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Kurzfassung

In dieser Arbeit wird das dynamische Verformungsverhalten duktiler Metalle,
welches durch großes Verformungsvermögen vor dem Versagen gekennzeichnet
ist, untersucht. In einem bestimmten Bereich sind die auftretenden Verzerrungen
umkehrbar oder elastisch wobei bei Erreichen einer bestimmten Grenze zusätz-
liche größere bleibende oder plastische Verzerrungen auftreten. Bei weiterer Be-
lastung beginnt ab einem Punkt, an dem schon größere plastische Verzerrungen
vorliegen, eine Entfestigung des Materials, d.h. ein Schädigungsprozess, welcher
schließlich zur Bildung eines Makrorisses führt. Das Verformungsverhalten des
Materials ist hierbei abhängig vom Spannungszustand, von der Verzerrungsra-
te sowie von der vorliegenden Temperatur. Der besondere Fokus dieser Arbeit
liegt auf der Modellierung und numerischen Simulation des Schädigungs- und
Rissverhaltens duktiler Metalle.
Um das Materialverhalten in einer konsistenten Form beschreiben zu können,
wird ein phänomenologisches Kontinuumsschädigungs- und Rissmodell vorge-
stellt. Diese theoretischen Überlegungen werden als benutzerdefiniertes Mate-
rialmodell an das kommerzielle Finite-Element-Programm LsDyna angebunden,
wodurch das entwickelte Modell für Simulationen zugänglich wird. Um das Ma-
terialverhalten unter kontrollierten Bedingungen untersuchen zu können, wur-
den verschiedene Experimente durchgeführt. Diese experimentellen Ergebnisse
sowie aus der Literatur entnommene Daten wurden verwendet, um die zugehö-
rigen Materialparameter des Schädigungs- und Rissmodells für eine Alumini-
umlegierung sowie für den Edelstahl Inox 304L zu bestimmen.
Die zugehörigen numerischen Simulationen mit dem implementierten Kontinu-
umsschädigungs- und Rissmodell zeigen gute Übereinstimmung mit den experi-
mentellen Ergebnissen. Hierbei wurde besondere Aufmerksamkeit auf die Simu-
lation von Versuchen in der Split-Hopkinson-Bar mit M-förmigen Probekörpern
gelegt. Durch die erhaltenen numerischen Ergebnisse konnte das Verhalten die-
ses speziellen Versuchskörpers besser untersucht werden, was schließlich zu einer
kritischen Beurteilung der Geometrie geführt hat. Zusätzlich wurden Scherver-
suchskörper numerisch untersucht und bewertet. Hierbei konnte aufgezeigt wer-
den, dass eine zusätzliche Kerbe in Dickenrichtung das gewünschte Verhalten
des Versuchskörpers signifikant verbessert.
In diesem Zusammenhang ist deutlich geworden, dass weitere experimentelle
Untersuchungen mit Versuchskörpern, bei denen Schädigung- und Rissverhal-
ten unter verschiedenen Spannungszuständen auftritt, sinnvoll sind. Ebenfalls
konnte aufgezeigt werden, dass numerische Untersuchungen zur inversen Be-
stimmung der Materialparameter im Schädigungs- und Rissbereich notwendig
sind, da hier nur unzureichende experimentelle Ergebnisse vorliegen.
Die Ergebnisse dieser Arbeit erlauben ein wesentlich besseres Verständnis des
Verformungs- und Versagensverhaltens von duktilen Metallen. Diese Erkennt-
nisse können bei verschiedenen Anwendungen, z.B. beim Entwurf von Leicht-
baustrukturen sowie bei der Simulation von Aufprallversuchen in der Auto-
mobilindustrie und bei Hochgeschwindigkeitsproduktionsprozessen, verwendet
werden. Dies führt zu einer höheren Auslastung des Materials und somit zu
Ressourcen- und Kosteneinsparungen.



Abstract

This thesis covers the deformation behavior of ductile metals which is char-
acterized through large strains before final failure occurs. Within a certain
range, these strains are reversible or elastic, whereas onward additional major
non-reversible or plastic strains occur. At a certain point, at which already sig-
nificant plastic strains have been accumulated, additional deterioration of the
material, i.e. a damage process, starts, resulting in a macro-crack that finally
leads to the failure of the material. The deformation process usually depends
on the stress state, the strain rate and the temperature of the material. In this
work, special focus is given to the damage and failure process.
In order to describe the material behavior in a consistent way, a phenomeno-
logical continuum damage and fracture model has been developed. To make
the model available for numerical simulations, the commercial finite element
program LsDyna has been augmented by a user-defined material model subrou-
tine. To determine the material behavior under controlled conditions, several
experiments have been performed. The experimental results, as well as data
from literature, have been used to identify the material parameters for the pro-
posed continuum damage and fracture model for an aluminum alloy and for the
stainless steel Inox 304L.
The executed numerical simulations with the implemented continuum damage
and fracture model show a good correlation with the experimental data. Special
focus has been given to the simulation of Split-Hopkinson-Bar experiments with
M-Shape tension specimens. With these numerical studies, several aspects of
the special specimen geometry could be extracted and analyzed, resulting in a
critical evaluation of the specimen shape. In addition, shear specimens have
been numerically studied and evaluated, while an additional notch in thick-
ness direction has been introduced which results in the required behavior and
therefore could be very useful for future research.
In this context, it became evident that further research should include additional
experiments testing damage occurrence and evolution at different stress states.
Furthermore, there is need for inverse numerical procedures in order to identify
the parameters of the damage condition, damage law and fracture condition.
The results of this thesis improve significantly the understanding of the defor-
mation and fracture behavior of ductile metals. These insights can be used in
several applications such as the design of light weight structures and the sim-
ulation of car crashes or high speed machining processes, allowing a maximum
utilization of the material, resulting in a more responsible and cost-efficient
handling of resources.
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1 Motivation

The performance of structures and materials is expected to resist to higher
loading and on the other hand the responsible handling of resources be-
comes more important. Thus a high utilization is necessary which requires
a good knowledge of the elastic-plastic material characteristics and also
of its damage and fracture behavior. Consequently the need of material
models which can describe such complex material behavior is evident.
Areas of application could be the design of light weight structures, the
simulation of car crashes or high speed machining and penetration pro-
cesses in operator protection.
The failure of structures is frequently caused by local material failure.
Previous to this complete failure the material did undergo the progressive
physical process of ongoing damage. Often this process takes place under
elevated temperature or it develops with high velocity for instance at
impact or collision processes. To be able to predict this damage and
failure of materials it is necessary to describe the material behavior in
such a way that it can be used in numerical simulations.
The form in which damage occurs depends on several parameters, among
other the nature of the material, the type of loading and the temperature
[100]. For example creep damage occurs at higher temperatures where
the strains increase at almost constant stresses, brittle damage is charac-
terized by very low plastic strains before the occurrence of deterioration
of the material and fatigue damage appears under cyclic loading of the
material, see [77, 42, 100] for a more detailed description. Furthermore
ductile damage is characterized by the appearance of large plastic strains
before the deterioration propagates, see Fig. 1.1. This thesis focusses on
ductile damage and the resulting fracture.
In this thesis a phenomenological model to characterize the elastic and
inelastic behavior of ductile metals under elevated temperatures and high
strain rates is presented. Furthermore the material model was coded and
implemented into a commercial software and consequently used for the
numerical simulations of executed experiments.

1.1 Ductile damage and fracture

Before having a closer look at ductile damage in metals it is worthwhile to
investigate briefly the physical nature of elastic, plastic and damage ma-
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Figure 1.1: Typical experimental curve of ductile damage, indicating
that the material behavior first is elastic, then elastic-plastic
and in continuation elastic-plastic-damaged before finally
macro cracks occur, here taken from an experiment with
shear-like failure

terial behavior. Since the implemented continuum damage and fracture
model is phenomenologically based, the main aspects are of interest. The
reversible, i.e. the elastic material behavior, is directly related to the rel-
ative movement of atoms whereas plastic material behavior has its origin
at slips on the crystal level. Due to this fact, it can be assumed that the
elastic and the plastic material behavior can be reviewed independently.
Damage material behavior is based on the debonding of grains and conse-
quently it influences directly the elastic material but does not remarkably
effect the plastic material characteristics. This brief introduction is based
on [100] where a more detailed description can be found.

Fig. 1.1 displays a typical load-displacement curve of an experiment in-
cluding ductile damage. Previous to damage evolution major plastic de-
formations occur. Fig. 1.2a shows the initial distribution of pores in
highly pure iron [12]. In metals with impurity particles these impurities
can cause similar effects as a pore matrix [51, 15]. With ongoing defor-
mation under a certain stress state the pores enlarge, new voids form
(nucleation) and finally the coalescence of pores occurs whereas under
a more shear-like stress state rather micro shear cracks appear to be a
governing damage mechanism. Fig. 1.2b illustrates such a pore pattern
where big void coalescence took place mainly perpendicular to the load-
ing direction. This state might be seen as the initiation of a macro crack.
Further representations, including 3-dimensional views, can be found for
instance in Maire et al. [112, 113], Landron et al. [91] and Toda et al.
[157].

The transition from damage to macro crack is not easy to define; Chaboche
mentioned values of approximately 1mm of void diameter [41]. But



1.1 Ductile damage and fracture 3

Figure 1.2: Initial distribution of pores with 1% porosity (left side) and
failure pattern of a initially fully dense notched bar (right
side), tensile loading in vertical direction, cut-outs taken
from Becker et al. [12]

whereas the damage process evolutes over a certain period, the macro
crack propagates fast almost instantaneously. Fig. 1.3 illustrates an on-
going crack in ductile metal which was generated under controlled condi-
tions. In Figs. 1.2b and 1.3 one can notice, that the porosity around the
forming crack increases but stays rather homogenous.

Figure 1.3: Virtual tomographic slices of growing crack-tip during ten-
sion test, cut-outs taken from Toda et al. [156]

Fig. 1.4 displays two examples of fracture surfaces, at the left a circular
notched steel specimen and at the right a flat notched Inox 304L specimen.
Both show a similar failure pattern, in the center resulting from typical
void growth with dimples and on the surrounding a shear-like fracture.

Damage measurement is not an easy task. Several methods have been
proposed which are either destructive or non-destructive for the speci-
men. Lemaitre [100] gives an overview and an evaluation of the different
methods. As mentioned before damage has direct influence on the elastic
behavior of the material and therefore one common possibility to mea-
sure ductile damage is the determination of the variation of the Young’s
modulus. But for the materials under examination in this thesis, due
to mainly local occurrence of damage and the available testing facility,
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Figure 1.4: Fracture surfaces, left side: cup-and-cone fracture of steel,
cut-out taken from ’An Atlas of Metal Damage’ [51], right
side: Fracture of notched stainless steel specimen

made it difficult to reveal this variation. Thus Brünig et al. [31] pro-
posed the method of performing an elastic-plastic numerical simulation
and defining the onset of damage where the experimental and obtained
numerical load-engineering strain curves diverge. This method has been
successfully used for aluminum alloy in [30].

1.2 Strain rate and temperature dependence

Ductile metals frequently show sensitivity to strain rate, i.e. the veloc-
ity at which the strain develops, and temperature. Generally, at higher
strain rates the material response is stiffer and at higher temperatures the
material response is softer. If these effects are not negligible for the inves-
tigated phenomena they have to be analyzed. Furthermore, part of the
plastic work is converted to heating and consequently for fast deforma-
tion processes the increase of temperature can be significant whereas the
discharge of heat can be neglected. Thus this process can be considered
as adiabatic.
Fig. 1.5 displays stress-strain curves of a stainless steel taken at a strain
rate of 8500 s−1 in a Split-Hopkinson-Bar experiment (details on the ex-
perimental setup are given later) at different temperatures, [60]. The
material response is remarkable softer at the elevated temperatures of
500K and 1000K and stiffer at the lower temperature of 77K whereas
the room temperature of 296K is taken as reference. The unstable be-
havior of the experimental curves is due to the experimental technique.
An example of the strain rate sensitivity of stainless steel is given in
Fig. 1.6, [60]. The curve at low strain rate 0.001 s−1 was generated in
a hydraulic testing machine in a compression test whereas the curves at
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Figure 1.5: Temperature effects in stainless steel Nitronic-50 at a strain
rate of 8500 s−1; graph reproduced from Guo and Nemat-
Nasser [60]

higher strain rates have been taken in Split-Hopkinson-Bar experiments.
At higher strain rates 3500 and 8000 s−1 the first material response is
stiffer, but nevertheless the maximum strain is lower than at lower strain
rates.

Figure 1.6: Strain rate effects in stainless steel Nitronic-50, graph re-
produced from Guo and Nemat-Nasser [60]

1.3 Scientific background

The elastic or reversible deformations of ductile metals can be described
by a hyperelastic material law which assumes the existence of an elastic
potential function [52, 166, 134, 24]. Frequently the plastic material be-
havior is described by a yield condition and flow rule which only depend
on the deviatoric stress state. In contrast Spitzig et al. [150, 147] have
experimentally shown that also the hydrostatic stress state has remark-
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able influence on the plastic behavior of ductile metals while Brünig [24]
has shown remarkable influence of the hydrostatic stress state on the lo-
calization behavior of ductile solids. Due to this fact, within this thesis a
Drucker-Prager type of yield condition [50] is used.

Having a closer look at ductile damage and following the review of Garri-
son and Moody [55], the observation of ductile damage was first reported
by Henry [67] in 1855. In this paper, firstly a disquisition is made on the
marble for the extension of the United States capitol which is followed
by the descriptions of tension experiments with rods of lead. Here he
observes:

[...] the interior fibres of a rod of this material may be entirely
separated, while the outer surface presents no appearance of
change.

Consequently, he describes the ongoing process of ductile damage and
fracture. A further early paper containing a description of the phenom-
ena of ductile damage and fracture was published by Ludwik [110] in
1927. This publication already includes a photo of a cross section clearly
indicating the growth of micro voids and a macro crack.

The paper of Kachanov [75] published in 1958 can be seen as the start-
ing point of damage mechanics, i.e. the phenomenological description of
the damage process. This initial paper was translated from Russian to
English and published in the International Journal of Fracture [78]. Here
he states:

Although we discuss microcracking, the results can be inter-
preted in a more general way, in terms of development of
damage.

Thus he clearly distinguished between microcracking, i.e. the begin-
ning of fracture and ongoing deterioration of the material, i.e. damage.
Kachanov [75] introduced damage as a scalar variable and created the
idea of effective stress. Furthermore it can be mentioned that Rabotnov
[136] modified the notation to which became frequently used today in
damage mechanics.

Besides this phenomenological description of damage, a second branch of
research developed which is based on micromechanical studies of pores
in elastic-plastic material. The first pioneering works have been pre-
sented by McClintock [115] in 1968 and by Rice and Tracey [138] in 1969.
McClintock [115] considered cylindrical voids with circular and elliptical
lateral cut within an elastic-plastic non-hardening material subjected to
tension with transverse stress. Here damage is defined by the change of
diameter of the voids and a criterion for the coalescence of pores is in-
troduced which is also based on the pore diameter. These first studies
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show already a strong dependence of the stress state, namely triaxiality
on void growth. Rice and Tracey [138] reviewed models of one spherical
void in an elastically rigid, plastically incompressible material without or
with linear hardening which were subjected to tensile stress superimposed
with hydrostatic stress leading to an approximation for the void growth
for different stress states.

Further micromechanical studies of an elastic-plastic material sample un-
der plane strain conditions with periodic cylindrical voids have been re-
alized by Needleman [126] in 1972. Due to the alignment of voids, the
material behavior between voids could be reviewed giving a good indi-
cation of void interaction and consequently offering a first indication to
void coalescence. In addition, Gurson [61] based his micromechanical
considerations in 1977 on analytical investigations of a reference volume
element with one single void. The material behavior was considered to
be elastic-plastic whereas the influence of the void volume fraction as
one single parameter was included to the yield criterion reducing the
yield stress. Thus this model introduced by Gurson could predict void
growth whereas terms for void nucleation and coalescence were added
later by Tvergaard and Needleman [158, 161] although those required
the introduction of additional material parameters. Due to the fact that
damage is directly related to void volume fraction, the Gurson-Tvergaard-
Needleman (GTN) model in this form provides acceptable results where
void growth and nucleation are the major damage mechanisms, i.e. at
high triaxialities. Today the GTN model is available in several commer-
cial computer codes and is used and extended for ongoing investigations,
see e.g. [106, 49, 114, 70]

Another frequently used model to predict fracture of ductile metals was
introduced by Johnson and Cook [72, 73]. Based on an extensive series
of experiments, considering various metals at different strain rates and
temperatures, they first introduced a hardening law with a multiplicative
decomposition of the strain rate and temperature effects. Especially the
strain rate and temperature effects on the plastic material behavior were
considered. Later they extended the model by introducing a variable as
the sum of the increment of the equivalent plastic strain divided by the
equivalent strain to fracture. This variable can be easily updated in each
time step and thus leads to a simple numerical model. The equivalent
strain to fracture is also multiplicatively decomposed reflecting strain
rate and temperature effects. Thus the Johnson and Cook model does
not consider damage in a physical sense. It predicts strain rate and
temperature dependent behavior of the material and provides a fracture
criterion based on accumulated equivalent plastic strains.

Motivated by the need of a phenomenological damage model for the simu-
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lation of real structures but reflecting the mechanisms on the micro scale,
Lemaitre [98, 99] picked up the ideas of Kachanov [75] and Rabotnov [136]
described above and introduced a continuum damage model. He used a
scalar damage variable which had direct influence on Young’s modulus
(see Fig. 1.7) and therefore is related to the concept of effective surface,
i.e. damage is a surface related measure. Furthermore, the hypothesis
of strain equivalence describes that the strain behavior of the damaged
material is represented by that of an undamaged material, only replac-
ing the stress by the effective stress. In continuation several authors,
see e.g. [154, 43], picked up Lemaitres ideas and modified the damage
model for different applications, specially Bonora [20] found three differ-
ent damage evolution trends which he adopted into his damage model.
Later Lemaitre [102] extended the aforementioned model from the out-
lined isotropic damage to anisotropic, i.e. a tensorial, description and
special focus on closure effects [48] was given. Furthermore, the damage
model has been applied to many practical applications such as bulk metal
forming [7] and deep drawing [130].

33000

(a) (b)

(c)

ε

ε

ε

F Ẽ/E

DE Ẽ
99000

Figure 1.7: (a) Load strain curve of copper with unloading pathes,
(b) corresponding evolution of Young modulus ratio Ẽ/E,
(c) corresponding evolution of damage D as described in
Lemaitre’s damage model, Figs. taken from [103] and [100].

In 1981 Murakami and Ohno [124] presented a model to analyze creep
damage where damage is represented by a second order tensor which al-
lows the reflection of anisotropic damage. Here in the kinematics, different
configurations are introduced which are fictitiously undamaged or/and
elastically unloaded [121]. The different configurations are related to
each other by the elastic deformation gradient and different damage ten-
sors. Furthermore, Murakami [121] generalized the ideas of Kachanov [75]
and Rabotnov [136] with respect to net-stress to multiaxial states. Later
Murakami et al. [123] studied experimentally the evolution of damage
in elastic-plastic-damage materials in connection with the existence of a
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damage surface.

Besides aforementioned approaches, several further damage models with
different focus have been presented. For instance, Kachanov [76] intro-
duced a tensorial quantity, allowing the description of anisotropic effects
of damage on the elastic properties which was kinematically motivated by
an undamaged and a damaged configuration. Krajcinovic and Fonseka
[88, 89] proposed a model for the damage description in brittle materi-
als which was extended to ductile materials by Krajcinovic [84]. Here
damage is introduced as an axial vector and is motivated by a dissipa-
tion potential, i.e. two dissipative processes, plasticity and damage, are
considered. The concept of effective stress is generalized by Chaboche
[38, 39] where damage is represented by a non-symmetric fourth-order
tensor. In contrast Betten [17, 18] generalizes Rabotnov’s damage con-
cept of net-stress to a second-order tensor representation, allowing the
representation of anisotropic damage effects. Both Chaboche [39] and
Betten [17] first focused on creep damage whereas Chow and Wang [45]
concentrated on ductile damage. Chow and Wang [45] also extended
the concept of effective stress to a tensorial representation which could
represent the anisotropic effects but also proposing a simplified version
for isotropic damage. Later Lu and Chow [109] presented an alternative
formulation based on the concept of effective strain (hypothesis of stress
equivalence) which was introduced by Cordebois and Sidoroff [46] and
compared with the concept of effective stress (hypothesis of strain equiv-
alence) by Simo and Ju [144]. Voyiadjis and Kattan [164, 165] extended
the effective stress concept to a second order tensor representation of
damage with special focus on small elastic strain and remarkably bigger
inelastic strain, i.e. ductile damage. The model was applied in conjunc-
tion with a GTN-type yield function. Bruhns and Schiesse [36] presented
a model for materials with large plastic deformations where damage is
kinematically motivated by the introduction of different configurations.
Furthermore, the model is characterized by a clear distinction between
internal damage variables and variables characterizing the macroscopic
damage whereas the failure of the material is characterized by a failure
criterion. Steinmann and Carol [152] also introduced damage kinemati-
cally using a distinction between undamaged (microscopic) and damaged
(macroscopic) configurations forcing strain energy equivalence. The con-
figurations are related to each other by damage deformation gradients
with corresponding metrics. The damage model presented by Brünig
[25, 26] will be discussed in detail and extended in its temperature and
strain rate dependence form [28] within this thesis. Lately Vignjevic et
al. [163, 162] proposed a phenomenological damage model to predict the
dynamic behavior of orthotropic metals by shock wave induced deforma-
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tions. Here also the two dissipative processes of plasticity and damage are
characterized by potentials but in contrast a multiplicative decomposition
into an elastic, a plastic and a damage part is used.

Thus damage mechanics developed continuously after Kachanov’s [75]
first paper, whereas several new ideas have been presented at the end of
the Seventies and the beginning of the Eighties of the last century. Mean-
while several reviews have been published, for instance Murakami [120]
focussed on anisotropic damage in metals from an experimental and math-
ematical point of view; Krajcinovic [85] first compared and summarized
the presented damage models and later focused on brittle damage [86];
Chaboche [40, 41, 42] reviewed the damage definitions and described the
connection between damage and fracture; Tvergaard [159] put his main
focus on void growth and coalescence, i.e. he described the process when
discrete cavities develop firstly into micro cracks and finally into macro
cracks whereas the same subject was picked up lately by Benzerga and
Leblond [15]. Also several books were published on damage mechanics
which give partly emphasis to selected subjects or are general overviews.
For instance, Kachanov [77] focused on the mechanical description of
damage with special focus on creep in connection with damage whereas
Lemaitre [100] described in detail the physical nature of damage and
the possibilities of damage measurement. Furthermore, Lemaitre and
Desmorat [101] described in their extended publication anisotropic dam-
age models. Krajcinovic [87] first focused on the internal structure of the
material and its influence on the material behavior and then described mi-
cromechanical motivated models and phenomenological motivated mod-
els whereas Altenbach and Skrzypek [4] collected different contributions
in connection with creep and damage. Recently Zang and Cai [171] pre-
sented an extensive overview on damage mechanics, while Murakami [122]
gave a general introduction to damage and then focused on different appli-
cations whereas Saanouni [141] wrote about more practical applications
in metal forming.

Currently great efforts are made to study the damage mechanisms at dif-
ferent stress states. Therefore specimens with different shapes have been
designed to force damage occurrence and final fracture at different stress
states. Generally accompanying numerical simulations are performed to
estimate the stress state in the specimens’ regions of interest. For instance
Gao et al. [54] presents an extensive experimental programm containing
smooth as well as notched round bars, notched metal sheets and torsion
specimen to analyze its ductile plastic and fracture behavior whereas
Mohr and Henn [119] propose a new testing device and a new butterfly
shaped specimen which can be tested at different angles which lead to
different triaxialities at the location where cracking occurs.
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The initiation of a macro crack is generally described through a fracture
criterion. On the one hand, as mentioned before with respect to the
Johnson and Cook [72, 73] material model, this fracture criterion does not
necessarily depend on a prior damage process and Bao and Wierzbicki
[10, 11] studied the influence of stress triaxiality on ductile fracture. On
the other hand, the process of ductile damage comprises the process of
ongoing deterioration of the material as it can be clearly seen by the
change of the elastic material properties prior to fracture and thus the
introduction of a damage measure is obviously necessary. And, continuing
this idea, the damage measure can be used to define a fracture criterion,
for instance the GTN-model depends on a critical void volume fraction,
i.e. a measure with specific physical meaning, as fracture criterion, see
[161, 159]. This explicit physical meaning is not always given, for instance
Xue [170] extended the GTN-model to predict more precisely damage and
failure under more shear-like stress conditions introducing a new internal
variable for damage detached from the void volume fraction. Furthermore
Nahshon and Hutchinson [125] picked up the ideas of Bao and Wierzbicki
[10, 11] in order to extend the GTN-model to application with shear-like
fracture, also taking into account the Lode parameter.

The subject of strain rate and temperature sensitivity has been widely
discussed within the open literature. Focussing on stainless steel which is
one of the materials considered in this thesis for examples: Hecker et al.
[66] investigated the change of the microstructure at different strain rates
in compression tests whereas Semiatin and Holbrook [142, 143] focussed
on different strain rates using torsion tests. Furthermore Stout and Fol-
lansbee [153] analyzed tension and compression tests over a wide range of
strain rates while Ishikawa and Tanimura [71] researched the effects of low
temperatures. In the last years Nemat-Nasser and co-workers published
several papers, e.g. [129, 128, 60], investigating the behavior of different
(stainless) steels with a new technique in Split-Hopkinson-Bar for a wide
range of temperatures.

Overall it can be seen that the damage and fracture process of ductile
metals is still subject of current research. In this connection the need
for experimental data allowing to study the damage and fracture behav-
ior under different stress states, temperatures and elevated strain rates
is evident, i.e. the design of new specimen geometries is of interest and
the applicability of experimental techniques has to be evaluated. Fur-
thermore, these experimental observations have to be transferred into a
continuum damage and fracture model allowing to predict the complete
deformation process until final fracture for different stress states, elevated
temperatures and strain rates. In this connection a procedure is needed
to identify all necessary model parameters. Finally, the continuum dam-
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age and fracture model has to be implemented into a simulation software
which can be used to predict the damage and failure behavior of compo-
nents and structures.

1.4 Scope and classification of this work

The need of an efficient, phenomenological continuum damage and frac-
ture model, which can be used for the prediction of damage and failure
under different stress states, strain rates and temperatures, is evident for
many industrial applications such as car crash simulations, high-speed
machining and penetration processes. To fulfill this need, the following
objectives are analyzed within this thesis:
• Presenting the continuum damage and fracture model introduced by

Brünig [25, 26, 28] in its rate- and temperature-dependent form. In
addition, the damage softening behavior is reviewed and a fracture
criterion is added to describe the complete deformation process until
final fracture occurs.
• Realizing the numerical implementation into the explicit Finite El-

ement code LsDyna via a user-defined subroutine.
• Describing the necessary experiments to analyze the material be-

havior under different stress states, strain rates and temperatures.
Presenting the results of the realized experiments in order to iden-
tify the material constants and discussing this process in detail for
the stainless steel Inox 304L.
• Investigating the possibility to realize three-dimensional numerical

simulations of Split-Hopkinson-Bar experiments and proposing a
sufficiently precise model by acceptable numerical costs.
• Demonstrating the applicability of the coded model by realizing

simulations of executed Split-Hopkinson-Bar experiments and com-
paring the numerical results with the experimental data.
• Evaluating the geometry of the so-called M-Shape specimen with

respect to suitability for the extraction of material curves. Study-
ing the geometry of a specimen with shear like failure and propose
modifications.

This thesis is structured as follows: In Chap. 2 the continuum damage and
fracture model is introduced while Chap. 3 illustrates the numerical imple-
mentation. In continuation, an experimental overview is given in Chap. 4
whereas in Chap. 5 the procedure to identify the material parameters is
presented in detail for the stainless steel Inox 304L. Several numerical
examples are given in Chap. 6 mainly concerning Split-Hopkinson-Bar
experiments. Finally, Chap. 7 summarizes the main issues and extracted
conclusions of this thesis and offers a perspective for future works.



2 Continuum damage and fracture model

2.1 Kinematics

The macroscopic phenomenological framework was presented by Brünig
in [25, 26] for the description of large elastic-plastic-damage deformations
of metals, including anisotropic damage and goes back for isotropic con-
siderations to Lehmann [96, 97]. A representation of the kinematics is
given in Fig. 2.1. The main ideas of this kinematic framework can be
outlined as follows:

• Introduction of a damaged set and a fictitious undamaged set of
configurations,

• Use of the metric transformation tensor Q which is a mixed variant
representation of the left Cauchy-Green-Tensor B,

• In both sets of configurations a fictitious stress free placement is
taken into account,

• Damage tensors R,
o

R,
?

R relate the damaged and fictitious undam-
aged configurations to each other.

B
o
B

?
B

fictitious
undamaged

o
R

o
E

?
R

?
E

Q

damaged

Q̄pl

E

QelQpd

R

Q̄el

Q̄

Figure 2.1: Configurations and metric transformation tensors
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At this point it is important to notice that the used kinematic decompo-
sition of the physical processes is different to the multiplicative decompo-
sition of the deformation gradient into an elastic and an plastic part as
proposed by Lee [92] and frequently used, see for instance [121, 169, 165].
As Lehmann [94] points out, Lee’s approach leads to rotations on the
intermediate configuration which need to be treated in a suitable way to
obtain reasonable strain measures while the presented kinematics avoid
this problem directly.

For further considerations all quantities are referred to the current place-
ment B. Furthermore it is assumed that the body can be considered as a
classical continuum, although it shows micro defects, see [96, 137].

2.1.1 Damaged configurations

The base vectors
o
gi are related to the initial undeformed configuration

o

B which might have an initial damage. Furthermore, the base vectors gi
correspond to the elastically and plastically deformed as well as damaged
configuration B. By fictitiously removing the elastic deformations, the

stress-free configuration
?

B with base vectors
?
gi are stated. For these

three configurations the associated metric coefficients are given by

o

Gij =
o
gi ·

o
gj − initial,

Gij = gi · gj − current, deformed and damaged,
?

Gij =
?
gi ·

?
gj − inelastically deformed and damaged.

(2.1)

The complete deformation, i.e. elastic and inelastic, is represented by the
metric transformation tensor

Q = Qi·jgi ⊗ gj =
o

GikGkjgi ⊗ gj =
o

Gijgi ⊗ gj = FFT = B (2.2)

where it clearly can be seen that Q is a mixed variant representation
of the left Cauchy-Green-Tensor B while F is the deformation gradient.
This formulation goes back to Lehmann [94, 95] and has been used by
Brünig [25].

Analogically the elastic metric transformation tensor

Qel =
(
Qel
)
i
·jgi ⊗ gj =

?

GikGkjgi ⊗ gj (2.3)
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and the inelastic metric transformation tensor

Qpd =
(
Qpd

)
i
·jgi ⊗ gj =

o

Gik
?

Gkjgi ⊗ gj , (2.4)

characterizing plastic and damage related deformations, are introduced
and directly transferred to the current configuration. In this represen-
tation it is evident that Qel is a symmetric tensor whereas Qpd is non-
symmetric. Given these definitions, the outcome is the multiplicative
decomposition of the metric transformation tensor

Q = QpdQel. (2.5)

Now the logarithmic Hencky strain tensor

A =
1

2
ln Q =

1

2
ln
(
Qi·j

)
gi ⊗ gj = Ai·jgi ⊗ gj (2.6)

and the elastic Hencky strain tensor

Ael =
1

2
ln Qel (2.7)

can be defined, indicating that the elastic strains are kinematically inde-
pendent from the inelastic deformations. Additionally, the non-symmetric
objective Oldroyd rate of the metric transformation tensor

Q̇ =
o

GikĠkjgi ⊗ gj (2.8)

and the symmetric strain rate

Ḣ =
1

2
Ġijgi ⊗ gj =

1

2
GikĠkjgi ⊗ gj (2.9)

are defined. By straight forward manipulations it can be shown that

Ḣ =
1

2
Q−1Q̇ (2.10)

which leads by the use of Eq. (2.5) to the additive decomposition

Ḣ =
1

2

(
Qel
)
−1
(
Qpd

)
−1
[
Q̇

pd
Qel + QpdQ̇

el
]

=
1

2

(
Qel
)
−1
(
Qpd

)
−1Q̇

pd
Qel +

1

2

(
Qel
)
−1Q̇

el

= Ḣ
pd

+ Ḣ
el

(2.11)

defining the first part of the sum as the inelastic strain rate, Ḣ
pd
, and
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the second part as the elastic one, Ḣ
el
.

2.1.2 Undamaged configurations

Corresponding to the damaged configurations fictitious undamaged con-
figurations are introduced. In particular by fictitiously removing the ini-

tial damage of the initial configuration
o

B, this results in the initial, ficti-

tious undamaged configuration
o

E with base vectors
o
ei. Furthermore, the

current fictitious undamaged configuration E with base vectors ei is ob-
tained from the current placement B; finally the plastically deformed, but

stress free configuration
?

E with base vectors
?
ei corresponds to the inter-

mediate configuration
?

B. To these placements the corresponding metric
coefficients are

o

Eij =
o
ei ·

o
ej − initial,

Eij = ei · ej − current, elastically and plastically deformed,
?

Eij =
?
ei ·

?
ej − plastically deformed.

(2.12)

Analogically to the damaged configurations, metric transformation ten-
sors between these configurations can be defined and directly transferred
to the configuration E with basis ei. Furthermore, with the use of the
damage deformation gradient

F̃ = gi ⊗ ei (2.13)

these metric tranformation tensors can be pushed forward to the current
configuration B with basis gi, see [26] for more details. So finally this
results in the representations

Q̄ =
o

EikEkjgi ⊗ gj

Q̄el
=

?

EikEkjgi ⊗ gj

Q̄pl
=

o

Eik
?

Ekjgi ⊗ gj

(2.14)

clearly indicating that these tensors are non-symmetric. That allows the
multiplicative decomposition

Q̄ = Q̄plQ̄el
. (2.15)
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This leads to the definition of the effective logarithmic strain tensor

Ā =
1

2
ln Q̄ (2.16)

and to the effective logarithmic elastic strain tensor

Āel
=

1

2
ln Q̄el (2.17)

as well as to the effective strain rate

˙̄H =
1

2
Q̄−1 ˙̄Q

=
1

2

(
Q̄el
)
−1
(
Q̄pl

)
−1 ˙̄QplQ̄el

+
1

2

(
Q̄el
)
−1 ˙̄Qel

= ˙̄Hpl + ˙̄Hel

(2.18)

whereas the additional decomposition is introduced defining plastic strain
rate tensor ˙̄Hpl as the first part of the sum and the elastic strain rate
tensor ˙̄Hel as the second part of the sum.

2.1.3 Damage tensors

The kinematic relations between the damaged and undamaged configura-
tions, i.e. the kinematics of damage, are characterized by the introduction
of metric transformation tensors and the corresponding logarithmic strain
measures. By considering the simultaneous motion of the real body and
the corresponding fictitious undamaged one, the metric transformation
tensors

o

R =
o

Ri·jgi ⊗ gj =
o

Eik
o

Gkjgi ⊗ gj

R = Ri·jgi ⊗ gj = EikGkjgi ⊗ gj

?

R =
?

Ri·jgi ⊗ gj =
?

Eik
?

Gkjgi ⊗ gj

(2.19)

are introduced which are directly transferred to the final configuration B.
In detail, as shown in Fig. 2.1, the tensor

o

R characterizes the generally
known initial damage, as the tensor R reflects the final damage between
the final damaged configuration B and the final, fictitious undamaged

configuration E . Finally the metric tensor
?

R relates the elastically un-

loaded configurations
?

B and
?

E to each other. Following Murakami [121]
and Brünig [25, 26], the definition of proper damage variables has to
be realized on the elastically unloaded configurations, since the current
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damage tensor R also depends on the current deformation. Therefore, the

damage tensor
?

R is used to define the appropriate damage measurement
and the corresponding logarithmic damage strain tensor

Ada =
1

2
ln

?

R (2.20)

as well as the damage strain rate

Ḣ
da

=
1

2

?

R−1
?̇

R (2.21)

can be defined.

2.1.4 Decomposition of deformation

With these definitions one can notice at Fig. 2.1 that the metric trans-
formation tensor Q can be multiplicatively decomposed

Q =
o

R−1Q̄pl ?RQel, (2.22)

into parts reflecting the initial damage, the plastic deformation, the com-
plete damage state and the elastic deformation. Starting out with Eq. (2.10)
and using Eq. (2.22), after some manipulation as shown in Eqs. (2.23)

Ḣ =
1

2
Q−1Q̇

=
1

2

(
Qel
)−1 ?

R−1
(
Q̄pl

)−1 o

R

o

R−1

[
˙̄Qpl ?RQel + Q̄pl ?̇RQel + Q̄pl ?RQ̇

el
]

=
1

2
R−1

(
Q̄el
)(

Q̄pl
)

˙̄QplQ̄elR

+
1

2

(
Qel
)−1 ?

R−1
?̇

RQel +
1

2

(
Qel
)−1

Q̇
el

= R−1 ˙̄HplR +
(
Qel
)−1

Ḣ
da

Qel + Ḣ
el

(2.23)

the result is a complete additive decomposition of the strain rate tensor
into an effective plastic, a damage and an elastic part.

As frequently used in homogenization theories, it is assumed that the

configurations
?

B and B relate in the same way as the configurations
?

E
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and E , see [26], means

Qel = Q̄el (2.24)

which leads to the equivalence of the elastic strain tensors

Ael =
1

2
ln Qel =

1

2
ln Q̄el

= Āel (2.25)

where Eqs. (2.7, 2.17) have been used and to the equivalence of the elastic
strain rates

Ḣ
el

=
1

2

(
Qel
)−1

Q̇
el

= ˙̄Hel. (2.26)

2.2 Thermodynamics

Based on the kinematics of damaged and effective undamaged configura-
tions, the concepts of thermodynamics are applied. In this context the
effective undamaged configurations are used to formulate the thermo-
elastic-plastic constitutive equations, the anisotropically damaged config-
urations are used to formulate thermo-elastic-plastic-damaged constitu-
tive behavior [28]. In this section, the thermodynamic principles are used
to provide the necessary equations to be able to formulate the constitutive
equations of the following section.

2.2.1 Undamaged configurations

This section covers the thermodynamics of elastic-plastic continua which
are related in this context to the kinematics of the effective undamaged
configurations. The subject has been discussed by Brünig and Driemeier
[32], who realize simulations of Taylor impact tests considering elastic-
plastic material behavior.

The rate of the effective specific mechanical work ˙̄w is additively decom-
posed into elastic and plastic parts, where Eq. (2.18) is used, and the cor-
responding work conjugate effective Kirchhoff stress tensor T̄ = T̄ i·jgi⊗gj

is introduced

ρo ˙̄w = ρo ˙̄wel + ρo ˙̄wpl = T̄ · ˙̄H = T̄ · ˙̄Hel + T̄ · ˙̄Hpl. (2.27)

Here ρo represents the mass density of the initial configuration, ˙̄wel the
elastic part of the effective specific mechanical work and ˙̄wpl the plas-
tic part of the effective specific mechanical work. Introducing the local
formulation of the first law of thermodynamics, the rate of the effective
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specific internal energy ˙̄u is represented as

ρo ˙̄u = T̄ · ˙̄H− divq̄ = ρ0 ˙̄w − divq̄ (2.28)

where q̄ is the Kirchhoff heat flux vector. Besides that the effective
Helmholtz free energy

φ̄ = ū− θs̄ (2.29)

is introduced by the Legendre transformation where θ represents the abso-
lute temperature and its work conjugate variable s̄ is the effective specific
entropy. The rate of the effective Helmholtz free energy can be derived
to

˙̄φ = ˙̄u− θ̇s̄− θ ˙̄s, (2.30)

which can be rearranged and introduced into Eq. (2.28) leading to

divq̄ = ρo
(

˙̄w − ˙̄φ− θ̇s̄− θ ˙̄s
)
. (2.31)

Furthermore, the effective specific Helmholtz free energy is additively
decomposed into a thermo-elastic part φ̄el and a thermo-plastic part φ̄pl

φ̄
(
Ael, γ, θ

)
= φ̄el

(
Ael, θ

)
+ φ̄pl (γ, θ) (2.32)

where γ denotes the scalar plastic internal variable, characterizing the
plastic material behavior. By using this decomposition it is assumed
that the elastic deformations are independent from the plastic variables
whereas φ̄el can be recovered completely and φ̄pl corresponds to dissi-
pative plastic processes [32]. In addition, the rate of Eq. (2.32) can be
obtained to

˙̄φ =
∂φ̄el

∂Ael · Ȧ
el

+
∂φ̄pl

∂γ
γ̇ +

∂φ̄

∂θ
θ̇. (2.33)

Furthermore the Clausius-Duhem-inequality or second law of thermody-
namics can be written as

ρo ˙̄s+ div
( q̄
θ

)
> 0. (2.34)

Within this thesis fast deformation precesses are studied which can be
assumed to be adiabatic, i.e. q̄ = 0 as well as divq̄ = 0 and thus Eq. (2.34)
reduces to ˙̄s > 0. This fact is considered in the following manipulations
and the terms considering the heat flux q are neglected.

Following Lehmann [96] and Brünig [26] one arrives with Eqs. (2.31, 2.27,
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2.33) for adiabatic processes at the inequality(
T̄− ρo

∂φ̄el

∂Ael

)
· ˙̄Hel − ρo

(
s̄+

∂φ̄

∂θ

)
θ̇ + ρo ˙̄wpl − ρo

∂φ̄pl

∂γ
γ̇ > 0. (2.35)

By considering the hyperelastic constitutive law

T̄ = ρo
∂φ̄el

∂Ael (2.36)

as well as the thermic constitutive law

s̄ = −∂φ̄
∂θ

(2.37)

Eq. (2.35) reduces to

ρo ˙̄wpl − ρo
∂φ̄pl

∂γ
γ̇ = T̄ · ˙̄Hpl − ρo

∂φ̄pl

∂γ
γ̇ > 0 (2.38)

which characterizes the internal dissipation [32] and is a restriction for
the formulation of constitutive equations.

The evolution equation for the temperature is obtained by starting out
with Eq. (2.31) and making use of the hyperelastic constitutive law (2.36)
as well as the thermic constitutive law (2.37) to

cF θ̇ = ˙̄ψpl + ˙̄ψel (2.39)

where the specific heat

cF = −ρoθ
∂2φ̄

∂θ2
(2.40)

has been introduced. Furthermore in Eq. (2.39)

˙̄ψpl = T̄ · ˙̄Hpl − ρo
∂φ̄pl

∂γ
γ̇ + ρoθ

∂2φ̄pl

∂θ∂γ
γ̇ (2.41)

represents the plastic and

˙̄ψel = ρoθ
∂2φ̄el

∂θ∂Ael · Ȧ
el

(2.42)

the thermo-elastic contribution to heating. The task of plastic dissipa-
tion has been widely discussed in literature, see for instance [19, 140, 28]
where also its rate and temperature dependence is discussed. The present
proposal follows Rosakis et al. [140], where the fraction of plastic work
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converted to heating

ξ =
˙̄ψpl

ρo ˙̄wpl (2.43)

is introduced [28], which leads to

˙̄ψpl = ξρow̄
el = ξT̄ · ˙̄Hpl. (2.44)

Furthermore, experiments realized by Mićunović et al. [116] can be taken
into account which indicate that the increase in temperature due to elastic
deformation is very small compared with that one due to the plastic
dissipation. Thus this leads to the assumption that the elastic effects are
negligible, therefore Eq. (2.39) reduces to

cF = ξT̄ · ˙̄Hpl. (2.45)

2.2.2 Damaged configurations

For the anisotropically damaged state the rate of the specific mechanical
work ẇ is additively decomposed into an elastic part, a plastic part and
a damage part. Furthermore the work conjugate Kirchhoff stress tensor
T = T i·jgi ⊗ gj is introduced and by the use of Eq. (2.23) one arrives at
the final expression of

ρoẇ = ρoẇ
el + ρoẇ

pl + ρoẇ
da

= T · Ḣ = T ·
[
Ḣ

el
+ R−1 ˙̄HplR +

(
Qel
)−1

Ḣ
da

Qel
]
.

(2.46)

Furthermore the rate of the specific internal energy is given by

ρou̇ = ρoẇ − divq (2.47)

where q describes the Kirchhoff heat flux vector. Additionally, the specific
Helmholtz free energy φ is introduced by the Legendre transformation to
φ = u− θs, whereas

φ̇ = u̇− θ̇s− θṡ (2.48)

represents its rate. Here s represents the specific entropy of the current
damaged configuration. Furthermore, the Helmholtz free energy is addi-
tively decomposed into a thermo-elastic, a thermo-plastic and a thermo-
damage part

φ
(
Ael,Ada, γ, µ, θ

)
= φel

(
Ael,Ada, θ

)
+φpl (γ, θ)+φda (µ, θ) . (2.49)
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where µ represents the internal damage variable characterizing the cur-
rent damage state. Here it can be noted that the thermo-elastic part
φel depends on the elastic Ael and damage strains Ada clearly reflecting
that damage influences the elastic behavior of the material which reflects
the experimental observations. Furthermore, the thermo-plastic part φpl

which reflects the plastic hardening is related to the internal plastic vari-
able γ and the thermo-damage part φda which is due to damage processes
is related to the internal damage variable µ. Thus it is assumed that the
plastic and the damage behavior as well as the elastic and damage be-
havior are independent from each other, [100]. In addition all three parts
depend on the temperature θ.
This leads to the representation of the rate of the Helmholtz free energy
function

φ̇ =
∂φel

∂Ael · Ȧ
el

+
∂φel

∂Ada · Ȧ
da

+
∂φpl

∂γ
γ̇ +

∂φda

∂µ
µ̇+

∂φ

∂θ
θ̇. (2.50)

For the damaged state the second law of thermodynamics related to the
internal dissipative processes can be written as

ρoṡ+ div
(q
θ

)
> 0. (2.51)

In continuation with Eqs. (2.47, 2.48) and the identity

div
(q
θ

)
=

1

θ
divq− 1

θ2
q · grad θ (2.52)

Eq. (2.51) can be rewritten to

ρo
[
ẇ − φ̇− θ̇s

]
− 1

θ
· grad θ > 0. (2.53)

Again considering only adiabatic processes, i.e. q = 0, the second law of
thermodynamics reduces to ṡ > 0 and Eq. (2.53) can be written as

ẇ − φ̇− θ̇s > 0. (2.54)

Following Lehmann [96] and Brünig [26] as well as Eq (2.54) and making
use of Eqs. (2.46) and (2.50) one arrives at(

T− ρo
∂φel

∂Ael

)
· Ḣel − ρo

(
s+

∂φ

∂θ

)
θ̇ + ρoẇ

pl − ρo
∂φpl

∂γ
γ̇

+ρoẇ
da − ρo

∂φel

∂Ada · Ȧ
da − ρo

∂φda

∂µ
µ̇ > 0.

(2.55)
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In addition the hyperelastic constitutive law

T = ρo
∂φel

∂Ael (2.56)

as well as the thermic constitutive law

s = −∂φ
∂θ

(2.57)

are taken into account and the inequality Eq. (2.55) is split while assuming
a stronger formulation one arrives at

ẇpl − ∂φpl

∂γ
γ̇ > 0 (2.58)

and

T̃ · Ḣda − ρo
∂φel

∂Ada · Ȧ
da − ρoφ̇da > 0 (2.59)

describing the internal dissipation. Here it is important to point out that
the plastic potential function of Eq. (2.58) is not needed in detail since
the plastic strain rate ˙̄Hpl is based on the potential function φ̄pl which is
related to the undamaged configuration and has to satisfy Eq. (2.38). But
Eq. (2.59) is applied since φel and φda are considered and furthermore it
expresses that the damage part of the deformation will be given by Ḣ

da

introduced in Eq. (2.21) while the corresponding work conjugate stress
tensor is

T̃ = QelT (Qe)−1 . (2.60)

2.3 Constitutive equations

2.3.1 Effective undamaged configurations

On the effective undamaged configurations a thermo-elastic-plastic mate-
rial model is adapted [28]. The hyperelastic isotropic material behavior
with temperature dependence is governed by the effective Helmholtz free
energy function

ρoφ̄
el
(
Ael, θ

)
= GAel ·Ael +

1

2

(
K − 2

3
G

)(
trAel

)2

+ 3KαT (θ − θo) trAel + ρoh̄ (θ)

(2.61)
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where G represents the shear modulus and K the bulk modulus of the
matrix material. Furthermore, αT denotes for the coefficient of thermal
expension and h̄ is an explicit function of temperature. By differentiation
to the corresponding strain measure, one obtains with Eq. (2.36) the
work-conjugate effective Kirchhoff stress tensor

T̄ = 2GAel +

(
K − 2

3
G

)
trAel1− 3KαT (θ − θo) 1. (2.62)

The plasticity model is based on the experiments by Spitzig et al. [150,
147, 148] who studied the plastic behavior of different ductile metals
and detected important influence of the hydrostatic pressure on the yield
behavior. Thus a Drucker-Prager-type yield condition

fpl = aĪ1 +
√
J̄2 − c (γ, γ̇, θ) = 0 (2.63)

is chosen, where a, the hydrostatic stress coefficient, depends on the stress
state, but the fraction a/c based on experimental observations can be
assumed to be constant. Furthermore, Ī1 = trT̄ is the first invariant of
the effective stress tensor, Eq. (2.62), and J̄2 = 1

2
devT̄ · devT̄ the second

invariant of its deviator, whereas c (γ, γ̇, θ) is the equivalent stress measure
depending on the equivalent plastic strain γ, the equivalent plastic strain
rate γ̇ and the temperature θ. The rate- and temperature dependent
plastic behavior is described by

c (γ, γ̇, θ) = c̃ (γ) f1 (γ̇) f2 (θ) (2.64)

which is a multiplicative decomposition, which is similar to the frequently
applied Johnson–Cook [72, 73] material model and based on experimental
data [28]. The rate-independent hardening behavior is characterized by
the power law

c̃ (γ) = c̃o

(
Hoγ

nc̃o
+ 1

)n
(2.65)

where c̃o represents the initial yield stress, Ho the hardening parame-
ter and n the hardening exponent [26]. The fact that the material reacts
stiffer with increasing strain rates is characterized by the strain rate hard-
ening function

f1 (γ̇) = 1 + d

(
γ̇ − γ̇o
γ̇o

)m
(2.66)

valid for γ̇ > γ̇o where d and m are further material parameters and γ̇o is
the strain rate of the quasi-static reference test. The circumstances, that
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with increasing temperature a softer material response has been observed
in experiments with metals is characterized by the thermal softening func-
tion

f2 (θ) = 1− b sgn
(
θ − θo
θm − θo

)[
abs

(
θ − θo
θm − θo

)]q
(2.67)

where b and q are further material parameters, whereas θo represents the
reference temperature and θm is the melting temperature [28]. Further-
more, Eq. (2.67) has the constraint f2 > 0 which leads to

θ <

(
1

b

)1/q

θm. (2.68)

Since the partial derivatives of Eq. (2.64) are needed during numerical
integration in Sec. 2.4.2, these are given here for completeness:

∂c

∂γ
= f1 (γ̇) f2 (θ)Ho

(
Hoγ

nc̃o
+ 1

)(n−1)

, (2.69)

∂c

∂γ̇
= c̃ (γ) f2 (θ)

md

γ̇o

(
γ̇ − γ̇o
γ̇o

)(m−1)

(2.70)

and

∂c

∂θ
= −c̃ (γ) f1 (γ̇)

bq

θm

(
θ − θo
θm − θo

)(q−1)

. (2.71)

where the constraint of Eq. (2.68) has to be respected.

Based on the experiments by Spitzig et al. [149] who observed only
marginal plastic volume increase the plastic potential function is chosen
to be non-associated, i.e. neglecting the influence of Ī1 to

gpl (T̄, γ, θ) =
√
J̄2 − co (γ, θ) where co (γ, θ) = c̃ (γ) f2 (θ) (2.72)

is the temperature dependent scalar effective stress measure. This leads
to the effective plastic strain rate

˙̄Hpl = λ̇
∂gpl

∂T̄
= λ̇

1

2
√
J̄2

devT̄ = γ̇
1√
2J̄2

devT̄ = γ̇N̄ (2.73)

where λ̇ =
√

2γ̇ is a non negative scalar factor and N̄ is the normalized
deviatoric stress direction tensor.
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2.3.2 Damaged configurations

Following the ideas of Hayakawa et al. [65] and Brünig [26] who assumed
that the original material behaves isotropic and linear-elastic, see also
Eq. (2.61) and consequently the thermo-elastic free energy function φel

has to be quadratic in Ael. Furthermore it can be expected that φel

decreases as damage develops and thus it will be chosen linear in Ada

[65] which leads with the demand of completeness in its invariants to

ρoφ
el
(
Ael,Ada, θ

)
= GAel ·Ael +

1

2

(
K − 2

3
G

)(
trAel

)2

+ 3KαT (θ − θo) trAel + ρoh (θ)

+ η1trAda
(
trAel

)2

+ η2trAdaAel ·Ael

+ η3trAelAda ·Ael + η4Ael ·
(
AelAda

)
.

(2.74)

Here η1 to η4 are further material parameters which are called due to
nature elastic damage modulus whereas h is an explicit function of tem-
perature. Having a closer look at Eq. (2.74), the representation with in-
variants can be easily noticed and furthermore, the first two terms reflect
the pure elastic behavior whereas the third term describes the tempera-
ture influence on the material volume while the forth term reflects pure
temperature influence and the last four terms characterize the decrease
of the elastic properties due to damage.

By differentiation to the corresponding strain measure, see Eq. (2.56),
one obtains the associated Kirchhoff stress tensor

T = 2
(
G+ η2trAda

)
Ael − 3KαT (θ − θo) 1

+

[(
K − 2

3
G+ 2η1trAda

)
trAel + η3

(
Ada ·Ael

)]
1

+ η3trAelAda + η4

(
AelAda + AdaAel

) (2.75)

which is linear in Ael and Ada. In this expression one can notice nicely
the influence of temperature on the volumetric part as well as the influ-
ence of damage on the elastic properties. Furthermore, it is important to
realize that the stress tensor of the damaged configuration T (Eq. (2.75))
and the effective stress tensor of the effective undamaged configuration
T̄ (Eq.(2.62)) evolute from two different free energy functions which are
related to two different configurations and thus no stress or strain equiv-
alence is needed such as in the effective stress concept [99, 98].

Recent experimental observations have shown that the onset as well as
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the evolution of damage depends besides the stress intensity mainly on
the stress triaxiality

η = σm/σeq =
I1

3
√

3J2

, (2.76)

where the commonly used alternative definition of Eq. (2.76) is given with
σm being the mean normal stress and σeq being the von Mises equiva-
lent stress. Bao and Wierzbicki [10] discussed the different mechanisms
that lead to fracture and concluded that for high stress triaxialities the
leading damage process is guided by void growth and that for negative
stress triaxialities above a cut of value [11] below which no damage oc-
curs, the leading damage mechanism are micro shear cracks. Between
these two domains a zone occurs where both mechanisms play a role [10].
These ideas have been carried on and are illustrated in Fig. 2.2 as well as
reflected in the damage condition (2.77), see [31, 30, 29].

ηc η

Micro-shear
VoidsNo damage

0 ηt

Micro-shear

and voids-cracks -cracks

Figure 2.2: Different damage mechanisms depending on stress triaxial-
ity η

Similar to the yield condition of Eq. (2.63), which characterizes the onset
of plasticity, the rate and temperature dependent damage condition is
introduced

fda = α̃I1 + β̃
√
J2 − σ̃ (µ, µ̇, θ) = 0 (2.77)

which characterizes the onset of damage. Here I1 = trT is the first in-
variant of the stress tensor (Eq. (2.75)), J2 = 1

2
devT ·devT is the second

deviatoric invariant and σ̃ (µ, µ̇, θ) is the equivalent damage stress mea-
sure, depending on the equivalent damage strain µ, the equivalent damage
strain rate µ̇ and the absolute temperature θ. The above mentioned stress
triaxiality dependence is reflected in the parameters

α̃ =

{
0 for ηc ≤ η ≤ 0
1/3 for η > 0

(2.78)
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and

β̃ =


1 for ηc ≤ η ≤ 0
1− 1

ηt
η for 0 < η < ηt

0 for η ≥ ηt
(2.79)

which are chosen with respect to triaxiality [31, 57]. For instance, for
negative triaxialities, i.e. η < 0 where micro shear cracks are the main
damage mechanisms, the volumetric influence of I1 is neglected and for
high triaxialities, i.e. η > ηt where void growth is the mains damage
mechanism, the deviatoric influence of

√
J2 is neglected, see Fig. 2.2.

For intermediate triaxialities, i.e. 0 < η < ηt, both mechanisms are
considered while a simple linear relation for β̃ between 0 and ηt has been
used [30, 29].

The damage softening behavior is characterized by

σ (µ, µ̇, θ) = σ̃ (µ) f3 (µ̇) f2 (θ) (2.80)

using a multiplicative decomposition in analogy to the decomposition
used for plastic hardening in Eq. (2.64) into a rate-independent σ̃ (µ), a
strain rate dependent f3 (µ̇) and a temperature dependent part f2 (θ).
Here it should be noted that it is very difficult to obtain any information
from experiments regarding the softening behavior and thus the analogy
to the plastic behavior is chosen. In detail the rate-independent softening
function is chosen to be quadratic in µ to

σ̃ (µ) =
−
(
H̃oµe + σ̃o

)
µ2
e

µ2 + H̃oµ+ σ̃o (2.81)

and diagramed in Fig. 2.3 where σ̃o represents the initial damage strength,
µe the fictitious value where the damage softening relation reaches zero
and H̃o represents the slope of the static plastic hardening function (Eq.
(2.65)) taken at the onset of damage [33]. By this choice the onset of
damage is characterized by a smooth transition and evolutes more steady
than in the bilinear approach proposed in [26]. Furthermore, the damage
strain rate behavior is characterized by

f3 (µ̇) = 1 + h

(
µ̇− µ̇o
µ̇o

)r
(2.82)

where µ̇o is the reference damage strain rate and h as well as r are fur-
ther material parameters. Since the partial derivatives of Eq. (2.80) are
needed during numerical integration in Sec. 2.4.2, these are given here for
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µe µ

σ̃

σ̃o H̃o

Figure 2.3: Damage softening law

completeness:

∂σ

∂µ
=

−2
(
∂c̃
∂γ
µe + σ̃o

)
µ2
e

µ+
∂c̃

∂γ

 f3 (µ̇) f2 (θ) , (2.83)

∂σ

∂µ̇
= σ̃ (µ) f2 (θ)

hr

µo

(
µ̇− µ̇o
µ̇o

)(r−1)

(2.84)

and

∂σ

∂θ
= −σ̃ (µ) f3 (µ̇)

bq

θm

(
θ − θo
θm

)(q−1)

. (2.85)

In addition, the damage potential function is chosen to

gda (T, µ, θ) = αI1 + β
√
J2 − go (µ, θ) (2.86)

where

go = σ̃ (µ) f2 (θ) (2.87)

is the temperature dependent scalar effective stress measure. This leads
to the damage strain rate tensor

Ḣ
da

= µ̇
∂gda

∂T
= µ̇α1 + µ̇β

1

2
√
J2

devT (2.88)

where the first term is related to isotropic growth of voids, i.e. volumetric
deformations, and the second term relates to the change of shape and
orientation of micro-defects [26].

In this connection it is important to point out that it is not an easy
task to characterize the onset of damage as well as the damage evolu-
tion and final fracture. This circumstance is mainly caused by the lack
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of experimental data due to the fact that experiments, specially on the
micro-scale, are difficult to realize and hence this subject is still subject of
ongoing research. To overcome these difficulties mainly three approaches
are currently followed up:

• The design of new experimental setups and special specimen ge-
ometries to study the process of ongoing damage and fracture at
different stress states, see for instance [119, 31, 54, 53], while these
experiments are frequently accompanied by numerical simulations.
• Micro experimental studies of ongoing damage and fracture by a

X-ray tomography technique, see for instance [112, 156].
• Numerical micro-mechanical studies where the behavior of pores

in an elastic-plastic material are studied while the results can be
used to extract information for phenomenological continuum dam-
age models. These studies may be seen in a tradition with the initial
works of Gurson [61] and Needleman [126] while current publica-
tions for example, are [29, 160, 35].

Our ongoing studies focus on the one hand on micromechanical numeri-
cal studies [34, 35] and on the other hand on the experimental study of
damage and the design of new specimens [31, 29] with damage occurrence
at different stress states. This work-in-progress denotes the influence of
the Lode parameter on damage initiation and evolution which might re-
sult into a modification of the damage condition and damage law while
within this thesis a as far as possible confirmed state-of-the-art approach
has been used. Special focus in the future might be given to the influence
of strain rate and temperature on the damage initiation and evolution.

2.3.3 Fracture behavior

Moreover, the internal damage variable µ can be used to define a simple
triaxiality dependent fracture criterion [29]. The corresponding fracture
condition can be written in the form

fcr = µ− µcr = 0 (2.89)

where µcr is the triaxiality dependent critical equivalent damage strain:

µcr =


µf for η > ηf
µf−µo

ηf
η + µo for 0 ≤ η ≤ ηf

µo for η < 0.

(2.90)

The here introduced material parameters µf and µo represent the critical
tension and compression values of the equivalent damage strain while ηf
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is the fracture transmission triaxiality. The propagation of the macro
crack is numerically realized through an element erosion technique.

2.4 Numerical integration of constitutive rate equations

The numerical integration of the constitutive rate equations is often real-
ized by a radial return algorithm, see for instance [145, 47]. In contrast,
Nemat-Nasser [127] presented a new algorithm which first assumes the
complete deformation as plastic and then realizes an elastic corrector
step. This algorithm was adopted by Brünig [23] and augmented for
elastic-plastic-damaged solids [27].

In this section the numerical integration algorithm for the undamaged
configurations and for the damaged configurations is presented. Thus the
following three steps will be described in detail:

1. By the use of the plastic consistency condition ḟpl = 0 and the dam-
age consistency condition ḟda = 0, constitutive scalar rate equations
are developed.

2. The numerical integration algorithm including the inelastic predic-
tor step and the elastic corrector step is presented.

3. By the use of the calculated equivalent strain increments, the to-
tal strain increment is split into a plastic and an elastic part or
respectively into a plastic, a damage and an elastic part.

This section is based on Brünig [27] and Brünig and Gerke [33].

2.4.1 Scalar rate equations

Undamaged configurations

Starting out with the plastic consistency condition ḟpl = 0 and making
use of

˙̄I1 = ˙̄T · 1 (2.91)

and(√
J̄2

)·
=

1

2
√
J̄2

devT̄ · ˙̄T =
1√
2
N̄ · ˙̄T (2.92)

one arrives at

1√
2
N̄ · ˙̄T + a1 · ˙̄T =

(
1− a

c
Ī1
)
ċ (2.93)



2.4 Numerical integration of constitutive rate equations 33

where N̄ is the normalized devatoric part of T̄. Considering Eq. (2.62)
and introducing

˙̄T =
∂T̄
∂Ael

˙̄Hel +
∂T̄
∂θ

θ̇

= 2G ˙̄Hel +

[(
K − 2

3
G

)
tr ˙̄Hel − 3KαT θ̇

]
1

(2.94)

and

N̄ · ˙̄T = 2GN̄ · ˙̄Hel (2.95)

as well as

1 · ˙̄T = 3Ktr ˙̄Hel − 9KαT θ̇ (2.96)

Eq. (2.93) reads as follows
√

2GN̄ · ˙̄Hel + a
(

3Ktr ˙̄Hel − 9KαT θ̇
)

=
(

1− a

c
Ī1
)
ċ. (2.97)

Furthermore, by the use of Eq. (2.18), remodeling Eq. (2.45) to

θ̇ = ξ

√
2J̄2

cF
γ̇ (2.98)

and using some straight forward manipulations, one finally arrives at the
scalar rate equation

ε̇− α2γ̇ = α1ċ (2.99)

where the strain rate measure

ε̇ = ε̇iso +
3aK√

2G
ε̇vol (2.100)

is decomposed into an isochoric and an volumetric part:

ε̇iso = N̄ · ˙̄H and ε̇vol = tr ˙̄H. (2.101)

Furthermore the abbreviations

α2 = 1 +
9aKαT ξ

√
J̄2

GcF
(2.102)

and

α1 =
1− a

c
Ī1√

2G
(2.103)
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have been used.

Damaged configurations

Starting from the plastic consistency condition in form of Eq. (2.97) and
making use of Eqs. (2.98, 2.23) as well as of the plastic evolution law
Eq. (2.73) and the damage evolution law Eq. (2.88), one arrives at the
first plastic scalar rate equation
√

2G1 (ε̇1 + k1γ̇ − k2µ̇) = ċ (2.104)

which is related to the undamaged configuration. Here

G1 =
G

1− a
c
Ī1

(2.105)

represents a weighted shear modulus of the matrix material and

ε̇1 =
1√
2G

(√
2GN̄ + 3aK1

)
· Ḣ (2.106)

is the equivalent strain rate measure. Furthermore the notations

k1 = RN̄R−1 · N̄ +
9aKαT ξ

√
J̄2

GcF
(2.107)

and

k2 =
1√
2G

Qel
(√

2GN̄ + 3aK1
)(

Qel
)−1

·
(
α1 +

β̃√
2
Ñ
)

(2.108)

have been used to write the expression in a more compact way and Ñ is
the normalized deviatoric part of T̃. The damage consistency condition
ḟda = 0 can be rewritten to

α̃ (trT)· +
1

2
β̃ (devT · devT)· − σ̇ = 0 (2.109)

and with the use of devT =
√

2J2N and trT = 1 ·T one arrives at

α̃1 · Ṫ +
β̃√
2
N · Ṫ = σ̇ (2.110)
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while with Eq. (2.75)

Ṫ =
∂T
∂Ael Ḣ

el
+

∂T
∂Ada Ḣ

da
+
∂T
∂θ

θ̇

= 2
(
G+ η2trAda

)
Ḣ

el
+

(
K − 2

3
G+ η1trḢ

el
)

1

+ η3Ada · Ḣel
+ η3trḢ

el
Ada + η4

(
Ḣ

el
Ada + AdaḢ

el
)

+ 2η2trḢ
da

Ael + η1trḢ
da
trAel1 + η3

(
Ḣ

da ·Ael
)
1

+ η3trAelḢ
da

+ η4

(
AelḢ

da
+ Ḣ

da
Ael
)

+ 3KαT θ̇1

(2.111)

can be determined and the scalar products

1 · Ṫ =
[
3K + (6η1 + 2η2 + η3) trAda

]
trḢ

el

+ (3η3 + 2η4) Ada · Ḣel

+ (6η1 + 2η2 + η3) trAeltrḢ
da

+ (3η3 + 2η4) Ael · Ḣda
+ 9KαT θ̇

(2.112)

and

N · Ṫ = 2
(
G+ η2trAda

)
N · Ḣel

+ η3

(
N ·Ada

)
trḢ

el

+ η4

(
NAda + AdaN

)
· Ḣel

+ 2η2

(
N ·Ael

)
trḢ

da

+ η3trAelN · Ḣda
+ η4

(
NAel + AelN

)
· Ḣda

(2.113)

lead with Eqs. (2.23 ,2.45, 2.73, 2.88) and corresponding traces to
√

2G2 (ε̇2 + k3γ̇ − k4µ̇) = σ̇ (2.114)

being the second scalar-valued rate constitutive equation related to the
damaged configuration. Here the shear modulus of the damaged material

G2 = G+ η2trAda (2.115)

and the second equivalent strain rate measure

ε̇2 =
1√
2G2

C1 · Ḣ (2.116)
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have been used. Furthermore the factors

k3 =
1√
2G2

(
RC1R−1 · N̄ + 9KαT ξ

√
2J̄2

cF

)
(2.117)

and

k4 =
1√
2G2

[
QelC1

(
Qel
)−1

−C2

]
·
[
α1 +

β√
2
Ñ
]

(2.118)

make the expression easier to read, whereas the abbreviations

C1 =
√

2β̃G2N +

(
3K2 +

β̃√
2
η3N ·Ada

)
1

+
β̃√
2
η4

(
NAda + AdaN

)
+ (3η3 + η4) Ada

(2.119)

and

C2 =
β̃√
2
η3trAelN

+

[
β̃√
2

2η2N ·Ael + (6η1 + 2η2 + η3) trAel
]
1

+
β̃√
2
η4

(
NAel + AelN

)
+ (3η3 + 2η4) Ael

(2.120)

have been used where the bulk modulus of the damaged material

K2 = K +

(
2η1 +

2

3
η2 +

1

3
η3

)
trAda (2.121)

has been introduced.

2.4.2 Numerical integration

The inelastic predictor, elastic corrector integration algorithm starts in
the case of elastic-plastic material behavior from the scalar valued rate
equation described in Eq. (2.99) and in case of elastic-plastic-damaged
material behavior from Eqs. (2.104, 2.114). These scalar valued rate
equations now describe the complete material behavior including rate and
temperature dependence, as well as anisotropic damage. The stress and
deformation history is generated by straightforward one step midpoint
integration of the scalar rate equations. Fig. 2.4 gives an overview of the
notation used within this section noting that in difference to Sec. 3.2 the
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notation ∆tn+1/2 = ∆t has been used.

tn+1 t

∆t︷ ︸︸ ︷
tn

Figure 2.4: Notation of integration algorithm

Undamaged configurations

The numerical integration of Eq. (2.99) over the time interval tn 6 t̂ 0
tn+1 with tn+1 = tn + ∆t results in

α1 (cn+1 − cn) = ∆ε− α2∆γ. (2.122)

For the plastic predictor step the whole deformation is assumed to be
plastic

∆γpr =
1

α2
∆ε (2.123)

which allows to calculate the temperature increase and the predictor tem-
perature to

∆θpr = ξ

√
2J̄2

cF
∆γpr and θpr = θn + ∆θpr (2.124)

as well as predictor strain rate and the predictor strain to

γ̇pr =
∆γpr

∆t
and γpr = γn + ∆γpr. (2.125)

Now with equivalent stress – equivalent plastic strain relation of Eq. (2.64)
the equivalent stress can be evaluated at cpr (γpr, γ̇pr, θpr) to complete
the predictor step. Obviously in Eq. (2.123) the equivalent plastic strain
has been overestimated and the error has to be corrected by an elastic
corrector step

∆erc = cpr − cn+1 = cpr − cn −
α2

α1
γ̇er∆t. (2.126)

With the assumptions for the constitutive relation

∆erc =
∂c

∂γ
∆erγ +

∂c

∂θ
ξ

√
J̄2

cF
∆erγ +

∂c

∂γ̇
γ̇er (2.127)
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where the partial derivatives of the plastic hardening law Eqs. (2.69, 2.70,
2.71) are used and for

γ̇er =
∆erγ

∆t
(2.128)

one arrives at

∆erγ =
cpr − cn

α2
α1

+ ∂c
∂γ

+ ∂c
∂θ
ξ

√
J̄2
cF

+ 1
∆t

∂c
∂γ̇

(2.129)

where the partial derivatives are evaluated at the predictor location. To
complete the iteration step

∆γ = ∆γpr −∆erγ and γn+1 = γn + ∆γ (2.130)

are calculated, which allows the determination of

∆θ = ∆θpr − ξ
√

2J̄2

cF
∆erγ and θn+1 = θn + ∆θ (2.131)

as well as

γ̇n+1 =
∆γ

∆t
. (2.132)

With these values the plastic hardening function Eq. (2.64) can be eval-
uated at cn+1 (γn+1, γ̇n+1, θn+1) and thus the new equivalent stress is
determined.

Damaged configurations

Analogical to integration algorithm for elastic-plastic material behavior
the integration of the scalar rate equations (2.104) and (2.114) leads to

∆c = cn+1 − cn =
√

2G1 (∆ε1 − k1∆γ − k2∆µ) and

∆σ = σn+1 − σn =
√

2G2 (∆ε2 − k3∆γ − k4∆µ) .
(2.133)

Now assuming in the predictor step all the deformation as inelastic, the
terms in parentheses lead to the system of equations[

k1 k2

k3 k4

] [
∆γpr

∆µpr

]
=

[
∆ε1

∆ε2

]
(2.134)

which can be written in more compact way to

k∆γpr = ε (2.135)
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and the inversion

∆γpr = k−1ε (2.136)

results in the predictor equivalent strain increments ∆γpr and ∆µpr. Con-
sequently the equivalent predictor strains

γpr = γn + ∆γpr and µpr = µn + ∆µpr (2.137)

as well as the predictor strain rates

γ̇pr =
∆γpr

∆t
and µ̇pr =

∆µpr

∆t
(2.138)

and the predictor temperature

∆θpr = ξ

√
J̄2

cF
∆γpr and θpr = θn + ∆θpr (2.139)

are calculated what allow the evaluation of equivalent stress – equivalent
inelastic strain relations of Eq. (2.64) at cpr (γpr, γ̇pr, θpr) and of Eq. (2.80)
at σpr (µpr, µ̇pr, θpr) to complete the predictor step.

Since all deformation was assumed inelastic, this leads to an overesti-
mation of the equivalent inelastic strains as well as of the corresponding
equivalent stresses which will be corrected in the following corrector step.
For the effective equivalent stress this leads to

∆erc = cpr − cn+1 = cpr − cn −∆c (2.140)

while the error can be estimated by the constitutive relation to

∆erc ∼=

(
∂c

∂γ
+

1

∆t

∂c

∂γ̇
+
∂c

∂θ
ξ

√
2J̄2

cF

)
∆erγ = ∂γc∆erγ (2.141)

which leads with Eq. (2.1331) to the effective stress increment

∆c =
√

2G1 (k1∆erγ + k2∆erµ) = cpr − cn − ∂γc∆erγ. (2.142)

In the same manner the error in the equivalent damage stress can be
calculated to

∆erσ = σpr − σn+1 = σpr − σn −∆c (2.143)

and with the constitutive relation Eq. (2.80) the error can be estimated
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to

∆erσ ∼=
(
∂σ

∂µ
+

1

∆t

∂σ

∂µ̇

)
∆erµ+

∂σ

∂θ
ξ

√
2J̄2

cF
∆erγ

= ∂µσ∆erµ+ ∂γ̂σ∆erγ

(2.144)

where the partial derivatives of the equivalent damage stress – equivalent
strain relation presented in Eqs. (2.83, 2.84, 2.85) have been used. With
the use of Eq. (2.1332) one arrives at

∆σ =
√

2G2 (k3∆erγ + k4∆erµ)

= σpr − σn − ∂µσ∆erµ+ ∂γ̂σ∆erγ.
(2.145)

Now with Eqs. (2.142) and (2.145) the following system of equations[ √
2G1k1 + ∂γc

√
2G1k2√

2G2k3 + ∂γ̂σ
√

2G2k4 + ∂µσ

] [
∆erγ
∆erµ

]
=

[
cpr + cn
σpr + σn

]
(2.146)

can be assembled and used to calculate ∆erγ and ∆erµ. This system of
equations can be written in a more compact form to

a∆erγ = ∆cpr. (2.147)

By its inversion the error in the equivalent strain increments, combined
in the vector ∆erγ, can be calculated as

∆erγ = a−1∆cpr (2.148)

and finally the equivalent strain increments are obtained

∆γ = ∆γpr −∆erγ. (2.149)

To complete the iteration, the updated equivalent strains

γn+1 = γn + ∆γ and µn+1 = µn + ∆µ (2.150)

as well as the current temperature

∆θ = ∆θpr − ξ
√

2J̄2

cF
∆erγ and θn+1 = θn + ∆θ (2.151)

can be computed. To be able to evaluate the plastic hardening law given
in Eq. (2.64) at cn+1 (γn+1, γ̇n+1, θn+1) and the damage softening law
given in Eq. (2.80) at σn+1 (µn+1, µ̇n+1, θn+1), the current equivalent
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strain rates are calculated to

γ̇n+1 =
∆γ

∆t
and µ̇n+1 =

∆µ

∆t
. (2.152)

2.4.3 Tensorial quantities

Undamaged configurations

After the equivalent plastic and damage strains have been determined,
the corresponding tensorial quantities have to be derived. Therefore, the
plastic flow rule of Eq. (2.73) can be written in the form

∆H̄pl
= ∆γN̄m = dev∆H̄pl (2.153)

with the effective normalized deviatoric midpoint stress

N̄m =
1

2

[
N̄n + N̄n+1

]
(2.154)

whereas N̄n+1 is currently unknown. Thus starting out from the normal-
ized deviatoric stress tensors at tn and tn+1

N̄n =
1√

2J̄2,n

devT̄n and N̄n+1 =
1√

2J̄2,n+1

devT̄n+1 (2.155)

as well as its difference

dev∆T̄ = devT̄n+1 − devT̄n

= 2Gdev∆H̄el
= 2G

(
dev∆H−∆H̄pl

) (2.156)

one arrives after some manipulations at

N̄n+1 =
2Gdev∆H +

(√
2J̄2,n − 2G∆γ

)
N̄n√

2J̄2,n+1 +G∆γ
(2.157)

where the numerator contains only known quantities and thus can be
evaluated whereas the tensor is normalized in the common way.

Damaged configurations

Starting out with Eqs. (2.153, 2.154) as well as with the damage evolution
law described in Eq. (2.88) in the form

∆Hda = ∆µ

(
α1 +

β√
2
Nm

)
(2.158)
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and

dev∆Hda = ∆µ
β√
2
Nm (2.159)

where

Nm =
1

2
(Nn + Nn+1) (2.160)

is the deviatoric midpoint normalized stress and furthermore taking into
account the deviatoric stress increment

dev∆T = devTn+1 − devTn = 2Gdev∆Hel (2.161)

as well as

devT̄ =
√

2J̄2N̄ =
√

2c
(

1− a

c
Ī1
)
N̄ =

√
2ĉN̄ (2.162)

one arrives after some manipulations at
√

2c̃n+1N̄n+1 −
√

2c̃nN̄n = 2G
[
dev∆H

− 1

2
∆γ
(
N̄n+1 + N̄n

)
− β

2
√

2
∆µ (Nn+1 + Nn)

]
,

(2.163)

where c̃n+1, N̄n+1 and Nn+1 are currently unknown. To solve this under-
determined situation, two assumptions are made: At the point of first oc-
currence of damage, already large plastic deformations have been devel-
oped and therefore a high level of saturation is reached. Due to this fact,
the stress direction on the undamaged configuration changes marginally,
meaning N̄n+1 ' N̄n ' N̄m. With this assumption the first term of
Eq. (2.163) reads as

√
2(c̃n+1 − c̃n)N̄n which results to be very small

and therefore is set to 0. Herewith one arrives at the equation for the
determination of the new stress direction on the damaged configuration

Nn+1 =
2dev∆H + 2∆γN̄n − β√

2∆µNn

β√
2∆µ

(2.164)

whereas only the numerator determinates the direction and is only com-
puted and the tensor is normalized in the common way. With these
assumptions, a robust numerical algorithm has been found to solve the
under-determined situation.



3 Numerical procedure

In this thesis the Finite Element Method (FEM) has been used as a
numerical technique to solve the stated problems. All simulations have
been realized with the commercial FE-software LsDyna where the ma-
terial model presented in chap. 2 was subjoined as user-defined material
model. Cosidering this Sec. 3.1 gives a brief summary of the main ideas
of the FEM with restrictions to the techniques used for the simulations
within this thesis, based on [62, 169, 13]. Due to the fact that LsDyna
uses explicit time integration, Sec. 3.2 deals with this subject, reflecting
the principal thoughts of the central difference method. Finally Sec. 3.3
illuminates the connection in between the theory of Chap. 2 and the
commercial FE-code LsDyna.

3.1 Finite Element procedure

Starting out, the momentum equation is stated

div
(

1

J
T
)

+ ρb∗ = ρü in B (3.1)

where J = detF is the Jacobian, ü is the acceleration vector and b∗ the
vector of body force density and the boundary conditions

1

J
nT = t∗(t) on ∂BT , (3.2)

u(
o
x, t) = u∗(

o
x, t) on ∂Bu and (3.3)

(T+ −T−)n = 0 on ∂Bcont. (3.4)

are stated. Eq. (3.2) reflects the natural or traction boundary conditions.
Here n is the unit outward normal vector on the boundary ∂B of the
domain B and t∗ is the stress vector on the part of the boundary ∂BT.
Next Eq. (3.3) describes the geometric or displacement boundary condi-
tions, where u∗ are the known displacements on the boundary ∂Bu and
o
x is the position vector with respect to the initial configuration while
Eq. (3.4) states the contact discontinuity where T+ and T− represent
the stresses on both sides of the interior boundary ∂Bcont.. To complete
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the description of the problem, the initial conditions

u(
o
x, t = 0) =

o
u (3.5)

and

u̇(
o
x, t = 0) =

o
v (3.6)

are quoted whereas Eq. (3.5) describes that the displacements
o
u are

known and Eq. (3.6) describes that the velocities
o
v at time t = 0 are

known.

Further integration of Eqs. (3.1, 3.2, 3.4) over the domain or accord-
ingly its boundary, summation and multiplication with a trial function
δu which satisfies the boundary conditions stated in Eq. (3.3) leads with
the use of the divergence theorem to the weak form of the equilibrium

δπ =

∫
B

1

J
T ·gradT δu dv−

∫
B

ρ (b∗ − ü) · δu dv−
∫
∂Bσ

t∗ · δu da = 0 (3.7)

which is the fundamental equation of the finite element method. Through
this approach it can be clearly seen that equilibrium Eq. (3.1) as well as
the natural Eq. (3.2) and contact Eq. (3.4) boundary conditions are only
fulfilled in a weak i.e. integral sense, whereas the displacement boundary
condition Eq. (3.3) is met in its strong form since it is not part of the
variational principle.

Furthermore, the domain B is approximated by the unification of ne ele-
ments with an element domain Be

B '
ne⋃
Be (3.8)

and the continuous displacement vector u is approximated by the use of
shape functions Ni in natural coordinates ξ̂, η̂ and ζ̂, which are written
in a more compact way as ξ̂, and the discrete nodal displacements ui

u(
o
x, t) ' ue(

o
x(ξ̂), t) =

8∑
j=1

Ni(ξ̂)ui(t). (3.9)

Since in this thesis only 8-node-hexahedron elements are used the sum
of Eq. (3.9) is directly written in the corresponding form and the shape
functions can be written in the following form

Ni(ξ̂) =
1

8
(1± ξ̂)(1± η̂)(1± ζ̂). (3.10)



3.1 Finite Element procedure 45

To arrive at the matrix notation of Eq. (3.7) the virtual displacements δu
are factored out and, since the term is an arbitrarily trial function, the
remainder has to vanish. Furthermore, the shape functions are arranged
in the matrix N and a matrix B is introduced containing derivatives of
the shape functions with respect to the physical coordinates which are
calculated by the use of the inverse of the Jacobian matrix J . So

ne∑∫
Be

ρNTNa dv +

∫
Be

BTσ dv −
∫
Be

ρNT b dv −
∫

∂Bσ,e

NT t da

 = 0 (3.11)

can be specified where a contains the nodal accelerations, σ the stresses,
b the body loads and t the surface loads. Finally to obtain a diagonal
(lumped) mass matrix, the rows of the first term of Eq. (3.11) are summed,
see [62]. This can be written in a more compact form as

Mü+Ku = f ext or Ma+ f int = f ext (3.12)

where the first and second term of Eq. (3.12) represent the first and
second term of Eq. (3.11) and the external loads and the body loads are
combined in f ext. This form is frequently called semi-discrete due to the
fact that it has been discretized in space but not yet in time, [13] what
is discussed in Sec. 3.2.

The evaluation of the integrals over the element volume is realized by a
Gaussian quadrature, for example the integration of an arbitrary function
g is transferred to the natural coordinates of the element by the use of the
shape functions (isoparametric concept) where the numerical integration
is carried out∫

o
Be

g dv '
n∑
j=1

wj detJ(ξ̂j) g(ξ̂j) . (3.13)

Here n is the number of integration points, wj is the weighting factor and
ξ̂j the location of each integration point. For the elements used within
this thesis a one-point integration is carried out, i.e. n = 1, w1 = 8 and
ξ̂1 = (0, 0, 0). This so called reduced integration has on the one hand
the advantage of computational efficiency but on the other hand the dis-
advantage of zero energy (hourglass) modes which need to be controlled,
see [62] for further details.
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︸ ︷︷ ︸
∆tn

tn−1 tn−1/2 tn tn+1/2 tn+1

∆tn−1/2︷ ︸︸ ︷ ∆tn+1/2︷ ︸︸ ︷
t

Figure 3.1: Notation used to explain time integration scheme; dots mark
time steps, dashes mark midpoint steps

3.2 Explicit time integration

The choice of the time integration scheme mainly depends on the posed
problem; generally it is distinguished between implicit and explicit meth-
ods, [169]. Implicit methods lead to the solution of a nonlinear equation
system within every time step but have the possibility of relatively big
time steps whereas explicit methods do not need to solve an equation sys-
tem but have a limited time step size to keep the algorithm stable. Within
this thesis fast processes are considered which include wave propagation
and thus the explicit FE-code LsDyna has been chosen.

Since LsDyna uses the central difference method for time integration, a
brief description is given here which is mainly based on [13]. It is assumed
that the displacements u, the velocities v as well as the accelerations a
are known up to tn, whereas the special situation at the start of the
calculation is not considered, i.e. it is not reviewed how to get the algo-
rithm started, for further details see [168]. With the notation explained
in Fig. 3.1 the velocities vn+1/2 at time tn+1/2 can be calculated as

vn+1/2 =
un+1 − un

∆tn+1/2
⇔ un+1 = un + ∆tn+1/2vn+1/2 (3.14)

where the second term is rearranged to an integration expression. In
the same manner the accelerations an at time tn and the corresponding
integration expression can be written as

an =
vn+1/2 − vn−1/2

∆tn
⇔ vn+1/2 = vn−

1/2 + ∆tnan. (3.15)

Now by the use of Eq. (3.12b) and the notation f = f ext−f int Eq. (3.15b)
can be written as

vn+1/2 = vn−
1/2 + ∆tnM−1fn (3.16)

and directly be used to calculate vn+1/2, un+1 can be determined with
Eq. (3.14b). In continuation the external forces f ext,n+1 are calculated
and a loop over the elements is executed in which the internal force vector
f int,n+1

e is calculated by the use of the constitutive equations. Thus after
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1. Time update: tn+1 = tn + ∆tn+1/2 and tn+1/2 = tn + 1/2∆tn+1/2

2. Calculation of midpoint velocities vn+1/2, Eq. (3.15b)
3. Enforce velocity boundary conditions
4. Calculate displacements un+1, Eq. (3.14b)
5. Calculate external forces f ext,n+1

6. Loop over elements
a) Extract nodal displacements and velocities
b) Loop over integration points

i. Calculate deformation gradient F and strains ε at tn+1

ii. Compute stresses σn+1 by constitutive equation
iii. Calculate internal force vector per element f int,n+1

e
c) Calculate external nodal forces f ext,n+1

e
d) Compute element force vector fn+1

e = f ext,n+1
e − f int,n+1

e
e) Calculate new critical time step size of element
f) Subjoin fn+1

e to global fn+1

7. Determine new global time step size
8. Compute an+1, Eq. (3.17)
9. Calculate velocities vn+1, Eq. (3.18) and check energy balance

Box 3.1: Flowchart of ongoing explicit time integration, based on [13]

the loop the new force vector fn+1 can be assembled and Eq. (3.12) can
be used to calculate

an+1 = M−1fn+1. (3.17)

In order to be able to check the energy balance at the time steps the
velocities are needed here and not only at the midpoints. Therefore, they
are calculated by

vn+1 = vn+1/2 +
1

2
∆tn+1/2an+1. (3.18)

A complete overview of one time step of an ongoing explicit time integra-
tion is given in Box 3.1.

As mentioned above, the time step of explicit methods is limited to keep
the method stable. For the here used central difference method the time
step is bounded by the highest frequency of any element, i.e. the ’small-
est’ element purports the time step size, see [62, 168]. To include any
nonlinearities, LsDyna reduces this calculated time step by the factor 0.9
(default value) to

∆t = 0.9∆tmin = 0.9 min
ne

(
le
clong

)
(3.19)
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for 3-dimensional brick elements. Here le is the element length and clong is
the longitudinal or dilatational sound speed in continuous media defined
through

le =
Ve

Ae,max
and clong =

√
K + 4/3G

ρ
(3.20)

where Ve is the element volume and Ae,max is the maximum lateral ele-
ment surface.

3.3 LsDyna user materials

The LsDyna keyword user’s manual [108] gives a relatively brief descrip-
tion of how to implement a material model. Besides the technical require-
ments such as the correct version of Fortran compiler and development
tools, coding abilities are needed. This implementation was realized under
Windows using the Intel Fortran Compiler and Microsoft Visual Studio
whereas coding was done in Fortran77.

When the user-material subroutine is called, LsDyna provides several
input parameters, amongst others the element type which is set to solid
for 8-node solid elements and the current time as well as the time step
size. Furthermore the current strain increment, the Cauchy stresses of the
previous time step and the deformation gradient are available. If element
erosion is used, an element failure flag can be provided and thus element
erosion can be controlled from the user-material subroutine. In addition
the material constants array is passed directly from the input deck and
the history variables of the previous time step are passed on while its
number has to be defined in the input deck.

To adopt the theory presented in Chap. 2 to LsDyna, a closer look at the
input parameters to the user subroutine is necessary. LsDyna provides the
coefficients Fij of the deformation gradient with respect to an orthonor-

mal basis of the initial configuration
o

B which comprises that the metric

coefficients
o

Gik = Iik are given while Iik is the unity matrix. With the
transposed coefficients FTki of the deformation gradient, the coefficients of
the metric can be calculated to Gkj = FTkiFij which finally leads to the
coefficients of the metric transformation tensor Q posed in Eq. (2.1)

Qi·j =
o

GikGkj = IikGkj (3.21)

and thus is related to the kinematics presented in Sec. 2.1. In addition,
it can be noted that the contravariant coefficients Gjl of the metric can
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be obtained by inversion of the covariant coefficients Gkj . Furthermore,
LsDyna provides the coefficients of the strain increment

∆Dkl = ∆tn+1/2Dkl (3.22)

with respect to the orthonormal basis of the initial configuration. By the
multiplication

FTkl∆DlmFmj =
1

2
∆Gkj (3.23)

the coefficients of 1/2Ġkj stated in Eq. (2.9) are obtained but integrated
over the time increment. Finally this leads to the mixed-variant repre-
sentation of the total strain increment

∆Hi
·j =

1

2
Gik∆Gkj (3.24)

as needed to calculate the elastic strain increment from this total strain in-
crement and thus all necessary data is made available to the user-material
subroutine.
After fulfilling all necessary operations within the subroutine, the data
has to be prepared for output, mainly the stresses have to be transferred
to Cauchy stresses with respect to a cartesian basis. By multiplying
the internally used mixed-variant coefficients T i·k with the contra-variant
metric coefficients Gkj the coefficients Sij of the second Piola-Kirchhoff
stress tensor

Sij = T i·kG
kj (3.25)

are calculated. These can be transferred to the components of the Cauchy
stress tensor by

σij =
1

J
FikS

klFTlj . (3.26)

Furthermore, all history variables have to be updated what includes coef-
ficients of: the stress tensor T̄ of the undamaged configuration, the stress
tensor T of the damaged configuration, the elastic transformation tensor
Qel, the plastic transformation tensor Q̄pl as well as the damage tensor
?

R. Furthermore, as scalar variables are stored the yield c and the damage
stress σ, the plastic γ and damage µ internal variable, the temperature
as well as a plasticity and a damage flag.



4 Experimental aspects

This chapter gives an overview of the experiments generally used to de-
termine the characteristics of ductile metals. Here the focus lies on the
experiments used for the determination of the material properties of the
aluminum alloy and the stainless steel considered within this thesis, while
further hints are given to other experimental setups. Since the material
behavior has to be characterized at different strain rates, temperatures
and stress states, the subdivision of this chapter reflects these aspects.

4.1 Strain rate

On the one hand ductile metals frequently show differences in their be-
havior depending on the strain rate of the deformation process and on
the other hand certain experimental facilities can only cover a restricted
period of machine velocities which results in limited strain rates. Con-
sequently, different experimental setups and specimen shapes have to be
used to obtain results at a wide range of strain rates. Fig. 4.1 gives a
schematic overview of the most commonly used experiments to charac-
terize the behavior of ductile metals and a reference point of the strain
rate they can cover.

10−1 101 103 105

electro-mechanic

servo-hydraulic

drop weight

SHPB

Taylor test

[s−1]

strain rate

10−3

Figure 4.1: Typical strain rates of experiments [135]

Electro-mechanic testing machines (Fig. 4.2) which are well-established
and standardized, are used to perform experiments at low strain rates
where the machine velocity is limited to approx. 100 mm/min. At ten-
sion tests the deformation of the specimen is generally measured within
a region by a strain gauge leading with the applied force to the standard
load-strain curve. Furthermore, the lateral contraction can be measured
with an additional instrument and thus the Poisson’s ratio can be de-
termined. Used for compression tests, i.e. upsetting tests, generally the
machine displacement and the applied load are measured.

50
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Figure 4.2: Electro-mechanic testing machine and measuring instru-
ments at GMSIE lab, University of São Paulo (USP), Brazil

Servo-hydraulic machines, see for example Fig. 4.3, can be used in a more
general way than electro-mechanical machines. For instance they can be
used for cyclic tests as they are common for fatigue testing and they can
be equipped to perform simultaneous rotary motions and therefore be
used for tension-torsion testing. If the machine is equipped for special
high speed tensile testing, it can reach machine velocities up to 1 m/s, also
depending on the cross-section area of the specimen. Since generally rel-
atively small specimens are used and the machine velocity is rather high,
it is difficult to use strain gauges - as it is done in electro-mechanical
machines and thus the machine displacement is recorded. Additional in-
formation can be retrieved by the use of digital image correlation (DIC).
Here at first the contour deformation of notched specimens were moni-
tored [59]. To date the surface area of the specimen is painted with a
black and white pattern, Fig. 4.4, and during the experiment photos are
taken which can be evaluated by a computer software and thus the de-
formation, i.e. the strains, of the specimen surface can be determined in
two directions [111].

Another possibility to characterize the material behavior at medium strain
rates, around 102 s−1, is to perform experiments on drop machines [68].
During the experiment, a weight, equipped with a striker and guided by
rails, is dropped from a certain hight and impacts the reviewed compo-
nent or specimen. Mainly two types of testing devices are distinguished:
Massive drop towers with a height up to 20m and drop weights up to
200 kg and smaller drop darts with a height up to 5m and drop weights
up to 10 kg [135]. The main purpose of drop towers is component test-
ing, whereas drop darts can be used for tests characterizing the material
properties. Previous to the experiment a good estimation of the impact
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Figure 4.3: Servo-hydraulic machine at GMSIE lab, University of São
Paulo (USP), Brazil

velocity can be made knowing the drop height, which leads in combina-
tion with the known weight to an estimation of the impact energy. By
the installation of light barriers, the precise impact velocity can be de-
termined, disregarding friction effects during the drop. Furthermore, by
the use of a high speed camera the velocity evolution during the impact
can be estimated by correlating between images to displacement. Further
experimental results can be achieved by accelerometers, load cells and dis-
placement/velocity transducers [135]. Drop machines are normally used
to test two-dimensional specimens, i.e. plates, or laminar components
but occasionally beams are tested [63, 5, 107]. In general, the load con-
ditions of drop mass experiments are more complex, combined tension
and bending, and the results, although a big variety can be provided, are
rather defective [44].

The Split-Hopkinson-Pressure-Bar (SHPB) experiment is a standard test
for the characterization of the material properties at high strain rates.
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Figure 4.4: Series of specimen prepared for digital image correlation at
GMSIE lab, University of São Paulo (USP), Brazil

The basic experimental setup goes back to Kolsky [82] who modified
the experimental setups developed by John and Bertram Hopkinson, see
[44]. Currently, the experimental setup for compression tests is largely
established but the processing of the experimental data is still subject of
discussion, see e.g. [135].
Fig. 4.5 gives a schematic sketch of the standard experimental setup used
for compression tests, whereas Fig. 4.6 shows an in situ setup. The striker
bar impacts the input bar with a certain velocity causing a nearly rect-
angular compression pulse. The generated compression wave propagates
through the input bar while reaching the specimen which is clamped be-
tween input and output bar. The incident wave is partly reflected at
the end of the input bar and partly transmitted through the specimen,
which is deformed, to the output bar where it propagates. Finally the
wave is passed on to the catcher bar and thus passes away from the ac-
tual experiment. The bars are generally made of material which behaves
linear-elastic with a high yield strength so that the deformation within
the bars remains elastic. The input and output bar are equipped with
strain gauges which allow the measurement of the strain evolution over
time within the bars.

striker
bar

input bar
with

strain gage

output bar
with

strain gage

catcher
bar

specimen
v

incident wave

reflected wave

transmitted wave

Figure 4.5: Schematic setup of Split-Hopkinson-Bar experiment
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Figure 4.6: In situ experimental setup of Split-Hopkinson-Bar at GM-
SIE lab, University of São Paulo (USP), Brazil; front: pres-
sure bar with gas gun

To process the information of the Split-Hopkinson-Bar experiment, i.e.
the stress-strain-curve of the specimen, generally a one-dimensional wave
theory is used. Furthermore, it is assumed that the specimen is in a
static equilibrium and the stresses on both ends coincide whereas this
state is reached rather quickly for short specimens. Now the stresses can
be obtained from the static equilibrium, while the strains of the incident,
reflected and the transmitted wave are recorded within the bars, Young’s
modulus of the input and output bar and the cross section of the bars and
of the specimen. In addition, the strains are obtained by integrating the
strain rate which is known from the velocities of the bar ends, calculated
from the strain time history of the bars, and the specimen length. For
a detailed description of the procedure see [44]. Additional information
about the progress of the experiment is gained by the use of a high speed
camera.

Some additional remarks concerning the experiment can be made: The
wave length is directly related to the striker length. If the striker and the
input bar are of the same material, the wave length is twice the striker
length. Besides, the stress or strain amplitude can be modified by the
velocity of the striker and the strain rate is influenced by the geometry of
the specimen and the amplitude of the stress wave. The evaluation of the
experimental data is still subject of discussion, the main subjects being
the dispersion of the wave and the strain recording by the strain gauges
[44]. Furthermore the effects of bar misalignment on the experimental
data is currently discussed, [81].

Furthermore, the Taylor test [155] where a small rod of metal impacts
either a rigid wall (asymmetric) or - to minimize friction effects - another
small rod of material (symmetric), can be used to reach strain rates up



4.2 Temperature 55

to 105 s−1 in certain parts of the specimen. The impact velocity and
the impact force of the specimen can be measured and in addition the
experiment can be monitored by a high speed camera. Thus the Taylor
test can not directly be used to identify the material parameters of a
material but can be used in an inverse numerical technique by comparing
numerical results with experimental data, see for example [74, 83].
At this point it is important to notice that while plastic deformations take
place, the main part of the dissipated energy is converted to heating. Thus
experimentally it is difficult to study only the effects of different strain
rates since always heating does occur. Theoretically, two limit cases are of
special interest: Firstly the process is sufficiently slow, heat can discharge
and the temperature can be considered constant and the process can be
considered as isothermal. Secondly, if the process is fast enough, the
discharged heat is negligible and therefore the process can be considered
as adiabatic.

4.2 Temperature

Ductile metals are characterized through softer behavior at elevated tem-
peratures and through stiffer behavior at lower temperatures. This effect
can be reviewed independently from the effects of strain rate by perform-
ing experiments at very low strain rates so that the process can be con-
sidered isothermal. Fig. 4.7 displays a standard environmental chamber
which can be easily included in the experimental setup with an electro-
mechanic testing machine. These standard cooling or heating chambers
cover, depending on the design, temperatures in the range from −80 ◦C
to 600 ◦C.

Figure 4.7: Environmental chamber at GMSIE lab, University of São
Paulo (USP), Brazil
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Besides these standard temperature chambers, several special solutions
are reported. For instance Byun et al. [37] as well as Park et al. [132] used
cooling devices with nitrogen which reached temperatures of −150 ◦C and
−200 ◦C respectively whereas both studies consider stainless steel Inox
304L.
Although additional temperature increase, which is difficult to measure,
occurs during Split-Hopkinson-Bar experiments, several experimental se-
tups have been proposed to study the material behavior at high tempera-
tures. Lennon and Ramesh [104] propose a method where the specimen is
heated by a infra-red spot-heater, arriving to temperatures up to 800 ◦C
whereas Lee and Lin [93] used an in-situ induction coil to reach tempera-
tures up to 1100 ◦C. Lately Kajberg and Sundin [80] proposed a method
also using an induction coil to extract material behavior during the pro-
duction process reaching temperatures up to 1100 ◦C and minimizing the
heat transfer to the bars by bringing them into contact only very shortly
before the experiment. Furthermore, Split-Hopkinson-Bar experiments
can be performed at low temperatures; for instance Berkovic et al. [16]
realized experiments with different ductile metals at temperatures down
to −150 ◦C by cooling the specimen down with liquid nitrogen before
execution of the experiment.

4.3 Stress state

In addition, the material behaves different depending on the stress state
and therefore, to characterize the material behavior entirely it needs to be
tested under different and well defined stress states. Due to this fact, dif-
ferent specimen geometries are developed and currently great efforts are
made to study the damage and fracture behavior under different load-
ing conditions. It is not an easy task to estimate the stress state, i.e.
the triaxiality and the Lode parameter, of the specimen part of interest
previous to the experiment by theoretical considerations. And even after
the execution the stress state is not directly accessible due to high plastic
deformations, necking phenomena, rotations of part of the specimen or
even dynamic effects such as wave propagation. To overcome this deficit,
frequently numerical simulations of the experiments are performed which
provide theoretical estimates of the stress state.
The standard material curves of the investigated materials are obtained
by the use of the so-called dog-bone shaped specimen in a tension test.
Depending on the design of the raw material, rod or sheet, it has a rect-
angular or circular cross section, see for instance Fig. 4.8. This type of
specimen is characterized through a nearly uniform stress state in the
central part of the specimen during the first range of the experiment. In



4.3 Stress state 57

the zone of uniform stresses the elongation is measured by a strain gauge
which leads with the measured load to the load-strain curve. Otherwise,
compression or upsetting tests are used to characterize the material be-
havior under compression [9, 106]. Generally, it is very difficult to create
pure compression stress state due to friction effects in the contact zone
between specimen and machine, while buckling effects limit the length of
the specimen.

Figure 4.8: Tension specimen dog-bone shaped, Inox 304L

Furthermore, notched tension specimens (Fig. 4.9) are designed to reach
higher triaxialities within the notched region - the triaxiality increases
with decreasing notch radius. Generally, the plastic deformations are
concentrated within the notched part, but the strains are measured by a
strain gauge including part of the un-notched specimen which leads to a
smearing effect. Several authors have recently used notched tension spec-
imens to study the damage and fracture behavior at elevated triaxialities,
see for instance [21, 9, 54, 106, 30, 114]. In addition thicker metal sheets
can be notched in thickness direction which can be seen as plane strain
conditions [9].

Figure 4.9: Tension specimens, series with different notch radius 1.25,
2.5, 5.0, 10.0, 30.0mm, Inox 304L

The design of specimens with a more shear-like failure at lower triax-
ialities, is not an easy task. Due to the ductility of the material, the
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specimens show big rotations in the region where shear fracture is ex-
pected, which leads to a combined shear-tension-failure see for instance
Fig. 4.10. Thus a notch in thickness direction is introduced to concen-
trate the deformations mainly in the shear region and therefore improving
the behavior [31]. Focussing on the material behavior under shear load
conditions, it can be tested with the Arcan specimen [8] which has been
adapted lately for various stress states with a special testing device as
butterfly-shaped specimen [119, 9, 114]. In addition torsion tests or com-
bined torsion-tension tests can be performed [54].

Figure 4.10: Fractured shear specimen, aluminum thickness 3.19mm

The standard specimen for Split-Hopkinson-Bar tests is a relatively thin
disc which is tested under compression. In this context it has been pro-
posed to use thin rings to reduce the effects of friction [6]. But, especially
for material characterization of damage and fracture behavior, it is valu-
able to have results of tension tests available. Tension experiments can
be performed with a modified experimental setup, in an indirect way or
by the use of a special specimen shape. The experimental setup can be
modified in such a way that a tension wave is generated in the input
bar, see for instance [90, 172, 69], while then a relatively short tension
specimen is used. Using an indirect form, a compression pulse is gen-
erated which is transferred to the output bar which is in direct contact
where due to reflection on the free end a tension pulse is generated [64].
Further attempts were made by Mohr and Gary [117, 118], who designed
a special specimen shape where the compression wave is converted to a
tension wave within the specimen. Additional experiments with a speci-
men which fractures in a shear mode have been presented by Singh et al.
[146]. The specimens proposed by Mohr and Gary [117, 118] as well as
by Singh et al. [146] are reviewed in detail in Chap. 6.
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The determination of material constants and parameters of the continuum
damage and fracture model as introduced Chap. 2 is crucial for its success-
ful application. Especially it is difficult to identify the micromechanically
motivated parameters of the damage condition, the damage rule and the
parameters of the fracture criterion, due to the lack of experimental tech-
niques on the micro scale. One possibility to overcome this deficit are
micromechanical numerical studies, see for instance [30, 29] and [34, 35].

This chapter gives a detailed description of the determination of the mate-
rial constants and parameters of stainless steel Inox 304L or X2CrNi18-9.
Steel of this category is characterized through high ductility, i.e. high
strains before fracture occurs as well as sensitivity to temperature ef-
fects and strain rate effects [132, 37]. Since these materials can be used
in a extensive range of temperatures they are commonly used in several
industrial applications such as liquid gas storages [132, 131] and heat
exchangers [131].

With decreasing temperature, mainly lower than room temperature, Inox
304L shows increasing secondary phase transformation induced plasticity,
see [133, 132, 37] whereas this effect is intensified with decreasing strain
rate. The applications reviewed within this thesis are focused on tem-
peratures above room temperature and on medium to high strain rates.
Therefore, the effects of secondary hardening are not considered within
this work.

Several material constants of Inox 304L are well known and therefore
taken from literature. The initial density is chosen in accordance with
[167] to ρo = 7.9 · 10−9 t/mm3 and the coefficient of thermal expansion in
accordance with [105, 167] to αT = 17·10−6 K−1. In [105] a melting range
of 1398 − 1420 ◦C is defined and thus leading to a melting temperature
of θm = 1683 K. Furthermore, the volume specific heat capacity cF ,
introduced in Eq. (2.40), can be calculated by multiplying the initial
density ρo with the mass specific heat capacity cm to

cF = ρocm

= 7.9 · 10−9 t/mm3 · 4.5 · 108 (N mm)/(t K)

= 3.555 N/(mm2 K).

(5.1)

Here the value of the mass specific heat capacity is taken by averaging the
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values given in [105] and [167]. The fraction of plastic work rate converted
to heating ξ, see Eq. (2.43), is still subject of discussion in literature
[140, 14, 32]. Especially a wide range of values for different materials and
their dependencies on strain rate and strain state are discussed. For the
present study ξ = 0.8 is chosen as a standard value.
The reference temperature at which the regular experiments have been
performed in Brazil is room temperature, i.e. 25 ◦C leading to the refer-
ence temperature θo = 298 K. The quasi-static reference experiment was
realized with a machine velocity of 0.5 mm/min. The reduced part of the
corresponding tension specimen has a length of 60 mm which leads to the
reference plastic strain rate of

γ̇o =

√
2

3

0.5

60 · 60
= 1.13 · 10−4 s−1. (5.2)

The determination of the damage reference strain rate is not possible with
the available experimental data, therefore the value is adopted along with
the reference plastic strain rate but neglecting the factor of

√
2/3 which

leads to µ̇o = 1.39 s−1.
Several data-sheets, e.g. [1, 2, 3], give information regarding the Poisson’s
ratio of Inox 304L with values from 0.27 to 0.3, consequently leading to
the choice of ν = 0.29 . In combination with the experimentally deter-
mined Young’s modulus E = 190 ·103 N/mm2 and following [151] the shear
modulus

G =
E

2(1 + ν)
=

190000

2(1 + 0.29)

= 73.64 · 103 N/mm2

(5.3)

as well as the bulk modulus

K =
E

3(1− 2ν)
=

190000

3(1− 2 · 0.29)

= 150.8 · 103 N/mm2

(5.4)

can be calculated.
Stout and Follansbee [153] published experimental data of Inox 304L
including results of quasi-static tension and compression tests of rod bars.
This experimental data is used to determine the pressure coefficient a/c.
Following the procedure described by Spitzig et al. [149, 150, 147], the
coefficient was evaluated at different points of the experimental curve,
see Fig. 5.1, and then chosen to a/c = 55 · 10−6 mm2

/N. Thus Spitzig et
al.’s observation [147] could be confirmed that the pressure coefficient is
constant, while the detected value is about 2.5 times bigger than the one
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observed for different iron-based materials [147].

Figure 5.1: Determination of pressure coefficient, data points taken
from [153], linear fit with a/c = 55 · 10−6 mm2

/N

With the constant pressure coefficient a/c and remodeling Eq. (2.63) to

c =

√
J̄2

1− a
c
Ī1

(5.5)

the experimental curve can be shifted, i.e. the true stress T11 of a ten-
sion experiment has to the multiplied by the factor (1− a/cT )−1 which
reflects the influence of Ī1. Fig. 5.2 displays two experimental curves of
experiments with two different machine velocities. As mentioned before,
the effect of secondary hardening, as indicated in the experimental curve
with machine velocity of 0.5mm/min, is not considered within this thesis.
The theoretical curve shown in Fig. 5.2 is the corresponding curve fit
with respect to Eq. (2.65) hence for the non-rate and non-temperature
dependence case where the initial static yield stress c̃o = 380 N/mm2, the
hardening parameter Ho = 2800 N/mm2 and hardening exponent n = 0.6
are chosen.
To determine the parameters introduced in Eq. (2.67), which describe the
temperature dependence of the plastic hardening behavior, tension tests
at 200 ◦C have been performed. Fig. 5.3 displays experimental results
of experiments at room temperature as well as at 200 ◦C whereas the
experimental curve is displayed until secondary hardening effects appear
at room temperature. The corresponding parameters of Eq. (2.67) have
been identified b = 4.0 and q = 1.4 .
Furthermore, experiments at different strain rates have been performed
to determine the material parameters of Eq. (2.66). The velocities of
the electro-mechanic testing machine reach from 0.5 mm/min to 500 mm/min

what leads to plastic strain rates of γ̇ = 1.13 · 10−4 to 10−1 s−1. First
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Figure 5.2: Determination of plastic hardening parameters; curve with
machine velocity of 0.5mm/min indicates slight secondary
hardening due to very low strain rate

experiments on a servohydraulic testing machine have been performed
which had a plastic strain rate of γ̇ = 12.2 s−1 and tests in the Split-
Hopkinson-Bar having a plastic strain rate of γ̇ = 1900 s−1. It is im-
portant to notice that experiments at high strain rates generally show
remarkable temperature increase, i.e. in general, strain rate effects can
not be reviewed independently from temperature effects. As mentioned
before, it is difficult to obtain the temperature evolution of a specimen
during the experiments, specially since heat flux takes place. To over-
come these difficulties, within this thesis the assumptions are made that
the rate effects can be reviewed independently from temperature effects
and that due to extremely fast processes the thermal process can be con-
sidered as adiabatic. Fig. 5.4 displays the experimental curves and the
corresponding numerical fit with parameters d = 0.025 and m = 0.195 .
In addition, it can be noted that currently there is no experimental in-
formation to determine the parameters of Eq. (2.82) which characterizes
the damage strain rate dependence. One possibility to overcome this lack
of information might be a detailed micromechanical study of pore clus-
ter under different strain rates, hence the corresponding parameters are
chosen to be h = 0.025 and r = 0.195 .

The material parameters η1 ... η4 introduced in Eq. (2.74) describe the
influence of damage on the elastic properties which can be clearly seen
in Eq. (2.75). Spitzig et al. [148] analyzed the change of the elastic
properties E, G, K and ν vs. porosity at specimens made from iron
compacts. These experimental results have been used by Brünig [26] to
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Figure 5.3: Determination of plastic temperature dependence param-
eter, continuous lines experimental data and dotted lines
corresponding theoretical fit

determine the following parameters for the isotropic case

η1 = −117.5 · 103 N/mm2, η2 = −95.0 · 103 N/mm2,
η3 = −190.0 · 103 N/mm2, η4 = −255.0 · 103 N/mm2.

(5.6)

For the Inox 304L steel under consideration, currently no such experi-
ments are available and therefore, the parameters determined by Brünig
[26] are used. In the future it will be possible to use a procedure based
on numerical simulations on the micro scale in order to avoid the rather
costly experimental procedure, which in addition might be difficult to
realize for several materials.

Fig. 2.2 illustrates the different damage mechanisms with respect to triax-
iality. In accordance with [31] the corresponding transmission parameters
are chosen to ηc = −1/3 and ηt = 1/

√
3. Furthermore the fracture condition

given in Eqs. (2.89, 2.90) is triaxiality dependent and the transmission
parameter is chosen in accordance with Brünig and Gerke [33] to ηf = ηt.

To study the damage and fracture process experimentally is a very dif-
ficult task, since all processes take place at a micro level. Therefore,
the identification of material parameters of the damage softening law as
stated in Eq. 2.81 and of the fracture condition presented in Eq. 2.89
based on experimental data is currently not possible. To overcome this
deficit the following inverse procedure is proposed: Firstly the param-
eters of the damage softening law are identified by simulations without
temperature and strain rate dependence so that reasonable damage evo-
lution occurs. Secondly the fracture condition parameters are calibrated
to achieve reasonable fracture behavior under different stress states. Fi-
nally, the identified parameters are confirmed by performing simulations
including rate and temperature dependence and comparing the results
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Figure 5.4: Determination of plastic strain rate dependence parameter,
continuous lines experimental data and dotted lines corre-
sponding theoretical fit

with experimental data. This procedure was used to identify the mate-
rial parameters of Inox 304L to µe = 1.0, µo = 0.05 and µf = 0.1 and
results of the corresponding simulations are given in Chap. 6.1.
All material constants and parameters discussed above in detail are sum-
marized in Tab. 5.1 and Tab. 5.2. In addition the material characteristics
of the aluminum alloy have been listed. These have been discussed in
detail in [31, 30, 29, 33].
At this point it is important to notice that both materials show significant
differences in its behavior:
• The stainless steel Inox 304L is characterized through extremely

high ductility, whereas the aluminum alloy shows moderate ductile
behavior.
• Inox 304L shows a remarkable bigger influence in its behavior with

respect to strain rate and temperature than the alluminum alloy.
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Table 5.1: Summary of material constants and elastic-plastic
parameters

Symbol Unit Description Value
aluminum
6.35mm

Value
Inox 304L

ρo t/mm3 Initial density 2.7 · 10−9 7.9 · 10−9

cF N/(mm2K) Volume specific heat
capacity

2.4021 3.555

αT K−1 Coefficient of
thermal expansion

10−5 17 · 10−6

θm K Melting temperature 775 1680
θo K Experimental refe-

rence temperature
293 298

ξ [−] Fraction of plastic
work rate converted
to heating

0.7− 0.8 0.8

G N/mm2 Shear modulus 28.8 · 103 73.64 · 103

K N/mm2 Bulk modulus 62.5 · 103 150.8 · 103

γ̇o s−1 Reference plastic
strain rate

8.17 · 10−4 1.13 · 10−4

a/c mm2
/N Pressure coefficient 180 · 10−6 55 · 10−6

c̃o N/mm2 Initial static yield
stress

250 380

Ho N/mm2 Hardening
parameter

3125 2800

n [−] Hardening exponent 0.135 0.6
d [−] Plastic strain rate

parameter
0.595 0.025

m [−] Plastic strain rate
exponent

6.53 · 10−6 0.195

b [−] Plastic temperature
parameter

3.85 4

q [−] Plastic temperature
exponent

1.9 1.4
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Table 5.2: Summary of damage and fracture material parameters

Symbol Unit Description Value
aluminum
6.35mm

Value
Inox 304L

fo [−] Initial porosity 0.0 0.0
σ̃o N/mm2 Initial static damage

stress
370 1000

µ̇o s−1 Reference damage
strain rate

10−3 1.39 · 10−4

h [−] Damage strain rate
parameter

0.595 0.025

r [−] Damage strain rate
exponent

6.53 · 10−6 0.195

η1
N/mm2 Elastic damage

modulus 1
−30 · 103 −117.5 ·103

η2
N/mm2 Elastic damage

modulus 2
−20 · 103 −95 · 103

η3
N/mm2 Elastic damage

modulus 3
−25 · 103 −190 · 103

η4
N/mm2 Elastic damage

modulus 4
−20 · 103 −255 · 103

ηc [−] Damage cut of
triaxiality

−1/3 −1/3

ηt [−] Damage mode
triaxiality

1/
√

3 1/
√

3

µe [−] Damage law
parameter

0.2 1.0

ηf [−] Fracture
transmission
triaxiality

1/
√

3 1/
√

3

µf [−] Fracture; critical
damage tension

0.16 0.10

µo [−] Fracture; critical
damage shear

0.02 0.05



6 Numerical examples

All numerical simulations presented in this chapter have been performed
with the commercial finite element programm LsDyna which was aug-
mented by an user-defined material subroutine. Most of the meshing has
been realized with Ansys Classic by use of the Ansys parametric design
language (APDL) which allows the parametrization of the finite element
model. For further preprocessing LsPrePost and Altair HyperMesh have
been used while the postprocessing has been carried out with LsPrePost
and Altair HyperView. Additional graphic processing has been realized
with standard office software such as Microsoft Excel, CorelDraw for vec-
tor plots and Photoshop for pixel data.

6.1 Finite element modeling

This section covers several aspects concerning the finite element model-
ing of Split-Hopkinson-Bar experiments. One important aspect of the
experimental setup is that a rather small specimen is located between
comparatively long bars. Furthermore, to achieve sufficiently accurate
results, especially regarding developing damage and fracture, a rather
fine mesh has to be used in these parts of the model, but for compu-
tational efficiency these fine meshes can not be used for the complete
model, which leads to mesh refinement issues. During these numerical
studies it is important to keep the real experimental setup in mind. All
Split-Hopkinson-Bar experiments reviewed in this work were realized at
GMSIE lab at the University of São Paulo (USP). The bars are sup-
ported by Teflon sliding contact bearing allowing an almost frictionless
movement of the bars that is not considered in the finite element model-
ing. The striker bar is accelerated by a gas gun but currently there is no
possibility to measure the striker velocity before impact. All bars have a
diameter of 25.0mm whereas the striker has a length from 300 or 500mm
and the input and output bars have a length of 1400mm for aluminum
and 2007mm for steel. Both, input and output bar, are equipped with
one strain gauge on the surface at their centers in longitudinal direction.

The numerically predicted strains within the bars have to be compared
with those reported by the stain gauges in the corresponding experiment
and thus have to be extracted from the numerical simulation. The bars are
made of a material with high yield stress and so their behavior during the
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experiment is elastic, which leads to the choice of an elastic material law
for the numerical simulations while in this case, Mat_Elastic in LsDyna
was chosen. The strain in bar length direction has been extracted by
reporting the stress of one solid element at the strain gauge location on
the outside of the bar and then calculating the strain by the use of the
linear elastic material law.
In this context, the discretization of the bars is of special interest where
a choice of a sufficiently fine mesh at acceptable numerical cost has to be
performed. Hence a study with different meshes has been realized and the
obtained results as well as the computational costs are reported. To this
porpuse a steel striker of 300mm impacts an input steel bar of 2007mm
with an velocity of 20m/s while the strains at the strain gauge location
of the bar are compared. Tab. 6.1 gives an overview of the approximated
element sizes, the total of elements and the cpu time as well as the relative
cpu time referred to the later chosen mesh. Comparing the results in
Fig. 6.1, one can notice that a coarser mesh filters the high dispersion
frequencies, but still the meshes with element size 1.0/1.0, 2.0/2.0 and
2.0/10.0 show comparable results while the very coarse mesh is out of
scope. In this situation it is important to notice that the length of the
strain gauge plays an important role with respect to the reported strains
while longer strain gauges smoothen the curve or filter high frequencies
[79]. Thus it is assumed that the mesh 2.0/10.0, see Fig. 6.2, provides
sufficiently accurate results by relatively low computational cost so that
this mesh will be used for all simulations. Actually, the mesh is coarsen in
length direction in two steps, finally reaching an aspect ratio of 1:5 which
leads to a total element number of 3, 456 for the striker and of 21, 248 for
the input bar.

Figure 6.1: Strains of input bar with respect to different mesh sizes
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Table 6.1: Tested mesh size bars

Approx. element size
cross section [mm]

Approx. element size
length direction [mm]

Total
elements

cpu
time [s]

Relative
cpu time

1.0 1.0 962, 048 9, 523 89
2.0 2.0 120, 320 594 5.6
2.0 10.0 24, 704 107 1.0
6.0 30.0 624 2 0.02

Figure 6.2: Mesh of bars; left: cross-sectional area, right: mesh coars-
ening in longitudinal direction

Generally, the results of Split-Hopkinson-Bar experiments are evaluated
applying a one-dimensional wave theory [44]. Dispersion effects, i.e. the
effects of wave propagation in thickness direction on the longitudinal
wave, are known to be more significant with increasing bar diameter.
Here this effect is reviewed by a numerical study including half and dou-
ble bar diameter. Fig. 6.3 displays the results for a bar length of 2007mm
impacted by a 300mm striker with 20m/s. Here it can be noticed that
the dispersion effects due to bar diameter can be numerically predicted.
From an experimental point of view it is important to notice that similar
dispersion effects in an experiment can be reported only if a very good
bar alignment is achieved and thus these effects can be seen as a measure
for the quality of the bar alignment.

Figure 6.3: Strains of input bar with respect to different diameter
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Evaluating the experimental results of Split-Hopkinson-Bar experiments
it is assumed that the specimen is in static equilibrium which is almost
instantaneously reached whereas generally thin disc specimens are used.
This assumption is numerically reviewed by the choice of a specimen that
is 5mm thick and has a diameter of 15mm; Fig. 6.4 displays the meshed
specimen. The input and output bars were modeled in steel and the input
bar was impacted by a striker of 300mm with a velocity of 20m/s whereas
the disc was modeled with the material parameters of Inox 304L. Fig. 6.5
shows the forces between input bar and specimen as well as between
specimen and output bar, as reported during the simulation. In this case
the static equilibrium is reached almost instantaneously, only during the
period of almost constant stresses slight differences can be noticed which
could have their origin in dispersion effects of the specimen itself.

Figure 6.4: Mesh of disc specimen, total of 640 elements

Figure 6.5: Forces during deformation process of a disc specimen

Furthermore, the strains of the steel input bar of 2007mm length and of
the aluminum output bar of 1400mm length are displayed in Fig. 6.6. The
simulation results of this commonly used experiment show remarkable
decrease of the amplitude between incoming and reflected wave of the
input bar as well as a major wave caused in the output bar.
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Figure 6.6: Strains of input and output bar, disc specimen

6.2 Reduced M-Shape

Mohr and Gary [117, 118] proposed a new M-Shaped specimen, Fig. 6.7a,
which can be used in a Split-Hopkinson-Pressure-Bar apparatus to per-
form tensile experiments. This specimen is especially designed to trans-
form compressive loading conditions into tensile loading in its critical
part. Mohr and Gary [117, 118] identified their static material parame-
ters using a specimen of 3.5mm thickness. Then they performed dynamic
experiments with thicknesses being a multiple of 3.5mm. To study the
pure tension behavior of the central part of the specimen, numerical stud-
ies were realized with this part, indicated in Fig. 6.7a in red, whereas the
dimensions are given in the three central drawings of Fig. 6.7.

Figure 6.7: M-Shape specimen by Mohr and Gary [118], reduced (in red)
and notched for numerical studies; all measures in [mm]

Fig. 6.8 gives an impression of the mesh of the reduced M-Shape speci-
men although the illustrated mesh is coarser than the one used for the
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simulations with a total of 246, 528 elements where the thin part of the
specimen has 12 elements over the width and 72 elements in thickness.
Following the ideas of Børvik et al. [22] who used for similar studies
a dynamic surface impulse which is related to those occurring in Split-
Hopkinson-Bar experiments, here a tension pulse as shown in Fig. 6.9 on
the face surface has been applied while the other end is fixed. Here it is
important to notice that these relatively simple boundary conditions do
not reflect any bending phenomena occurring in the complete specimen
and the applied impulse is smoother than the one expected in this part
of the complete specimen. These numerical studies have been performed
for the aluminum alloy using the corresponding material parameter given
in Tabls. 5.1 and 5.2.

Figure 6.8: Mesh of reduced M-Shape
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Figure 6.9: Applied pressure for numerical studies of reduced M-Shape
specimen

With the presented material model, the complete deformation process,
i.e. elastic, elastic-plastic, elastic-plastic-damaged and finally fracture
behavior, can be described. Fig. 6.10 shows the evolution of the internal
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damage variable µ for rate and temperature dependend material behav-
ior. Firstly, damage evolutes at the complete thinner part of the specimen
over a quite long period of time, forming maxima at the center as well as
on the edge close to the thicker part of the specimen, Fig. 6.10b. It can be
seen,fracture firstly occurs almost simultaneously and evolutes from the
center horizontally towards the outside and from the edge horizontally
towards the center. This causes major shear behavior with low positive
triaxialities between the advancing cracks where the internal damage vari-
able already reaches a remarkable value of approximately 4%. In combi-
nation with the triaxiality dependence of the fracture criterion, this leads
to the shown shear fracture while Fig. 6.11 gives a detailed impression of
the fracture surface.

Figure 6.10: Evolution of internal damage variable µ and fracture pro-
cess, pre-study with thickness 7.0mm

Figure 6.11: Fracture surface of un-notched aluminum specimen, pre-
study with thickness 7.0mm
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Motivated by Hopperstad et al. [69] and the corresponding numerical
simulations by Børvik et al. [22] who performed high-speed tension
experiments with specimens with different notch radii using a special
Split-Hopkinson-Bar setup, a series of numerical studies with differently
notched flat specimens is carried out. In this context, the systematic of
Mohr and Gary [117, 118] is maintained and a specimen width of 3.5mm is
used whereas different notch radii rn = 0.25, 0.5, 0.75, 1.0 mm are tested,
see last drawing of Fig. 6.7, maintaining the central part of the speci-
men at a constant width of 1.75mm. Furthermore, Fig. 6.12 illustrates
the mesh of 1/8th of the specimen whereas all simulations were performed
without symmetry conditions.

Figure 6.12: Mesh of reduced M-Shape with notch

In Fig. 6.13, a remarkable concentration of damage can be observed near
the notch tips of small radius whereas large damage zones are characteris-
tic for larger notch radii. The final fracture line is straight and, compared
with that one of the un-notched specimen (Fig 6.11), completely different.
Thus different failure modes are numerically predicted which allow the
analysis of various stress triaxialities. Hence, a series of experiments with
variously notched specimens could give new insights in damage and failure
mechanisms at different triaxialities under dynamic loading conditions.

At this point it is important to notice that the central part of the M-
Shape specimen has certain restrictions to its geometry which have to be
reflected in the design of a notched specimen. The length of the cental
part has to be kept as short as possible in order to reduce the distance
the incoming wave has to cover. Consequently the width of a notched
specimen is restricted, especially if different notch radii ought to be used
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Figure 6.13: Evolution of internal damage variable µ and fracture of
reduced M-Shape with notch, time between images 3.5µs
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and thus the amplitude of the transmitted wave to the output bar is
limited. Therefore, it has to be reviewed in detail if this wave can be
evaluated from an experimental point of view.

6.3 Split-Hopkinson-Bar tests: Rings

Currently ring-shaped specimens are more frequently used, for instance
Alves et al. [6] emphasizes the advantages of ring specimens due to the
reduced influence of friction which allows the reduction of lubricants. This
leads to advantages especially for experiments performed at low and high
temperatures. In addition, specimens can be easily fabricated if the raw
structures are thin walled tubes or sheets.

In this context, aluminum rings with an outer diameter of 20.0mm, wall
thickness of 1.0mm and height of 6.35mm have been tested, noting that
the geometric relations do not fulfill the requirements proposed by Alves
et al. [6] to extract material curves, i.e. the specimens are slimmer and
warpage can occur.

Fig. 6.14 gives an impression of the deformation behavior during the
Split-Hopkinson-Bar experiment while aluminum bars with a length of
1400mm have been used. The pictures were taken by a high speed cam-
era with 15000 fps (frames per second) and give an impression of the
deformation behavior during the 1st wave passage. The specimen shows
displacements at its center in radial direction which lead to remarkable
tension on its outside. In the 3rd slide first signs of fracture can be seen
in this region and in the 4th slide remarkable fracture is visible. Further-
more remarkable temperature increase occurred which did not allow to
touch the specimen directly after the experiment noting that almost the
whole specimen undergoes major plastic deformations which lead to this
remarkable temperature increase.

Figure 6.14: Deformation of aluminum rings during Split-Hopkinson-
Bar experiment; time between images 66.6µs
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Fig. 6.15 displays the mesh used for the numerical study. Here it can
be noticed that 12 elements have been used in wall thickness direction
which can reflect the bending in this direction. Furthermore, the friction
coefficient between the bars and the specimen is set to 0.01 which leads
to very similar results compared with the experimental behavior.

Figure 6.15: Mesh of ring specimen, left: complete specimen with
coarser mesh for illustration purposes; right: cut-out; total
of 46, 080 elements

To study the first part of the deformation process, elastic-plastic simula-
tions with rate and temperature dependence are realized, see also [58, 56].
These simulation can not cover the last part of the deformation process,
but they give an insight into the first elastic-plastic part of the defor-
mation process. Fig. 6.16 displays the temperature increase during this
deformation process whereas for these simulations the rate of plastic work
converted to heating is set to ξ = 0.7. In this part of the deformation
process large plastic deformations, and thus heating, take place in the
contact zones of the specimen with the bars as well as in the inner part
of the center where compression is predominant. On the outside of the
central part first a compression dominated stress state takes place at the
beginning, which changes with ongoing bending to a biaxial tension state.

6.4 Split-Hopkinson-Bar tests: M-Shape

The geometry of the M-Shaped specimen presented by Mohr and Gary
[117, 118] has to be adopted depending on the ductility, i.e. the strain to
fracture and the diameter of the bars. Fig. 6.17 gives a detailed sketch of
the geometries used for the aluminum alloy and the stainless steel Inox
304L which have been developed and tested at GMSIE lab, University of
São Paulo (USP), Brazil. Furthermore, Fig. 6.18 gives an impression of
the specimen (Inox 304L) before and after the experiment.



78 Numerical examples

101.5

67.6

33.8

0.0

Figure 6.16: Simulation of temperature increase of aluminum rings dur-
ing Split-Hopkinson-Bar experiment, time between images
4µs

Figure 6.17: Geometry of M-Shape specimen; all measures in [mm]; for
aluminum alloy h = 11.0 mm, h1 = 2.0 mm, h2 = 1.0 mm
and thickness 6.35mm; for Inox 304L h = 15.0 mm, h1 =
4.0 mm, h2 = 3.0 mm and thickness 3.0mm; all inner radii
0.5mm; width of tension part 0.5mm

The specimen is located in such a way that the middle part is in contact
with the input bar and the divided part is in contact with the output
bar. Used in this form, i.e. without any support, the divided part of
the specimen will move during the experiment towards the outside of
the bars and significant bending will occur also causing problems in the
contact zone with the output bar. To avoid these difficulties, Mohr and
Gary [117, 118] proposed the use of spacers between the central part and
output side and a further support of the divided part. This was realized
in the used experimental setup through two L-shaped spacers and a cap
with a rectangular slot for the specimen as base support on the side of
the output bar. Although the shape of these additional parts is optimized
to simplify the execution of the experiment, it is still difficult to locate
all parts properly before the experiment is performed.

Fig. 6.19 gives an impression of the deformation behavior of an Inox
304L specimen during the experiment. On the 1st picture the specimen
is still at rest whereas in the 2nd the deformation is progressing. In
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Figure 6.18: M-Shape specimen Inox 304L, before and after experiment

the next picture it is more likely that fracture already occurred and in
the 4th picture the specimen is clearly fractured in both tension parts.
It can be nicely observed that both sides of the specimen deform first
uniformly although final fracture is more likely not to occur at the same
time. The spacers and the cap avoid major bending in the thin tension
part but its occurrence is not completely prevented. The major inelastic
deformations that can be seen in Fig. 6.18c are not generated in the
first wave transmission, they develop in subsequent wave transmissions
when the specimen occurs to be clamped between input and output bar.
However in this context only the first wave propagation is considered since
it reflects the material response until fracture of the thin part.

Figure 6.19: Deformation and fracture of Inox 304L M-Shape specimen
during Split-Hopkinson-Bar experiment, time between im-
ages 100µs

For the M-Shape experiments with Inox 304L a steel striker bar (500mm),
a steel input bar (2007mm) and an aluminum output bar (1400mm) have
been used. Due to the small cross-section of the specimen’s tension part,
the amplitude of the transmitted wave is small compared with the in-
cident wave, so the measurement of the transmitted wave occurs to be
difficult. By using an aluminum output bar where the Young’s modulus is
about 1/3 smaller compared to steel, the strains are about factor 3 bigger
and thus are easier to measure. Fig. 6.20 gives an example of the waves
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reported by the strain gauges during the M-Shape experiment with Inox
304L. The dispersion of the bar can be clearly noted as well as the differ-
ence in amplitude between the input and output bar. Furthermore, it can
be clearly seen that the specimen fractured during the influence of the
first wave. Also the amplitude of the reflected wave is almost as big as the
incident wave, i.e. only a small part is transmitted through the specimen
and the wave is reflected several times within the input bar which causes
the major inelastic deformations of the specimen in the subsequent wave
transmissions, Fig. 6.18c. Hence the wave transmission behavior of the
proposed M-Shape specimen appears to be different to that of the disc
specimen (Fig. 6.5), especially the amplitude of the transmitted wave has
a different magnitude. In addition it can be mentioned that for exper-
iments with the aluminum alloy an aluminum striker bar (300mm), an
aluminum input bar (1400mm) and an aluminum output bar (1400mm)
have been used.

Figure 6.20: Signal of M-Shape experiment (Inox 304L) in Split-
Hopkinson-Bar, red input (steel) and blue output bar (alu-
minum), ordinate in V which can be seen as a measure of
strain; data processed for more legible diagram

Figs. 6.21 and 6.22 show finally fractured specimens. While the fracture
of the aluminum specimens of 6.35mm thickness has an inclined develop-
ment from the outside and at the center it is perpendicular to the edge,
the fracture of the Inox 304L specimens of 3.0mm thickness is completely
perpendicular to the edge with small kinks. In both cases the crack is
inclined to the main crack direction which can be a result of the high
strain rates as reported by [139]. Here it is important to notice that the
location of the final fracture in length direction varies but that the shape
of the fracture surface is stable.
For the numerical simulation of the experiment not only the striker but
also input and output bar and the specimen as well as the spacers and the
cap have to be modeled. Fig. 6.23 displays the mesh of half of a M-Shape
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Figure 6.21: Fractured aluminum M-Shape specimens, thickness
6.35mm

Figure 6.22: Fractured Inox 304L M-Shape specimens

specimen including the spacer for Inox 304L. The central tension part
has 8 elements in width direction and 36 elements in thickness direction,
i.e. elements have a minimum edge length of approximately 0.0625mm.
For the aluminum alloy a similar mesh has been used with 72 elements
in thickness direction. The applied technique of mesh refinement results
into an element size of 0.75mm in the contact zones with the bars, i.e.
the proportion of element sizes between bars and specimen is about 1:3.

As shown in Fig. 6.23, the corners of the spacer have been slightly ablated
to avoid contact problems with sharp edges while the zone is of no further
interest for the analysis of the experiments. Furthermore, the mesh size
has been adapted to the corresponding mesh size of the specimen in that
region. The cap is modeled in a simple way as shown in Fig. 6.24, but
considering the mesh of the bars to avoid initial penetration problems.
The material behavior of the spacers as well as of the cap is assumed
to be linear-elastic with parameters corresponding to steel. In addition,
all contacts have been realized by surface to surface definitions while the
friction coefficient was set to 0.01.

For the aluminum alloy, numerical simulations including the complete ex-
perimental setup have been performed while rate and temperature depen-
dence as well as the proposed fracture criterion are considered. Fig. 6.25
displays the damage evolution at the center of the tension part before
first fracture occurrence, i.e. before the first element erosion took place.
Comparing these results with those obtained at the studies of the reduced
M-Shape, Fig. 6.10, a similar behavior can be observed. Major damage
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Figure 6.23: Mesh of M-Shape specimen, for illustration purposes only
half displayed with corresponding spacer

Figure 6.24: Mesh of cap; left for aluminum M-Shape, right for steel
M-Shape
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Figure 6.25: Damage evolution of aluminum M-Shape specimen

evolution occurs at the center of the specimen and on the edge closer to
the thicker part which appears to be in an x-shape. The resulting frac-
ture surface (Fig. 6.26) has also a shape similar to the one predicted by
the numerical simulations of the reduced M-Shape. The crack evolutes at
the central region as well as from the outside. These results show good
agreement with the experimentally achieved results displayed in Fig. 6.21,
especially with the last picture in this figure.

Different simulations have been performed with the M-Shape specimen
made of Inox 304L: elastic-plastic without rate and temperature depen-
dence and without fracture, elastic-plastic-damage with fracture but with-
out rate and temperature dependence as well as elastic-plastic-damage
with rate and temperature dependence and with fracture. Furthermore,
these simulations have been used to identify the material parameters of
the damage softening law as well as of the fracture criterion. Firstly the
simulations with elastic-plastic-damage material behavior and fracture
but without rate and temperature dependence have been realized. With
these simulations the parameters which are given in Chap. 5 have been
calibrated. In continuation, rate and temperature dependence has been
also taken into account and the respective results are compared.
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Figure 6.26: Predicted fracture of aluminum M-Shape specimen

In Fig. 6.27, the reported strains at the center of the input and output bar
are plotted for a simulation with elastic-plastic material behavior and for
a simulation with elastic-plastic-damaged material behavior considering
rate and temperature dependence and fracture for a striker velocity of
10.0 m/s. Comparing both transmitted waves, it can be observed that the
amplitude of the transmitted wave of the simulation with elastic-plastic
material behavior is remarkably lower than the one considering rate and
temperature dependence and thus the stiffer material response due to
strain rate hardening is nicely reflected. Furthermore, the fracture of the
specimen is clearly indicated by the dropout of the transmitted wave.
Comparing the qualitative characteristics of the numerically predicted
curve with the one obtained experimentally (Fig. 6.20), good correlation
is achieved with respect to the development as well as to the fracture time,
but the experimentally obtained curve initially shows a higher amplitude.

To gain insights into the general behavior of the M-Shape specimen dur-
ing the deformation process, the contact forces between input bar and
M-Shape specimen and between M-Shape specimen and output bar as
well as the summed forces of both thin tension parts on the incoming and
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Figure 6.27: Strains in input and output bar of simulation with M-
Shape specimen (Inox 304L)

outgoing side are monitored, Fig 6.28. Here the pulsative distribution
of the contact forces between the input bar and the specimen are con-
spicuous while the thin tension part is almost instantaneously in static
equilibrium. The contact forces between the specimen and the output bar
show a pulsative distribution at a similar frequency but with remarkably
smaller amplitude. The frequency of these contact forces is neither com-
parable to the magnitude of the frequency of the bar dispersion nor to the
frequency of the incoming compression part of the specimen. This behav-
ior might result directly from the general soft response of the specimen
as indicated by the transmitted wave or from the elevated and complex
wave propagation through the specimen. At this point it is important
to notice that the overall static equilibrium needed for the extraction of
material curves is not reached - only in an integrated sense.

Figure 6.28: Forces during deformation process of M-Shape specimen
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These considerations lead to a closer look at the plasticized zones of the
specimen. Fig. 6.29 displays the internal plastic variable γ after final frac-
ture, while the legend is restricted to 9%, allowing to observe values above
1%. Major plastic deformation with values of above 30% are restricted
to the central tension part with relatively small transmission zones and
hence the expected behavior is achieved.

Figure 6.29: Plasticized region of M-Shape specimen (Inox 304L) after
final fracture, internal plastic variable γ

The stress state, i.e. the triaxiality has a remarkable influence on the
damage behavior of the material. Fig. 6.30a indicates the triaxiality at
the center of the tension part before first damage occurrence while a
rather homogeneous state around the expected value of 1/3 is reached.
Furthermore, it is important to notice that the evolution of damage, i.e.
the softening of the material has an important influence on the stress
state; the material eludes the load [33]. The three pictures at the right
hand side of Fig. 6.30 demonstrate the damage evolution at the center
of the tension part for material behavior neglecting the rate and tem-
perature dependence. Damage evolution takes place over a rather long
time starting from the center towards the outside forming one central
damaged zone as known from static tension tests [112]. Finally fracture,
i.e. element erosion, starts as well at the center and the crack propagates
perpendicular to the loading direction.
In contrast, Fig. 6.31 displays the damage evolution for rate and tempera-
ture dependent material behavior. In this case, damage occurs at various
locations spread over the complete thin tension part of the specimen. In
continuation, several clusters perpendicular to the tension direction are
forming over a rather short period of time with first fracture occurring
close to the thicker part while the crack evolutes perpendicular to the
tension direction. The finally fractured specimens (Fig. 6.22) are charac-
terized by fracture surfaces perpendicular to the tension direction which
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Figure 6.30: Triaxiality before first damage occurrence and damage
evolution of M-Shape specimen (tension part, Inox 304L)
without temperature and strain rate dependence, internal
damage variable µ; time between images 6.0µs

can occur at various locations of the tension part. That might be seen as
an indication that damage also takes place at almost the complete cen-
tral region and that final fracture is initiated at some weak point of the
specimen. Furthermore, the behavior is remarkably different to the one
predicted without rate and temperature dependence (Fig 6.30); damage
does not evolute in a central region but in clusters perpendicular to the
loading direction. Also, the contour of the central region is more elon-
gated, i.e. less necking is predicted which also reflects better the real
behavior of the specimen.

Figure 6.31: Damage evolution of M-Shape specimen (tension part,
Inox 304L) with temperature and strain rate dependence,
internal damage variable µ; time between images 1.0µs

In addition, the temperature evolution of the central part is given in
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Fig. 6.32 which is directly related to the plastic deformation. The temper-
ature increase is rather homogeneous distributed over the central region
with its maxima at the center. The maximum value before damage occur-
rence is at 81 ◦C within the temperature region studied experimentally
but already leading to remarkable material softening.

Figure 6.32: Temperature evolution of M-Shape specimen (tension part,
Inox 304L) before damage occurrence, time between im-
ages 20.0µs - change float

All in all, the numerical results of the Split-Hopkinson-Bar experiments
with M-Shaped specimens modeled with the presented material behavior
including plastic, damage and fracture lead to a good correlation with the
experimentally achieved results. During the experimental and numerical
work with specimen presented by Mohr and Gary [117, 118] in its adopted
form a good insight was gained. This leads to several positive aspects,
such as:

• It can be used in a standard Split-Hopkinson-Pressure-Bar without
any modification to the experimental setup.
• The specimen can be designed in such a way that important inelastic

deformations take place only in the designated central part and final
fracture takes place in the first wave propagation.

As well as to some negative aspects, such as:

• High cost of manufacture due to the rather complex geometry in
combination with required precise production.
• Difficult to handle in the experimental setup due to the spacers and

the cap which have to be located with extra care.
• The amplitude of the transmitted wave is rather small.
• During the experiment, the specimen is not in static equilibrium,
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i.e. it is questionable if it can be used for the extraction of material
curves.

6.5 Split-Hopkinson-Bar tests: Shear specimen

All specimens discussed until this point show damage and fracture behav-
ior in compression or tension dominated range and consequently the need
of a specimen geometry leading to failure in a shear-like mode is evident.
In this context Singh et al. [146] proposed two geometries which lead to
shear-like damage and fracture. These geometries have been adopted for
the use with the stainless steel Inox 304L in simulations of corresponding
Split-Hopkinson-Bar experiments. With these first numerical results it
seemed likely that a notch in thickness direction could improve the be-
havior of the specimen significantly and thus additional simulations with
different notched specimens have been performed and the results are pre-
sented in correlation. All these simulations have been realized without
consideration of strain and temperature dependence.

The adopted geometries are presented in Figs. 6.33 (shape 1) and 6.34
(shape 2). The pulse of the input bar is induced in the central elevated
part while the opposite side is in contact with the output bar. Shape
1 is characterized by sharp edges and a relatively small offset of 0.1 mm
between the width of the central part and the central hole while shape
2 is characterized through a rounded-out transmission part between the
central inducing part and the body of the specimen and a bigger offset
of 1.0 mm. The notch in thickness direction has the shape of a quadratic
function whereas its pass is at the center of the offset. For shape 1 the
depth amounts 0.5 mm, its width is 1.1 mm and on both sides it blends
also in the shape of a quadratic function, Fig. 6.36. For shape 2, two
different notches are considered, one of depth 0.5 mm and width 1.0 mm
and one of depth 1.0 mm and width 2.0 mm, Fig. 6.37.

The mesh for shape 1 (Fig. 6.35) contains a total of 91, 081 elements while
in the shear region 36 elements in thickness direction have been used. This
mesh has been used as base to create the mesh of the notched specimen
by simply moving the existing nodes to the desired shape, Fig. 6.36. The
mesh for shape 2 contains a total of 64, 056 elements while the mesh of
the notched specimen has been created in the same way as for shape 1,
Fig. 6.37.

For these simulations a steel striker (300 mm), a steel input bar (2007 mm)
and an aluminum output bar (1400 mm) have been used while the striker
velocity was set to 25.0 m/s. The higher striker velocity, compared to
the simulation with Inox 304L M-Shape specimens, leads to significantly
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Figure 6.33: Geometry of shear specimen, shape 1; all measures in [mm]

Figure 6.34: Geometry of shear specimen, shape 2; all measures in [mm]

higher amplitudes of the incoming wave while the shorter striker causes
a shorter wave. As first study, Fig. 6.38 displays the incoming wave, the
reflected wave as well as the transmitted wave of a series of simulations
with un-notched and notched shear specimens of shape 2. For all three
simulations the incoming wave has the same distribution while the re-
flected waves show differences. The transmitted wave of the un-notched
specimen is remarkably longer than the one of the notched specimens
which both show almost the same length while the maximum amplitude
of the transmitted wave reflects the remaining cross section of the shear
zone.
In addition, the contact forces during the deformation process have been
monitored. Both specimen shapes show similar behavior while the un-
notched specimens are more likely to reach the state of static equilibrium,
Figs. 6.39 and 6.40 and the time of the deformation process until fracture
of the un-notched specimen is about twice as long as the time needed by
the notched specimen. Furthermore, it can be noted that the contact time
for shape 1 is shorter before fracture occurs, i.e. a more brittle specimen
behavior is given. In contrast to the M-Shape specimen (Fig. 6.28), the
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Figure 6.35: Mesh of shear specimen, for illustration purposes only half
displayed

Figure 6.36: Detail of notched, meshed shear specimen
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Figure 6.37: Mesh of shear specimen, shape 2 with 1.0mm notch, for
illustration purposes only half displayed
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Figure 6.38: Strains in input and output bar of simulation with shear
specimen, shape 2, Inox 304L

contact forces between the input bar and specimen do not oscillate which
can be seen as a major advantage.

Figure 6.39: Contact forces during deformation process of shear speci-
men, shape 1, Inox 304L

To explain the remarkable longer time of the deformation process of the
un-notched specimens, the plasticized zones of the different geometries are
compared after final fracture, see Figs. 6.41 and 6.42 where the internal
plastic variable γ at the center plane of the specimen is displayed while the
legend is scaled to a maximum value of 0.9 although more elevated values
occur. The un-notched specimen of shape 1 (Fig.6.41a) is characterized
through elevated plastic deformations in an extensive region around the
shear part while major regions of the inducing part are still plastically
deformed. The notched specimen of shape 1 (Fig.6.41b) reacts differently,
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Figure 6.40: Contact forces during deformation process of shear speci-
men, shape 2, Inox 304L

here plastic deformations are restricted to a very limited region of the
shear zone and the inducing part does not show plastic deformation above
γ = 0.01.

Figure 6.41: Plasticized region of shear specimen shape 1 after final
fracture, internal plastic variable γ, left to right: un-
notched and notch 0.5mm

The shear specimen shape 2 shows similar behavior to shape 1. The
behavior of the un-notched specimen (Fig.6.42a) is characterized through
significant zones of plastic deformation while even the transmitting part
to the output bar is included which leads to remarkable bending of the
lateral supports. The specimens with 0.5 mm and 1.0 mm deep notch of
shape 2 (Fig.6.42b,c) show very similar behavior while the plasticized zone
of the specimen with 0.5 mm deep notch is slightly larger. Overall, it can
be noticed that weakening the shear region with a notch does remarkably
change the behavior of the specimen leading to a more concentrated zone
of elevated deformation.
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Figure 6.42: Plasticized region of shear specimen shape 2 after final
fracture, internal plastic variable γ, left to right: un-
notched, notch 0.5mm and notch 1.0mm

Furthermore, the stress state and the damage evolution of the different
specimen shapes are of interest. Fig. 6.43 displays results of the shear
specimen shape 1 without notch. The triaxiality η of the shear zone is
distributed rather homogeneous in thickness direction with values in the
low negative range and the corresponding internal plastic variable γ is
distributed as well homogenous. First damage occurrence is predicted
on the outside of the specimen, but not in its direct shear zone. The
damage evolution, characterized through the internal damage variable µ,
takes place over a rather long period and is first characterized through
elevated values close to the sharp edges of the shear zone where also the
final crack, i.e. element erosion, starts. Damage then evolutes towards
the center of the specimen which leads to final fracture.

Fig. 6.44 displays the corresponding results of the notched shear specimen
shape 1. The triaxiality η shows considerable differences over the thick-
ness direction while close to the notch surface negative values close to 0
occur, the values at the center are already close to −0.25. Thus this spec-
imen leads to non-constant values of triaxiality, but covering the region
of special interest from 0.0 to −1/3. The corresponding internal plastic
variable γ is characterized through higher values close to the notch and
remarkably lower values at the center of the specimen. Consequently,
the corresponding damage µ evolutes first on its outside at the center of
the notch close to the sharp geometry edge and then propagates towards
the center while the evoluting crack follows this direction. In comparison
with the un-notched specimen besides the differences in triaxiality it is
noteworthy that the damage evolution takes place over a shorter time
period.

In continuation the triaxiality and the damage evolution of the shear spec-
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Figure 6.43: Triaxiality η and internal plastic variable γ before damage
of shear zone over thickness direction; damage µ evolu-
tion at center of specimen (top row) and corresponding at
surface of shear specimen shape 1, time between images
14.0µs

imens shape 2 without notch and with 1.0 mm notch are presented in the
central plane of the specimen while cut outs of the shear zone are taken,
Figs. 6.45 and 6.46. The triaxiality of the un-notched specimen shows
values of approximately −0.1 in the damage zone which are similar to the
values of the un-notched shear specimen shape 1. The damage evolution
occurs over a rather long time period leading to a damage zone covering
the complete shear region before macro-cracking occurs. The triaxial-
ity of the notched specimen reaches values of approximately −0.05 at the
presented central region which is remarkably higher than the triaxiality of
the notched shear specimen shape 1 where values of −0.25 are predicted.
Furthermore, the damage evolution takes place rather concentrated at
the center of the notch and it evolutes over a rather short period of time.
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Figure 6.44: Triaxiality η and internal plastic variable γ before damage
of shear zone over thickness direction; damage µ evolu-
tion at center of specimen (top row) and corresponding at
surface of notched shear specimen shape 1, notch 0.5mm,
time between images 3.0µs

The results of these first numerical studies lead to a number of observa-
tions and conclusions, namely:

• The presented shear specimens lead to damage and fracture at neg-
ative triaxialities.
• By the introduction of additional notches in thickness direction,

major inelastic deformations can be restricted to the shear zone of
the specimen and thus the shear behavior can be monitored exper-
imentally.
• The specimens can be used in a regular Split-Hopkinson-Pressure-

Bar setup without any modification. Furthermore, this type of spec-
imen can be used without any additional parts, such as spacers and
cap as for M-Shape specimen, which facilitates the handling.
• The magnitude of the transmitted wave is in a range where it can

be experimentally measured.
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Figure 6.45: Triaxiality before first occurrence of damage and damage
evolution of shear specimen (Inox 304L) without tempera-
ture and strain rate dependence, internal damage variable
µ; time between images 13.0µs

In addition, it is interesting to notice that the presented shear geometries
are symmetric, i.e. two shear zones are located on both sides of a central
region which is pressed into a rather compact body. This minimizes the
rotations of the designated shear regions. It is likely that this observation
can be transferred to the design of shear specimens for static tests which
might also lead to a major reduction of rotations in the shear zone while
the combination with additional notches in thickness direction is possible.
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Figure 6.46: Triaxiality before first occurrence of damage and damage
evolution of shear specimen (Inox 304L) with notch of
1.0mm, without temperature and strain rate dependence,
internal damage variable µ; time between images 3.0µs



7 Closure

7.1 Summary and conclusions

This thesis covers damage and fracture behavior of ductile metals under
special consideration of the stress state, the effects of strain rate hard-
ening and softening due to temperature increase. In this connection, a
phenomenological continuum damage and fracture model is introduced
which is implemented into a commercial simulation software. To identify
the material parameters of the model, several different experiments have
been performed and the procedure of parameter identification has been
discussed in detail for a stainless steel. To demonstrate the applicabil-
ity of the model, several different simulations of executed experiments
including deformations with high strain rates have been performed. In
addition, the numerical modeling of the experimental setup as well as
the specimen shape have been reviewed in detail, resulting in several new
insights on both subjects.

Overall, the achieved results improve significantly the understanding of
the deformation and fracture behavior of ductile metals. This new knowl-
edge can be used in several applications such as the design of light weight
structures and the simulation of car crashes or high speed machining pro-
cesses, allowing a maximum utilization of the material which results into
a more responsible and cost-efficient handling of resources.

The presented continuum damage model is based upon the work presented
by Brünig [26, 27, 28]. One of the main characteristics of the model is
the fact that damage tensors are directly introduced within the kinematic
framework and thus no stress or strain equivalence is needed, as frequently
used in other damage models. Furthermore, a consistent thermodynamic
framework is developed which leads by the introduction of correspond-
ing potential functions to the definition of an effective stress tensor on
the undamaged configuration and a stress tensor on the damaged config-
uration. Different damage mechanisms which appear at different stress
states are considered by a triaxiality dependent damage criterion as well
as by a triaxiality dependent damage law. In addition, temperature and
strain rate effects are considered by a multiplicative decomposition of the
plastic hardening as well as the damage softening function.

In the context of this thesis, the continuum damage model has been mod-
ified and extended: Firstly the triaxiality-dependence of the damage con-
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dition and of the damage process has been studied in detail. Secondly, a
new quadratic damage softening function has been proposed which pro-
vides a smooth damage initiation and leads to reasonable damage evolu-
tion. Thirdly, a new triaxiality dependent fracture criterion based on the
internal damage variable has been proposed which allows the description
of the complete deformation process up to final fracture and leads to a
good estimation of the experimentally achieved fracture surface.
To make the continuum damage and fracture model accessible to nu-
merical simulations, the commercial Finite Element software LsDyna has
been augmented by a user material subroutine. Partially, this coding has
been realized within the framework of this thesis and thus the developed
theory has been transferred to computer code. In this context, the main
thoughts of the Finite Element Method have been presented and it has
been commented on the explicit time integration scheme. To complete
the picture, a detailed description of the LsDyna user interface is given.
To characterize the behavior of ductile metals at different strain rates,
temperatures and stress states, several different experiments can be used
and in this context an overview has been presented within this thesis. To
identify the material parameters of the materials reviewed in this thesis
- which are aluminum and the stainless steel Inox 304L - several experi-
ments have been performed in collaboration with the GMSIE lab at the
University of São Paulo (USP), Brazil. For the stainless steel Inox 304L,
the procedure of material parameter identification has been discussed in
detail, also pointing out the need of additional experiments. Furthermore,
a new inverse technique to identify the parameters of the damage soft-
ening law and of the fracture criterion has been proposed which can be
used even if no further information from experiments or micromechanical
numerical studies is available. In addition, Split-Hopkinson-Bar experi-
ments have been realized which use rings and special, recently presented
M-Shape specimens.
Split-Hopkinson-Bar experiments are commonly used to study the ma-
terial behavior under high strain rates while the setup is characterized
through relatively big bars which clamp relatively small specimens. Be-
fore this thesis, the numerical study of the complete experimental setup
is not commonly realized, specially not with an volume model. Therefore,
firstly, several aspects such as mesh size of the bars or how to extract the
strains of the bars have had to be studied in detail. Following, a numer-
ical model could be presented which achieves sufficiently precise results
with acceptable computational costs.

After creation of this numerical model, simulations of the executed Split-
Hopkinson-Bar experiments have been realized while the specimen was
modeled with the presented continuum damage and fracture model, us-
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ing the identified material parameters. With these simulations, a good
correlation between experiments and numerical results could be achieved,
which demonstrates the applicability of the model. In this connection an
interesting observation has been made: For material which is not rate-
and temperature-dependent, damage evolves in a central region while for
material that is rate- and temperature-dependent, damage occurs in clus-
ters over the complete tension part. Another important insight has been
that the used M-Shape specimen has to be evaluated critically, indicat-
ing that the static equilibrium, i.e. the equilibrium of the forces between
input bar and specimen as well as between specimen and output bar, is
not fulfilled. Therefore, it is questionable if the experimental results can
be used to identify material parameters.

Furthermore, numerical studies with two specimen shapes which frac-
ture in a shear like mode have been realized. Overall, these specimens
demonstrate a more stable behavior compared with the previously stud-
ied M-Shape specimen. To overcome the deficit of plastic deformations
of major specimen parts, a notch in thickness direction has been intro-
duced which causes a focussed plastic region within the shear part of the
specimen which leads to final fracture of this part. This geometry implies
the use of symmetric specimen geometries with two shear regions also
for static tests where notches in thickness direction can concentrate the
region of inelastic deformations.

7.2 Perspective

The presented continuum damage and fracture model facilitates the de-
tailed description of the behavior of ductile metals reflecting its triaxiality,
strain rate and temperature dependence. To be able to apply these abil-
ities in a correct way, the identification of the corresponding material
parameter is crucial. The following points can be seen as special focus
for future research:

• Developing new specimen geometries which lead under controlled
conditions to major inelastic deformations and final fracture at dif-
ferent stress states. Especially the testing of the proposed shear
specimens within a Split-Hopkinson-Bar experiment is of interest.
• Performing further micro-mechanical studies including one pore mod-

els as well as pore clusters to develop an inverse method to study
damage evolution and fracture behavior and extract results for the
phenomenological model. These studies could be extended to dy-
namic cases, i.e. three-dimensional models with wave propagation
phenomena.
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• These insights might result in the need to review the proposed dam-
age and fracture model. Especially the influence of the Lode pa-
rameter will have to be studied in detail. The further developments
should be sufficiently accurate to reflect the important phenomena
but also as simple as possible to be easily manageable and to reduce
the effort to identify the corresponding material parameters.

However, this scientific work can be seen as an important step on the
way to substitute cost-worthy and complicated prototyping by elaborated
numerical simulations. Scientists as well as engineers should be able to
use the results in order facilitate the design of specimens as well as of
complete structures. Overall, this thesis should be helpful for saving
development costs and to find out more precise how materials will react
in damage processes.



Bibliography

[1] AISI Type 304 stainless steel. Technical report, ASM Aerospace
Specification Metals Inc., Pompano Beach, USA, 2012.

[2] Product information 304/304L. Technical report, Rolled Alloys,
Temperance, USA, 2012.

[3] Stainless steel AISI type 304L. Technical report, efunda, Sunnyvale,
USA, 2012.

[4] H. Altenbach and J. J. Skrzypek, editors. Creep and Damage in
Materials and Structures. Springer, Wien, 1999.

[5] M. Alves and N. Jones. Impact failure of beams using damage
mechanics: Part ii - application. International Journal of Impact
Engineering, 27:863–890, 2002.

[6] M. Alves, D. Karagiozova, G. Micheli, and M. Calle. Limiting the
influence of friction on the split hopkinson pressure bar tests by
using a ring specimen. International Journal of Impact Engineering,
49:130–141, 2012.

[7] F. M. Andrade Pires, J. M. A. César de Sá, L. Costa Sousa, and
R. M. Natal Jorge. Numerical modelling of ductile plastic damage in
bulk metal forming. International Journal of Mechanical Sciences,
45:273–294, 2003.

[8] M. Arcan, Z. Hashin, and A. Voloshin. A method to produce uni-
form plane-stress states with applications to fiber-reinforced mate-
rials. Experimental Mechanics, 18:141–146, 1978.

[9] Y. Bai and T. Wierzbicki. A new model of metal plasticity and
fracture with pressure and lode dependence. International Journal
of Plasticity, 24:1071–1096, 2008.

[10] Y. Bao and T. Wierzbicki. On the fracture locus in the equiv-
alent strain and stress triaxiality space. International Journal of
Mechanical Sciences, 46:81–98, 2004.

[11] Y. Bao and T. Wierzbicki. On the cut-off value of negative triax-
iality for fracture. Engineering Fracture Mechanics, 72:1049–1069,
2005.

[12] R. Becker, A. Needleman, O. Richmond, and V. Tvergaard. Void
growth and failure in notched bars. Journal of the Mechanics and
Physics of Solids, 36:317–351, 1988.

104



Bibliography 105

[13] T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements
for Continua and Structures. Wiley, Chichester, 2001.

[14] A. Benzerga, Y. Bréchet, A. Needleman, and E. Van der Giessen.
The stored energy of cold work: Predictions from discrete disloca-
tion plasticity. Acta Materialia, 53:4765–4779, 2005.

[15] A. Benzerga and J.-B. Leblond. Ductile fracture by void growth to
coalescence. Advances in Applied Mechanics, 44:169–305, 2010.

[16] L. Berkovic, A. Chabotier, F. Coghe, and L. Rabet. Measuring and
modeling of low temperature Hopkinson tests. Procedia Engineer-
ing, 10:1645–1650, 2011.

[17] J. Betten. Net-stress analyses in creep mechanics. Ingenieur-Archiv,
52:405–419, 1982.

[18] J. Betten. Damage tensors in continuum mechanics. Journal de
Mécanique Théorique et Appliquée, 2:13–32, 1983.

[19] M. Bever, D. Holt, and A. Titchener. The stored energy of cold
work. Progress in Materials Science, 17:5–177, 1973.

[20] N. Bonora. A nonlinear CDM model for ductile failure. Engineering
Fracture Mechanics, 58:11–28, 1997.

[21] N. Bonora, D. Gentile, A. Pirondi, and G. Newaz. Ductile damage
evolution under triaxial state of stress: theory and experiments.
International Journal of Plasticity, 21:981–1007, 2005.

[22] T. Børvik, O. S. .Hopperstad, and T. Berstad. On the influence
of stress triaxiality and strain rate on the behaviour of a struc-
tural steel. part ii. numerical study. European Journal of Mechanics
A/Solids, 22:15–32, 2003.

[23] M. Brünig. Large strain elastic-plastic theory and nonlinear finite
element analysis based on metric transformation tensors. Compu-
tational Mechanics, 24:187–196, 1999.

[24] M. Brünig. Numerical simulation of the large elastic-plastic defor-
mation behavior of hydrostatic stress-sensitive solids. International
Journal of Plasticity, 15:1237–1264, 1999.

[25] M. Brünig. A framework for large strain elastic-plastic damage
mechanics based on metric transformations. International Journal
of Engineering Science, 39:1033–1056, 2001.

[26] M. Brünig. An anisotropic ductile damage model based on ir-
reversible thermodynamics. International Journal of Plasticity,
19:1679–1713, 2003.

[27] M. Brünig. Numerical analysis of anisotropic ductile continuum
damage. Computer Methods in Applied Mechanics and Engineering,
192:2949–2976, 2003.



106 Bibliography

[28] M. Brünig. Continuum framework for rate-dependent behavior of
anisotropic damaged ductile metals. Acta Mechanica, 186:37–53,
2006.

[29] M. Brünig, D. Albrecht, and S. Gerke. Modelling of ductile damage
and fracture behavior based on different micromechanisms. Inter-
national Journal of Damage Mechanics, 20:558–577, 2011.

[30] M. Brünig, D. Albrecht, and S. Gerke. Numerical analyses of stress-
triaxiality-dependent inelastic deformation behavior of aluminium
alloys. International Journal of Damage Mechanics, 20:299–317,
2011.

[31] M. Brünig, O. Chyra, D. Albrecht, L. Driemeier, and M. Alves. A
ductile damage criterion at various stress triaxialities. International
Journal of Plasticity, 24:1731–1755, 2008.

[32] M. Brünig and L. Driemeier. Numerical simulation of Taylor impact
tests. International Journal of Plasticity, 23:1979–2003, 2007.

[33] M. Brünig and S. Gerke. Simulation of damage evolution in duc-
tile metals undergoing dynamic loading conditions. International
Journal of Plasticity, 27:1598–1617, 2011.

[34] M. Brünig, S. Gerke, and V. Hagenbrock. Micro-mechanical numer-
ical studies on the stress state dependence of ductile damage. In
H. Altenbach and S. Kruch, editors, Advanced Materials Modelling
for Structures (Advanced Structured Materials), 19:87–96, 2013.

[35] M. Brünig, S. Gerke, and V. Hagenbrock. Micro-mechanical stud-
ies on the effect of the stress triaxiality and the Lode parame-
ter on ductile damage. International Journal of Plasticity, doi:
10.1016/j.ijplas.2013.03.012, 2013.

[36] O. Bruhns and P. Schiesse. A continuum model of elastic-plastic
materials with anisotropic damage by oriented microvoids. Euro-
pean Journal of Mechanics A/Solids, 15:367–396, 1996.

[37] T. Byun, N. Hashimoto, and K. Farrell. Temperature dependence
of strain hardening and plastic instability behaviors in austenitic
stainless steels. Acta Materialia, 52:3889–3899, 2004.

[38] J.-L. Chaboche. Continuous damage mechanics – a tool to describe
phenomena before crack initiation. Nuclear Engineering and De-
sign, 64:233–247, 1981.

[39] J. L. Chaboche. Anisotropic creep damage in the framework of
continuum damage mechanics. Nuclear Engineering and Design,
79:309–319, 1984.

[40] J. L. Chaboche. Continuum damage mechanics: Present state and
future trends. Nuclear Engineering and Design, 105:19–33, 1987.



Bibliography 107

[41] J. L. Chaboche. Continuum damage mechanics: Part I - general
concepts. Journal of Applied Mechanics, 55:59–64, 1988.

[42] J. L. Chaboche. Continuum damage mechanics: Part II – dam-
age growth, crack initiation and crack growth. Journal of Applied
Mechanics, 55:65–72, 1988.

[43] S. Chandrakanth and P. C. Pandey. A new ductile damage evolution
model. International Journal of Fracture, 60:R73–R76, 1993.

[44] W. W. Chen and B. Song. Split Hopkinson (Kolsky) bar; design,
testing and applications. Spinger, New York, 2011.

[45] C. L. . Chow and J. Wang. An anisotropic theory of continuum dam-
age for ductile fracture. Engineering Fracture Mechanics, 27:547–
558, 1987.

[46] J. Cordebois and F. Sidoroff. Anisotropic damage in elasticity and
plasticity. Journal de Mécanique Théorique et Appliquée, Numéro
spécial:45–60, 1982.

[47] E. de Souza Neto and D. Peric. A computational framework for
a class of fully coupled models for elastoplastic damage at finite
strains with reference to the linearization aspects. Computer Meth-
ods in Applied Mechanics and Engineering, 130:179–193, 1996.

[48] R. Desmorat and S. Cantournet. Modeling microdefects closure
effects with isotropic/anisotropic damage. International Journal of
Damage Mechanics, 17:65–96, 2008.

[49] P. Dondeti, D. Paquet, and S. Ghosh. A rate-dependent homog-
enization based continuum plasticity-damage (HCPD) model for
dendritic cast aluminum alloys. Engineering Fracture Mechanics,
89:75–97, 2012.

[50] D. C. Drucker and W. Prager. Soil mechanics and plastic analysis
or limit design. Quarterly of Applied Mathematics, 10, 2:157–165,
1952.

[51] L. Engel and H. Klingele. An Atlas of Metal Damage, Surface
Examination by Scanning Electron Microscope. Wolfe Science, Mu-
nich, 1981.

[52] A. L. Eterovic and K.-J. Bathe. A hyperelastic-based large strain
elasto-plastic constitutive formulation with combined isotropic-
kinematic hardening using the logarithmic stress and strain mea-
sures. International Journal for Numerical Methods in Engineering,
30:1099–1114, 1990.

[53] M. Fourmeau, T. Børvik, A. Benallal, and O. Hopperstad.
Anisotropic failure modes of high-strength aluminium alloy un-



108 Bibliography

der various stress states. International Journal of Plasticity, doi:
10.1016/j.ijplas.2013.02.004, 2013.

[54] X. Gao, T. Zhang, M. Hayden, and C. Roe. Effects of the stress
state on plasticity and ductile failure of an aluminum 5083 alloy.
International Journal of Plasticity, 25:2366–2382, 2009.

[55] W. M. Garrison and N. R. Moody. Ductile fracture. Journal of
Physics and Chemistry of Solids, 48:1035–1074, 1987.

[56] S. Gerke and M. Brünig. Modelling and numerical simulations of
rate and temperature-dependent damage and fracture in aluminium
alloys. Proceedings in Applied Mathematics and Mechanics, 10:113–
114, 2010.

[57] S. Gerke and M. Brünig. Damage and fracture behavior in dynamic
tension tests: Modelling and numerical simulations. Proceedings in
Applied Mathematics and Mechanics, 11:147–148, 2011.

[58] S. Gerke, M. Brünig, and L. Driemeier. Numerical simulation of
damage and fracture in split hopkinson bar tests. In A. S. Kahn
and B. Farrokh, editors, Finite Plasticity and Visco-Plasticity of
Conventional and Emerging Materials, 16th International Sympo-
sium on Plasticity and its Current Applications. Neat Inc., Saint
Kitts, 2010.

[59] C. G’Sell, J. M. Hiver, A. Dahoun, and A. Souahi. Video-controlled
tensile testing of polymers and metals beyond the necking point.
Journal of Materials Science, 27:5031–5039, 1992.

[60] W.-G. Guo and S. Nemat-Nasser. Flow stress of nitronic-50 stainless
steel over a wide range of strain rates and temperatures. Mechanics
of Materials, 38:1090–1103, 2006.

[61] A. L. Gurson. Continuum theory of ductile rupture by void nucle-
ation and growth: Part I – yield criteria and flow rules for porous
ductile media. Journal of Engineering Materials and Technology,
99:2–15, 1977.

[62] J. Hallquist. LS-Dyna Theory Manual. Livermore Software Tech-
nology Corporation, 2006.

[63] R. Harsoor and L. Ramachandra. Influence of notch on the elastic-
plastic response of clamped beams subjected to low velocity impact.
International Journal of Impact Engineering, 36:1058–1069, 2009.

[64] G. Haugou, E. Markiewicz, and J. Fabis. On the use of the non
direct tensile loading on a classical split hopkinson bar apparatus
dedicated to sheet metal specimen characterisation. International
Journal of Impact Engineering, 32:778–798, 2006.



Bibliography 109

[65] K. Hayakawa, S. Murakami, and Y. Liu. An irreversible thermody-
namics theory for elastic-plastic-damage materials. European Jour-
nal of Mechanics A/Solids, 17:13–32, 1998.

[66] S. Hecker, M. Stout, K. Staudhammer, and J. Smith. Effects of
strain state and strain rate on deformation-induced transformation
in 304 stainless steel: Part I. magnetic measurements and mechan-
ical behavior. Metallurgical and Materials Transactions A, 13:619–
626, 1982.

[67] J. Henry. On the mode of testing building materials, and an account
of the marble used in the extension of the United States capitol.
Proceedings of the American Association for the Advancement of
Science, 9:102–116, 1855.

[68] S. Hiermaier. Structures under crash and impact: continuum me-
chanics, discretization and experimental charakterization. Springer,
New York, 2008.

[69] O. S. Hopperstad, T. Børvik, M. Langseth, K. Labibes, and C. Al-
bertini. On the influence of stress triaxiality and strain rate on the
behaviour of structural steel. part I. experiments. European Journal
of Mechanics A/Solids, 22:1–13, 2003.

[70] G. Hütter, L. Zybell, U. Mühlich, and M. Kuna. Ductile crack prop-
agation by plastic collapse of the intervoid ligaments. International
Journal of Fracture, 176:81–96, 2012.

[71] K. Ishikawa and S. Tanimura. Strain rate sensitivity of flow stress
at low temperatures in 304n stainless steel. International Journal
of Plasticity, 8:947–958, 1992.

[72] G. R. Johnson and W. H. Cook. A constitutive model and data for
metals subjected to large strains, high strain rates and high temper-
atures. In Proceedings of the Seventh International Symposium on
Ballistics, Hague, Netherlands. American Defense Preparedness As-
sociation; Koninklijk Instituut van Ingenieurs (Netherlands), 541–
547, 1983.

[73] G. R. Johnson and W. H. Cook. Fracture characteristics of three
metals subjected to various strains, strain rates, temperatures and
pressures. Engineering Fracture Mechanics, 21:31–48, 1985.

[74] G. R. Johnson and T. J. Holmquist. Evaluation of cylinder-impact
test data for constitutive model constants. Journal of Applied
Physics, 64:3901–3910, 1988.

[75] L. M. Kachanov. Rupture time under creep conditions. Izves-
tia Akademii Nauk SSSR, Otdelenie Tekhnicheskich Nauk, 8:26–31,
1958.



110 Bibliography

[76] L. M. Kachanov. Continuum model of medium with cracks. Journal
of the Engineering Mechanics Division, 106:1039–1051, 1980.

[77] L. M. Kachanov. Introduction to continuum damage mechanics.
Martinus Nijhoff Publishers, Dordrecht, 1986.

[78] L. M. Kachanov. Rupture time under creep conditions. Interna-
tional Journal of Fracture, 97:11–18, 1999.

[79] A. Kaiser. Advancements in the Split Hopkinson bar test. Master’s
thesis, Virginia Polytechnic Institute and State University, 1998.

[80] J. Kajberg and K.-G. Sundin. Material characterisation using high-
temperature Split Hopkinson pressure bar. Journal of Materials
Processing Technology, 213:522–531, 2013.

[81] M. A. Kariem, J. H. Beynon, and D. Ruan. Misalignment effect in
the Split Hopkinson pressure bar technique. International Journal
of Impact Engineering, 47:60–70, 2012.

[82] H. Kolsky. An investigation of the mechanical properties of ma-
terials at very high rates of loading. Proceedings of the Physical
Society; Section B, 62:676–700, 1949.

[83] H. E. Konokman, M. M. Çoruh, and A. Kayran. Computational
and experimental study of high-speed impact of metallic Taylor
cylinders. Acta Mechanica, 220:61–85, 2011.

[84] D. Krajcinovic. Constitutive equations for damaging materials.
Journal of Applied Mechanics, 50:355–360, 1983.

[85] D. Krajcinovic. Continuum damage mechanics. Applied Mechanics
Reviews, 37:1–6, 1984.

[86] D. Krajcinovic. Damage mechanics. Mechanics of Materials, 8:117–
197, 1989.

[87] D. Krajcinovic. Damage Mechanics. Elsevier, North-Holland series,
Amsterdam, 1996.

[88] D. Krajcinovic and G. Fonseka. The continuous damage theory of
brittle materials, part I: General theory. Journal of Applied Me-
chanics, 48:809–815, 1981.

[89] D. Krajcinovic and G. Fonseka. The continuous damage theory
of brittle materials, part II: Uniaxial and plane response modes.
Journal of Applied Mechanics, 48:816–824, 1981.

[90] H. Kuhn and D. Medlin, editors. ASM handbook, Volume 8: Me-
chanical Testing and Evaluation. ASM international, Materials
Park, OH, 2000.

[91] C. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, and
A. Bareggi. Validation of void groth models using X-ray microto-



Bibliography 111

mography characterization of damage in dual phase steels. Acta
Materialia, 59:7564–7573, 2011.

[92] E. Lee. Elastic-plastic deformation at finite strains. Journal of
Applied Mechanics, 1:1–6, 1969.

[93] W.-S. Lee and C.-F. Lin. High-temperature deformation behaviour
of ti6al4v alloy evaluated by high strain-rate compression tests.
Journal of Materials Processing Technology, 75:127–136, 1998.

[94] T. Lehmann. Some remarks on the decomposition of deformations
and mechanical work. International Journal of Engineering Science,
20:281–288, 1982.

[95] T. Lehmann. Some theoretical considerations and experimental
results concerning elastic-plastic stress-strain relations. Ingenieur-
Archiv, 52:391–403, 1982.

[96] T. Lehmann. Some thermodynamical considerations on inelastic
deformations including damage processes. Acta Mechanica, 79:1–
24, 1989.

[97] T. Lehmann. Thermodynamical foundations of large inelastic de-
formations of solid bodies including damage. International Journal
of Plasticity, 7:79–98, 1991.

[98] J. Lemaitre. A continuous damage mechanics model for ductile
fracture. Journal of Engineering Materials and Technology, 107:83–
89, 1985.

[99] J. Lemaitre. Coupled elasto-plasticity and damage constitutive
equations. Computer Methods in Applied Mechanics and Engineer-
ing, 51:31–49, 1985.

[100] J. Lemaitre. A Course on Damage Mechanics. Springer, Berlin,
1996.

[101] J. Lemaitre and R. Desmorat. Engineering Damage Mechanics;
Ductile, Creep, Fatigue and Brittle Failures’. Springer, Berlin, 2005.

[102] J. Lemaitre, R. Desmorat, and M. Sauzay. Anisotropic damage law
of evolution. European Journal of Mechanics A/Solids, 19:187–208,
2000.

[103] J. Lemaitre and J. Dufailly. Damage measurements. Engineering
Fracture Mechanics, 28:643–661, 1987.

[104] A. Lennon and K. Ramesh. A technique for measuring the dynamic
behavior of materials at high temperatures. International Journal
of Plasticity, 14:1279–1292, 1998.

[105] J. R. Lewis. Handbook of Stainless Steels. McGraw-Hill, New York,
1977.



112 Bibliography

[106] H. Li, M. Fu, J. Lu, and H. Yang. Ductile fracture: Experiments
and computations. International Journal of Plasticity, 27:147–180,
2011.

[107] J. Liu and N. Jones. Experimental investigation of clamped beams
struck transversely by a mass. International Journal of Impact En-
gineering, 6:303–335, 1987.

[108] Livermore Software Technology Corperation (LSTC), Livermore,
CA. Ls-Dyna Keyword User’s Manual; Volume I, 971 edition, 2007.

[109] T. J. Lu and C. L. Chow. On constitutive equations of inelastic
solids with anistotropic damage. Theoretical and Applied Fracture
Mechanics, 14:187–218, 1990.

[110] P. Ludwik. Die Bedeutung des Gleit- und Reißwiderstandes für
die Werkstoffprüfung. Zeitschrift des Vereins deutscher Ingenieure,
71:1532–1538, 1927.

[111] M. Luo, M. Dunand, and D. Mohr. Experiments and modeling of
anisotropic aluminum extrusions under multi-axial loading - part II:
Ductile fracture. International Journal of Plasticity, 32-33:36–58,
2012.

[112] E. Maire, O. Bouaziz, M. D. Michiel, and C. Verdu. Initiation and
growth of damage in dual-phase steel observed by X-ray microto-
mography. Acta Materialia, 56:4954–4964, 2008.

[113] E. Maire, S. Zhou, J. Adrien, and M. Dimichiel. Damage quan-
tification in aluminum alloys using in situ tensile tests in X-ray
tomography. Engeneering Fracture Mechanics, 78:2679–2690, 2011.

[114] L. Malcher, F. A. Pires, and J. C. de Sá. An assessment of isotropic
constitutive models for ductile fracture under high and low stress
triaxiality. International Journal of Plasticity, 30-31:81–115, 2012.

[115] F. McClintock. A criterion for ductile fracture by the growth of
holes. Journal of Applied Mechanics, 35:363–371, 1968.

[116] M. Mićunović, C. Albertini, and C. Montagnani. High strain rate
thermo-inelasticity of damaged AISI 316H. International Journal
of Damage Mechanics, 12:267–303, 2003.

[117] D. Mohr and G. Gary. High strain rate tensile testing using a Split
Hopkinson pressure bar apparatus. Journal of Physics IV France,
134:617–622, 2006.

[118] D. Mohr and G. Gary. M-shaped specimen for high-strain rate
tensile testing using a Split Hopkinson pressure bar apparatus. Ex-
perimental Mechanics, 47:681–692, 2007.

[119] D. Mohr and S. Henn. Calibration of stress-triaxiality dependent



Bibliography 113

crack formation criteria: A new hybrid experimental–numerical
method. Experimental Mechanics, 47:805–820, 2007.

[120] S. Murakami. Anisotropic damage in metals. In Boehler, editor,
Failure Criteria of Structured Media: Proceedings of the CNRS in-
ternational colloquium No 351. Villard-de-Lans, 99–119, 1983.

[121] S. Murakami. Mechanical modeling of material damage. Journal of
Applied Mechanics, 55:280–286, 1988.

[122] S. Murakami. Continuum Damage Mechanics: A Continuum
Mechanics Approach to the Analysis of Damage and Fracture.
Springer, Dordrecht, 2012.

[123] S. Murakami, K. Hayakawa, and Y. Liu. Damage evolution and
damage surface of elastic-plastic-damage materials under multiaxial
loading. International Journal of Damage Mechanics, 7:103–128,
1998.

[124] S. Murakami and N. Ohno. A continuum theory of creep and creep
damage. In A. R. S. Ponter and D. R. Hayhurst, editors, Creep in
Structures. Springer Verlag, Berlin, 442–443, 1981.

[125] K. Nahshon and J. Hutchinson. Modification of the Gurson model
for shear failure. European Journal of Mechanics A/Solids, 27:1–17,
2008.

[126] A. Needleman. Void growth in an elastic-plastic medium. Journal
of Applied Mechanics, 4:964–970, 1972.

[127] S. Nemat-Nasser. Rate-independent finite-deformation elastoplas-
ticity: a new explicit constitutive algorithm. Mechanics of Materi-
als, 11:235–249, 1991.

[128] S. Nemat-Nasser, W.-G. Guo, and D. P. Kihl. Thermomechanical
response of AL-6XN stainless steel over a wide range of strain rates
and temperatures. Journal of the Mechanics and Physics of Solids,
49:1823–1846, 2001.

[129] S. Nemat-Nasser, J. B. Isaacs, and J. E. Starrett. Hopkinson tech-
niques for dynamic recovery experiments. Proceedings of the Royal
Society of London - Series A, 435:371–391, 1991.

[130] M. Niazi, H. Wisselink, T. Meinders, and J. Huétink. Failure pre-
dictions for DP steel cross-die test using anisotropic damage. In-
ternational Journal of Damage Mechanics, 21:713–754, 2012.

[131] M. Nurse. Stainless Steel, an International Survey and Directory.
Metal Bulletin, Worcester Park, 1982.

[132] W. S. Park, M. S. Chun, M. S. Han, M. H. Kim, and J. M. Lee.
Comparative study on mechanical behavior of low temperature ap-



114 Bibliography

plication materials for ships and offshore structures: Part I – ex-
perimental investigations. Materials Science and Engineering: A,
528:5790–5803, 2011.

[133] W. S. Park, S. W. Yoo, M. H. Kim, and J. M. Lee. Strain-rate
effects on the mechanical behavior of the aisi 300 series of austenitic
stainless steel under cryogenic environments. Materials & Design,
31:3630–3640, 2010.

[134] D. Perić, D. Owen, and M. Honnor. A model for finite strain
elasto-plasticity based on logarithmic strains: Computational is-
sues. Computer Methods in Applied Mechanics and Engineering,
94:35–61, 1992.

[135] M. Peroni. Experimantal Methods for Material Characterization at
High Strain-Rate: Analytical and Numerical Improvements. PhD
thesis, Politecnico di Torino, Italy, 2011.

[136] Y. N. Rabotnov. On the equation of state for creep. Progress in
Applied Mechanics, The Prager Anniversary Volume:307–315, 1963.

[137] S. Ricci. Nichtlokale Modellierung des Versagens- und Schädi-
gungsverhaltens von elastisch-plastischen Materialien. PhD thesis,
Universität Dortmund, 2004.

[138] J. R. Rice and D. M. Tracey. On the ductile enlargement of voids
in triaxial stress fields. Journal of the Mechanics and the Physics
of Solids, 17:201–217, 1969.

[139] F. Rivalin, A. Pineau, M. DiÂ Fant, and J. Besson. Ductile tearing
of pipeline-steel wide plates: I. dynamic and quasi-static experi-
ments. Engineering Fracture Mechanics, 68:329–345, 2000.

[140] P. Rosakis, A. J. Rosakis, G. Ravichandran, and J. Hodowany. A
thermodynamic internal variable model for the partition of plastic
work into heat and stored energy in metals. Journal of the Mechan-
ics and Physics of Solids, 48:581–607, 2000.

[141] K. Saanouni. Damage Mechanics in Metal Forming. Wiley, London,
2012.

[142] S. Semiatin and J. Holbrook. Failure behavior of 304l stainless steel
in torsion. Metallurgical and Materials Transactions A, 14:2091–
2099, 1983.

[143] S. Semiatin and J. Holbrook. Plastic flow phenomenology of
304l stainless steel. Metallurgical and Materials Transactions A,
14:1681–1695, 1983.

[144] J. Simo and J. Ju. Strain- and stress-based continuum damage mod-
els – I. formulation. International Journal of Solids and Structures,
23:821–840, 1987.



Bibliography 115

[145] J. Simo and J. Ju. Strain- and stress-based continuum damage
models – II. computational aspects. International Journal of Solids
and Structures, 23:841–869, 1987.

[146] K. N. Singh, R. Clos, U. Schreppel, P. Veit, A. Hamann, D. Kling-
beil, R. Sievert, and G. Künecke. Versagenssimulation dynamisch
belasteter Proben mit unterschiedlichen Mehrachsigkeitszuständen
unter Verwendung des Johnson-Cook-Versagensmodells für eine
Nickelbasislegierung. Technische Mechanik, 23:205–215, 2003.

[147] W. A. Spitzig and O. Richmond. The effect of pressure on the flow
stress of metals. Acta Metallurgica, 32:457–463, 1984.

[148] W. A. Spitzig, R. J. Smelser, and O. Richmond. The evolution of
damage and fracture in iron compacts with various initial porosities.
Acta Metallurgica, 36:1201–1211, 1988.

[149] W. A. Spitzig, R. J. Sober, and O. Richmond. Pressure dependence
of yielding and associated volume expension in tempered marten-
site. Acta Materialia, 23:885–893, 1975.

[150] W. A. Spitzig, R. J. Sober, and O. Richmond. The effect of hydro-
static pressure on the deformation behavior of maraging and HY-80
steels and its implications for plasticity theory. Metallurgical Trans-
actions A, 7A:1703–1710, 1976.

[151] E. Stein and F.-J. Barthold. Grundwissen: Werkstoffe, elastizität-
stheorie. In G. Mehlhorn, editor, Der Ingenieurbau. Ernst & Sohn,
Berlin, 1996.

[152] P. Steinmann and I. Carol. A framework for geometrically nonlinear
continuum damage mechanics. International Journal of Engineer-
ing Science, 36:1793–1814, 1998.

[153] M. G. Stout and P. S. Follansbee. Strain rate sensitivity, strain
hardening, and yield behavior of 304L stainless steel. Journal of
Engineering Materials and Technology, 108:344–353, 1986.

[154] W. H. Tai and B. X. Yang. A new microvoid-damage model for
ductile fracture. Engineering Fracture Mechanics, 25:377–384, 1986.

[155] G. Taylor. The use of flat-ended projectiles for determining dynamic
yield stress. I: Theoretical considerations. Proceedings of the Royal
Society of London - Series A, 194:289–299, 1948.

[156] H. Toda, E. Maire, S. Yamauchi, H. Tsuruta, T. Hiramatsu, and
M. Kobayashi. In situ observation of ductile fracture using X-ray
tomography technique. Acta Materialia, 59:1995–2008, 2011.

[157] H. Toda, I. Sinclair, J.-Y. Buffiére, E. Maire, K. Khor, P. Gregson,
and T. Kobayashi. A 3D measurement procedure for internal local



116 Bibliography

crack driving forces via synchrotron X-ray microtomography. Acta
Materialia, 52:1305–1317, 2004.

[158] V. Tvergaard. Material failure by void coalescence in localized shear
bands. International Journal of Solids and Structures, 18:659–672,
1982.

[159] V. Tvergaard. Material failure by void growth to coalescence. Ad-
vances in Applied Mechanics, 27:83–151, 1990.

[160] V. Tvergaard. Effect of stress-state and spacing on voids in a shear-
field. International Journal of Solids and Structures, 49:3047–3054,
2012.

[161] V. Tvergaard and A. Needleman. Analysis of the cup-cone fracture
in a round tensile bar. Acta Materialia, 32,1:157–169, 1984.

[162] R. Vignjevic, N. Djordjevic, J. Campbell, and V. Panov. Modelling
of dynamic damage and failure in aluminium alloys. International
Journal of Impact Engineering, 49:61–76, 2012.

[163] R. Vignjevic, N. Djordjevic, and V. Panov. Modelling of dynamic
behaviour of orthotropic metals including damage and failure. In-
ternational Journal of Plasticity, 38:47–85, 2012.

[164] G. Z. Voyiadjis and P. I. Kattan. A plasticity-damage theory for
large deformation of solids - i. theoretical formulation. International
Journal of Engineering Science, 9:1089–1108, 1992.

[165] G. Z. Voyiadjis and T. Park. The kinematics of damage for finite-
strain elasto-plastic solids. International Journal of Engineering
Science, 37:803–830, 1999.

[166] G. Weber and L. Anand. Finite deformation constitutive equa-
tions and a time integration procedure for isotropic, hyperelastic-
viscoplastic solids. Computer Methods in Applied Mechanics and
Engineering, 79:173–202, 1990.

[167] C. Wegst and M. Wegst. Nachschlagewerk Stahlschlüssel. Verlag
Stahlschlüssel Wegst GmbH, Marbach, 2004.

[168] K. Weimar. Ls-Dyna Introductory Course Nodes. DYNAmore
GmbH, Stuttgart, 2006.

[169] P. Wriggers. Nichtlineare Finite-Element-Methoden. Springer,
Berlin, 2001.

[170] L. Xue. Constitutive modeling of void shearing effect in ductile frac-
ture of porous materials. Engineering Fracture Mechanics, 75:3343–
3366, 2008.

[171] W. Zhang and Y. Cai. Continuum Damage Mechanics and Numeri-
cal Applications. Zhejiang university press and Springer, Hangzhou,
2010.



Bibliography 117

[172] Y. Zhou and Y. Xia. Experimental study of the rate-sensitivity
of SiCp/Al composites and the establishment of a dynamic consti-
tutive equation. Composites Science and Technology, 60:403–410,
2000.


