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Abstract. We review high-level speci�cation formalisms for Markovian

performability models, thereby emphasising the role of structuring con-

cepts as realised par excellence by stochastic process algebras. Symbolic

representations based on decision diagrams are presented, and it is shown

that they quite ideally support compositional model construction and

analysis.

1 Introduction

Stochastic models have a long tradition in the areas of performance and depend-

ability evaluation. Since their speci�cation at the level of the Markov chain is

tedious and error-prone, several high-level model speci�cation formalisms have

been developed, such as queueing networks, stochastic Petri nets and networks

of stochastic automata, which allow humans to describe the intended behaviour

at a convenient level of abstraction. Although under Markovian assumptions

the analysis of the underlying stochastic process does not pose any conceptual

problems, the size of the underlying state space often renders models intractable

in practice. Structuring concepts have shown to be of great value in order to

alleviate this well-known state space explosion problem.

A process algebra is a mathematically founded speci�cation formalism which

provides compositional features, such as parallel composition of components,

abstraction from internal actions, and the replacing of components by be-

haviourally equivalent ones. Therefore, stochastic extensions of process algebras

are among the methods of choice for constructing complex, hierarchically struc-

tured stochastic models.

Recently, decision diagrams, which were originally developed as memory-

e�cient representations of Boolean functions in the area of hardware veri�ca-

tion, have been extended in order to capture the numerical information which

is contained in stochastic models. They have already been successfully used as

the underlying data structure in prototype tools for performance analysis and

veri�cation of probabilistic systems. In this paper, it is shown that symbolic rep-

resentations based on decision diagrams are particularly attractive if applied in

a compositional context, as provided, for example, by a process algebraic spec-

i�cation formalism. In many cases, decision diagrams allow extremely compact

representations of huge state spaces, and it has been demonstrated that all steps

of model construction, manipulation and analysis (be it model checking, numer-

ical analysis, or a combination of the two) can be carried out on the decision



diagram based representations. Thus, we argue that decision diagrams �t in well

with structured modelling formalisms and open new ways towards increasing the

range of manageable performance evaluation and veri�cation problems.

This paper does not intend to present new research results, but to survey the

history of structured model representations, with special emphasis on process

algebras and symbolic encodings. We provide many pointers to further reading,

without attempting to be exhaustive.

The paper is organised as follows: In Sec. 2, we survey the evolution from

monolithic to modular model speci�cation formalisms. Sec. 3 reviews the concept

of stochastic process algebras. Sec. 4 introduces the symbolic representation of

Markovian models with the help of multi-terminal binary decision diagrams and

describes compositional model construction, manipulation and analysis on the

basis of this data structure. The paper concludes with Sec. 5.

2 From unstructured to structured models

2.1 Monolithic model representations

Continuous Time Markov Chains (CTMC) are the basic formalism for specifying

performance and dependability models

1

. A CTMC consists of a (�nite, for our

purpose) set of states and a �nite set of transitions between states. The transi-

tions are labelled by positive reals, called the transition rates, which determine

transition probabilities and state sojourn times (the latter being exponentially

distributed). Time-dependent state probabilities can be derived by solving a

system of ordinary di�erential equations, and steady-state probabilities are cal-

culated by solving a linear system of equations (see, for instance [99]). In order

to save memory space, CTMCs are commonly represented as sparse matrices,

where essentially only the non-zero entries are stored.

The direct speci�cation of a CTMC at the level of individual states and state-

to-state transitions is tedious and error-prone, and therefore only feasible for

very small models. This motivated researchers to develop high-level speci�cation

formalisms for de�ning Markovian models at a level of abstraction which is more

convenient for the human modeller. The most popular of these formalisms are

queueing networks and stochastic Petri nets.

Queueing networks (QN), developed mainly in the 1960ies and 1970ies for

modelling time-sharing and polling systems, describe customers moving between

stations where they receive service after possibly waiting for a service unit to

become available. The aim of analysis is typically the mean or distribution of

the number of customers at a station, the customer throughput at a station, or

the waiting time. The success of queueing networks stems mainly from the fact

that for the class of product form networks [5] very e�cient analysis algorithms,

such as Buzen's algorithm [24] or mean-value analysis [86], are known, and that

software tools for the speci�cation and analysis of QN models were available at
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In this paper, we do not consider the line of research on non-Markovian models such

as described, for example, in [47].



an early stage [89, 100]. Although QN have been extended in various directions,

e.g. in order to model the forking and synchronisation of jobs (fork-join QNs,

[3, 68, 80]), the formalism of QNs is not suitable for the modelling of arbitrary

systems, but specialised to the application area of shared resource systems.

Stochastic Petri nets (SPN) were developed in the 1980ies for modelling

complex synchronisation schemes which cannot easily be expressed by queueing

models [79]. The modelling primitives of Petri nets (places, transitions, mark-

ings) are very basic and do not carry any application-speci�c semantics. For that

reason, Petri nets are universally applicable and very 
exible, which is re
ected

by the fact that they have been successfully applied to many di�erent areas

of application. In the class of generalised SPNs (GSPN) [1, 2], transitions are

either timed or immediate. Timed transitions are associated with an exponen-

tially distributed �ring time, while immediate transitions �re as soon as they

are enabled. During the analysis of a GSPN, the reachability graph is generated

and the so-called vanishing markings, which are due to the �ring of immediate

transitions, are eliminated. The result is a CTMC whose analysis yields (steady-

state or transient) state probabilities, i.e. the probabilities of the individual net

markings, from which high-level measures can be computed.

Some software tools for performance modelling, e.g. USENUM [90], MARCA

[98], MOSEL [8] and DNAmaca [70], implement their own specialised model

description languages, which can also be considered as high-level speci�cation

formalisms for CTMCs.

With the help of the high-level model speci�cation formalisms considered

so far it is possible to specify larger CTMCs than at the state-to-state level,

but these formalisms do not support the concepts of modularity, hierarchy or

composition of submodels. As a result, the models are monolithic and may be

di�cult to understand and debug. Moreover, state space generation and numer-

ical analysis of very large monolithic CTMCs is often not feasible in practice

due to memory and CPU time limitations, which is referred to as the notorious

state space explosion problem.

A large state space may become tractable if it is decomposed into smaller

parts [95, 33]. Instead of analysing one large system, the decomposition approach

relies on analysing several small subsystems, analysing an aggregated overall sys-

tem, and afterwards combining the subsystems' solutions accordingly. In general,

this approach works well for nearly completely decomposable (NCD) systems

whose state space can be partitioned into disjoint subsets of states, such that

there is a lot of interaction between states belonging to the same subset, but

little interaction between states belonging to di�erent subsets. For the class of

reversible Markov chains, the decomposition/aggregation approach yields ex-

act results [32]. We mention that the approach may also be applied iteratively

[34, 25]. The major question is, of course, how to best partition a given state

space, and in general this information should be derived from a modular high-

level model speci�cation. Approximate decomposition-based analysis methods

for stochastic process algebra models (see Sec. 3) are discussed in [73], where

time scale decomposition is based on the concept of NCD Markov chains [65,



72], and response time approximation relies on a structural decomposition for the

special class of decision-free processes [74]. Another such approach, based on the

exploitation of the structure of a special class of process algebraic models, is de-

scribed in [7]. Approximate decomposition-based analysis for nearly-independent

GSPN structures is considered in [27, 30].

2.2 Modular model representations

Queueing models, stochastic Petri nets and the tool-speci�c modelling languages

mentioned above do not o�er the possibility of composing an overall model from

components which can be speci�ed in isolation. Such a composition, however,

is a highly desirable feature when modelling complex systems, since it enables

human users to focus on manageable parts from which a whole system can be

constructed. For instance, modern performance analysis advocates a separation

of the load model and the machine model, an idea developed already in [69, 62,

63], and similar ideas are also applied in stochastic rendezvous networks [101]

and layered queueing networks [87]. As another, speci�c example, suppose one

wished to model a communication system where two partners communicate over

some communication medium. The model should re
ect this structure, i.e. it

should consist of three interacting submodels, one for each partner, and one for

the medium. The user should be able to specify these three submodels more or

less independently of each other and then simply specify the way in which they

interact.

In the basic GSPN formalism, a model consists of a single net which covers

the whole system to be studied. Therefore, GSPN models of complex systems

tend to become very large and confused and su�er from the state space explo-

sion problem. Stochastic activity networks [88, 35] constitute an approach to the

structuring of GSPNs through the sharing of places between di�erent subnets. In

the presence of symmetric submodels, they tackle the state space explosion prob-

lem by directly generating a reduced reachability graph in which all mutually

symmetric markings are collapsed into one. Symmetries also play a predominant

role for the analysis of stochastic well-formed coloured Petri nets [26, 43], where

a reduced reachability graph is constructed directly from the net description,

without the need to construct the full reachability graph �rst. Another line of

research is concerned with building SPNs in a structured way, basically by syn-

chronising subnets via common transitions, which is an instance of the Kronecker

approach described below.

Stochastic automata networks (SAN)

2

, developed in the 1980ies and 1990ies

[82{85], consist of several stochastic automata, basically CTMCs whose tran-

sitions are labelled with event names, which run in parallel and may perform

certain synchronising events together. Thus, the SAN formalism is truly struc-

tured, since it allows the user to specify an overall model as a collection of

interacting submodels. The major attraction of SANs is their memory-e�cient

2

The acronym SAN is also used for stochastic activity networks (see above), but in

this paper it stands for stochastic automata networks.



representation of the generator matrix of the Markov chain underlying the over-

all model. This so-called Kronecker (or tensor) approach has since been adapted

to queueing networks [17], stochastic Petri nets [14{16, 21, 28, 39, 40], stochastic

process algebras [18] and other structured modelling frameworks [19, 22, 91, 92].

The Kronecker approach realises an implicit, space-e�cient representation of

the transition rate matrix of a stuctured Markov model. Suppose we have two

independent CTMCs C

1

and C

2

which are given by their transition rate matrices

R

1

and R

2

(of size d

1

and d

2

). Let us consider the combined stochastic process

C whose state space is the Cartesian product of the state spaces of C

1

and C

2

.

Process C possesses the transition rate matrix R which is given by the Kronecker

sum of R

1

and R

2

:

R = R

1

�R

2

= R

1


 I

d

2

+ I

d

1


R

2

where 
 denotes Kronecker product, � denotes Kronecker sum and I

d

denotes

an identity matrix of size d [37]. If, however, C

1

and C

2

are not independent,

but perform certain transitions synchronously, the expression for the overall

transition rate matrix changes to

R = R

1;i

�R

2;i

+

X

a2S

�

a

� R

1;a


R

2;a

where R

1;i

and R

2;i

contain those transitions which C

1

and C

2

perform inde-

pendently of each other, and R

1;a

and R

2;a

contain those transitions which are

caused by an event a from the set of synchronising events S. Here it is assumed

that the resulting rate of the synchronising event a is given by �

a

, i.e. it is

a predetermined rate, and matrices R

1;a

and R

2;a

are indicator matrices which

contain only zeroes and ones. (It is also possible that R

1;a

and R

2;a

contain rates,

in which case in the above subexpression �

a

�R

1;a


R

2;a

has to be replaced by

R

1;a


R

2;a

. This would mean that the resulting rate of a synchronising event is

equal to the product of the rates of the participating processes.) For the general

case, where the overall model consists of K submodels, the expression for the

overall transition rate matrix is given by

R =

K

M

k=1

R

k;i

+

X

a2S

�

a

�

K

O

k=1

R

k;a

The strength of the Kronecker approach lies in its memory-e�ciency (it su�ces

to store a set of matrices of the size of the submodels) and in the fact that for

performing numerical analysis, the potentially very large overall transition rate

matrix never needs to be constructed or stored explicitly. The compactness of

the representation of the transition rate matrix carries over to the generator

matrix and to the iteration matrices for some of the common stationary iter-

ative methods. Thus, iterative numerical schemes which rely on matrix-vector

multiplication as their basic operation, can be performed directly on the ten-

sor descriptor of the iteration matrix (Plateau [82] used the power method, and

Buchholz [13] describes Kronecker-based power, Jacobi, modi�ed Gauss-Seidel,



JOR and modi�ed SOR methods). E�cient algorithms for the multiplication of

a vector with a Kronecker descriptor are analysed in [42, 97] and in [20], where,

however, the authors state that \. . . all Kronecker-based algorithms are less com-

putationally e�cient than a conventional multiplication where [the matrix] R ist

stored in sparse format . . . " and \This suggests that, in practice, the real advan-

tage of Kronecker-based methods lies exclusively in their large memory savings".

When working with the Kronecker approach, the set of states reachable from

the initial state may be only a small subset of the Cartesian product of the

involved submodel state spaces. This is known as the \potential versus actual

state space" problem. If the actual state space is not known before numerical

analysis starts, a probability vector of the size of the potential state space must

be allocated, which can waste a considerable amount of memory space and even

make the whole analysis impracticable. For that reason, Kronecker-based reach-

ability techniques have been developed, which allow one to work on the actual

state space or a limited superset thereof [20, 29, 67, 78].

3 Stochastic process algebras

In this section, we brie
y review the concept of stochastic process algebras (SPA).

Since process algebras feature composition operators that allow one to construct

complex speci�cations from smaller ones, we argue that they quite ideally sup-

port the speci�cation and analysis of structured models. Next we de�ne a simple

SPA language which supports both Markovian and immediate transitions.

De�nition 1. Stochastic process algebra language L

Let Act be the set of valid action names and Pro the set of process names. Let

action � 2 Act denote the internal, invisible action. For P; P

i

2 L, a 2 Act,

S � Act n f�g, and X 2 Pro, the set L of valid expressions is de�nded by the

following language elements:

stop inaction

a;P immediate pre�x (a; �);P Markovian pre�x

P

1

+ P

2

choice P

1

j[S]jP

2

parallel composition

hide a in P hiding X process instantiation

A set of de�nitions of the form X := P constitutes a process environment.

With the help of a structured operational semantics, a transition system whose

states correspond to process terms can be derived as the semantic model of

a process algebraic speci�cation. For a discussion of the full set of semantic

rules for Markovian process algebras similar to our language L we refer the

interested reader to the literature, see e.g. [6, 48, 53, 55, 64]. Here we only mention

two selected rules. The �rst is the rule for synchronisation of two processes via

Markovian transitions which can be written as follows:

P

b;�

�! P

0

Q

b;�

�! Q

0

P j[S]jQ

b;�(�;�)

�! P

0

j[S]jQ

0

b 2 S



Note that this rule is parametric in a function � determining the rate of synchro-

nisation, since di�erent synchronisation policies (minimum, maximum, product,

. . . ) are possible. In the process algebra TIPP [60], � is instantiated by multi-

plication, since strong bisimilarity (see below) is a congruence with respect to

parallel composition and abstraction, provided that � is distributive over sum-

mation of real values, see [60, 52, 55]. Note that the apparent rate construction

of PEPA [64] requires a function �(P;Q; �; �) instead of �(�; �).

The second rule is the one for hiding in the case of immediate transitions,

which states that an immediate transition labelled by a is turned into an internal

immediate transition labelled by � :

P

a

9 9 KP

0

hide a in P

�

9 9 Khide a in P

0

As we shall see, internal immediate transitions, as generated by this rule, play

a key role during the transformation from a transition system to a CTMC. For

our stochastic process algebra language L, the resulting semantic model is an

extended stochastic labelled transition system (ESLTS):

De�nition 2. Extended Stochastic Labelled Transition System (ESLTS)

Let S be a �nite set of states. Let s

0

2 S be the initial state. Let Act be a �nite

set of action labels. Let 9 9 Kbe de�ned as follows:

9 9 K � S �Act� S

Let �! be de�ned as follows:

�! � S �Act� IR

>0

� S

We call T = (S;Act; 9 9 K;�!; s

0

) an Extended Stochastic Labelled Transition

System. If (x; a; y) 2 9 9 K, we say that there is an immediate a-transition from

state x to state y and write x

a

9 9 Ky. If (x; b; �; y) 2 �!, we say that there is a

Markovian b-transition from state x to state y with rate � and write x

b;�

�! y.

Note that in view of the symbolic representation described below, we restricted

ourselves to �nite-state transition systems. An ESLTS whose set of immediate

transitions is empty is called SLTS. An example ESLTS is depicted in Fig. 3

(left). Basically, immediate transitions lead to the existence of vanishing (insta-

ble) states. These are states which are left as soon as they are entered, i.e. their

sojourn time is zero. Conversely, tangible (stable) states are states whose sojourn

time has an exponential distribution, i.e. is strictly positive. For the performa-

bility analysis of an SPA model, a CTMC is constructed from the ESLTS and

analysed with conventional numerical methods. The CTMC is obtained by hid-

ing of all action labels, elimination of the vanishing states and proper cumulation

of all Markovian transitions between a given ordered pair of states.

For a compositional framework, as in the context of stochastic process al-

gebras, we propose to re�ne the well-known notion of vanishing states in the

following way:



s

0

s

1

s

2

s

3

c

a; � �

T

1

s

0

0

s

0

1

s

0

2

b; �

c

T

2

s

01

s

11

s

10

s

22

s

30

s

31

s

00

b; �

c

a; � �

a; �

b; �

T = T

1

j[c]jT

2

�

b; �

Fig. 1. Role of visible immediate transitions during parallel composition

De�nition 3. Compositionally vanishing states

A state s of an ESLTS is called vanishing if there is at least one internal im-

mediate transition emanating from s (written s

�

9 9 Ks

0

). A state s of an ESLTS

is called compositionally vanishing if it is vanishing and if there is no visible

immediate transition emanating from s (written s 6

a

9 9 Ks

00

, where a 6= �).

The idea is that even an immediate transition may be delayed if it is visible,

since it may be kept waiting by a synchronisation partner which is not yet

ready to participate in the synchronisation. Since synchronisation on internal

� -transitions is not allowed, one can be sure that internal immediate transitions

will not be delayed. Compositionally vanishing states can be eliminated either

before or after composition of subprocesses, but a vanishing state that may also

be left by at least one visible immediate transition must not be eliminated before

composition

3

. An example for such a situation is shown in Fig. 1 which shows

two ESLTSs, T

1

and T

2

, which are composed in parallel, synchronising on action

c. The resulting ESLTS, T , is shown on the right hand side of the �gure. State s

1

in ESLTS T

1

, which is vanishing but not compositionally vanishing, must not be

eliminated before parallel composition takes place, since its elimination would

disable any c-transition in the combined transition system T . In the resulting

ESLTS, state s

10

is a compositionally vanishing state which can be eliminated,

whereas state s

11

is not. However, if action c is hidden in ESLTS T (since

further synchronisation on c is not required), state s

11

becomes compositionally

vanishing and can be also eliminated (its elimination, however, requires a proper

treatment of non-determinism as explained below). Note also that there may be

one or several Markovian transitions emanating from a vanishing state, but they

are never taken. As an example, in Fig. 1 the transition s

10

b;�

�! s

11

will never be

taken, since the competing internal immediate transition s

10

�

9 9 Ks

30

will always

take place �rst. Therefore transition s

10

b;�

�! s

11

can safely be deleted without

changing the behaviour of the ESLTS.

3

To complete the picture: A state s is called tangible if there is no immediate transition

(i.e. neither visible nor internal) emanating from s. In the remaining case (where there

is at least one visible immediate transition, but no internal immediate transition

emanating from s) the state is called inconclusive.



The basic strategy of elimination of compositionally vanishing states is to

redirect transitions leading to such a state to its successor states. In the case

where a compositionally vanishing state has more than one outgoing internal

immediate transitions, it is not speci�ed which of them will be taken. This is

an instance of non-determinism. In order to resolve such non-determinism, one

may assign probabilities or weights to internal immediate transitions. Transi-

tions leading to the compositionally vanishing state can then be redirected to

its successor states, taking into account these probabilities.

The concept of bisimilarity is of great importance for SPAs, since it estab-

lishes the equivalence between processes, and since it is the basis for state space

reduction. Unfortunately, it is beyond the scope of the present paper to discuss

bisimulation relations in detail, so we refer to the literature, e.g. [52, 57, 60, 64].

4 Symbolic representations

In this section we present space-e�cient symbolic representations of transition

systems with the help of binary decision diagrams (BDD). We review multi-

terminal BDDs (MTBDD), also called algebraic decision diagrams, since they

are capable of representing real-valued functions [4, 31, 46].

4.1 Multi-terminal BDDs

Let IB = f0; 1g denote the set of Booleans

4

. An MTBDD is a graph-based

representation of a function f : IB

n

7! IR.

De�nition 4. Multi-Terminal Binary Decision Diagram (MTBDD)

Let V ars = fv

1

; : : : ; v

n

g be a set of Boolean variables with a �xed total order-

ing � � V ars � V ars. An (ordered) Multi-Terminal Binary Decision Diagram

over hV ars;�i is a rooted directed acyclic graph M = (V ert; var; else; then; value)

de�ned by

� a �nite nonempty set of vertices V ert = T [NT , where T (NT ) is the set of

terminal (non-terminal) vertices,

� a function var : NT 7! V ars,

� two edge-de�ning functions else : NT 7! V ert and then : NT 7! V ert,

� a function value : T 7! IR,

with the following constraints:

8x 2 NT : else(x) 2 T _ var(else(x)) � var(x)

8x 2 NT : then(x) 2 T _ var(then(x))�var(x)

Note that, according to Def. 4, a binary decision tree is an MTBDD. However,

we are mainly interested in reduced MTBDDs, de�ned as follows:

De�nition 5. Reducedness of an MTBDD

An MTBDD M is called reduced if and only if the following conditions hold:

4

We use the real numbers 0 and 1 to represent Boolean values, since in the context

of MTBDDs Boolean variables will be involved in arithmetic calculations.



1. 8x 2 NT : else(x) 6= then(x)

2. 8x; y 2 NT : x 6= y ) (var(x) 6= var(y)_else(x) 6= else(y)_then(x) 6= then(y))

3. 8x; y 2 T : x 6= y ) value(x) 6= value(y)

The �rst condition states that there are no \don't care" vertices, i.e. vertices

with identical then- and else-successors. The second condition states that there

are no two isomorphic non-terminal vertices, and the third condition states that

there are no two isomorphic terminal vertices. Bryant [12] proposed a recursive

procedure to reduce BDDs

5

that can be applied to MTBDDs as well, and from

now on, unless otherwise stated, we assume that MTBDDs are reduced. Fig. 2

(right) shows a reduced MTBDD. In the graphical representation, the edge from

a vertex x to then(x) is drawn solid, and the edge from x to else(x) is drawn

dashed. All vertices that are drawn on one level are labelled with the same

Boolean variable, as indicated at the left of the decision diagram. In order to

keep the �gure clear, all edges leading to the zero-valued terminal vertex are not

drawn, i.e. every non-terminal vertex with only one outgoing edge drawn has its

other outgoing edge leading to the zero-valued terminal vertex.

Each MTBDD vertex unambiguously de�nes a real-valued function, based

on the so-called Shannon expansion which states that

f(v

1

; : : : ; v

n

) = (1� v

1

) � f(0; v

2

; : : : ; v

n

) + v

1

� f(1; v

2

; : : : ; v

n

)

The terms f(0; v

2

; : : : ; v

n

) and f(1; v

2

; : : : ; v

n

) are called the cofactors of the

function f with respect to the Boolean variable v

1

.

De�nition 6. Function f

x

represented by an MTBDD vertex

The real-valued function f

x

represented by an MTBDD vertex x 2 V ert is re-

cursively de�ned as follows:

� if x 2 T then f

x

= value(x),

� else (if x 2 NT ) f

x

= (1� var(x)) � f

else(x)

+ var(x) � f

then(x)

Most times one is interested in the case where x corresponds to the MTBDD

root. In that case we write f

M

instead of f

x

, where x is the root vertex of

MTBDD M. The two subgraphs of MTBDD M corresponding to the cofactors of

f

M

are denotedM

then

andM

else

, whereM

then

represents f

M

(1; v

2

; : : : ; v

n

) andM

else

represents f

M

(0; v

2

; : : : ; v

n

). For a �xed ordering of Boolean variables, reduced

MTBDDs form a canonical representation of real-valued functions, i.e. if M, M

0

are two reduced MTBDDs over the same ordered set of Boolean variables V ars

such that f

M

= f

M

0

, then M and M

0

are isomorphic.

It should be noted that, given a Boolean function, the size of the resulting

MTBDD is highly dependent on the chosen variable ordering. As a prominent

example, consider the function f

Id

=

Q

n

k=1

(s

k

� t

k

), which can be interpreted as

an identity matrix of size 2

n

. Under the interleaved variable ordering s

1

� t

1

�

: : : � s

n

� t

n

the number of vertices needed to represent this function is 3n+2,

i.e. logarithmic in the size of the matrix. In contrast, using the straight-forward

5

A BDD is an MTBDD where 8x 2 T : value(x) 2 f0; 1g.
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Fig. 2. SLTS and corresponding MTBDD

ordering s

1

� : : : � s

n

� t

1

� : : : � t

n

, the number of vertices is 3 � 2

n

� 1.

Since identity matrices play an important role during the parallel composition

of transition systems (see below), their compact representation is an essential

feature of MTBDDs.

A comprehensive set of logical and arithmetic operations can be realised

e�ciently on MTBDDs, such that it is possible to perform calculations on the

functions which are represented by the decision diagrams. The operationApply,

for instance, combines two MTBDDs by a binary arithmetic operator,Restrict

�xes the value of one or more variables of the MTBDD, andAbstract combines

restricted copies of an MTBDD by an associative binary operator. In general,

algorithms for MTBDD construction and manipulation are variants of their cor-

responding BDD algorithms [12]. They all follow a recursive descent scheme ac-

cording to the above Shannon expansion, and their e�ciency is achieved through

the clever use of a hash-based vertex table and a cache where intermediate results

are stored for later re-use [11]. MTBDDs are very well suited for the compact

representation of block-structured matrices, and symbolic algorithms for ma-

trix multiplication and other linear algebra operations exist [4, 46, 51]. However,

existing implementations of MTBDD-based matrix multiplication and vector

matrix multiplication are considerably slower than their sparse counterparts.

4.2 Symbolic representation of transition systems

Fig. 2 shows an SLTS and its symbolic representation by an MTBDD. Since

the set Act of this SLTS only contains two elements, a single Boolean variable

su�ces to encode the action label (the case a = 0 encodes action enq, and a = 1

encodes action deq). Since the SLTS has four states, two bits are required to en-

code the state identity. We use Boolean variables s

1

; s

2

to encoded a transition's

source state, and t

1

; t

2

to encode its target state. The transition s

2

enq;�

�! s

3

, for

example, is encoded by the combination (a; s

1

; t

1

; s

2

; t

2

) = (0; 1; 1; 0; 1). Note the

interleaving of the variables for source and target state.

If MTBDD M represents SLTS T we write M � T . For the symbolic rep-

resentation of an ESTLS T , one employs two separate decision diagrams, i.e.

an MTBDD M

I

which encodes all immediate transitions, and an MTBDD M

M

which encodes all Markovian transitions, as shown in the example of Fig. 3. We
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Fig. 3. Encoding of an example ESLTS

then write (M

I

;M

M

)� T . Basically, M

I

is a BDD, since it does not encode any

rate values. However, in certain situations one may wish to associate immediate

transitions with numerical values, for instance to associate them with weights or

probabilities, a feature which may be needed when resolving non-determinismbe-

tween several concurrently enabled internal immediate transitions. In this case,

M

I

is a proper MTBDD with possibly more than two terminal vertices. Our

tool Im-Cat

6

realises this scheme. A second alternative for the symbolic rep-

resentation of ESLTSs, where both Markovian and immediate transitions are

represented by a single MTBDD, is described in [58].

4.3 Symbolic manipulation and analysis of transition systems

In this section, we discuss the construction, manipulation and analysis of transi-

tion systems represented by MTBDDs. Given a transition system, its symbolic

representation can be easily constructed as the sum of the MTBDDs encoding

the individual transitions. However, we recommend this procedure only for small

transition systems, since the encoding of monolithical transition systems does

usually not yield compact representations. Large transition systems should be

generated in a compositional fashion from components, following the parallel

composition operator of process algebras.

Parallel composition: We now describe MTBDD-based parallel composi-

tion, but for simplicity we restrict ourselves to the case of SLTS. The general

ESLTS case works in a similar way. Consider the parallel composition of two

SLTSs T

1

and T

2

where actions from the set S � Act n f�g shall take place

in a synchronised way. Using process algebraic notation, we can express this as

T = T

1

j[S]jT

2

, where T is the resulting SLTS. Assume that the MTBDDs which

correspond to SLTSs T

1

and T

2

have already been generated and are denoted

M

1

and M

2

, i.e. M

i

� T

i

for i 2 f1; 2g. The set of synchronising actions S can

also be encoded in the standard way as a BDD, say S (action labels are encoded

by the same Boolean variables in M

1

;M

2

and S). The MTBDD M representing

6

Im-Cat is a tool for the compositional construction and analysis of ESLTSs [44, 45]

which uses the CUDD library [96].



T (i.e. M� T ) is constructed as follows:

M = (M

1

� S) � (M

2

� S)

+ M

1

� (1� S) � Id

2

+ M

2

� (1� S) � Id

1

The term on the �rst line is for the synchronising actions in which both T

1

and T

2

participate. The multiplicationM

1

�S selects that part of SLTS T

1

which

corresponds to actions from the set S, and similarly for M

2

�S. By then taking

the product of these two terms one obtains the encoding of those transitions

where both partners simultaneously make a move. The two symmetric terms on

the second line are for those actions which T

1

(T

2

) performs independently of T

2

(T

1

) | these actions are all from the complement of S, encoded by (1�S) | and

the multiplicationwith Id

2

(Id

1

) ensures that T

2

(T

1

) remains stable, i.e. does not

change its state. Note that for the synchronising transitions, calculated by the

�rst line in the above expression, the resulting rate is given by the product � ��.

Should one wish to employ a di�erent function �(�; �), for instance the maximum

function, one would simply have to replace the �rst line of the above expression

by Max(M

1

�S;M

2

�S), whereMax is the maximum function on MTBDDs which

can be realised with the help of a particular instance of the standard Apply

algorithm.

Enders et al. [41], who considered the parallel composition of BDDs gen-

erated from CCS terms, showed that the size of the symbolic representation is

proportional to the sum of the sizes of its components, provided that the compo-

nents are loosely coupled and provided that the interleaved variable ordering is

used. We now state a similar result for the parallel composition of ESLTSs. Let

T

1

and T

2

be two ESLTSs represented by MTBDDs, i.e. (M

I

i

;M

M

i

)�T

i

(i = 1; 2),

using the interleaved variable ordering. Let (M

I

;M

M

) � T

1

j[S]jT

2

where M

M

is

constructed from M

M

1

, S and M

M

2

as above, and M

I

is constructed from M

I

1

, S

and M

I

2

in a similar way. Then the number of vertices of M

M

is linear in the

number of vertices of M

M

1

and M

M

2

, and the number of vertices of M

I

is linear

in the number of vertices of M

I

1

and M

I

2

. For a proof of this important property

see [94].

The fact that parallel composition of components can be realised symbolically

in such a way that the size of the data structure grows only linearly compares

favourably to the exponential growth resulting from the usual interleaving of

causally independent transitions (as generated, for instance, by the operational

semantics of process algebras). This feature may be exploited in order to obtain

extremely compact representations of huge transition systems. In fact, one can

safely state that symbolic representations are only bene�cial if they are used in

a compositional context.

Reachability analysis: The MTBDD M resulting from the parallel com-

position of two partners M

1

and M

2

encodes all transitions which are possible

in the product space of the two partner processes (called the potential state

space). Given a pair of initial states for SLTSs T

1

and T

2

, however, only part

of this product space (the actual state space) may be reachable due to synchro-

nisation constraints. Therefore, M potentially includes transitions emanating



from unreachable states. In this situation, reachability analysis is an important

tool for reducing the size of the underlying SLTS. Reachability analysis can be

performed e�ciently on the symbolic representation of the resulting transition

system T (as described for the purely functional LTS case in [9]), both for SLTSs

and ESLTSs represented by MTBDDs.

Hiding: Hiding of action labels, i.e. replacing a visible action a by the in-

ternal action � , can be performed on the MTBDD-based representation of an

ESLTS with the help of the operations Restrict and Apply, by selecting and

modifying that part of the MTBDD which encodes a-transitions, and by af-

terwards recombining it with the remaining part of the MTBDD. While the

hiding of Markovian transitions does not enable reductions of the transition sys-

tem, the hiding of immediate transitions may lead to compositionally vanishing

states which can be eliminated. In [94], we describe a symbolic algorithm for

the elimination of such states that o�ers a 
exible mechanism for resolving non-

determinism between several internal immediate transitions, as realised in our

tool Im-Cat.

Bisimulation: Symbolic characterisation of strong and weak bisimulation

and symbolic algorithms for computing a factorisation of the state space have

been described in the literature [9, 23, 41]. In [61], symbolic algorithms for com-

puting strong and weak Markovian bisimulation on ESLTSs are described in

detail, using decision node BDDs (DNBDD) [93], another extension of BDDs

for the representation of real-valued functions, as the underlying data structure.

These algorithms follow the well-known strategy of iterative re�nement and can

readily be implemented with the help of MTBDDs.

Numerical analysis: Numerical analysis can be carried out directly on

the symbolic representation of the Markov chain [49{51]. Direct methods for

calculating steady-state probabilities are generally unsuitable for symbolic im-

plementation, since each step modi�es the structure of the coe�cient matrix

and thus the MTBDD structure, which causes considerable overhead to keep

the representation canonical and destroys its compactness [4]. For the analysis

of large Markov chains based on their symbolic representation, iterative meth-

ods are more suitable. Apart from a general matrix powering algorithm [59] that

can be instantiated as the power method or the method of Jacobi

7

, the projec-

tion methods BiCGStab [45, 94] and CGS [36] have been realised on the basis

of MTBDDs. Unfortunately, the symbolic implementations of these algorithms

are all substantially slower than their sparse-matrix counterparts, a fact which is

due to the relatively poor performance of symbolic vector-matrix multiplication,

as has been observed also in [4, 36, 38, 44, 71].

4.4 Compactness of the symbolic representation

As an example (taken from [66] and also used in [56]), we consider a cyclic

server polling system consisting of d stations and a server. The MTBDD rep-

7

In principle, the method of Gauss-Seidel can also be realised by vector-matrix mul-

tiplication, but this requires the inversion of a triangular matrix which usually leads

to ine�cient encodings.



d reach. states transitions MTBDD size MTBDD size MTBDD size

compositional monolithic

before reachability after reachability

3 36 84 169 203 351

5 240 800 387 563 1,888

7 1,344 5,824 624 1,087 9,056

10 15,360 89,600 1,163 2,459 69,580

15 737,280 6.144e+6 2,191 6,317 {

20 3.14573e+07 3.40787e+08 3,704 13,135 {

Table 1. Statistics for the polling system

resentation of the overall polling model (T

poll

) is constructed with the help

of MTBDD-based parallel composition from d + 1 elementary transition sys-

tems

8

, one for the server (T

serv

) and one for each station (T

stat

i

), according to

T

poll

:= T

serv

j[S]j(T

stat

1

j[;]j : : : j[;]jT

stat

d

). The order in which the component

MTBDDs are generated turned out to be of great importance for the resulting

MTBDD size, since it determines the ordering of the MTBDD variables. Un-

fortunately, it is not obvious a priori which component ordering yields small

MTBDDs.

In Tab. 1, the sizes of the resulting MTBDDs are given for di�erent values of

d. The �rst column of the table contains the number of stations d, the 2nd (3rd)

column contains the number of reachable states (the number of transitions), and

the remaining columns give the number of vertices of the corresponding MTB-

DDs

9

. Tab. 1 shows that even for an extremely large state space, the MTBDD

representation can be very compact, if it is constructed in a compositional fash-

ion. The last column of Tab. 1 shows the number of MTBDD vertices which one

would obtain if one took the monolithic transition system of the overall model as

generated by TIPPtool (which does not contain unreachable states), and di-

rectly encoded it as an MTBDD. Clearly, this method cannot be recommended:

Apart from the fact that the transition system of the overall model may not be

available due to its excessive size and generation time (as indicated by the "{"

entries), the growth of the MTBDD sizes is prohibitive. As expected, the �gures

in column 4 grow linearly, whereas the ones in column 6 grow exponentially.

The MTBDDs generated compositionally represent all transitions which are

possible within the potential state space. As can be observed from the 5th col-

umn of Tab. 1, determining the set of reachable states and \deleting" the transi-

tions which originate in unreachable states considerably increases the size of the

MTBDDs. Therefore, in general, although MTBDD-based reachability analysis

is very fast, it is recommended to work with MTBDDs which represent the po-

tential rather than the actual state space, and store the reachability predicate in

a separate BDD. It may seem quite surprising that restriction to the reachable

part of the transition system increases the size of the MTBDD. However, similar

phenomena can be observed when performing symbolic elimination of vanishing

states or symbolic bisimulation: The size of the symbolic representation grows

8

The elementary transition systems were generated by the stochastic process algebra

tool TIPPtool [54] and then encoded as individual MTBDDs.

9

Since the considered version of the polling model does not contain immediate tran-

sitions, a single MTBDD (representing Markovian transitions) is su�cient.



although the underlying transition system is reduced, i.e. fewer states and tran-

sitions are represented. Our explanation for such counter-intuitive behaviour is

that the regularity of the model gets lost through the reduction, which destroys

the regularity of the MTBBD and thus its compactness (see [59]).

We now mention some �gures concerning the MTBDD-based numerical anal-

ysis of the polling system: For the case d = 7, and working on the potential state

space, the MTBDD representing the power iteration matrix, as generated by Im-

Cat, has 806 vertices and takes 0.8 seconds to construct

10

. One iteration of the

power scheme takes at the average 0.122 seconds, but it takes a ridiculous 8070

power iterations to converge. The MTBDD representing the Jacobi iteration ma-

trix for the same system is larger, it has 1639 vertices and takes 18.94 second to

construct, but one Jacobi iteration takes only 0.101 seconds and convergence is

reached after 240 iterations. Unfortunately, these speeds are unacceptably slow,

if compared to state-of-the-art sparse matrix implementations such as TIPP-

tool's solver (based on SparseLib1.3 by K. Kundert, UC Berkeley), where one

Gauss-Seidel iteration takes only 0.0013 seconds.

5 Discussion and conclusion

In this paper, we have reviewed the evolution from monolithic to modular model

representations. In particular, we have described space-e�cient symbolic rep-

resentations of compositional Markov models stemming from process algebraic

speci�cations, thereby emphasising the role of symbolic parallel composition.

We brie
y mention two other data structures related to decision diagrams and

developed for the analysis of Markovian systems: Matrix diagrams [28, 76{78],

an extension of multi-valued decision diagrams, enable the compact representa-

tion of structured GSPN models, and probabilistic decision graphs [10] enable a

consise representation of probability vectors and probabilistic transition system.

As we have seen, the main bottleneck of the symbolic modelling procedure is

numerical analysis. Therefore, speeding up MTBDD-based vector-matrix multi-

plication remains a major area of research. A promising approach to this problem

that combines the advantages of sparse and MTBDD-based representations will

be described in [81]. A totally di�erent direction is taken in [75], where special-

purpose hardware for the support of basic MTBDD operations has been devel-

oped. Parallelisation and distribution of MTBDD manipulation algorithms are

also candidates for improving the speed of MTBDD-based numerical analysis.

In summary, we argue that modular model speci�cations and symbolic repre-

sentations are a perfect match, and that this combination should play a leading

role in future performability analysis and veri�cation projects.

10

The experimental results were obtained on a SUN 5/10 workstation, equipped with

1GB of main memory and running at 300 MHz.
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