
Bisimulation Algorithms for Stochastic Process Algebras
and their BDD-based Implementation⋆

Holger Hermanns1 and Markus Siegle2

1 Systems Validation Centre, FMG/CTIT, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

e-mail:hermanns@cs.utwente.nl
2 Informatik 7, IMMD, University of Erlangen-Nürnberg,

Martensstraße 3, 91058 Erlangen, Germany
e-mail: siegle@informatik.uni-erlangen.de

Abstract. Stochastic process algebras have been introduced in order to enable
compositional performance analysis. The size of the state space is a limiting fac-
tor, especially if the system consists of many cooperating components. To fight
state space explosion, various proposals for compositional aggregation have been
made. They rely on minimisation with respect to a congruencerelation. This pa-
per addresses the computational complexity of minimisation algorithms and ex-
plains how efficient, BDD-based data structures can be employed for this purpose.

1 Introduction

Compositional application of stochastic process algebras(SPA) is particularly success-
ful if the system structure can be exploited during Markov chain generation. For this
purpose, congruence relations have been developed which justify minimisation of com-
ponents without touching behavioural properties. Examples of such relations are strong
equivalence [22], (strong and weak) Markovian bisimilarity [16] and extended Marko-
vian bisimilarity [2]. Minimised components can be pluggedinto the original model in
order to circumvent the state space explosion problem. Thisstrategy, known ascompo-
sitional aggregationhas been applied successfully to handle, for instance, a telephony
system model [18]. Without compositional aggregation, thestate space turned out to
consist of more than 10 million states, while only 720 stateswere actually required
using compositional aggregation.

Applicability of compositional aggregation relies on the existence ofalgorithms
to compute minimised components. In this paper, we discuss efficient algorithms for
strong equivalence, and (strong and weak) Markovian bisimulation. The algorithms are
variants of well-known partition refinement algorithms [29, 11, 24]. They compute par-
titions of equivalent states of a given state space by iterative refinement of partitions,
until a fixed point is reached.

For the practical realisation of the algorithms we introduce BDD-based data struc-
tures. During the recent years, BDDs [6] have been shown to enable an efficient,sym-
bolic encoding of state spaces. In particular, the parallel composition operator can be
defined on BDDs in a way which avoids the usually observed exponential blow-up due
to interleaving of causally independent transitions [10].In this paper, we highlight how
parallel composition and compositional aggregation can both be performed symboli-
cally in a stochastic setting.

⋆ A preliminary version of this paper has been presented at thePAPM’98 workshop [20].

This paper is organised as follows: Sec. 2 contains the definition of the languages
and of the bisimulation relations which we consider. Sec. 3 presents the basic bisim-
ulation algorithm for non-stochastic process algebras. Sec. 4 and Sec. 5 do the same
for the purely Markovian case and for the case where both Markovian and immediate
transitions are allowed. In Sec. 6, we focus on BDDs and introduce a novel stochastic
extension, DNBDDs. Furthermore, we show how algorithms forparallel composition
and bisimulation can benefit from the use of these data structures. The paper concludes
with Sec. 7.

2 Basic definitions

This section introduces the scenario that will be considered in the sequel. We define
a language and its operational semantics. In addition, we recall the notions of strong
and weak Markovian bisimilarity. We refer to [16] for more details and motivating
examples.

Definition 1. LetAct be the set of valid action names andPro the set of process names.
We distinguish the actioni as an internal, invisible activity. Leta ∈ Act , P , Pi ∈ L,
A ⊆ Act \ {i}, and X ∈ Pro. The setL of expressions consists of the following
language elements:

stop inaction
a ; P action prefix (a, λ) ; P Markovian prefix
P1 [] P2 choice P1 |[A]| P2 parallel composition
hide a in P hiding X process instantiation

A set of process definitions (of the formX := P) constitutes a process environment.

The following operational semantic rules define a labelled transition system (LTS) con-

taining action transitions, a-----➤, and Markovian transitions,
a,λ

−−−−−➤. The semantic rule
for synchronisation of Markovian transitions is parametric in a functionφ determining
the rate of synchronisation, in response to the fact that different synchronisation poli-
cies (minimum, maximum, product, . . .) are possible. Note, however, that the apparent
rate construction of PEPA [22] requires a functionφ(P, Q, λ, µ) instead.

a; P
a

------➤ P

P
a

------➤ P
′

P [] Q
a

------➤ P
′

Q
a

------➤ Q
′

P [] Q
a

------➤ Q
′

P
a,λ

−−−−−➤ P
′

P [] Q
a,λ

−−−−−➤ P
′

Q
a,λ

−−−−−➤ Q
′

P [] Q
a,λ

−−−−−➤ Q
′

(a, λ); P
a,λ

−−−−−➤ P

P
a

------➤ P
′

P |[A]| Q
a

------➤ P
′ |[A]| Q

a 6∈ A
Q

a
------➤ Q

′

P |[A]| Q
a

------➤ P |[A]| Q
′

a 6∈ A
P

a
------➤ P

′
Q

a
------➤ Q

′

P |[A]| Q
a

------➤ P
′ |[A]| Q

′
a ∈ A

P
a,λ

−−−−−➤ P
′

P |[A]| Q
a,λ

−−−−−➤ P
′
|[A]| Q

a 6∈ A
Q

a,λ
−−−−−➤ Q

′

P |[A]| Q
a,λ

−−−−−➤ P |[A]| Q
′

a 6∈ A
P

a,λ
−−−−−➤ P

′
Q

a,µ
−−−−−➤ Q

′

P |[A]| Q
a,φ(λ,µ)

−−−−−−−−−−➤ P
′
|[A]| Q

′

a ∈ A

P
a

------➤ P
′

hide a in P
i

------➤ hide a in P
′

P
b

------➤ P
′

hide a in P
b

------➤ hide a in P
′

a 6= b
P

a
------➤ P

′

X
a

------➤ P
′

X := P

P
a,λ

−−−−−➤ P
′

hide a in P
i,λ

−−−−−➤ hide a in P
′

P
a,λ

−−−−−➤ P
′

hide b in P
a,λ

−−−−−➤ hide a in P
′

a 6= b
P

a,λ
−−−−−➤ P

′

X
a,λ

−−−−−➤ P
′

X := P

Strong and weak Markovian bisimilarity are defined in a variant of Larsen & Skou
style [27], using the functionγ : L×Act × 2L 7→ IR, often called thecumulative rate,
defined as follows (we use{| and|} to denote multiset brackets):

γ(P, a, C) :=
∑

λ∈E(P,a,C) λ, whereE(P, a, C) := {| λ | P
a,λ

−−−−−➤ P ′ ∧ P ′ ∈ C |}.

Definition 2. An equivalence relationB is a strong Markovian bisimulation, if
(P, Q) ∈ B implies that
(i) P a-----➤ P ′ impliesQ a-----➤ Q′, for someQ′ with (P ′, Q′) ∈ B ,
(ii) for all equivalence classesC of B and all actionsa it holds that

γ(P, a, C) = γ(Q, a, C).
Two expressionsP andQ are strong Markovian bisimilar (writtenP ∼ Q) if they are
contained in a strong Markovian bisimulation.

Weak bisimilarity is obtained from strong bisimilarity by basically replacing a-----➤
with a----------➤. Here, a----------➤ denotes an observablea transition that is preceded and fol-
lowed by an arbitrary number (including zero) of invisible activities, i.e. a----------➤ :=
i∗

-------➤ a-----➤ i∗

-------➤. If a is internal (a = i), a----------➤ abbreviates i∗

-------➤. As discussed in
[16], the extension from strong to weak Markovian bisimilarity has to take into account
the interplay of Markovian and immediate transitions. Priority of internal immediate
transitions gives rise to the following definition [15].

Definition 3. An equivalence relationB is a weak Markovian bisimulation, if(P, Q) ∈
B implies that
(i) P a----------➤ P ′ impliesQ a----------➤ Q′, for someQ′ with (P ′, Q′) ∈ B ,

(ii) if P i------------➤ P ′ 6 i------➤ then there existsQ′ such thatQ i------------➤ Q′ 6 i------➤, and
for all equivalence classesC of B and all actionsa

γ(P ′, a, C) = γ(Q′, a, C).
Two expressionsP andQ are weak Markovian bisimilar (writtenP ≈ Q) if they are
contained in a weak Markovian bisimulation.

In this definition,P 6 i------➤ denotes thatP does not possess an outgoing internal im-
mediate transition. We call such a state atangiblestate, as opposed tovanishingstates

which may internally and immediately evolve to another behaviour (denotedP i------➤).
It can be shown that strong Markovian bisimilarity is a congruence with respect to

the language operators, provided thatφ is distributive over summation of real values.
The same result holds for weak Markovian bisimilarity except for congruence with
respect to choice, see [15].

In the sequel, we consider two distinct sub-languages ofL. The first,L1, arises
by disallowing Markovian prefix. This sub-language gives rise to an ordinary, non-
stochastic process algebra, a subset of Basic LOTOS [3] where only action transitions
appear in the underlying LTS. On this language, strong and weak Markovian bisim-
ilarity coincide with Milner’s non-stochastic strong and weak bisimilarity [28]. The
complementary subset,L2, is obtained by disallowing the other prefix, action prefix.
The resulting language coincides with MTIPP à la [17] (ifφ is instantiated with multi-
plication), and both strong and weak Markovian bisimilarity coincide with Markovian
bisimilarity on MTIPP. Note that Markovian bisimilarity agrees with Hillston’s strong

arrive arrive arrive arrive

Queue0 Queue1 Queue2 Queue3
deq deq deq

deq deq deq

i i i

arrivearrivearrive

deq deq deq

deq

arrive

Fig. 1. LTS of the queueing system example, before and after applying weak bisimilarity

equivalence [22]. The semantics ofL2 only contains Markovian transitions, and we will
refer to such a transition system as a stochastic LTS (SLTS).The complete language,
where both prefixes coexist involves both types of transitions, and we shall call such a
transition system an extended SLTS (ESLTS).

3 Bisimulation minimisation in non-stochastic process algebras

In this section, we introduce the general idea of iterative partition refinement, working
with the languageL1. We aim to set the ground for an understanding of the following
sections. To illustrate the key ideas, we use as an example a queueing system, consisting
of an arrival process and a finite queue. First, we model an arrival process as an infinite
sequence of incoming arrivals (arrive), each followed by an enqueue action (enq).

Arrival := arrive; enq; Arrival

The behaviour of the queue is described by a family of processes, one for each value of
the current queue population.

Queue0 := enq; Queue1

Queuei := enq; Queuei+1 [] deq; Queuei−1 1 ≤ i < max

Queuemax := deq; Queuemax−1

These separate processes are combined by parallel composition in order to describe
the whole queueing system. Hiding is used to internalise actions as soon as they are
irrelevant for further synchronisation.

System := hide enq in
(

Arrival |[enq]| Queue0

)

Fig. 1 (top) shows the LTS associated with theSystem specified above for the case
that the maximum queue population ismax = 3. The LTS has 8 states, the initial state
being emphasised by a double circle. Fig 1 (bottom) shows an equivalent representation,
minimised with respect to weak bisimilarity. The original state space is reduced by
replacing every class of weakly bisimilar states by a singlestate.

Most algorithms for computing bisimilarity require afinite state space. Tradition-
ally, they follow an iterative refinement scheme [29, 11, 24]. This means that starting
from an initial partition of the state space which consists of a single class (containing
all states), classes are refined until the obtained partition corresponds to a bisimulation
equivalence. The result thus obtained is the largest existing bisimulation, in a sense the
“best” such bisimulation, since it has a minimal number of equivalence classes.

For the refinement of a partition, the notion of a “splitter” is very important. A
splitter is a pair(a, Cspl), consisting of an actiona and a classCspl. During refinement,
a classC is split with respect to a splitter, which means that subclassesC+ andC− are
computed, such that subclassC+ contains all those states fromC which can perform
ana-transition leading to classCspl, andC− contains all remaining states.

In the following, an algorithm for strong bisimulation is presented. The algorithm
uses a dynamic set of splitters, denotedSplitters. Note that here we only present a
basic version of the algorithm which can be optimised in manyways [11, 29]. By a
deliberate treatment of splitters, it is possible to obtaina time complexityO(m log n),
wheren is the number of states andm is the number of transitions.

1. Initialisation
Partition := {S}
/* the initial partition consists of only one class which containsall states */
Splitters := Act × Partition

/* all pairs of actions and classes have to be considered as splitters */
2. Main loop

while (Splitters 6= ∅)
choosesplitter(a, Cspl) ∈ Splitters

forall C ∈ Partition split(C,a, Cspl, Partition, Splitters)
/* all classes (includingCspl itself) are split */
Splitters := Splitters − (a, Cspl)
/* the processed splitter is removed from the splitter set */

It remains to specify the proceduresplit. Its task is to split a classC, using(a, Cspl) as
a splitter. If splitting actually takes place, the input classC is split into subclassesC+

andC−.

proceduresplit(C,a, Cspl, Partition, Splitters)

C+ := {P | P ∈ C ∧ ∃ Q : (P a-----➤ Q ∧ Q ∈ Cspl)}
/* the subclassC+ is computed */
if (C+ 6= C ∧ C+ 6= ∅)

/* only continue if classC actually needs to be split */
C− := C − C+

/* C− is the complement ofC+ with respect toC */
Partition := Partition ∪ {C+, C−} − {C}
Splitters := Splitters ∪ (Act × {C+, C−}) − Act × {C}
/* the partition and the splitter set are updated */

We illustrate the algorithm by means of the above queueing example. In fact, we shall
computeweak instead of strong bisimilarity. The only change that is necessarry for
this purpose concerns the transition relationa-----➤ used in proceduresplit, which is
replaced by the weak relationa----------➤. However, this requires the computation ofa----------➤
during the initialisation phase. As a matter of fact, the computation of a----------➤ dominates
the complexity of partition refinement, basically because the reflexive and transitive

closure i∗

-------➤ of internal moves has to be computed in order to build the weaktran-
sition relation. The usual way of computing a transitive closure has cubic complexity.
(Some slight improvements are known for this task, see for instance [9]. In any case,
this is the computationally expensive part.)

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

arrive

deq deq

deqdeq

arrive arrive arrive

deq

deq

i i i

split(

���
���
���

���
���
���

, deq,

���
���
���

���
���
���

)

split(, deq,) and

split(
���
���
���
���

���
���
���
���

, deq,)

arrive

deq deq

deqdeq

arrive arrive arrive

deq

deq

i i i

arrive

deq deq

deqdeq

arrive arrive arrive

deq

deq

i i i

Fig. 2. Initialisation, first and second refinement step of the algorithm

The LTS is depicted in Fig. 2 (top) where we have used a particular shading of
states in order to visualize the algorithm. In the beginningall states are assumed to be
equivalent, and hence, all states are shaded with the same pattern. We use

���
���
���

���
���
���

to refer
to the set of states shaded like

��
��
��
��. So,Partition := {

���
���
���

���
���
���

}, andSplitters is initialised
accordingly.

After computing the weak transition relation--------➤, we start partition refinement by
choosing a splitter, say(deq,

���
���
���

���
���
���

) and computingsplit(
���
���
���

���
���
���

, deq,
���
���
���

���
���
���

). The initial state
has no possibility to perform adeq----------------➤ transition in contrast to all other states. Therefore

���
���
���

���
���
���+

=
���
���
���
���

���
���
���
���

and
���
���
���

���
���
���−

= . As a consequence,Partition becomes{ ,
���
���
���
���

���
���
���
���

} and
new splitters are added toSplitters while the currently processed one,(deq,

���
���
���

���
���
���

), is
removed. This completes the first iteration and leads to the situation depicted in Fig. 2
(middle).

By choosing a different splitter, say(deq,), we start the next iteration.
Since Partition now contains two elements, we computesplit(, deq,) and
split(

���
���
���
���

���
���
���
���

, deq,). cannot be split any further, while splitting of
���
���
���
���

���
���
���
���

returns

���
���
���
���

���
���
���
���+

=
���
���
���

���
���
���

and
���
���
���
���

���
���
���
���−

=
�����
�����
�����

�����
�����
�����

. UpdatingPartition to { ,
���
���
���

���
���
���

,
�����
�����
�����

�����
�����
�����

} and adding new
splitters leads to the situation depicted in Fig. 2 (bottom). Subsequent iterations of the
algorithm will divide

�����
�����
�����

�����
�����
�����

further, leading to five partitions in total. The algorithm ter-
minates once the setSplitters is empty.

4 The Markovian case

In this section, we consider the MTIPP-style languageL2 whereall actions are asso-
ciated with a delay which is an exponentially distributed random variable. In addition,
MTIPP instantiatesφ with the product of rates, for reasons discussed (for instance) in
[16]. The semantic model of a process from the languageL2 is an SLTS, only contain-

ing transitions of the form
a,λ

−−−−−➤.

arrive, λ arrive, λ arrive, λ
enq, η enq, η enq, η

Queue0 Queue1 Queue2 Queue3

arrive, λ

deq, δ deq, δ

deq, δdeq, δ

deq, δ

deq, δ

Fig. 3. Semantic model of the Markovian queueing system, isomorphic to a CTMC

We return to our example of a queueing system. The arrival process is now modelled
as follows, employing the Markovian action prefix:

Arrival := (arrive, λ); (enq, 1); Arrival

Action arrive occurs with rateλ, whereas for actionenq we specified the (passive) rate
1, the neutral element of multiplication. The queue process determines the actual rate
of enq, occuring as a result of synchronisation viaenq.

Queue0 := (enq, η); Queue1

Queuei := (enq, η); Queuei+1 [] (deq, δ); Queuei−1 1 ≤ i < max

Queuemax := (deq, δ); Queuemax−1

Fig. 3 depicts the SLTS obtained from the parallel composition of processesArrival

andQueue0 synchronised over actionenq.
From a given SLTS one can immediately construct a continuoustime Markov chain

(CTMC [25]). The arcs of the CTMC are given by the union of all the transitions joining
the LTS nodes (regardless of their labels), and the transition rate is the sum of the
individual rates. This is justified by the properties of the exponential distribution, in
particular the fact that the minimum of two exponentially distributed random variables
with ratesλ1, λ2 is again exponentially distributed with rateλ1+λ2. Transitions leading
back to the same node (loops) can be neglected, since they would have no effect on the
balance equations of the CTMC. The CTMC carries only the (cumulated) rate labels.
Performance measures can then be derived by calculating thesteady-state or transient
state probabilities of the CTMC.

As already mentioned, both strong and weak Markovian bisimilarity coincide with
Markovian bisimilarity à la MTIPP on this language. The technical reason is that the
first clauses of Definition 2 and Definition 3 are irrelevant, while the respective second
clauses both boil down toγ(P, a, C) = γ(Q, a, C) for all actionsa and classesC. This
equivalence notion has a direct correspondence to the notion of lumpabilityon CTMCs
[25, 22]. As a consequence, the algorithm which we develop can be used to efficiently
computelumpable partitionsof an SPA description (as well as a CTMC in isolation).
The basic bisimulation algorithm is the same as in Sec. 3, only the proceduresplit needs
to be modified. Proceduresplit′ now uses a data structuresplit tree which is shown in
Fig. 4. It essentially sorts states according to theirγ-values. During refinement, when
a classC is split by means of a splitter(a, Cspl), possibly more than two subclasses
Cγ1 , Cγ2 , . . . , Cγk

will be generated. Input classC is split such that the cumulative rate
γ(P, a, Cspl) = γj is the same for all the statesP belonging to the same subclassCγj

,
a leaf of thesplit tree.

proceduresplit′(C, a,Cspl, Partition, Splitters)
forall P ∈ C

γ := γ(P, a,Cspl)
/* the cumulative rate from stateP to Cspl is computed */

. . .

split tree

γ1 γk

Cγ1 Cγk

Fig. 4. split tree used by proceduresplit′

insert(split tree, P, γ)
/* stateP is inserted into thesplit tree */

/* now, split tree containsk leavesCγ1 , . . . , Cγk
*/

if (k > 1)
/* only continue ifC has been split intok > 1 subclasses */
Partition := Partition ∪ {Cγ1 , Cγ2 , . . . , Cγk

} − {C}
Splitters := Splitters ∪ (Act × {Cγ1 , Cγ2 , . . . , Cγk

}) − Act × {C}
/* the partition and the splitter set are updated */

In theforall loop of proceduresplit′, the cumulative rateγ is computed for every state
P in classC, and stateP is inserted into thesplit tree such that states with the same
cumulative rate belong to the same leaf (procedureinsert). Thesplit tree hask leaves,
i.e.k different values ofγ have appeared. If splitting has taken place (i.e. ifk > 1), the
partition must be refined and the set of splitters has to be updated.

Theorem 1. The above algorithm computes Markovian bisimilarity on a given SLTS. It
can be implemented such that the time complexity is of orderO(m log n) and the space
complexity is of orderO(m + n), wheren is the number of states andm is the number
of transitions.

The detailed proof is given in [15]. As in [23], the crucial point to obtain the time com-
plexity of non-stochastic strong bisimilarity is that all but one of the largest subclasses
Cγi

are actually inserted into the setSplitters of potential splitters. (No assumptions
about the time complexity of arithmetic operations are required).

5 Markovian and immediate actions

In this section, we consider the complete languageL where both immediate and Marko-
vian actions coexist. Again, we return to our queueing system example. In the arrival
process, actionarrive has an exponential delay, whereas actionenq is immediate.

Arrival := (arrive, λ); enq; Arrival

The specification of the Queue is again modified with respect to Sec. 3, i.e. actionenq

is immediate and actiondeq has exponential delay.
Queue0 := enq; Queue1

Queuei := enq; Queuei+1 [] (deq, δ); Queuei−1 1 ≤ i < max

Queuemax := (deq, δ); Queuemax−1

The overall system is again given by the composition ofArrival andQueue0, where
enq is hidden after synchronisation. The semantic model of sucha specification from
the languageL is an ESLTS with two types of transitions: Markovian transitions−−−➤,

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

i ii
arrive, λ arrive, λ arrive, λ arrive, λ

Queue0 Queue1 Queue2 Queue3

deq, δ deq, δ deq, δ

deq, δ deq, δ deq, δ

arrive, λarrive, λ arrive, λ

deq, δ deq, δ deq, δ

deq, δ

arrive, λ

Fig. 5.ESLTS of the queueing system example, before and after applying weak Markovian bisim-
ilarity

and action transitions----➤. Fig. 5 (top) depicts the ESLTS for the example queueing
system. In the context of our complete languageL, the notion of weak Markovian
bisimilarity is central for associating a CTMC to a given specification. The reason is
that immediate transitions do not have a counterpart on the level of the CTMC. Weak
Markovian bisimilarity justifies to eliminateinternal immediate transitions such that a
SLTS, and hence an (action labelled) CTMC results from the quotient transition system
(the transition system obtained by representing each equivalence class by a single state).
The details of this strategy are described in [18, 15]. In order to illustrate how the rela-
tion can be used to achieve this, the equivalence classes of weak Markovian bisimilarity
are indicated in Fig. 5 (bottom). Note, however, that this effect relies on abstraction of
immediate actions before applying weak Markovian bisimilarity. Furthermore, a unique
CTMC exists only if nondeterminism is absent after applyingweak Markovian bisim-
ilarity. The absence of nondetermininsm is easy to check on the quotient transition
system.

Accordingly, an algorithm to compute weak Markovian bisimilarity is central for
deriving the quotient transition system, and hence the CTMC. (In principle, the CTMC
could also be derived from a specification by purely syntactic transformations, using
the complete axiomatisation from [19].) Our algorithm is based on the one given in the
previous section, but proceeds in a different way. The technical reason is that, similar
to the computation of branching bisimilarity [12], refininga partition by means of a
splitter might cause that the refinement with respect to already processed splitters has
to be repeated for this partition.1 This is a crucial difference with respect to the al-
gorithms we have described before, for which termination isonly guaranteed because
refinement with respect to an already processed splitter is never repeated for that split-
ter. For branching bisimilarity, the problem is tackled in [13], by introducing a distinct
treatment of vanishing states. Bouali has adopted this machinery to compute also weak
bisimilarity [4]. Indeed our algorithm is based on this adaption.

We useP ցi P ′ to indicate thatP may internally and immediately evolve to a tan-
gible stateP ′, i.e. where no further internal immediate transition is possible. Formally,

P ցi P ′ iff P i------------➤ P ′ for someP ′ with P ′ 6 i------➤. If there is at least one tangible

1 In terms of [13], stability is not inherited under refinement.

stateP ′ that can be reached fromP via a (possibly empty) sequence of internal imme-
diate transitions we use the predicateP ցi. Note thatP ցi wheneverP is tangible.
The converse situation, where a (vanishing) stateP has no possibility to internally and
immediately evolve to a tangible state, is denotedP 6ցi. We refer to such states asdi-
vergentstates, as opposed toconvergentstates (satisfyingP ցi). For the presentation
of the algorithm, we first restrict to transition systems that do not contain divergent
states. This is done to simplify the exposition, the generalcase is discussed afterwards.
Restricted to divergence-free ESLTS, the basic algorithm is as follows.

1. Initialisation as before in Sec. 3. In addition, weak transitions--------➤ are computed from----➤.
2. Main loop

while (Splitters 6= ∅)
choosesplitter(a, Cspl)
forall C ∈ Partition split(C,a, Cspl, Partition, Splitters)
/* all classes are split with respect to weak transitions */
forall C ∈ Partition split′′(C, a, Cspl, Partition, Splitters)
/* all classes are split with respect to Markovian transitions */
Splitters := Splitters − (a, Cspl)
/* the processed splitter is removed from the splitter set */

The main loop contains two different procedures,split and split′′ requiring further
explanation. The first,split(C, a, Cspl, Partition, Splitters), refines with respect to
clause(i) of Definition 3. This is achieved using the proceduresplit of Section 3,
but applied on weak transitions, as in the example of Sec. 3. The second procedure,
split′′(C, a, Cspl, Partition, Splitters), is more complicated. It refines with respect
to the second clause of Definition 3. The details are given below.

proceduresplit′′(C, a, Cspl, Partition, Splitters)

forall P ∈ C ∧ P 6 i------➤
/* P is a tangible state */
γ := γ(P, a,Cspl)
/* the cumulative rate toCspl is computed */
insert(split tree, P, γ)
/* stateP is inserted into thesplit tree */

/* now, split tree containsk leavesCγ1 , . . . , Cγk
*/

forall P ∈ C ∧ P
i------➤

/* P is a vanishing state */

if (∃ γj : P ցi Q ⇒ Q ∈ Cγj)
/* P can internally and immediately reach tangible states of classCγj only */
insert(split tree, P, γj)

Partition := Partition ∪ {Cγ1 , Cγ2 , . . . , Cγk
} − {C}

Splitters := Splitters ∪ (Act × {Cγ1 , Cγ2 , . . . , Cγk
}) − Act × {C}

/* the partition and the splitter set are updated */
if (C 6=

⋃k

1
Cγj)

/* some vanishing states have not been covered yet */
Partition := Partition ∪ {C −

⋃k

1
Cγj}

Splitters := Splitters ∪ (Act × {C −
⋃k

1
Cγj })

/* all remaining vanishing states form a new class, since they can internally
and immediately evolve to tangible states belonging to different classes */

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

a, 2λ

a, 2λ

a, 2λ

i

i

i

split(

���
���
���

���
���
���

, a,

���
���
���

���
���
���

)

split′′(, a,

���
���
���

���
���
���

) and

split′′(
���
���
���
���

���
���
���
���

, a,

���
���
���

���
���
���

)

i i

a, λ a, λ

i

a, λ

a a, 3λ

i i

a, λ a, λ

i

a, λ

a a, 3λ

i i

a, λ a, λ

i

a, λ

a a, 3λa

a

a

i

i

i

Fig. 6. Initialisation and first refinement step of the algorithm

The reader is invited to check the result depicted in Fig. 5 bymeans of this algorithm.
In order to facilitate the inspection, tangible states are highlighted by bold circles in
the figure. In order to illustrate the algorithm on a nontrivial example, where all the
distinctions between different types of vanishing states matter, we consider a different
example, depicted in Fig. 6 (top).

The initialisation proceeds as usual, after computing the weak transition rela-
tion --------➤, we start the algorithm by choosing a splitter, say(a,

���
���
���

���
���
���

) and computing
split(

���
���
���

���
���
���

, a,
���
���
���

���
���
���

). Two states may perform aa----------➤ transition in contrast to all other
states. Therefore

���
���
���

���
���
���+

=
���
���
���
���

���
���
���
���

and
���
���
���

���
���
���−

= . Partition andSplitters are updated
accordingly, leading to the situation depicted in Fig. 6 (middle).

The subsequent invocation ofsplit′′(, a,
���
���
���

���
���
���

) is most interesting (as opposed
to split′′(

���
���
���
���

���
���
���
���

, a,
���
���
���

���
���
���

)). First, the three tangible markings (indicated by bold circles) in
class are inserted intosplit tree, according to their cumulative rates of moving into
(former) class

���
���
���

���
���
���

. This leads to a tree with two leaves,C2λ andCλ, containing two, re-
spectively one state. Now the three remaining vanishing states are treated: The righmost
vanishing states can internally and immediately evolve only to tangible states of class

Cλ (note that according to Definition 3 the transition
a,3λ

−−−−−−➤ is irrelevant since it orig-
inates in a vanishing state). For the same reason, the left vanishing state is inserted into
classC2λ. Only the initial state is not covered yet, since it has an internal, nondetermin-
istic choice of behaving as a member of either of the classes.Hence, this state forms a
new class,

���
���
���
���

���
���
���
���

. In total,split′′(, a,
���
���
���

���
���
���

) has split into
���
���
���

���
���
���

,
�����
�����
�����

�����
�����
�����

(representingC2λ

andCλ), and
���
���
���
���

���
���
���
���

, leading to the situation depicted in Fig. 6 (bottom)(thePartition

andSplitters are updated accordingly). This situation incidentally coincides with the
classes of weak Markovian bisimilarity, because subsequent refinement steps do not re-
veal any distinction in one of these four classes. The algorithm terminates once the set
Splitters is emptied.

To overcome the restriction to divergence-free ESLTS, a fewmodifications in the
initialisation and the main loop of the algorithm are necessary. Algorithmically, the
second clause of Definition 3 needs not to be checked at all fordivergent states, while
the first clause is still relevant. Furthermore, the second clause of Definition 3 implies
that no convergent state is weakly Markovian bisimilar to a divergent state. These facts
justify to (1) separate convergent and divergent states during inititalisation, and to (2)
exclude the refinement of classes of divergent states by means of proceduresplit′′ in
the main loop of the algorithm. Recall thatsplit′′ implements refinement with respect
to the second clause of Definition 3. So, for the general case,the algorithm becomes as
follows, wheresplit andsplit′′ are as before:

1. Initialisation
Weak transitions--------➤ are computed from----➤.

Con := {{P ∈ S | P ցi}}

Div := {{P ∈ S | P 6ցi}}
/* the initial partition consists of two disjoint classes */
Splitters := Act × (Con ∪ Div)
/* all pairs of actions and classes have to be considered as splitters */

2. Main loop
while(Splitters 6= ∅)

choose splitter(a, Cspl)
forall C ∈ Con split(C,a, Cspl, Con, Splitters)
/* all classes of convergent states are split with respect toweak transitions */
forall C ∈ Div split(C,a, Cspl, Div, Splitters)
/* all classes of divergent states are split with respect to weak transitions */
forall C ∈ Con split′′(C, a, Cspl, Con, Splitters)
/* only the classes of convergent states are split with respect to Markovian transitions */
Splitters := Splitters − (a, Cspl)
/* the processed splitter is removed from the splitter set */

An implementation of this algorithm, based on [23, 13, 4, 1] has a cubic time complex-
ity.

Theorem 2. The above algorithm computes weak Markovian bisimilarity on a given
ESLTS. It can be implemented such that it requiresO(n3) time andO(n2) space, where
n is the number of states.

The proof is given in [15], for the divergence-free as well asthe general case. It is worth
pointing out that non-stochastic weak bisimulation essentially has the same complexity,
due to the fact that a transitive closure operation is neededto compute weak transitions
in either case.

6 Symbolic representation with BDDs

In this section, we discuss details of a BDD-based implementation of the above al-
gorithms. BDDs are specific representations of Boolean functions and have recently
gained remarkable attention as efficient encodings of very large state spaces. In a pro-
cess algebraic context, this efficiency is mainly due to the fact that the parallel composi-
tion operator can be implemented on BDDs in such a way that thesize of the data struc-
ture only grows linearly in the number of parallel components, especially for loosely

coupled components. This compares favourably to the exponential growth caused by
the usual operational semantics, due to the interleaving ofcausally independent transi-
tions. We explain how LTSs can be encoded as BDDs and illustrate a way to include the
rate information of (E)SLTS into this data structure and thebisimulation algorithms. To
complete the picture, we also discuss parallel compositionon BDDs.

6.1 Binary Decision Diagrams and the encoding of LTSs

A Binary Decision Diagram (BDD) [6] is a symbolic representation of a Boolean func-
tion f : {0, 1}n → {0, 1}. Its graphical interpretation is a rooted directed acyclicgraph,
essentially a collapsed binary decision tree in which isomorphic subtrees are merged
and “don’t care” nodes are skipped (a node is called “don’t care” if the truth value of
the corresponding variable is irrelevant for the truth value of the overall function). It
is known that BDDs provide a canonical representation for Boolean functions, assum-
ing a fixed ordering of the Boolean variables. Algorithms forBDD construction from a
Boolean expression and for performing Boolean operations (and, or, not, . . .) on BDD
arguments all follow a recursive scheme.

A LTS can be represented symbolically by a BDD. The idea is to encode states and
actions by Boolean vectors (for the moment, we look at the non-stochastic case where
it is not necessary to consider information about transition rates). One transition of the
LTS then corresponds to a conjunction ofna + 2ns literals (a literal is either a Boolean
variable or the negation of a Boolean variable)

∧na

i=1 ai

∧ns

j=1 sj

∧ns

j=1 tj, where literals
a1 . . . ana

encode the action,s1 . . . sns
identify the source state andt1 . . . tns

the target
state of the transition (we assume that the number of distinct actions to be encoded is
between2na−1 and2na + 1, so thatna bits are suitable to encode them, and similarly
for the number of states). The overall LTS corresponds to thedisjunction of the terms
for the individual transitions. The size of a BDD is highly dependent on the chosen
variable ordering. In the context of transition systems, experience has shown that the
following variable ordering yields small BDD sizes [10]:

a1 < . . . < ana
< s1 < t1 < s2 < t2 < . . . < sns

< tns

i.e. the variables encoding the action come first, followed by the variables for source
and target state interleaved. In particular, this orderingis advantageous in view of the
parallel composition operator discussed below.

To illustrate the encoding, Fig. 7 shows the LTS corresponding to theQueue0 pro-
cess from Sec. 3 (assuming, again, thatmax = 3), the way transitions are encoded
and the resulting BDD (in the graphical representation of a BDD, one-edges are drawn
solid, zero-edges dashed, and for reasons of simplicity, the terminal false-node and its
adjacent edges are omitted). Since there are only two different actions (enq anddeq),
one bit would be enough to encode the action. However, in viewof actionarrive which
will be needed for processArrival, we use two bits to encode the action, i.e.na = 2.
The LTS has four states, therefore two bits are needed to represent the state, i.e.ns = 2.
In the BDD, one can observe the interleaving of the Boolean variables for the source
and target state.

The parallel composition operator can be realised directlyon the BDD representa-
tion of the two operand processes. Consider the parallel composition of two processes,
P = P1 |[A]| P2, and assume that the BDDs which correspond to processesP1 andP2

0 31 2

1

a1, a2, s1, t1, s2, t2

0
enq

----------➤ 1 → (0, 1, 0, 0, 0, 1)

1
enq

----------➤ 2 → (0, 1, 0, 1, 1, 0)

2
enq

----------➤ 3 → (0, 1, 1, 1, 0, 1)

1
deq

---------➤ 0 → (1, 0, 0, 0, 1, 0)

2
deq

---------➤ 1 → (1, 0, 1, 0, 0, 1)

3
deq

---------➤ 2 → (1, 0, 1, 1, 1, 0)

enq enq enq

deq deq deq

a1

a2

s1

t1

s2

t2

Fig. 7. LTS, transition encoding and corresponding BDD forQueue0

have already been generated and are denotedP1 andP2. The setA can also be coded
as a BDD, namelyA. The BDDP which corresponds to the resulting processP can
then be written as a Boolean expression:

P = (P1 ∧A) ∧ (P2 ∧ A)

∨ (P1 ∧A ∧ StabP2)
∨ (P2 ∧A ∧ StabP1)

The term on the first line is for the synchronising actions in which bothP1 andP2 par-
ticipate. The term on the second (third) line is for those actions whichP1 (P2) performs
independently ofP2 (P1) — these actions are all from the complement ofA. The mean-
ing of StabP2 (StabP1) is a BDD which expresses stability of the non-moving partner
of the parallel composition, i.e. the fact that the source state of processP2 (P1) equals
its target state.

We illustrate parallel composition by means of our queueingexample. Fig. 8 shows
the intermediate and final BDDs when performing BDD-based parallel composition of
processesArrival andQueue0. In the second (third) BDD one can observe the parts
which express stability of processQueue0 (Arrival). Even in this small example we
observe the general tendency that the size of the resulting BDD (25 nodes, including the
terminal false-node not shown) is in the order of the sum of the sizes of the two partner
BDDs (15 nodes forQueue0 and 8 nodes forArrival, cf. Fig. 7 and Fig. 9). Thus,
using BDD-based parallel composition, the typically observed exponential growth of
memory requirements can be avoided.

The BDD resulting from the parallel composition,P , describes all transitions which
are possible in the product space of the two partner processes. Given a pair of initial
states forP1 andP2, only part of the product space may be reachable due to synchroni-
sation constraints. Reachability analysis can be performed on the BDD representation,
restrictingP to those transitions which originate in reachable states.

6.2 Symbolic bisimulation

The basic bisimulation algorithm of Sec. 3 and its various optimisations can be realised
efficiently using BDD-based data structures. For convenience, the transition system is
represented not by a single BDD, but by a set of BDDsTa(s, t), one for each actiona

synchronising, overall result,
disjunction of previous three

1

actionenq

1

actionarrive
Arrival moves,

1

actiondeq
Queue0 moves,

1

a1

a2

s′

t′

s1

t1

s2

t2

Fig. 8. Intermediate and final BDD results for parallel compositionof Arrival andQueue0

(here,s andt denote vectors of Boolean variables of lengthns). The current partition
is stored as a set of BDDs{C1(s), C2(s), . . .}, one for each class. When classC is
split into subclassesC+ andC− during execution of proceduresplit, those subclasses
are also represented by BDDs. The dynamic set of splitters,Splitters, is realised as a
pointer structure. The computation of the subclassC+ in proceduresplit is formulated
as a Boolean expression on BDD arguments

C+(s) := C(s) ∧ ∃ t : (Ta(s, t) ∧ Cspl(t))
where the existential quantification is also performed on BDDs.

6.3 BDDs with rate information

Clearly, pure BDDs are not capable of representing the numerical information about
the transition rates of astochasticLTS. In the literature, several modifications and aug-
mentations of the BDD data structure have been proposed for representing functions
of the typef : {0, 1}n → IR. Most prominent among these are multi-terminal BDDs
[8], edge-valued BDDs [26] and Binary Moment Diagrams (BMD)[7]. In all of these
approaches, the basic BDD structure is modified and the efficiency of the data structure,
due to the sharing of isomorphic subtrees, may be diminished. Based on this observa-
tion, we developed a different approach which we call decision-node BDD (DNBDD)
[30]. The distinguishing feature of DNBDDs is that the basicBDD structure remains
completely untouched when moving from an LTS encoding to an SLTS encoding. The
additional rate information is attached to specific edges ofthis BDD in an orthogonal
fashion.

In a BDD representing a LTS, apath p from the root to the terminal true-node
corresponds to2k transitions of the transition system, wherek is the number of “don’t
care” variables on that path (for an example of a “don’t care”see Fig. 10 below). Since
these transitions are labelled by2k distinct rates, we need to assign a rate list of length

1

Arrival

(1)

a1

a2

Queue0

1

a1

a2

1

(δ)(δ)

(λ)(λ)

X
X

a2

a1

s′

t′

s1

t1

s2

t2

s′

t′

s1

t1

s2

t2

Arrival |[enq]| Queue0

(δ)

(δ)

(η)
(η)

(φ(1, η))

(λ)(λ)

(λ)

(δ)(η)

Fig. 9.DNBDDs for the queueing example (shorthand notation:X = (φ(1, η))(δ)(δ))

2k to that path. Letrates(p) denote a list of real values(λ0, . . . , λ2k−1), wherek is
the number of “don’t cares” on pathp. The correspondence between transitions and
individual rates of such a list is implicitly given by the valuation of the encoding of the
transitions on “don’t care” nodes, which ranges from0 to 2k − 1.

For the practical realisation of this concept, and in order to make our representation
canonical, we must answer the question of where to store the rate lists. This leads to the
following consideration: Instead of characterising a pathby all its nodes, we observe
that a path is fully characterised by itsdecision nodes.

Definition 4. A decision nodeis a non-terminal BDD node whose successor nodes are
both different from the terminal false-node. Adecision node BDD (DNBDD)is a BDD
enhanced by a function

rates : Paths → (IR)+

wherePaths is the set of paths from the root node to the terminal true-node (and(IR)+

is the set of finite lists of real values), such that for any such pathp,
rates(p) ∈ (IR)2

k

if k is the number of “don’t cares” on pathp. The listrates(p) = (λ0, . . . , λ2k−1) is
attached to the outgoing edge of the last decision node on path p, i.e. the decision node
nearest to the terminal true-node.

To illustrate the DNBDD concept, we return to our queueing example. Fig. 9 shows the
DNBDDs associated with processesArrival, Queue0 andArrival |[enq]| Queue0 (in
the figure, decision nodes are drawn black). On the left, ratesλ and1 are attached to the
outgoing edges of the (single) decision node of the BDD. In the middle, six individual
rates are attached to the appropriate edges. On the right hand side, up to three rate
lists, each consisting of a single rate, are attached to BDD edges. For instance, the rate
lists (δ)(δ) specify the rates of the two transitions encoded as bitstrings10110010 and
10000010 whose paths share the last decision node.

t

s

a1

1

(a1, a2, s, t) → rate

(0, 1, 0, 1) → λ0
(0, 1, 1, 1) → λ1
(0, 0, 0, 1) → α

(0, 0, 1, 0) → β

(1, 0, 0, 1) → γ

(1, 0, 1, 0) → δ

a2

(λ0, λ1)

(α)(γ)
(β)(δ)

Fig. 10.Encoded transitions with rates, and corresponding DNBDD with rate tree

In the case where several rate lists are attached to the same BDD edge (because
several paths share their last decision node) it is important to preserve the one-to-one
mapping between paths and rate lists. This could simply be accomplished by the lex-
icographical ordering of paths. For algorithmic reasons, however, we use a so-called
rate tree, an unbalanced binary tree which makes it possibleto access rate lists during
recursive descent through the BDD [30]. In our current implementation of DNBDDs,
the rate tree is implemented as illustrated in Fig. 10. This figure (left) shows the en-
coding of the transitions of some SLTS, each of the transition being associated with a
rate. The first two transitions share the same path, a path which has a “don’t care” in
the Boolean variables. Therefore, the corresponding rate list(λ0, λ1) has length two.
The other four paths do not have any “don’t care” variables, they each correspond to
exactly one transition of the SLTS and the corresponding rate lists have length one. The
latter four paths all share their last decision node. Therefore each of the outgoing edges
of that decision node carries two rate lists (of length one).The rate tree is built as a
separate data structure from the BDD. However, its internalnodes and the rate lists are
associated with the decision nodes of the BDD as indicated inFig. 10 (right). The rate
tree is manipulated by an appropriate extension of the procedures which manipulate the
BDD. This implementation of the rate tree has the drawback that it requires the explicit
storage of one rate for each encoded transition which may cause considerable overhead.
We are currently investigating this issue.2

Parallel composition of two SLTSs based on their symbolic representation follows
the same basic algorithm as sketched in Sec. 6.1. Similar to the fact that the operational
rules in Sec. 2 are parametric in the synchronisation policy, the concept of DNBDDs
is not bound to a particular choice of functionφ, any arithmetic expression of the two
individual rates can be employed.

6.4 Symbolic Markovian bisimulation

We now discuss aspects of a DNBDD-based algorithm which computes Markovian
bisimulation on SLTSs. The basic bisimulation algorithm isthe same as in Sec. 4, only
the proceduresplit′ needs to be adapted. When using DNBDDs, the cumulative rate

2 In order to avoid such redundancies, an efficient data structure to represent rate trees might
itself be based on BDDs.

of actiona from stateP to classCspl is computed in the following way: We compute
T

P
a
→Cspl

(s, t), the DNBDD which represents alla-transitions from stateP to states

from classCspl. It can be obtained by restrictingTa(s, t) to the single source stateP
and to target states from classCspl (again, the transition relation is represented by indi-
vidual DNBDDsTa(s, t), one for every actiona, and classC is represented by a BDD
C(t)):

T
P

a
→Cspl

(s, t) := Ta(s, t) ∧ (s=̈P) ∧ Cspl(t)

We use the notations=̈P to denote that stateP is encoded as Boolean vector
s. The cumulative rateγ(P, a, Cspl) is then computed by applying the function
sum of all rates to T

P
a
→Cspl

(s, t). This function simply sums up all the entries of

all rate lists of a DNBDD. For example, application of the functionsum of all rates

to the DNBDD in Fig. 10 yieldsλ0 +λ1 +α+β+γ +δ. Furthermore, in thesplit tree

used by proceduresplit′ (Fig. 4) the subclassesCγ1 , . . . , Cγk
are now also represented

by BDDs.

proceduresplit′(C, a,Cspl, Partition, Splitters)
forall P ∈ C

T
P

a
→Cspl

(s, t) := Ta(s, t) ∧ (s=̈P) ∧ Cspl(t)

γ := sum of all rates(T
P

a
→Cspl

(s, t))

/* the cumulative rate from stateP to Cspl is computed */
insert(split tree, P, γ)
/* stateP is inserted into thesplit tree */

/* now, split tree containsk leavesCγ1 , . . . ,Cγk
*/

if (k > 1)
. . .
/* the remaining part of proceduresplit′ is as in Sec. 4, */
/* but Partition andSplitters are represented as BDDs */

6.5 BDDs with and without rate information

The semantics of the complete languageL comprises both types of transitions, ac-

tion transitions a-----➤ and Markovian transitions
a,λ

−−−−−➤, in one transition system, an
ESLTS. Using the knowledge developed in the previous sections, an ESLTS can be
encoded by means of two separate data structures, using BDDsto encode action transi-
tions and DNBDDs to encode Markovian transitions. Also, during parallel composition,
the component BDDs are treated separately from the component DNBDDs. Therefore
the treatment of ESLTS does not pose specific problems. Furthermore, the computation
of weak Markovian bisimilarity (Sec. 5) can be lifted to thiscombination of BDD and
DNBDD. The computation of the weak transition relation--------➤ from ----➤ during the
initialisation step can easily be performed on the BDD for the action transitions. Only
the first part of functionsplit′′ requires the DNBDD information, in order to sort tan-
gible markings in asplit tree (the tangibility predicate is encoded as a BDD as well),
in analogy to the implementation of functionsplit′ given in Sec. 6.4. The subsequent
steps work completely on BDDs.

7 Conclusion

In this paper, we have discussed efficient algorithms to compute bisimulation style
equivalences for Stochastic Process Algebras. In addition, we have presented details
of a BDD-based implementation of these algorithms, introducing DNBDDs to repre-
sent the additional rate information which is relevant for the analysis of the underlying
Markov chain.

The complexity results established in this paper allow the following simple conclu-
sion: the computational complexity of computing bisimulation equivalencesdoes not
increase when moving from a non-stochastic to a stochastic setting. For Markovian
bisimilarity this fact is also mentioned (in similar settings) in [23] and in [2].

The usefulness of BDDs to encode transition systems has beenstressed by many
authors. However, we would like to point out that the myth, saying that BDDs always
provide a more compact encoding than the ordinary representation (as a list or a sparse
matrix data structure), does not hold in general. A naı̈ve encoding of transition sys-
tems as BDDs does not save space. Heuristics for encodings are needed, exploiting the
structure of the specification. The implementation of parallel composition on BDDs is
indeed such a heuristics, and a very successful one, since anexponential blow-up can
be turned into a linear growth.

Apart from encoding transition systems as (DN)BDDs and parallel composition on
(DN)BDDs, we have described how bisimulation algorithms can be implemented on
these data structures. As a consequence, all the ingredients are at hand for carrying out
compositional aggregation of SPA specifications in a completely BDD-based frame-
work. In this way, the state space explosion problem can be alleviated. We are currently
implementing all these ingredients in a prototypical tool written in C, based on our own
DNBDD package [5]. However, in order to obtain performance results, the (minimised)
BDD representation still has to be converted back to the ordinary representation, since
we do not yet have a Markov chain analyser which works directly on DNBDDs. Numer-
ical analysis based on DNBDDs is one of our topics for future work. For this purpose,
it seems beneficial to investigate the actual relation between DNBDDs and MTBDDs,
since MTBDD-based numerical analysis methods have alreadybeen developed [14,
21].

Acknowledgments The authors acknowledge insightful comments of the reviewers
that helped to improve the quality of paper. The second author is supported by the
DAAD-Project AZ 313-ARC-XII-98/38 on stochastic modelling and verification.

References

1. C. Baier and H. Hermanns. Weak Bisimulation for Fully Probabilistic Processes. InProc.
CAV ’97, Springer LNCS 1254:119–130, 1997.

2. M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory ofConcurrent Processes with
Nondeterminism, Priorities, Probabilities and Time.Theoretical Computer Science202:1-
54, 1998.

3. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS.
Computer Networks and ISDN Systems14:25-59, 1987.

4. A. Bouali. Weak and branching bisimulation in FCTOOL. Rapports de Recherche 1575,
INRIA Sophia Antipolis, Valbonne Cedex, France, 1992.

5. H. Bruchner. Symbolische Manipulation von stochastischen Transitionssystemen. Internal
study, Universität Erlangen–Nürnberg, IMMD VII, 1998. in German.

6. R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE Transac-
tion on Computers, C-35(8):677–691, August 1986.

7. R.E. Bryant and Y. Chen. Verification of Arithmetic Functions with Binary Moment Dia-
grams. InProc. 32nd Design Automation Conference, 535-541, ACM/IEEE, 1995.

8. E.M. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-terminal
Binary Decision Diagrams: An efficient data structure for matrix representation. InProc.
International Workshop on Logic Synthesis, Tahoe City, May 1993.

9. D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions. In
Proc. 19th ACM Symposium on Theory of Computing, 1987.

10. R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for symbolic model checking in
CCS.Distributed Computing, 6:155–164, 1993.

11. J.C. Fernandez. An Implementation of an Efficient Algorithm for Bisimulation Equivalence.
Science of Computer Programming, 13:219–236, 1989.

12. R. J. van Glabbeek and W. Weijland:. Branching Time and Abstraction in Bisimulation
Semantics.Journal of the ACM, 43(3):555–600, 1996.

13. J.F.Groote and F.W.Vaandrager. An efficient algorithm for branching bisimulation and stut-
tering equivalence. InProc. ICALP’90, Springer LNCS 443:626-638, 1990.

14. G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian Analysis of Large Finite State
Machines.IEEE Transactions on CAD, 15(12):1479–1493, 1996.

15. H. Hermanns.Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürnberg, 1998.
16. H. Hermanns, U. Herzog, and V. Mertsiotakis. StochasticProcess Algebras - Between LO-

TOS and Markov Chains.Computer Networks and ISDN Systems, 30(9-10):901–924, 1998.
17. H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for MTIPP.

In Proc. 2nd PAPM Workshop. University of Erlangen-Nürnberg, IMMD 27(4):71-87, 1994.
18. H. Hermanns and J.P. Katoen. Automated Compositional Markov Chain Generation for a

Plain Old Telephony System. to appear inScience of Computer Programming, 1998.
19. H. Hermanns and M. Lohrey. Priority and maximal progressare completely axiomatisable.

In Proc. CONCUR’98, Springer LNCS 1466:237-252, 1998.
20. H. Hermanns and M. Siegle. Computing Bisimulations for Stochastic Process Algebras using

Symbolic Techniques. InProc. 6th Int. PAPM Workshop, 103-118, Nice, 1998.
21. H. Hermanns, J. Meyer-Kayser and M. Siegle. Multi Terminal Binary Decision Diagrams to

Represent and Analyse Continuous Time Markov Chains. submitted for publication, 1999.
22. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University

Press, 1996.
23. T. Huynh and L. Tian. On some Equivalence Relations for Probabilistic Processes.Funda-

menta Informaticae, 17:211–234, 1992.
24. P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes, and Three Problems

of Equivalence.Information and Computation, 86:43–68, 1990.
25. J.G. Kemeny and J.L. Snell.Finite Markov Chains. Springer, 1976.
26. Y.-T. Lai and S. Sastry. Edge-Valued Binary Decision Diagrams for Multi-Level Hierarchical

Verification. In29th Design Automation Conference,608-613, ACM/IEEE, 1992.
27. K. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information and Com-

putation, 94(1):1-28, 1991.
28. R. Milner.Communication and Concurrency. Prentice Hall, London, 1989.
29. R. Paige and R. Tarjan. Three Partition Refinement Algorithms.SIAM Journal of Computing,

16(6):973–989, 1987.
30. M. Siegle. Technique and tool for symbolic representation and manipulation of stochastic

transition systems. TR IMMD 7 2/98, Universität Erlangen-Nürnberg, March 1998.

