Numerical Investigation of Gas Bubble Behavior

for Pool Scrubbing in Nuclear Reactors using the Volume-of-Fluid Method

Andreas Iberl Elias Trautner University of the Bundeswehr Munich, Germany

andreas.iberl@unibw.de

dtec.bw

Industrial applications

- ► Gas injection in water important for
 - ▶ Oil and gas industry (Oil recovery techniques)
- Chemical industry (Enhance mixing)
- Cooling and heating systems (Improve efficiency)
- ► Pool Scrubbing Process (see figure on the right)
- ▶ Severe accident treatment in nuclear reactors
- Leakage of radioactive particles into air
- Cleaning of contaminated air necessary
- ▶ Injecting the air in a water pool to remove particles

Outflow with suppressed

reverse flow

Numerical methods

- ► 3D incompressible code PARIS (Aniszewski et al. 2021)
- ▶ 2nd order discretization, Finite Volume method

 $1.9 \cdot 10^3 \quad 9.4 \cdot 10^3 \quad 1.9 \cdot 10^4$

 $3.4 \cdot 10^4 \quad 1.7 \cdot 10^5 \quad 3.4 \cdot 10^5$

 $2.1 \cdot 10^3 \quad 5.2 \cdot 10^4 \quad 2.1 \cdot 10^5$

 $6.3 \cdot 10^1 \ \ 2.5 \cdot 10^2$

Static Smagorinsky turbulence model

Spatial: Central differences on staggered grid	
▶ Temporal: Predictor—corrector procedure	
► Geometric Volume-of-Fluid method	
Piecewise linear interface reconstruction	X d
Directionally split advection	L_z
Determination of surface tension force	Dirichlet condition
Continuous Surface Force (CSF) model	at the inlet with laminar inflow of air
Curvature calculation with height functions	Homogeneous Neumann
Pressure correction with projection method	condition with filtered outflow velocity allowing entrainment

- ► Injection of air in water
- $\rightarrow d = 6 \,\mathrm{mm}$
- ► Cubic cells $d/\Delta = 8$
- $L_x = L_y = L_z = 24d$
- ▶ Density ratio $\rho_I/\rho_g \approx 830$
- ► Viscosity ratio $\mu_I/\mu_g \approx 46$
- \triangleright Eötvös number ≈ 4.9

Statistical results

case

 u_0 $\left[\frac{m}{s}\right]$

► Similar magnitude of gas velocity compared to Abe et al. (2018) at a height of x/d = 16 (no data available for case B)

Statistical results

Volume fraction α

Ray tracing visualization

► Good agreement with literature values from Abe et al. (2018) and Liao et al. (2022) at a height of x/d = 16 (see orange line in ray tracing image)

Surface area of gas-liquid interface A

- ► Fluctuations $A'/\langle A \rangle_t$ for the different cases
- \blacktriangleright Standard deviation $\sigma_A = 20.2 \%$, $\sigma_B = 22.2 \%$, $\sigma_C = 23.1 \%$
 - ▶ Potential indicator for increasing deposition rate at higher mass flow rates

Turbulence analysis

- Turbulent kinetic energy: $k = \frac{1}{2} \left\langle (u_x')^2 + (u_y')^2 + (u_z')^2 \right\rangle_{L}$
- ightharpoonup Additionally calculated turbulence parameters: Dissipation rate ε , Kolmogorov length η and time scale τ_{η} , and Taylor length scale λ

Terminal velocity u_T

► Terminal velocity $u_T \approx 0.3 \, \text{m/s}$ determined by peak of bubble size distribution ($d_b/d \approx 0.35$) and correlation equations

Conclusions and Outlook

- ► Method is capable of predicting flow and interface dynamics
- ► Valuable data base for developing efficient numerical models (e.g. Euler–Euler RANS)
- Identification of the influence of the domain size and boundary conditions
- ► Introduction of Lagrangian particles to predict decontamination factor

References

Abe, Y. et al. (2018). In: *Nucl. Eng. Des.* 337, pp. 96–107. Aniszewski, W. et al. (2021). In: Comput. Phys. Commun. 263 (8), p. 107849. Liao, Y., J. Li, and D. Lucas (2022). In: *Nucl. Eng. Des.* 390, p. 111713.