Datum/Unterschrift Zweitprüfer

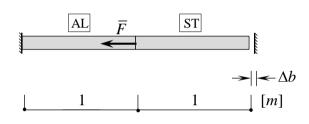
Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Mechanik und Statik

Prof. Dr.-Ing. Michael Brünig

Datum/Unterschrift Erstprüfer

Klausur zur BA-Prüfung **Baumechanik II**

Montag, 05.09.2016 8:00 Uhr - 9:30 Uhr


Name			Ma	Matrikel-Nr.						
Beachten Sie bitte f	olgende H	Hinweise z	ur Bearbe	itung der A	Aufgaben:					
- Die Bearbeitungsz	eit beträgt	90 Minut	en.							
- Beginnen Sie jede	Aufgabe	auf einer	neuen Seit	e.						
- Kennzeichnen Sie	jedes Arb	eitsblatt m	it Ihrem N a	amen und	der Aufga l	en-Numn	ner.			
- Beschreiben Sie di	ie Blätter i	nur einseit i	ig.							
- Benutzen Sie kein	e grüne F	arbe.								
- Ihr Lösungsweg m	nuss nach	vollziehba	r sein.							
Aufgabe	1	2	3	4	5	6	Σ			
mögliche Punkte	16	23	19	19	-	-	77			
erreichte Punkte					-	-				
Note Erstprüfer							te Zweitprüfer			
			Endnot	e e						

Aufgabe 1 (16 Punkte):

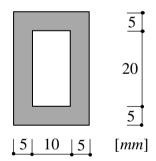
Der gezeigte Stab, bestehend aus Aluminium (Al) und Stahl (ST), hat einen Abstand von Δb zu einem unverschieblichem Auflager. Der Stab wird in seiner Mitte durch die gezeigte Kraft \bar{F} belastet und zusätzlich durch die Temperaturerhöhung ΔT erwärmt. Als Querschnitt wurde ein rechteckiges Rohr wie gezeigt gewählt.

System:

$$E_{ST} = 210 \cdot 10^{3} N / mm^{2}$$

$$E_{AL} = 70 \cdot 10^{3} N / mm^{2}$$

$$\alpha_{T}^{AL} = 2, 4 \cdot 10^{-5} K^{-1}$$


$$\alpha_{T}^{ST} = 2, 4 \cdot 10^{-5} K^{-1}$$

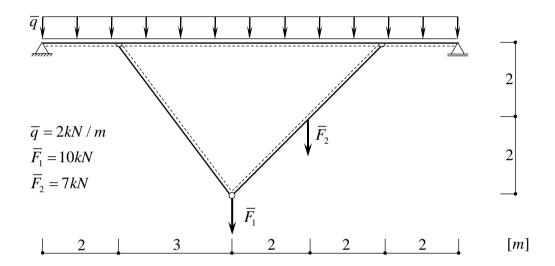
$$\Delta b = 0, 72mm$$

$$\Delta T = 40 K$$

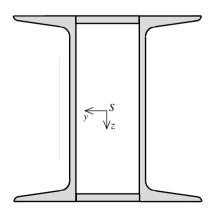
$$\overline{F} = 20.16 kN$$

Profil:

Bestimmen Sie für folgende Fälle jeweils: ε_{AL} , ε_{ST} , Δl_{AL} , Δl_{ST} , σ_{AL} , σ_{ST} , N_{AL} , N_{ST} ,


- a. Wenn der Stab nur durch ΔT erwärmt wird und kein Kontakt auftritt.
- b. Wenn der Stab nur durch ΔT erwärmt wird und Kontakt auftritt.
- c. Wenn der Stab nur durch \bar{F} belastet wird.
- d. Wenn der Stab durch ΔT erwärmt und zusätzlich durch \bar{F} belastet wird, jedoch kein Kontakt auftritt.
- e. Wenn der Stab durch ΔT erwärmt \bar{F} belastet wird und Kontakt auftritt.

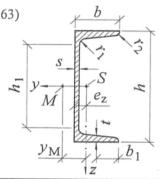
Schätzen Sie zusätzlich ab, ob der Stab knickgefährdet ist.



Aufgabe 2 (23 Punkte):

Bestimmen Sie für das gezeigte System die Auflagerbedingungen und geben Sie den Verlauf der Schnittgrößen N, Q und M an.

Der durch die Gleichstreckenlast \overline{q} belastete Riegel soll an der Stelle des maximalen Momentes M(x) bemessen werden. Der doppeltsymmetrische Querschnitt besteht aus zwei U-Profilen (vgl. anliegende Tabelle) die mittels eines Flachstahls 70mm x 8mm verbunden sind. Wählen Sie die zwei U-Profile so, dass ein $\sigma_{zul.} = 140 \ N/mm^2$ nicht überschritten wird (ohne Berücksichtigung der Flachstähle). Stellen Sie den Verlauf der Spannungen σ_x über den Querschnitt grafisch dar (mit Berücksichtigung der Flachstähle).

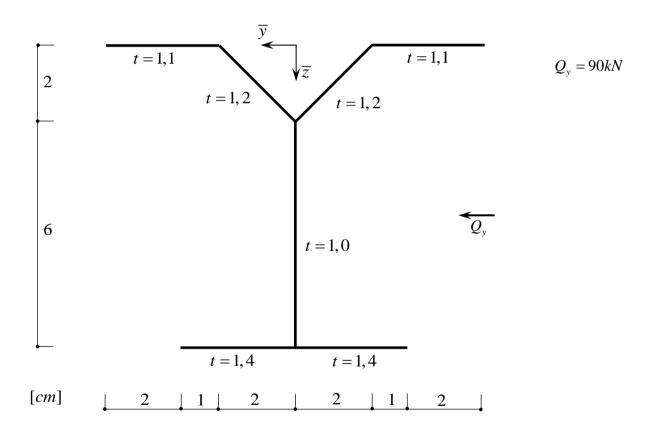

Name:

Name:			
maille.			

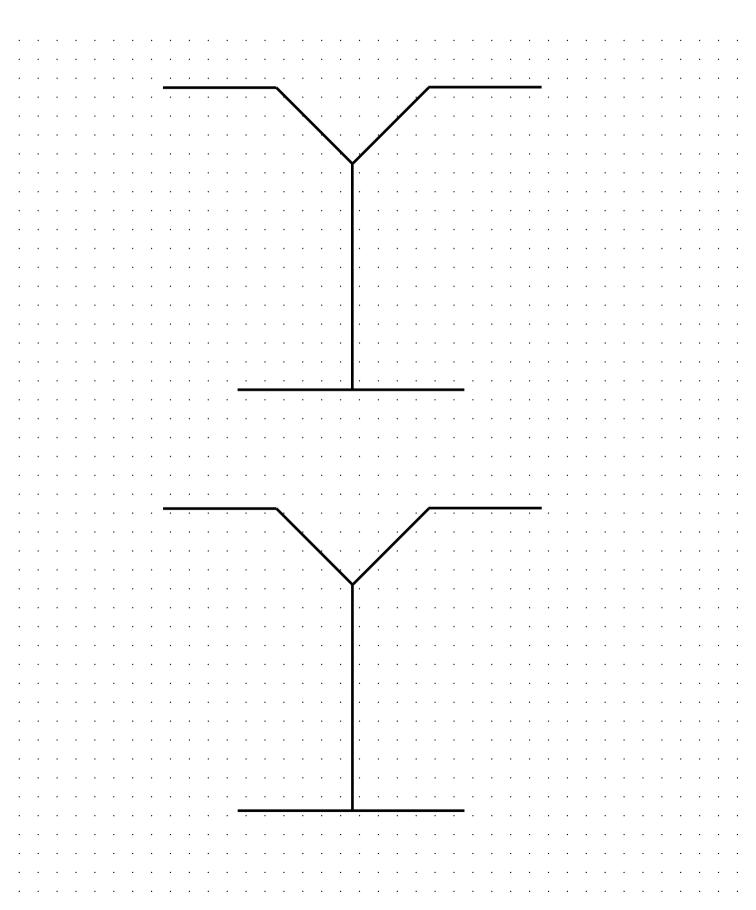
U-Stahl nach DIN 1026 (10.63)

Normallängen bei $h \le 65 \text{ mm: } 6 - 12 \text{ m}$ h < 300 mm: 8 - 16 m $h \ge 300 \text{ mm: } 8 - 18 \text{ m}$

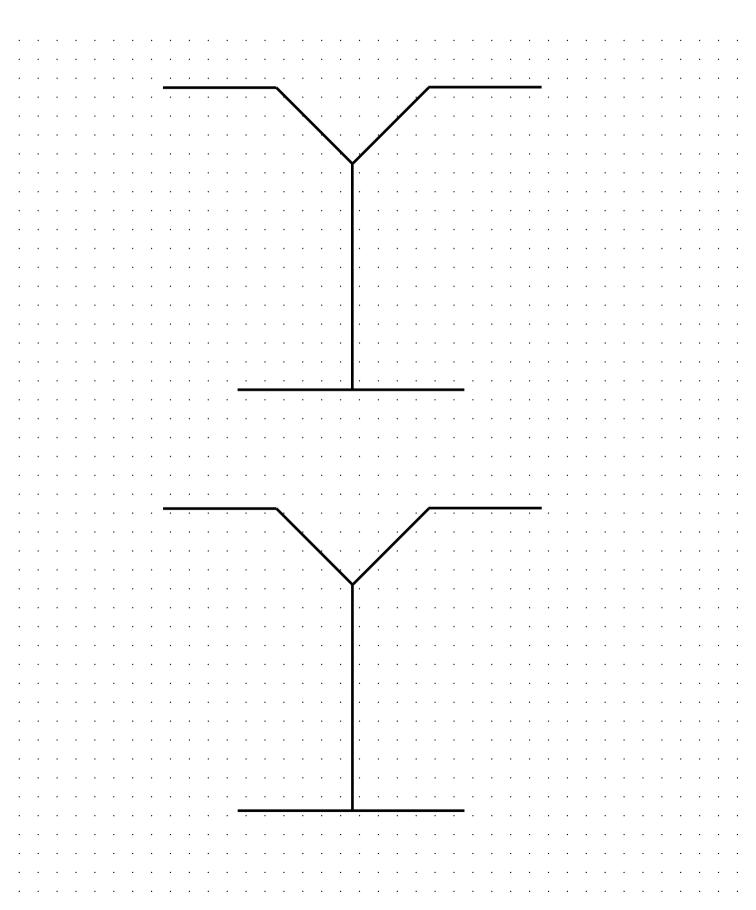
h	b_1	Flansch- neigung
$h \le 300$ $h > 300$	b/2 $(b-s)/2$	8 % 5 %


	Profilmaße in mm						Statische Werte								Г		
U	h	Ь	S	t=r	r_2	h_1	A	I_{y}	W_{y}	i _y	I_{z}	W_{z}	i _z	S_{y}	e_{z}	$y_{\rm M}$	g
					2	_	cm ²	cm ⁴	cm ³	cm	cm ⁴	cm ³	cm	cm ³	cm	cm	kN/m
30×15	30	15	4	4,5	2	12	2,21	2,53	1,69	1,07	0,38	0,39	0,42	-	0,52	0,74	0,017
30	30	33	5	7	3,5	1	5,44	6,39	4,26	1,08	5,33	2,68	0,99	-	1,31	2,22	0,043
40×20	40	20	5	5,5	2,5	18	3,66	7,58	3,79	1,44	1,14	0,86	0,56	-	0,67	1,01	0,029
40	40	35	5	7	3,5	11	6,21	14,1	7,05	1,50	,	3,08	1,04	-	1,33	2,32	0,049
50 × 25	50	25	5	6	3	25	4,92	16,8	6,73	1,85	2,49	1,48	0,71	-	0,81	1,34	0,039
50	50	38	5	7	3,5	20	7,12	26,4	10,6	1,92	9,12	3,75	1,13	-	1,37	2,47	0,056
60	60	30	6	6	3	35	6,46	31,6	10,5	2,21	4,51	2,16	0,84	-	0,91	1,50	0,051
65	65	42	5,5	7,5	4	33	9,03	57,5	17,7	2,52	14,1	5,07	1,25	-	1,42	2,60	0,071
80	80	45	6	8	4	47	11,0	106	26,5	3,10	19,4	6,36	1,33	15,9	1,45	2,67	0,086
100	100	50	6	8,5	4,5	64	13,5	206	41,2	3,91	29,3	8,49	1,47	24,5	1,55	2,93	0,106
120	120	55	7	9	4,5	82	17,0	364	60,7	4,62	43,2	11,1	1,59	36,3	1,60	3,03	0,134
140	140	60	7	10	5	97	20,4	605	86,4	5,45	62,7	14,8	1,75	51,4	1,75	3,37	0,160
160	160	65	7,5	10,5	5,5	116	24,0	925	116	6,21	85,3	18,3	1,89	68,8	1,84	3,56	0,188
180	180	70	8	11	5,5	133	28,0	1 350	150	6,95	114	22,4	2,02	89,6	1,92	3,75	0,220
200	200	75	8,5	11,5	6	151	32,2	1 910	191	7,70	148	27,0	2,14	114	2,01	3,94	0,253
220	220	80	9	12,5	6,5	166	37,4	2 690	245	8,48	197	33,6	2,30	146	2,14	4,20	0,294
240	240	85	9,5	13	6,5	185	42,3	3 600	300	9,22	248	39,6	2,42	179	2,23	4,39	0,332
260	260	90	10	14	7	201	48,3	4 820	371	9,99	317	47,7	2,56	221	2,36	4,66	0,379
280	280	95	10	15	7,5	216	53,3	6 280	448	10,9	399	57,2	2,74	266	2,53	5,02	0,418
300	300	100	10	16	8	232	58,8	8 030	535	11,7	495	67,8	2,90	316	2,70	5,41	0,462
320	320	100	14	17,5	8,75	247	75,8	10 870	679	12,1	597	80,6	2,81	413	2,60	4,82	0,595
350	350	100	14	16	8	283	77,3	12 840	734	12,9	570	75,0	2,72	459	2,40	4,45	0,606
380	380	102	13,5	16	8	313	80,4	15 760	829	14,0	615	78,7	2,77	507	2,38	4,58	0,631
400	400	110	14	18	9	325	91,5	20 350	1 020	14,9	846	102	3,04	618	2,65	5,11	0,718

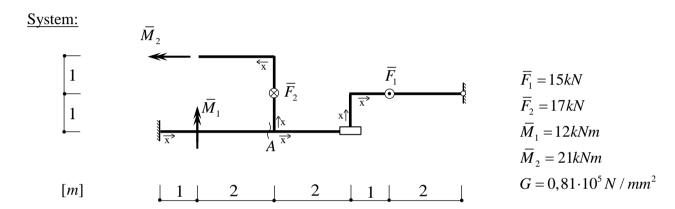
Aufgabe 3 (19 Punkte):


Für das dargestellte System sollen folgende Größen ermittelt werden:

- 1. Die Lage des Schwerpunktes.
- 2. Den Verlauf des Schubflusses und der Schubspannungen infolge Q_{γ} .
- 3. Die Lage des Schubmittelpunktes.



Name:


Name:

Aufgabe 4 (19 Punkte):

Ermitteln Sie die Auflagerreaktionen und stellen Sie die Verläufe der Schnittgrößen Q_z , M_x und M_y (Form, Vorzeichen, Ordinaten) des in der Draufsicht dargestellten senkrecht zur Ebene belasteten Systems grafisch dar.

Dünnwandiges Profil:

$$\begin{bmatrix} 20 & t = 1, 2 \\ 20 & \overline{y} \end{bmatrix}$$

$$t = 1, 4$$

$$\overline{z}$$

$$[cm]$$

$$20$$

Bestimmen Sie am Systempunkt A:

- 1. Die Normalspannungen und stellen Sie diese grafisch dar.
- 2. Die Schubspannungen infolge Torsion und stellen Sie diese grafisch dar.
- 3. Die Verdrillung.

Name:

Institut für Mechanik und Statik Prof. Dr.-Ing. Michael Brünig Dr.-Ing. Steffen Gerke, Marco Schmidt, M.Sc.