processes are combined by parallel coropasitorder to describe
the whole queueing system. Hiding is used to internalise@&tas soon as they are
irrelevant for further synchronisation.
System := hide eng in (Arm'val [[eng]| Queueg
Fig. 1 (top) shows the LTS associated with thigstem specified above for the case
that the maximum queue populatiorvigiz = 3. The LTS has 8 states, the initial state
being emphasised by a double circle. Fig 1 (bottom) showsjaivalent representation,
minimised with respect to weak bisimilarity. The origindate space is reduced by
replacing every class of weakly bisimilar states by a sistgte.

Most algorithms for computing bisimilarity requirefiite state space. Tradition-
ally, they follow an iterative refinement scheme [29, 11, Z4jis means that starting
from an initial partition of the state space which considta single class (containing
all states), classes are refined until the obtained partitisresponds to a bisimulation
equivalence. The result thus obtained is the largest agistisimulation, in a sense the
“best” such bisimulation, since it has a minimal number afieglence classes.



For the refinement of a partition, the notion of a “splittes’very important. A
splitter is a paifa, Csp; ), consisting of an actiom and a clasg’s,;. During refinement,
a clasgC is split with respect to a splitter, which means that sulsgla§*+ andC~ are
computed, such that subclaSs contains all those states fro which can perform
ana-transition leading to clasS;,;, andC~ contains all remaining states.

In the following, an algorithm for strong bisimulation isgzented. The algorithm
uses a dynamic set of splitters, denoteditters. Note that here we only present a
basic version of the algorithm which can be optimised in maays [11,29]. By a
deliberate treatment of splitters, it is possible to obtatime complexityO(m logn),
wheren is the number of states amd is the number of transitions.

1. Initialisation
Partition := {S}
/* the initial partition consists of only one class which tainsall states */
Splitters := Act x Partition
/* all pairs of actions and classes have to be consideredliti®sp*/
2. Main loop
while (Splitters # 0)
choosesplitter (a, Cspi) € Splitters
forall C' € Partition split(C, a, Cspi, Partition, Splitters)
/* all classes (including’,; itself) are split */
Splitters := Splitters — (a, Cspi)
/* the processed splitter is removed from the splitter set */

It remains to specify the procedusglit. Its task is to split a clasS, using(a, Csp;) as
a splitter. If splitting actually takes place, the inputssd@&’ is split into subclasse§™
andC~.

procedure split(C, a, Cspi, Partition, Splitters)

Ct={P|PeCAIQ: (P-%+0Q AN QECs)}

/* the subclas'* is computed */

if (CT#C AN CT#0)
/* only continue if clas<C' actually needs to be split */
C =C-C*
[* C~ is the complement o' with respect taC' */
Partition := Partition U {CT,C~} — {C}
Splitters := Splitters U (Act x {C1,C™}) — Act x {C}
/* the partition and the splitter set are updated */

We illustrate the algorithm by means of the above queueiagngte. In fact, we shall
computeweakinstead of strong bisimilarity. The only change that is rsseery for
this purpose concerns the transition relatiefr= used in procedureplit, which is
replaced by the weak relatior?-==.. However, this requires the computation-ef-==
during the initialisation phase. As a matter of fact, the patation of==¢== dominates
the complexity of partition refinement, basically because iteflexive and transitive
closure--L-—-= of internal moves has to be computed in order to build the wesk
sition relation. The usual way of computing a transitivescliee has cubic complexity.
(Some slight improvements are known for this task, see fetiaimce [9]. In any case,
this is the computationally expensive part.)
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Fig. 2. Initialisation, first and second refinement step of the atbor

The LTS is depicted in Fig. 2 (top) where we have used a pdati@hading of
states in order to visualize the algorithm. In the beginrthgtates are assumed to be
equivalent, and hence, all states are shaded with the sateerpd\Ve use2p to refer
to the set of states shaded lige So, Partition := { , andSplitters is initialised
accordingly.

After computing the weak transition relatiea=, we start partition refinement by
choosing a splitter, safleq, @») and computingplit(&@m, deq, @p). The initial state

ep" = & and = (Co. As a consequenc&artition becomes Co, &5} and
new splitters are added ®plitters while the currently processed ongeq, @), is
removed. This completes the first iteration and leads toitbat®n depicted in Fig. 2
(middle).

By choosing a different splitter, saydeq, C>), we start the next iteration.
Since Partition now contains two elements, we computglit(Co, deq, Co) and
split(E&s, deq, Co). Co cannot be split any further, while splitting & returns
e" = ey ande=" = ¢u. UpdatingPartition to {Co, &, €} and adding new
splitters leads to the situation depicted in Fig. 2 (bottdBubsequent iterations of the
algorithm will divide &p further, leading to five partitions in total. The algorither-t
minates once the séplitters is empty.

4 The Markovian case

In this section, we consider the MTIPP-style langu#dgewhereall actions are asso-
ciated with a delay which is an exponentially distributeddam variable. In addition,
MTIPP instantiateg with the product of rates, for reasons discussed (for irstaim

[16]. The semantic model of a process from the languagis an SLTS, only contain-

. . a,\
ing transitions of the form——.
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Fig. 3. Semantic model of the Markovian queueing system, isomorgha CTMC

We return to our example of a queueing system. The arrivalge®is now modelled

as follows, employing the Markovian action prefix:
Arrival := (arrive, \); (eng, 1); Arrival

Action arrive occurs with rate\, whereas for actioanq we specified the (passive) rate
1, the neutral element of multiplication. The queue procederthines the actual rate
of eng, occuring as a result of synchronisation via;.

Queuey := (eng,n); Queuey

Queue; := (engq,n); Queue;y1 [| (deq, d); Queue;_q 1 <i<max

Queuenq, == (deq, §); Queuemazr—1

Fig. 3 depicts the SLTS obtained from the parallel compasitf processedrrival
andQueuey synchronised over actiamg.

From a given SLTS one can immediately construct a contintimesMarkov chain
(CTMC [25]). The arcs of the CTMC are given by the union of a# transitions joining
the LTS nodes (regardless of their labels), and the tramsitite is the sum of the
individual rates. This is justified by the properties of thg@nential distribution, in
particular the fact that the minimum of two exponentiallgtdbuted random variables
with rates\1, \s is again exponentially distributed with rate+ \,. Transitions leading
back to the same node (loops) can be neglected, since thdg ivaxe no effect on the
balance equations of the CTMC. The CTMC carries only the (dated) rate labels.
Performance measures can then be derived by calculatirajehdy-state or transient
state probabilities of the CTMC.

As already mentioned, both strong and weak Markovian bianity coincide with
Markovian bisimilarity a la MTIPP on this language. Thetteizal reason is that the
first clauses of Definition 2 and Definition 3 are irrelevanhjie the respective second
clauses both boil down to( P, a, C) = (@, a, C) for all actionsa and classe€’. This
equivalence notion has a direct correspondence to themotiompabilityon CTMCs
[25,22]. As a consequence, the algorithm which we developbeaused to efficiently
computelumpable partitionsof an SPA description (as well as a CTMC in isolation).
The basic bisimulation algorithm is the same as in Sec. §,tbelprocedureplit needs
to be modified. Procedumlit’ now uses a data structusglit_tree which is shown in
Fig. 4. It essentially sorts states according to theialues. During refinement, when
a classC'is split by means of a splittea, Cs;,;), possibly more than two subclasses
Cy,,Cy,y, ..., Cy, will be generated. Input clags is split such that the cumulative rate
Y(P,a,Csp) = 75 is the same for all the statésbelonging to the same subclaSs,,

a leaf of thesplit_tree.

procedure split’ (C, a, Cspi, Partition, Splitters)
forall P € C

Y= ’Y(P7 a, CSPl)
* the cumulative rate from stat® to C.,,; is computed */
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Fig. 4. split_tree used by procedureplit’

insert(split_tree, P,~y)
[* state P is inserted into theplit_tree */

I* now, split_tree containsk leavesC,, , ..., C,, */

if (k>1)
/* only continue ifC has been split inté > 1 subclasses */
Partition := Partition U {Cy,,Cy,,...,Cy. } — {C}
Splitters := Splitters U (Act x {Cy,,Cls,...,C, }) — Act x {C}
/* the partition and the splitter set are updated */

In theforall loop of procedureplit’, the cumulative rate is computed for every state
P in classC, and stateP is inserted into theplit_tree such that states with the same
cumulative rate belong to the same leaf (procedusert). Thesplit_tree hask leaves,
i.e. k different values ofy have appeared. If splitting has taken place (i.&. i 1), the
partition must be refined and the set of splitters has to batepld

Theorem 1. The above algorithm computes Markovian bisimilarity onwegi SLTS. It
can be implemented such that the time complexity is of @fet log n) and the space
complexity is of orde©(m + n), wheren is the number of states amd is the number
of transitions.

The detailed proof is given in [15]. As in [23], the crucialiptto obtain the time com-
plexity of non-stochastic strong bisimilarity is that ailtone of the largest subclasses
C.,, are actually inserted into the s&plitters of potential splitters. (No assumptions
about the time complexity of arithmetic operations are neql).

5 Markovian and immediate actions

In this section, we consider the complete languégéhere both immediate and Marko-
vian actions coexist. Again, we return to our queueing sysgample. In the arrival
process, actionrrive has an exponential delay, whereas action is immediate.
Arrival := (arrive, \); eng; Arrival

The specification of the Queue is again modified with respe8et. 3, i.e. actioang
is immediate and actiotieq has exponential delay.

Queueg = eng; Queuey

Queue; := engq; Queue; 11 [] (deq,d); Queue;_1 1<i<mazx

Queueq, = (deq, §); Queuenmqr—1

The overall system is again given by the compositiodefival and Queuey, where
engq is hidden after synchronisation. The semantic model of suspecification from
the language® is an ESLTS with two types of transitions: Markovian traiusis—-,
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Fig. 5.ESLTS of the queueing system example, before and afteriagplyeak Markovian bisim-
ilarity

and action transitions--=. Fig. 5 (top) depicts the ESLTS for the example queueing
system. In the context of our complete languagethe notion of weak Markovian
bisimilarity is central for associating a CTMC to a given aifieation. The reason is
that immediate transitions do not have a counterpart onetved bf the CTMC. Weak
Markovian bisimilarity justifies to eliminataternalimmediate transitions such that a
SLTS, and hence an (action labelled) CTMC results from thatigot transition system
(the transition system obtained by representing each algunge class by a single state).
The details of this strategy are described in [18, 15]. Ireotd illustrate how the rela-
tion can be used to achieve this, the equivalence classesalf Miarkovian bisimilarity
are indicated in Fig. 5 (bottom). Note, however, that this@frelies on abstraction of
immediate actions before applying weak Markovian bisintyaFurthermore, a unique
CTMC exists only if nondeterminism is absent after applyivepk Markovian bisim-
ilarity. The absence of nondetermininsm is easy to checkhenquotient transition
system.

Accordingly, an algorithm to compute weak Markovian bidarity is central for
deriving the quotient transition system, and hence the CTWprinciple, the CTMC
could also be derived from a specification by purely syntaittinsformations, using
the complete axiomatisation from [19].) Our algorithm iséd on the one given in the
previous section, but proceeds in a different way. The tiechmneason is that, similar
to the computation of branching bisimilarity [12], refiniagpartition by means of a
splitter might cause that the refinement with respect tcadlygrocessed splitters has
to be repeated for this partitionThis is a crucial difference with respect to the al-
gorithms we have described before, for which terminatiooniy guaranteed because
refinement with respect to an already processed splittenisnrepeated for that split-
ter. For branching bisimilarity, the problem is tackled 18], by introducing a distinct
treatment of vanishing states. Bouali has adopted this maghto compute also weak
bisimilarity [4]. Indeed our algorithm is based on this ati@p.

We useP \| P’ to indicate thatP? may internally and immediately evolve to a tan-
gible statel”’, i.e. where no further internal immediate transition isgiole. Formally,

P \'_4 P’ iff P ==l==x P’ for someP’ with P’ -/1--ﬂ. If there is at least one tangible

Y In terms of [13], stability is not inherited under refinement



stateP’ that can be reached frof via a (possibly empty) sequence of internal imme-

diate transitions we use the predicdte™,. Note thatP  wheneverP is tangible.
The converse situation, where a (vanishing) sfateas no possibility to internally and

immediately evolve to a tangible state, is denafedt,. We refer to such states d&

vergentstates, as opposed tonvergenstates (satisfying® ). For the presentation
of the algorithm, we first restrict to transition systemstttia not contain divergent
states. This is done to simplify the exposition, the geneaaé is discussed afterwards.
Restricted to divergence-free ESLTS, the basic algorithasifollows.

1. Initialisation as before in Sec. 3. In addition, weak transitiessss are computed frora--+.
2. Main loop
while (Splitters # 0)
choosesplitter (a, Cspi1)
forall C' € Partition split(C, a, Cspi, Partition, Splitters)
/* all classes are split with respect to weak transitions */
forall C' € Partition split’ (C, a, Cspi, Partition, Splitters)
/* all classes are split with respect to Markovian transiia/
Splitters := Splitters — (a, Cspi)
/* the processed splitter is removed from the splitter set */

The main loop contains two different procedureglit and split” requiring further
explanation. The firstsplit(C, a, Cspi, Partition, Splitters), refines with respect to
clause(i) of Definition 3. This is achieved using the proceduféit of Section 3,
but applied on weak transitions, as in the example of Sech8.skecond procedure,
split’ (C, a, Cspi, Partition, Splitters), is more complicated. It refines with respect
to the second clause of Definition 3. The details are giveovinel

procedure split” (C, a, Csp1, Partition, Splitters)

forall P C A P Ao
/* P is atangible state */
V= ’Y(Pv a, CSPl)
/* the cumulative rate t@',,; is computed */
insert(split_tree, P,~y)
[* state P is inserted into theplit_tree */
I* now, split_tree containsk leavesC,,, , ..., C,, */

forall Pe C A P --l--s

* P is a vanishing state */
if@v: PNQ=QeC,)
I* P can internally and immediately reach tangible states afstlg; only */
insert(split_tree, P,;)
Partition := Partition U {Cy,,C,,,...,Cy, } — {C}
Splitters := Splitters U (Act X {Cy,,Csy,...,Cy}) — Act x {C}
/* the partition and the splitter set are updated */
if (C#U; Cyy)
/* some vanishing states have not been covered yet */
Partition := Partition U{C — | J] C+, }]C
Splitters := Splitters U (Act x {C —J; C+,; })
/* all remaining vanishing states form a new class, sincg tam internally
and immediately evolve to tangible states belonging tedffit classes */
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Fig. 6. Initialisation and first refinement step of the algorithm

The reader is invited to check the result depicted in Fig. Snigans of this algorithm.
In order to facilitate the inspection, tangible states dghlighted by bold circles in
the figure. In order to illustrate the algorithm on a nonaivxample, where all the
distinctions between different types of vanishing statesten, we consider a different
example, depicted in Fig. 6 (top).

The initialisation proceeds as usual, after computing tteakvtransition rela-
tion ===x, we start the algorithm by choosing a splitter, Say and computing
split(@p, a Two states may perform &¢== transition in contrast to all other

states. Thereforés’ = &= and@s™ = 5. Partition and Splitters are updated
accordingly, leading to the situation depicted in Fig. 6ddie).

The subsequent invocation eplit’(Co, a, @p) is most interesting (as opposed
to split” (&, a, @p)). First, the three tangible markings (indicated by boldleis) in
classCo are inserted inteplit_tree, according to their cumulative rates of moving into
(former) clasg2s. This leads to a tree with two leaves;, andC'y, containing two, re-
spectively one state. Now the three remaining vanishirtigstere treated: The righmost
vanishing states can internally and immediately evolvg ¢mitangible states of class

C), (note that according to Definition 3 the transitieﬁﬂm is irrelevant since it orig-
inates in a vanishing state). For the same reason, the lgighiag state is inserted into
classCsy. Only the initial state is not covered yet, since it has aeriml, nondetermin-
istic choice of behaving as a member of either of the clas¢esce, this state forms a
new class,& . In total, split” (Co, a, @) has splitts into v, & (representing’s
andC}), and , leading to the situation depicted in Fig. 6 (bottom)(fhertition
and Splitters are updated accordingly). This situation incidentallynoades with the
classes of weak Markovian bisimilarity, because subseqaeéinement steps do not re-
veal any distinction in one of these four classes. The algorierminates once the set
Splitters is emptied.




To overcome the restriction to divergence-free ESLTS, arfavdifications in the
initialisation and the main loop of the algorithm are neeegsAlgorithmically, the
second clause of Definition 3 needs not to be checked at allifergent states, while
the first clause is still relevant. Furthermore, the secdadse of Definition 3 implies
that no convergent state is weakly Markovian bisimilar tove@djent state. These facts
justify to (1) separate convergent and divergent statemglumititalisation, and to (2)
exclude the refinement of classes of divergent states by sn&fgprocedureplit” in
the main loop of the algorithm. Recall thatlit” implements refinement with respect
to the second clause of Definition 3. So, for the general ¢healgorithm becomes as
follows, wheresplit andsplit” are as before:

1. Initialisation
Weak transitions=== are computed from--<.
Con:={{PesS | P\'}}
Div:={{PeS | PX}}
/* the initial partition consists of two disjoint classes */
Splitters := Act x (Con U Div)
/* all pairs of actions and classes have to be consideredlisi®sp*/
2. Main loop
while(Splitters # 0)
choose splittefa, Cspi)
forall C € Con split(C, a, Cspi, Con, Splitters)
/* all classes of convergent states are split with respewatgak transitions */
forall C € Div split(C, a, Cspi, Div, Splitters)
/* all classes of divergent states are split with respecteakiransitions */
forall C' € Con split” (C, a, Cspi, Con, Splitters)
/* only the classes of convergent states are split with retisjeeMarkovian transitions */
Splitters := Splitters — (a, Cspi)
/* the processed splitter is removed from the splitter set */

An implementation of this algorithm, based on [23, 13, 4,43 A cubic time complex-
ity.
Theorem 2. The above algorithm computes weak Markovian bisimilarityaogiven

ESLTS. It can be implemented such that it requités?®) time andO(n?) space, where
n is the number of states.

The proofis givenin [15], for the divergence-free as welltesgeneral case. It is worth
pointing out that non-stochastic weak bisimulation esaphas the same complexity,
due to the fact that a transitive closure operation is ne&aedmpute weak transitions
in either case.

6 Symbolic representation with BDDs

In this section, we discuss details of a BDD-based impleatent of the above al-
gorithms. BDDs are specific representations of Booleantfons and have recently
gained remarkable attention as efficient encodings of \amgel state spaces. In a pro-
cess algebraic context, this efficiency is mainly due to #loethat the parallel composi-
tion operator can be implemented on BDDs in such a way thatifieeof the data struc-
ture only grows linearly in the number of parallel composerspecially for loosely



coupled components. This compares favourably to the exyi@hgrowth caused by
the usual operational semantics, due to the interleavinga$ally independent transi-
tions. We explain how LTSs can be encoded as BDDs and ilkestrevay to include the
rate information of (E)SLTS into this data structure anddlsmulation algorithms. To
complete the picture, we also discuss parallel compositioBDDs.

6.1 Binary Decision Diagrams and the encoding of LTSs

A Binary Decision Diagram (BDD) [6] is a symbolic represeida of a Boolean func-
tion f : {0,1}™ — {0, 1}. Its graphical interpretation is a rooted directed acygiaph,
essentially a collapsed binary decision tree in which isqgrhic subtrees are merged
and “don’t care” nodes are skipped (a node is called “dom¢’td the truth value of
the corresponding variable is irrelevant for the truth ead the overall function). It
is known that BDDs provide a canonical representation foslBan functions, assum-
ing a fixed ordering of the Boolean variables. AlgorithmsB&D construction from a
Boolean expression and for performing Boolean operatiand,(or, not, ...) on BDD
arguments all follow a recursive scheme.

A LTS can be represented symbolically by a BDD. The idea iswtwde states and
actions by Boolean vectors (for the moment, we look at thestonhastic case where
it is not necessary to consider information about transitates). One transition of the
LTS then corresponds to a conjunctionf+ 2n, literals (a literal is either a Boolean
variable or the negation of a Boolean varialg)', a; A=, s; A2, t;, where literals
ai ...ay, encode the action; . .. s, identify the source state and. . . ¢,,, the target
state of the transition (we assume that the number of disdictions to be encoded is
betweer2”=—1 and2”« + 1, so thatn, bits are suitable to encode them, and similarly
for the number of states). The overall LTS corresponds talisjenction of the terms
for the individual transitions. The size of a BDD is highlypdmdent on the chosen
variable ordering. In the context of transition systemgegience has shown that the
following variable ordering yields small BDD sizes [10]:

a; < ...<G0p, <81<t1<82<f2<...<8n5 <ﬁns
i.e. the variables encoding the action come first, followgdHe variables for source
and target state interleaved. In particular, this ordeisrgdvantageous in view of the
parallel composition operator discussed below.

To illustrate the encoding, Fig. 7 shows the LTS correspomth theQueue, pro-
cess from Sec. 3 (assuming, again, thatr = 3), the way transitions are encoded
and the resulting BDD (in the graphical representation oDdDBone-edges are drawn
solid, zero-edges dashed, and for reasons of simplic#ytdiminal false-node and its
adjacent edges are omitted). Since there are only two difteactions ¢ng anddeq),
one bit would be enough to encode the action. However, in gigetionarrive which
will be needed for procesdrrival, we use two bits to encode the action, hg.= 2.
The LTS has four states, therefore two bits are needed teseptthe state, i.e, = 2.

In the BDD, one can observe the interleaving of the Boolearakkes for the source
and target state.

The parallel composition operator can be realised direwilyhe BDD representa-
tion of the two operand processes. Consider the paralleposition of two processes,
P = P |[A]| P;, and assume that the BDDs which correspond to procégsasd P,
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Fig. 7. LTS, transition encoding and corresponding BDD pticucy

have already been generated and are der®BteathdP,. The setd can also be coded
as a BDD, namely4d. The BDD P which corresponds to the resulting procéssan
then be written as a Boolean expression:
P= (PLANA)A(P2ANA)

V (Py A AN Stabp,)

V (7)2 ANAN Stabpl)
The term on the first line is for the synchronising actions hialki bothP; and P, par-
ticipate. The term on the second (third) line is for thoséomstwhichP; (P,) performs
independently of, (P;) — these actions are all from the complementioThe mean-
ing of Stabp, (Stabp,) is @ BDD which expresses stability of the non-moving partne
of the parallel composition, i.e. the fact that the souregestf proces$ (P;) equals
its target state.

We illustrate parallel composition by means of our queueixample. Fig. 8 shows
the intermediate and final BDDs when performing BDD-basedlf® composition of
processesirrival and Queueg. In the second (third) BDD one can observe the parts
which express stability of procegguecuey (Arrival). Even in this small example we
observe the general tendency that the size of the resuliiigy 5 nodes, including the
terminal false-node not shown) is in the order of the sum efilaes of the two partner
BDDs (15 nodes foRueuey and 8 nodes foArrival, cf. Fig. 7 and Fig. 9). Thus,
using BDD-based parallel composition, the typically olbedrexponential growth of
memory requirements can be avoided.

The BDD resulting from the parallel compositidd, describes all transitions which
are possible in the product space of the two partner prose&seen a pair of initial
states forP; and P, only part of the product space may be reachable due to synichr
sation constraints. Reachability analysis can be perfdromethe BDD representation,
restrictingP to those transitions which originate in reachable states.

6.2 Symbolic bisimulation

The basic bisimulation algorithm of Sec. 3 and its variousmisations can be realised
efficiently using BDD-based data structures. For convergethe transition system is
represented not by a single BDD, but by a set of BOR§s, t), one for each action



synchronising, Arrival moves, Queueg MOVes, overall result,

actioneng actionarrive actiondeq disjunction of previous three
w9 9 i I
I I I
I I I
. . .
as Q Q Q
I I I I
I I I I
. . . .
s e} /Q Q /Q
I \ I I
\ I I
. .
t/ o O
. /
51 Q Q

X

. : I Q
to o 0 :

9 @)

Fig. 8. Intermediate and final BDD results for parallel compositidmrrival andQueueg

no 0 \o o< o o\/\X
/ |

(here,s andt denote vectors of Boolean variables of lengtl). The current partition
is stored as a set of BDD&E(s), C2(s), ...}, one for each class. When claSsis
split into subclasse6t andC~ during execution of procedurlit, those subclasses
are also represented by BDDs. The dynamic set of splittgrBtters, is realised as a
pointer structure. The computation of the subcla@ssin proceduresplit is formulated
as a Boolean expression on BDD arguments

Ct(s):=C(s) NIt : (Ta(s,t) A Copi(t))
where the existential quantification is also performed obBD

6.3 BDDs with rate information

Clearly, pure BDDs are not capable of representing the nicaldnformation about
the transition rates of stochastid_TS. In the literature, several modifications and aug-
mentations of the BDD data structure have been proposecdfoesenting functions
of the typef : {0,1}"™ — IR. Most prominent among these are multi-terminal BDDs
[8], edge-valued BDDs [26] and Binary Moment Diagrams (BMD) In all of these
approaches, the basic BDD structure is modified and theesffiyiof the data structure,
due to the sharing of isomorphic subtrees, may be diminidBaged on this observa-
tion, we developed a different approach which we call denisiode BDD (DNBDD)
[30]. The distinguishing feature of DNBDDs is that the baB@D structure remains
completely untouched when moving from an LTS encoding toldarSSencoding. The
additional rate information is attached to specific edgethisfBDD in an orthogonal
fashion.

In a BDD representing a LTS, path p from the root to the terminal true-node
corresponds t@* transitions of the transition system, whérés the number of “don’t
care” variables on that path (for an example of a “don’t caes Fig. 10 below). Since
these transitions are labelled B¥ distinct rates, we need to assign a rate list of length
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2F to that path. Letrates(p) denote a list of real value@\y, . .., \ax_1), Wherek is

the number of “don’t cares” on pafhh The correspondence between transitions and
individual rates of such a list is implicitly given by the valtion of the encoding of the
transitions on “don’t care” nodes, which ranges fromo 2% — 1.

For the practical realisation of this concept, and in ordenake our representation
canonical, we must answer the question of where to storeathdists. This leads to the
following consideration: Instead of characterising a gahall its nodes, we observe
that a path is fully characterised by @dscision nodes

Definition 4. A decision nodés a non-terminal BDD node whose successor nodes are
both different from the terminal false-nodedAcision node BDD (DNBDDijs a BDD
enhanced by a function

rates : Paths — (IR)*"
wherePaths is the set of paths from the root node to the terminal trueen@ehd(R)*
is the set of finite lists of real values), such that for anyhspathp,

rates(p) € (]R)Qk

if & is the number of “don’t cares” on patp. The listrates(p) = (Ao, ..., Aor_1) IS
attached to the outgoing edge of the last decision node dmpate. the decision node
nearest to the terminal true-node.

To illustrate the DNBDD concept, we return to our queueingregle. Fig. 9 shows the
DNBDDs associated with processésrival, Queueg andArrival |[eng]| Queueq (in
the figure, decision nodes are drawn black). On the leftspatand1 are attached to the
outgoing edges of the (single) decision node of the BDD. érttiddle, six individual
rates are attached to the appropriate edges. On the rightdide, up to three rate
lists, each consisting of a single rate, are attached to Bij2® For instance, the rate
lists (6)(9) specify the rates of the two transitions encoded as biggrin110010 and
10000010 whose paths share the last decision node.
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In the case where several rate lists are attached to the s&beelge (because
several paths share their last decision node) it is impbttapreserve the one-to-one
mapping between paths and rate lists. This could simply beraplished by the lex-
icographical ordering of paths. For algorithmic reasormsyéwver, we use a so-called
rate tree, an unbalanced binary tree which makes it possitalecess rate lists during
recursive descent through the BDD [30]. In our current immatation of DNBDDs,
the rate tree is implemented as illustrated in Fig. 10. Tlyaré (left) shows the en-
coding of the transitions of some SLTS, each of the trarsitieing associated with a
rate. The first two transitions share the same path, a patthwids a “don’t care” in
the Boolean variable. Therefore, the corresponding rate I8, A1) has length two.
The other four paths do not have any “don’t care” variablesyteach correspond to
exactly one transition of the SLTS and the correspondireglists have length one. The
latter four paths all share their last decision node. Theeatach of the outgoing edges
of that decision node carries two rate lists (of length ofiée rate tree is built as a
separate data structure from the BDD. However, its intemndkes and the rate lists are
associated with the decision nodes of the BDD as indicat&iginl10 (right). The rate
tree is manipulated by an appropriate extension of the giwes which manipulate the
BDD. This implementation of the rate tree has the drawbaakitmequires the explicit
storage of one rate for each encoded transition which mageceansiderable overhead.
We are currently investigating this isstie.

Parallel composition of two SLTSs based on their symbolpresentation follows
the same basic algorithm as sketched in Sec. 6.1. Similaetfatt that the operational
rules in Sec. 2 are parametric in the synchronisation pdliey concept of DNBDDs
is not bound to a particular choice of functignany arithmetic expression of the two
individual rates can be employed.

6.4 Symbolic Markovian bisimulation

We now discuss aspects of a DNBDD-based algorithm which coegpMarkovian
bisimulation on SLTSs. The basic bisimulation algorithrthis same as in Sec. 4, only
the procedureplit’ needs to be adapted. When using DNBDDs, the cumulative rate

2 In order to avoid such redundancies, an efficient data stredb represent rate trees might
itself be based on BDDs.



of actiona from stateP to classCs,; is computed in the following way: We compute
Thep l(s, t), the DNBDD which represents adttransitions from staté® to states
sp

from classC,;. It can be obtained by restrictiri, (s, t) to the single source stafe
and to target states from claSs,; (again, the transition relation is represented by indi-
vidual DNBDDsT, (s, t), one for every actiom, and class” is represented by a BDD
C(1)): )

TPicspl (s,t) :==Tu(s,t) A (s=P) A Cspi(t)
We use the notatiors=P to denote that staté® is encoded as Boolean vector
s. The cumulative ratey(P,a,Cs,;) is then computed by applying the function
sum-of_all_rates 0 T', a , L(S’ t). This function simply sums up all the entries of

all rate lists of a DNBDD. For example, application of thedtion sum_of _all_rates

to the DNBDD in Fig. 10 yields\o + A1 + a+ 3+~ + 4. Furthermore, in theplit_tree
used by procedureplit’ (Fig. 4) the subclasses,, , . .., C,, are now also represented
by BDDs.

procedure split’ (C, a, Cspi, Partition, Splitters)

forall P € C

T,a, l(s,t) = Ta(s,t) A (s=P) A Cypi(t)

sp
v = sum-of all_rates(T o , (s,1))
—Cspl

/* the cumulative rate from stat® to C,,; is computed */

insert(split_tree, P,~y)

/* state P is inserted into theplit_tree */
I* now, split_tree containsk leavesC., , ...,Cy, */
if (k>1)

/* the remaining part of procedurglit’ is as in Sec. 4, */
[* but Partition andSplitters are represented as BDDs */

6.5 BDDs with and without rate information

The semantics of the complete languageomprises both types of transitions, ac-

a

tion transitions--%-= and Markovian transitionsﬂj, in one transition system, an
ESLTS. Using the knowledge developed in the previous segtian ESLTS can be
encoded by means of two separate data structures, using RDEDsode action transi-
tions and DNBDDs to encode Markovian transitions. Alsojmiyiparallel composition,
the component BDDs are treated separately from the comp@i¢BDDs. Therefore
the treatment of ESLTS does not pose specific problems. &unibre, the computation
of weak Markovian bisimilarity (Sec. 5) can be lifted to tkismbination of BDD and
DNBDD. The computation of the weak transition relaties= from ---o during the
initialisation step can easily be performed on the BDD fa@r #ction transitions. Only
the first part of functionsplit” requires the DNBDD information, in order to sort tan-
gible markings in aplit_tree (the tangibility predicate is encoded as a BDD as well),
in analogy to the implementation of functiepl:t’ given in Sec. 6.4. The subsequent
steps work completely on BDDs.



7 Conclusion

In this paper, we have discussed efficient algorithms to agenpisimulation style
equivalences for Stochastic Process Algebras. In addiienhave presented details
of a BDD-based implementation of these algorithms, intciclyt DNBDDs to repre-
sent the additional rate information which is relevant fa analysis of the underlying
Markov chain.

The complexity results established in this paper allow tieding simple conclu-
sion: the computational complexity of computing bisimidatequivalencesloes not
increase when moving from a non-stochastic to a stochastimg. For Markovian
bisimilarity this fact is also mentioned (in similar segs) in [23] and in [2].

The usefulness of BDDs to encode transition systems hasdiezssed by many
authors. However, we would like to point out that the mytlyjisg that BDDs always
provide a more compact encoding than the ordinary repratent(as a list or a sparse
matrix data structure), does not hold in general. A naiveodimg of transition sys-
tems as BDDs does not save space. Heuristics for encodiageaded, exploiting the
structure of the specification. The implementation of gatabmposition on BDDs is
indeed such a heuristics, and a very successful one, sinegpamential blow-up can
be turned into a linear growth.

Apart from encoding transition systems as (DN)BDDs and Ifdeomposition on
(DN)BDDs, we have described how bisimulation algorithms ba implemented on
these data structures. As a consequence, all the ingrs@isnat hand for carrying out
compositional aggregation of SPA specifications in a cotepleBDD-based frame-
work. In this way, the state space explosion problem canlbeialed. We are currently
implementing all these ingredients in a prototypical todtien in C, based on our own
DNBDD package [5]. However, in order to obtain performaresuiits, the (minimised)
BDD representation still has to be converted back to thenargtirepresentation, since
we do not yet have a Markov chain analyser which works diyexntlDNBDDs. Numer-
ical analysis based on DNBDDs is one of our topics for futuoekwFor this purpose,
it seems beneficial to investigate the actual relation betw2NBDDs and MTBDDs,
since MTBDD-based numerical analysis methods have alrbady developed [14,
21].
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