Federal Ministry

of Education

and Research

# **DNS-Based Analysis of Flame Dynamics in Turbulent** H<sub>2</sub>-CO-Air Mixtures

Vinzenz Silvester Wehrmann, Markus Klein and Josef Hasslberger University of the Bundeswehr Munich, Germany vinzenz.wehrmann@unibw.de

### Motivation

- Formation of flammable gas mixtures due to the release of  $H_2/CO$ into contained environments following accidents in:
  - nuclear power plants:  $H_2/CO$  produced during a meltdown lacksquare
  - process engineering: Leakage of H<sub>2</sub>/CO/air (syngas) mixtures which represent an important intermediate product, e.g. in the field of renewable energies (Haber-Bosch)

Demand to characterize the combustion of syngas mixtures at

# **Results and Discussion**

Universität ( ) München

der Bundeswehr

Instantaneous normalized temperature  $c_{\Theta} \equiv (T - T_u)/(T_b - T_u)$  distribution in the x - z midplane for  $u'/S_L = 4.0$  cases at  $\tau_{et} \approx 3$ . Iso-contour for  $c_{\Theta} = 1.0$ (black) encloses super-adiabatic temperature (i.e.,  $c_{\Theta} > 1.0$ ) regions:





different fuel compositions ( $\alpha$ ) and equivalence ratios ( $\phi$ ) Particular attention given to transient flame dynamics, influenced by turbulence and intrinsic flame instabilities

## **Numerical Method**

- SENGA2 DNS Solver by Cant (2015)
- Fully compressible Navier-Stokes equations, 10<sup>th</sup>-order central finite-difference scheme for spatial discretization
- Explicit time advancement is accomplished using a fourth-order, low-storage Runge-Kutta method
- Detailed multi-step chemistry using a syngas-optimized chemical mechanism by Davis et al. (2005), containing
  - 14 species
  - 34 elementary reactions
- Mixture-averaged transport approach

# **Simulation Setup**

Cuboidal computational domain, discretized by a uniform Cartesian grid with  $1024 \times 512 \times 512$  equidistant points, parallelized on 8192 cores Spatial resolution results in a domain size of  $\sim 3 \times 1.5 \times 1.5 \ cm^3$ Flame initialized using an 1D flame profile, turbulence is imposed via decaying turbulent flow fields (Batchelor-Townsend) Simulations are conducted over a simulation duration of three eddy turnover times  $\tau_{et} \equiv L_{11}/u'$ DNS study considers several syngas mixtures (varying  $\phi$  and  $\alpha$ ), chosen to investigate impact of CO on transient, possibly instability-driven flame behavior

#### **Visualization of Instabilities**

- If the fuel molecules' mass diffusivity exceeds the thermal diffusivity of the entire mixture ( $Le \equiv D_{th}/D_{fuel} \ll 1$ ), there is increased diffusion of fuel into convex parts of the flame For lean ( $\phi < 1$ ) mixtures, this results in regions with:
  - Increased local fuel concentration, leading to elevated lacksquarechemical consumption and thus to local flame acceleration
  - Lower local fuel concentration

- Large super-adiabatic regions indicating thermo-diffusive instabilities - as well as pronounced wrinkling are observed
- To isolate instability-driven flame acceleration from flame area induced acceleration (wrinkling), the burning rate per unit area of the flame  $\Omega_i \equiv (S_{T,i}A_{\perp})/(S_LA_{T,i})$  is evaluated (Klein 2020):



#### **Conclusions and Outlook**



Decreased reaction rate

Flame visualized by means of H mass fraction for  $\phi = 0.6$  and a fuel comp. of 100 %  $H_2$  at  $\tau_{et} \approx 3$ . Vorticity displayed in the background (Wehrmann 2023)

- Instability-driven flame behavior ( $\Omega > 1$ ) observable for all cases
- Development of  $\Omega$  indicates the influence of CO on transient flame behavior is:
  - Minor when partially substituted for  $H_2$  (identical  $\phi$ ) ullet
  - Notable when added to H<sub>2</sub> (identical  $X_{H_2}$ , increased  $\phi$ ) ullet
- Valuable database for future subgrid modeling approaches

## References

- Cant, Stewart (2015), SENGA2 User's Guide, Cambridge
- Davis et al. (2005), *Proc. of the Combust. Inst.*, 30(1), 15407489
- Wehrmann et al. (2023), 31. Deutscher Flammentag, Berlin
- Klein et al. (2020), Flow, Turb. and Combust., 104(2), 1386-6184