
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 1 Capitole (UT1 Capitole)

Présentée et soutenue le Date of defense (03/05/2022) by :
Md Siddiqur RAHMAN

Deep Learning for En-Route Aircraft Conflict Resolution - two
complementary approaches

JURY
M. Pierre GANÇARSKI Université de Strasbourg Rapporteur
Mme Maguelonne
TEISSEIRE

UMR TETIS - INRAE Rapporteure

M. Michael SCHULTZ Universität der Bundeswehr
München

Examinateur

M. Nicolas COUELLAN ENAC Examinateur
Mme Josiane MOTHE IRIT Directrice de thèse
M. Laurent LAPASSET ENAC Co-directeur de thèse

École doctorale et spécialité :
MITT : Image, Information, Hypermédia

Unité de Recherche :
SIG team at IRIT UMR5505 CNRS, INSPE et
DEVI team at l’Ecole Nationale de l’Aviation Civile (ENAC)
Université de Toulouse, Toulouse, France

Directeur(s) de Thèse :
Prof. Josiane MOTHE et Eng. Laurent LAPASSET

Rapporteurs :
Pierre Gançarski et Maguelonne Teisseire



Abstract
A situation is identified as a conflict when two or more aircraft fail to maintain a certain
distance between them on their way. Earlier models to support air traffic controllers in
solving conflicts were based on mathematical and statistical models. The recent successes
of deep neuron network models in various domains have rekindled the research interest on
automatic aircraft conflict resolution. Conflicts are solved by controllers at the en-route1

level by giving orders to pilots to change the aircraft trajectory, based on the various aircraft
positions and trajectories. In this thesis we propose two different ways of exploiting these
data, considering either the trajectory data or the corresponding images of the trajectories.

The first model, CRMLnet, standing for Conflict Resolution Multi-label Neural Network,
is a neural network model which output is a multi-label classification. This model takes the
positioning trajectory parameters (time, latitude, longitude, altitude, and heading ) of all the
aircraft involved in the conflict as input and provides the heading changes for the aircraft
at different angles as output. When compared to other machine learning models that use
multiple single-label classifiers such as SVM2, KNC3, and LR4, our CRMLnet achieves the
best results with an accuracy of 98.72% and ROC of 0.999. This model is not appropriate to
handle a variable number of aircraft involved.

On the contrary, our second model ACRnet, which stands for Aircraft Conflict Resolution
Convolutional Neural Network, does not depend on the number of planes involved. For
that model, we transformed the conflict scene into an image. This model is designed as a
convolutional neural network and is also targeting multi-label classification. It achieves an
accuracy of 99.16% on the training data and of 98.97% on the test data set for two aircraft.
For both two and three aircraft, the accuracy is 99.05% (resp. 98.96%) on the training (resp.
test) data set.

Keywords: Air traffic control • Convolutional neural network •Machine learning • Deep
learning • Multi-label classification • En-route control.

1An aircraft reaches a certain altitude
2Support Vector Machines
3K-Nearest Neighbor Classifier
4Logistic Regression
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Résumé
Une situation est considérée comme un conflit lorsque deux ou plusieurs avions ne parvi-
ennent pas à maintenir une certaine distance entre eux pendant leur trajet. Les modèles
antérieurs destinés à aider les contrôleurs aériens à résoudre les conflits étaient basés sur des
modèles mathématiques et statistiques. Les récents succès des modèles de réseaux de neu-
rones profonds dans divers domaines ont relancé l’intérêt de la recherche sur la résolution
automatique des conflits aériens. Les conflits sont résolus par les contrôleurs au niveau en-
route en donnant des ordres aux pilotes pour modifier la trajectoire de l’avion, en fonction
des différentes positions et trajectoires des avions. Dans cette thèse, nous proposons deux
façons différentes d’exploiter ces données, en considérant soit les données de trajectoire, soit
les images correspondantes des trajectoires.

Le premier modèle, CRMLnet5, est un modèle de réseau de neurones dont la sortie est
une classification multi-label. Ce modèle prend en entrée la trajectoire de positionnement
paramètres (temps, latitude, longitude, altitude, et cap) de tous les avions impliqués dans le
conflit et fournit en sortie les changements de cap des avions à différents angles. Comparé à
d’autres modèles d’apprentissage automatique qui utilisent plusieurs classificateurs à étiquette
unique, tels que SVM, KNC et LR, CRMLnet obtient les meilleurs résultats avec une précision
de 98,72% et une mesure ROC de 0,999. Ce modèle n’est pas approprié pour traiter un nombre
variable d’avions impliqués.

Le deuxième modèle, ACRnet6, au contraire, ne dépend pas du nombre d’avions concernés.
Pour ce modèle, nous avons transformé la scène de conflit aérien en une image. Ce modèle
est conçu comme un réseau de neurones convolutionel vise également une classification multi-
label. Il atteint une précision de 99,16% sur les données d’apprentissage et de 98,97% sur les
données de test pour deux avions. Pour les cas avec deux et trois avions, la précision est de
99,05% (resp. 98,96%) sur les données d’entraînement (resp. de test).

Mots clés: Contrôle du trafic aérien • Réseau de neurones convolutif • Apprentissage
automatique • Apprentissage profond • Classification multi-labels • Contrôle en-route.

5Conflict Resolution Multi-label Neural Network
6Aircraft Conflict Resolution Convolutional Neural Network
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Chapter 1

Introduction

When two or more aircraft come close to each other and are unable to maintain a
certain distance (internationally specified) on their flight without modifying their
route, it is called a conflict since there is a possible collision. Conflicts between
aircraft are frequent and the corresponding air traffic control officer (ATCO) is
responsible for guiding pilots to resolve them. Methods are used to assist ATCO,
including some based on machine learning. Many of these methods perform rather
well but have some limitations. For example, they provide a single solution to a
conflict and do not provide an alternative one if the best one failed. In this thesis,
we proposed two supervised multi-label machine learning classification models to
solve aircraft conflicts. The first one, CRMLnet classifies the aircraft’s possible
heading decisions in a specific order and is based on trajectory data. Although,
CRMLnet model provides multiple alternate resolutions for a single conflict, still,
its major limitation is its dependence on the number of aircraft. We thus proposed a
second model, ACRnet that uses images of the conflict scenes, which are converted
from trajectory. This model is independent of the number of aircraft.

Abstract.

Contents
1.1 Types of controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Types of conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Conflict resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Machine learning models to solve conflicts . . . . . . . . . . . . . . . . 6

Two or more aircraft are considered in a conflict situation if they fall in a distance less
than the 5 nautical miles horizontally or 1000 feet vertically internationally defined distance
when crossing each other [Kuchar 2000, Prandini 2000].

Figure 1.1 shows the region around an aircraft in which any other aircraft would be
considered in conflict. Not only do conflicts can occur with other planes, but also with bad
weather, military zones, etc. This area around an aircraft is called the conflict volume of that
aircraft. The presence of any other aircraft in this volume is considered as a conflict.

1
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5 NM

1000 ft

Figure 1.1: An aircraft is considered to be in conflict if it falls horizontally within
5 nm and/or vertically within 1000 feet. Two or more aircraft are in conflict if they
overlap this region, called the conflict volume of that aircraft.

Conflicts are most common when aircraft are flying and these are the most frequent
problems in the domain of air traffic management. Air traffic control officers (ATCOs) observe
and resolve such conflicts. The world airspace is divided into sectors or small areas and specific
ATCOs are assigned to each sector. Once a conflict occurs, the ATCO in that particular
sector resolves the conflict as soon as possible. To avoid conflict situations, some rules and
regulations have been developed [Mao 2001]. Conflict situations however are rapidly rising due
to the increase of the number of aircraft. For example, Menéndez et al. [Prats Menéndez 2018]
prepared the APACHE final project results report where they recorded 24 hours of summer
and winter aircraft conflict in 2017-2018 for the FABEC (Functional Airspace Block Europe
Central) airspace. A total of 938 conflicts were found for moderate traffic demand in summer
and 602 for low traffic demand in winter. Thus, the most challenging task for ATCOs is
to solve conflicts in real-time. Indeed, once a conflict is identified, within a short time, the
ATCO must consider the environment of the conflict to make a quick decision to solve it.
A conflict is resolved by guiding the pilot to change their initial route. ATCO considers
different parameters such as the position of the aircraft (latitude, longitude, altitude), speed,
destination, flight plan as well as other elements of the environment, for instance, weather,
wind direction, military zones, etc.

1.1 Types of controller

There are different types of control systems available to control an aircraft based on its
position. Different controllers operate at different stages of the control system.

(a) Apron controller: The apron controller is responsible for controlling the aircraft
from engine start to taxiway. A pilot starts the aircraft engine with the permission of the
apron controller and pushes the aircraft backward from the parking lot. The apron controller
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sends a taxi to take the plane from the parking lot to the taxiway. The apron controller
controls all the aircraft one by one through specific sequence maintenance.

(b) Ground controller: Once an aircraft enters the taxiway, the pilots concerned are
under the control of the ground controller. The ground controller guides the aircraft from
the taxiway to the next runway. From the different taxiways, the planes come to the runway
with complete instructions from the ground controller. The main responsibility of the ground
controller is to send the aircraft to the runway while maintaining the specific sequence in
different aircraft.

(c) Local controller: Whenever an aircraft reaches the runway, the pilots call the
local controller. The local controller at the control tower is then responsible for controlling
the aircraft. This position of the aircraft is considered to be ready for take-off. The local
controller controls the area up to 5 miles around the airport. Within this area, the pilot
receives all kinds of information from the local controller including the weather updates. The
local controller gives the take-off clearance. The local controller also controls the departure
and landing of each aircraft considering the runway condition.

(d) Departure controller: The pilot starts the communication with the departure
controller after the aircraft takes off and reaches a certain altitude. Each plane arrives at
its specified altitude according to the departure controller’s instructions. The departure
controller considers the position of the other aircraft and guides the pilots until the aircraft
reaches a safe altitude. The departure controller avoids collisions with other aircraft.

(e) Area controller: When an aircraft reaches a certain altitude (airway) under the
direction of the departure controller, the pilot begins to communicate with the area controller.
The airway area is divided into several sectors or small areas. There are many waypoints1 to
define the airway. A flight plan in the airway is one of the complete series of points of a flight
where latitude, longitude, and altitude are the basic elements used to design it. Waypoints
indicate the intermediate and intersection points used to design the flight plan. A minimum
distance between the planes should be kept. Figure 1.1 shows the conflict zone around an
aircraft which is 5 nm horizontally and 1000 ft vertically. An aircraft passes through several
sectors on its way. When an aircraft enters a sector, the area controller of that sector begins
to guide that aircraft. Our thesis focuses on the resolution of conflicts in the airway area, to
help area controllers in their decisions.

(f) Approach controller: When an aircraft reaches its destination, it tunes to its own
communication radio frequency to the approach controller. Then the approach controller
provides the facility for landing, such as allocating the runway. One of the important respon-
sibilities of the approach controller is to create a sequence between the incoming aircraft based
on their priority and guide them for approaching. Finally, the approach controller transfers
control to the local controller. Then considering the runway situation, the local controller
gives permission for landing.

Table 1.1 shows the work sequence of an air traffic control in the control tower. At
1The waypoint is a fixed coordinate for specifying a single point on the Earth.
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departure airports, for example, the controller sequence starts from the apron control. Then
ground control, local control, departure control, and area control. On the other hand, the
controlling sequence is opposite at the destination airport. The area control transfers the
control to the approach control. Then local control, ground control, finally the aircraft is
parked by the apron control. With the exception of departure and destination airports, an
aircraft operates its flights through many sectors. Various area controllers are in charge of all
sector controls. This attitude of the aircraft is called airway or en-route. Figure 3.3 describes
the different phases of an aircraft. This thesis focuses on the resolution of aircraft conflict at
the en-route level.

Table 1.1: Different types of controllers control an aircraft throughout its journey.
Although the control procedures are the same at departure airports and destination airports, the
order at destination airports is reversed. In between these two airports, the aircraft passes through
different sectors at a certain altitude; the designated area controllers of those sectors guide the pilots.

Departure airport Airway (en-route) Destination airport
Apron control Approach control
Ground control Area control Local control
Local control Ground control

Departure control Apron control

1.2 Types of conflict

According to Alonso-Ayuso et al., there are three types of conflict based on the time distance
between involved aircraft and the conflict point as follows [Alonso-Ayuso 2016b]:

(a) Short-range: the controller has 2-5 minutes to resolve the conflict; this is an emergency;

(b) Mid-range: the time distance is 5 to 20 minutes.

(c) Long-range: the time distance is 20 to 60 minutes.

In our research, we focused on area controllers also called en-route level (high altitude)
and to mid-range conflicts. The resolution decisions are different for the different control
levels and for the different ranges of conflict.

ATCOs make decisions by considering all the positional issues of all the aircraft involved
to resolve the conflict. A conflict can be solved in many ways, but, mid-range conflicts
at en-route are usually resolved by changing the heading direction of one or more aircraft.
Depending on the conflict situation, the heading change can be left or right direction in any
range.

ATC trajectory data is generally kept confidential and not publicly available. Thus, we
simulate data for the area control level and for the mid-range conflicts.
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1.3 Conflict resolution

Once a controller is alerted, they find out if a conflict is about to occur. The controller
considers the position and movement of the planes involved in the conflict and guides the
corresponding pilots to resolve the conflict. A conflict can also happen with bad weather,
thunderstorms, military zones, etc. Since the position of the aircraft obtained by ATC radar
is approximate, no model can guarantee 100% the conflict is resolved. Also, finding the head-
ing resolution is highly combinational when the number of aircraft is high. According to Pey-
ronne [Peyronne 2012], the conflict situation is sometimes considered as a non-deterministic
polynomial-time (NP) hard problem when the number of aircraft is high. Thus, there are
so many life risks involved that human (ATCO) interaction is not yet replaced by machines.
However, assisting ATCOs in their work by suggesting the best possible conflict resolutions
could be helpful. This is the challenge we tackle in our thesis.

In terms of modeling, we considered different categories of conflicts as follows:

(a) A conflict between two aircraft;

(b) A conflict that involves more than two aircraft but a fixed number of them;

(c) A conflict that involves more than two aircraft but an undefined number of them.

If a conflict occurs between two planes only, it can be resolved by considering all the
possible resolutions by modifying the angle of the trajectory and choosing the best one. If a
conflict occurs between more than two aircraft, then two cases can be distinguished:

(a) The conflict between the two planes will continue to be resolved until all conflicts are
resolved (Figure 1.2 (a)). This is because a resolution can create a novel conflict;

(b) Another way is to find a global resolution considering the location of all the aircraft
involved in the conflict (Figure 1.2 (b)).

Many models have been proposed on both approaches which we will discuss in detail in
Chapter 2.

Figure 1.2 shows two different solutions considering the same scenario. Figure 1.2 (a)
shows that there is a conflict between aircraft A and aircraft B. To solve this in a pairwise
manner, we can first look for a solution between A and B. In this case, the right heading
is searched for (1) or the left heading (2) 15 degrees. The conflict between aircraft A and
B is resolved but later a new conflict is created with aircraft C or D. Although conflict can
be resolved using this method, it takes a long time to find an overall solution after repeated
attempts. In some cases, it is not possible to find a solution due to the high combination of
the resolution between aircraft.
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Figure 1.2: Conflict between multiple aircraft can be resolved in two ways: (a) in
pairs as long as there is no conflict; and (b) at once considering the overall scenario.

Conflict resolution is a little more complex considering the overall situation, especially
applying conditional and rule-based mathematical models. If we look at Figure 1.2 (b),
considering the overall situation, only the turn left 30 degrees heading of aircraft A can make
the whole situation conflict-free. However, how long it takes to find the best resolution for
a model depends on the type of model used. An additional challenge is when the number of
aircraft involved is variable. Resolving the conflict between a variable number of aircraft is a
challenging task. The problem is that most of the machine learning models have fixed input
dimensions that cannot be changed in real-time. This means that a conflict resolution model
has to consider pairwise resolution problems, input dimension problems, overall scenario, etc.

There are different models for aircraft conflict detection and resolution: Kuchar and Yang
[Kuchar 2000] came up with a survey analysis of about 68 models. Their study provides a good
overview of the early work on conflict identification and resolution. Most of the models initially
proposed for conflict identification and resolution were based on mathematics, geometry, and
probability [Havel 1989, Sridhar 1997, Ota 1998, Prandini 1999, Eby 1999].

1.4 Machine learning models to solve conflicts

Researchers are moving towards machine learning applications in almost all domains. Machine
learning can handle any type of data. Machine learning models gain experience through
training from examples and are then able to handle unknown samples. When the number of
examples is small there is an advantage to increase the model training ability by artificially
increasing the number of data through data augmentation.

Machine learning applications [Alam 2009, Jiang 2018, Srinivasamurthy 2018, Pham 2019a]
including deep learning [Nanduri 2016, Brittain 2018, Brittain 2018, Wang 2019] have re-
cently grown in the field of aircraft conflict avoidance. Over time, the application of machine
learning has become popular in the different fields of ATMs including anomaly detection
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[Das 2010, Nanduri 2016, Das 2011, Matthews 2013]. Details will be discussed later in Chap-
ter 2.

The trajectory information such as the position and velocity of aircraft are approximate
since they are updated through an ADS-B2. Our objective is to define a machine learning
model that would learn the overall situation from examples and thus would be close to human
performance.

In the contribution Chapter 4, we design a first model to solve conflicts when two aircraft
are involved. It is based on a neural network trained with pairs of trajectories.

The position of each aircraft is changing at every moment and is defined by its latitude,
longitude, altitude (See Figure 1.3). In this research, we do not consider the current position
of the aircraft only but also 5 minutes of trajectory information that we call a 5-minute
window. With regard to conflict resolution, many works use the current position of the
aircraft from which the future position projection and the distance between the aircraft are
calculated using speed, the angle between them, time, and many more parameters, possibly
from different sources including on-board data [Prandini 1999, Prandini 2000, Pham 2019a,
Kim 2016, Pham 2019b]. Since the positioning coordinates of each aircraft are approximated,
we hypothesized that the 5-minute window information is useful for the model to learn the
nature of the motion of the aircraft.
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Figure 1.3: The position parameters of the plane change over time. For example,
latitude, longitude, altitude, etc. change with time. So does the distance between aircraft.

Therefore, our model can learn the conflict environment from the movement of aircraft.

Another difference compared to related work is that we consider multiple output decisions
for a given conflict. This is to give a controller multiple alternative solutions in hand where
future risk avoidance will be much easier to get.

One of the main challenges of our research is data preparation. The ATC trajectory
and controller immediate order data is not publicly available and there is no simulated data

2Automatic Dependent Surveillance-Broadcast



8 Chapter 1. Introduction

available. We thus created simulated data for this research that we made available to the
research community. Chapter 3 provides the details related to data preparation.

In the case of conflicts that involves two aircraft, we first cast the conflict resolution
problem into a multi-level classification one. We then developed a model that we called
CRMLnet, which stands for Conflict Resolution Multi-label Neural Network. It is presented
in Chapter 4.

One of the most important challenges of conflict resolution however is when there are more
than two aircraft and when the number of aircraft can vary, which is the real world. The
training and testing performance computation of state-of-the-art models increases with the
number of involved aircraft. Moreover, most of the models, like our CRMLnet from Chapter 4
can handle only a given number of planes that are encoded by the model input of a fixed
size. To face this challenge we designed an alternative model based on a convolutional neural
network in Chapter 5 that we called ACRnet for Aircraft Conflict Resolution Convolutional
Neural Network. We convert the trajectory data into image data so that the input dimension
problem is overcome. This model will not only solve the conflict between the aircraft but
could also be applied to the resolution of bad weather area conflict for example. The solution
is predicted considering the overall scenario. We found that this method not only overcomes
the problem of input dimensionality but also improves the prediction confidence of the model.
The main purpose of Chapter 5 is not however to find the best image processing model but
to easily overcome the challenge of existing sequence-based models through image processing
with higher performance.

Since no model can guarantee a 100% resolution to the conflict and human life is involved,
the purpose of this thesis is not to completely replace the controllers but to provide supportive
tools to help them. Thus, the idea is to propose a model that will be closer to what a controller
does, and therefore the decision will be more easily accepted as a support tool for collaborative
decision making. Although many models have been proposed in the past, including neural
network models, the limitation of almost all of them is that the models were trained based on
the extraction of certain features using mathematical rules and conditions. In these models,
only one resolution was provided for a fixed number of aircraft. The fact that this decision
could fail is not considered and no alternative solution was suggested. In our thesis, we
gradually demonstrate our idea of applying models based on neural networks in Chapter 4
and in Chapter 5. It resolves conflicts with good performance using raw features. We show it
is possible to propose a generic convolutional neural network model for an arbitrary number
of planes by converting images from trajectories.

The rest of this thesis is organized as follows: Chapter 2 covers important and recent
related work. All data preparation used in this thesis is discussed in Chapter 3. Chap-
ter 4 describes our first contribution to resolve the conflict between aircraft and details the
CRMLnet model based on neural network where we used trajectory data. The model is
evaluated on our simulated data. The second contribution is based on converting trajectory
data into images. It leads to the ACRnet model based on a convolutional neural network
and is presented in Chapter 5. Finally, Chapter 6 concludes this thesis and provides future
directions.



Chapter 2

Literature review

Over the past few decades, many approaches were proposed to resolve aircraft con-
flicts. Most of the models initially proposed were based on mathematics. Advanced
computer technology, such as computers with graphics processing unit (GPU) sys-
tems, simplifies complex and time-consuming computing such as machine learning.
Machine learning models are now developed in the field of aircraft conflict resolution.
In this chapter, we discuss some of the most important models and recent models
that play an important role in aircraft conflict detection and resolution.

Abstract.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Models before machine learning applications . . . . . . . . . . . . . . . 10
2.3 Machine learning models . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Introduction

The main purpose of conflict resolution models is to find the decisions where a safe distance
is maintained between the aircraft. Different models for aircraft conflict detection and resolu-
tion have been published over the past few decades. Kuchar and Yang discussed most of the
early studies in their paper [Kuchar 2000]. Most of the early models relied on mathematics,
geometry, and probability [Havel 1989, Sridhar 1997, Ota 1998, Prandini 1999, Eby 1999].
Researchers focus now on the recent advances in machine learning. Although machine learn-
ing was invented a long time ago, it was not possible to build a high computational model
of machine learning without advanced computers. Since this gap has recently been filled
with GPU1 facilities, the application of machine learning [Alam 2009, Jiang 2018, Srini-
vasamurthy 2018, Pham 2019a] including deep learning [Nanduri 2016, Brittain 2018, Brit-
tain 2018, Wang 2019] have recently grown in the field of aircraft conflict avoidance.

1Graphics Processing Unit

9
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This chapter introduces different methods from the last few decades. Conflict resolution
methods are closely related to conflict detection methods. We discuss both in this chapter.

This chapter is structured as follows: Section 2.2 discusses some of the early research
on aircraft conflict detection and resolution before machine learning was used. Section 2.3
discusses the different types of machine learning models for aircraft conflict detection and
resolution; some of them include aircraft trajectory anomaly detection. Section 2.4 discusses
the gaps in current research. We also explain the genesis of the models we propose.

2.2 Models before machine learning applications

Most of the earlier aircraft conflict detection and resolution models as well as some recent
models are based on mathematics, geometry, and probability [Havel 1989, Sridhar 1997,
Ota 1998, Prandini 1999, Eby 1999, Bilimoria 2000, Richards 2002, Alonso-Ayuso 2010,
Alonso-Ayuso 2012, Alonso-Ayuso 2013, Feron 2013, Alonso-Ayuso 2016a].

Havel and Husarčík in 1989 discussed many important formulas to solve conflicts involving
two aircraft. Their formulas have been used later in many studies [Havel 1989]. Their research
was based entirely on theoretical formulas and the authors did not implement any model.
According to their solution, the controller could only see the prediction of whether there was
a conflict between two planes. For conflict resolution, controllers still had to make their own
decision. The non solved issue in their approach is that if the number of aircraft exceeded
two, the conflicts had to be resolved in pairs. A conflict resolution could then create a new
conflict. The conflict in pairs had to be resolved till all the conflicts were resolved. This
was time-consuming and in some cases, conflicts could not be resolved because of the many
combinations of pairs. Systems receive multiple positioning information for each aircraft
from different radar sources and calculates the estimated position which is thus approximate.
Therefore, using Havel and Husarčík ’s formulas to build an automatic model is risky because
in their approach, the positioning coordinate values are assumed to be accurate.

Sridhar and Chatterji presented a comparison between three methods for conflict detec-
tion: (a) Euclidean distance-method, (b) Sorting-based algorithm, and (c) Accumulator-based
algorithm [Sridhar 1997]. In the first method, the authors calculated the euclidean distance
between each aircraft pair and compared it with the minimum separation distance to see if
there was any conflict. The problem is that the computation had to be conducted n(n−1)

2
times for n aircraft. When the method is repeated for every time stamp, the computation
is increasing with the number of aircraft. The authors presented two more methods to re-
duce the computation where they expressed the trajectory of each aircraft through a small
bin within a 2D grid. Bins in the 2D grid were numbered sequentially. The trajectory of
multiple aircraft was then plotted on this 2D grid through these bins. The bin numbers of
all aircraft trajectories were then sorted in non-decreasing order in a single vector. If there
is a conflict then the same number will be repeated in that vector after sorting. This means
that where the bin number is repeated there is a conflict because the same bin belongs to
multiple trajectories. In their third method, the whole grid was filled with initial zero instead
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of sequential numbering. Then added one to where the aircraft trajectory is supposed to be,
where the trajectory was first mapped. For example, when the trajectory of an aircraft is
plotted, one is added to the initial zero value. If there is a conflict of that trajectory with
another trajectory, then the value of the specific bin of the conflict is incremented again to
become two. The value of that conflict bin is a minimum of two. After plotting the trajecto-
ries of the two aircraft, the value of the bin is two where the conflict has taken place and all
the other trajectory values are one. Undoubtedly this is a really nice piece of work in terms
of reducing time and computation to find the aircraft conflict, but there are some limitations.
The authors’ method only detected conflicts in between two planes when their routes cross
each other based on a planned trajectories. Since time is not mentioned on their grid, it is
possible that two aircraft trajectories crossed the same bin but not at the same time. In that
case, there will be no conflict even though their sorting algorithm will show conflict. Whether
or not two planes crossed at the same time is a very important issue that the authors missed.
In addition, the authors assumed that all aircraft are following their initial planned route
which it is not always the case. Although this work is not similar to ours, their idea of a 2D
grid has inspired us to use the image conversion model in Chapter 5.

Ota et al. [Ota 1998] proposed a geometric model where the main idea of resolving the
conflict was to find the geometric relationship of the aircraft and the expected threat. In this
case, the relationship between the subject aircraft and each threat is calculated; they call this
a “threat map”. The solution considered each moving threat as a static threat. The authors
solved conflicts using a set of rules. An example of such a rule is as follows: if two planes
are detected as in face-to-face conflict and their speed is equal then both planes will turn to
their right in the horizontal planar. However, the angle of the turn is not specified. Although
it is not too complex to add, still, the issue of this model is the huge computing to do even
if there is no conflict. This research has proposed equations for the threat map concept in
which the movement of each aircraft is static, which does not correspond to reality. Also,
vertical descent or climb is applicable in their resolution rules which is usually avoided in case
of horizontal conflict in real cases.

Zeghal and Karim [Zeghal 1998] proposed a new formula to improve the force field method.
The solution they called the force field method is based on the continuous change of velocity
and position of each aircraft using relatively simple formulas of physics. In this approach,
each plane is compared to a charged object so that each plane is continuously searching for
its individual resolutions. Although this method seems very interesting, it searches for the
resolution maneuver even though there is no conflict. Moreover, the position and velocity of
aircraft are updated through an automatic dependent surveillance-broadcast (ADS-B) which
is an approximate position. Thus it is risky to use mathematical formulas to make a sharp
heading directional decision based on an approximate position. Besides, with the increasing
number of aircraft, it will be challenging for this repeated approach to deal with real situations.
Finally, this solution needs to be further considered before being applied in real-life because
continuously searching for a resolution maneuver makes a simple heading change to a complex
one which is unrealistic.

Prandini et al. [Prandini 1999] proposed a probabilistic framework for predicting a mid-
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range conflict between two planes. The authors assumed that the two planes are moving
horizontally at the same altitude level following their initial flight plan. Here, a flight plan is
one of the complete series of waypoints that indicate the intermediate and intersection points
that pilots use to design the initial flight plans before departure. The speed between each
of the two waypoints is also considered. Using these pieces of information, the authors used
some equations to project near future positions of both aircraft and predict whether there
will be a conflict. They used a threshold value to determine what is the minimum probability
score to be considered as a conflict. Since the position of the aircraft is approximate, this
study predicts the future position of the aircraft using probability distribution rather than
using precise geometric and mathematical equations. However, an algorithm is continuously
estimating the probability distribution of the aircraft near future position that demands heavy
computations. Since the probability distribution detects conflicts, it has to be calculated for
each resolution direction. With more than two aircraft, that computation can be too huge
for the real-time calculation.

Other related work consider free flights where a pilot can change his/her flight route in the
mid-flight if s/he wants to. In reality, this is not yet possible. Warren [Warren 1997] applied
performance analysis in three different situations to detect the conflicts for free routing: fixed
threshold conflict detection, covariance method conflict detection, and conformance bound
conflict detection. For the first method, the authors chose whether a situation is called conflict
or not based on the closest point of approach (CPA). CPA was taken as 10 nm. In the second
approach, they formulate an error ellipse based on covariance that is achieved by the error of
surveillance, wind forecasting, and aircraft path following. The third approach is a commonly
used conflict detection method for Advanced En Route ATC (AERA) [Brudnicki 1997]. The
flight plan of an aircraft is monitored at every moment. If the actual flight plan is more
inconsistent with the predicted flight plan, then the situation is considered as a conflict. This
method is applied to every aircraft. All the three approaches are similar in performance but
in some cases, fixed threshold based on out of CPA or inside CPA is doing better than the
others.

Pallottino et al. [Feron 2013] proposed a method of conflict resolution where they applied
mixed-integer linear programming (MILP2). Here, mixed-integer means that all the variables
used to take conflict resolution decisions are integers and continuous mixed values. Richards
and How in [Richards 2002] applied MILP for the first time to find the optimal trajectory
waypoint so that conflict can be avoided. The variable in the decision to choose a waypoint
is binary and since different coordinate variables are involved in the movement of an airplane
and it is continuous, they called it a mixed-integer linear programming problem. Their models
had different geometric constructions that assume that all pilots have the right to free flight.
They resolved the conflict by changing the horizontal heading of the aircraft. No vertical
resolutions are provided such as decent or climbing as they assumed that all aircraft are at
the same altitude. Based on the euclidean distance between different planes, their method
finds conflict-free trajectories by increasing or decreasing the left heading or right heading
angle for each plane. Since they considered the concept of free-flight, a geometric equation
is applied to each plane to find its own conflict-free heading degree angle. Although they

2Mixed-Integer Linear Programming
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showed optimization so that increasing the number of aircraft requires less computing, the
authors stated that their method is unsuitable for operational implementation. The concept
of free-flight is very interesting because if for some reason the communication of the aircraft is
cut off from the ground system, then the pilot themselves will be able to resolve the conflict.
But since the concept of free-flight is still limited in theory, its application in practice is still
a long way off because of the lack of advanced on-board systems that are not yet available.

Another application of MILP was proposed by Vela et al. in [Vela 2010] where they took
both heading and speed changes decision to resolve the conflict for free flight. The authors
claimed that their model provides a global solution by changing the heading and/or speed of
one or more aircraft. But in reality, it is not so easy because every aircraft changes its speed
or heading depending on its involvement in the future of any new conflict. In addition, it is
not clear how their model will receive input when the number of aircraft is not fixed.

According to Alonso-Ayuso and Escudero [Alonso-Ayuso 2016a], three types of maneu-
vering are commonly applied for aircraft conflict resolution such as heading change, velocity
change, and altitude change. The same author proposed different models that combined these
three types of maneuvering to resolve the conflict between aircraft. For example, in [Alonso-
Ayuso 2010] they applied the technique of changing velocity and changing altitude. They
proposed another model in [Alonso-Ayuso 2012] that considered only the change in velocity.
In that case, they took into account the acceleration change of the aircraft. The following
year, they proposed two different models [Alonso-Ayuso 2013]: one with a change of altitude
and the other with a change of velocity. All the models discussed so far by these authors
used the mixed integer linear optimization (MILO) concept. Since the decision variables are
mixed integers and continuous, the method is called MILO. Finally, the authors in [Alonso-
Ayuso 2016a] proposed a method based on mixed-integer nonlinear optimization (MINO) that
combined three maneuverings (heading change, velocity change, and altitude change). This
is non-linear because they used continuous values for decision-making.

Carbone et al. [Carbone 2006] proposed a geometric algorithm for conflict resolution
between two aircraft. In this case, one of the two aircraft is called the intruder; it usually does
not play any role in conflict resolution. The other aircraft with which the intruder’s conflict
has been identified are used to resolve the conflict. The authors formed a sphere around the
intruder using geometrical equations, and the future position of any other plane in that sphere
detection was considered as a conflict. They applied three strategies for conflict resolution:
lateral-directional control; longitudinal control; and speed control. Lateral-directional control
means changing the direction of the heading whereas longitudinal control means climbing or
descending vertically. And the other is to resolve the conflict through speed control. When
one of these three strategies is applied, the others are considered constant. This means that
multiple strategies are not applied simultaneously. All the calculations are done in real-time
and the authors claimed the method is very fast. The limitation of the method however is
that it is applied to two aircraft only. In a real-time situations where there are more than
twp aircraft involved, the application of this method will be more challenging. Another issue
is that it is not clear which of the three strategies is to be applied in which situation.

Durand et al. in [Durand 2020] proposed a visualization tool that helps the ATCOs to see
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the conflict zones. To handle conflicts, ATCOs can use a 2D screen to plot future positions
simply using a mouse pointer. Then, they can see different color line segments for conflict
areas and the areas without conflict including the speed and headings. Finally, they can
decide the heading to resolve the conflict. This research has provided a step forward for
the controllers since they can see different conflict areas including uncertainty (bad weather).
However, the limitation here is that the tool does not provide any specific decision like heading
changes for the conflict resolution. ATCOs have to observe the scenario and take decisions
by them-selves only. It is time-consuming in real-time to observe the conflicts by plotting
different ways.

Zhao and Liu in [Zhao 2020] proposed another popular graph theory algorithm called A*
search. This algorithm is based on the cost of the current node (g(n)) from the starting
node and based on a heuristic function (h(n)) to find the shortest path that estimates the
minimum cost from n to the goal node. The author generated a cost map based on the
distance of Ownship (Figure 3.5) with all Intruders (Figure 3.5). Then they applied the A*
search algorithm to get through this cost map at a low cost. Although graph theory plays a
unique role in figuring out the shortest path and A* search is a popular algorithm in this case,
if it is a static graph. One more thing to consider here is that when the number of planes is
high, the use of graph theory is a matter of many combinations so that time is an important
factor.

2.3 Machine learning models

Aircraft conflict resolution is of different levels (Section 1.1) and types (Section 1.2). In this
section we will only discuss machine learning methods related to the mid-range conflicts at
the en-route level. Although our thesis focuses on aircraft conflict resolution, we will also
discuss machine learning applications for conflict detection as these two topics are related to
each other.

With the availability of resources like data and high graphics computers, machine learning
applications are used almost everywhere. A major advantage of the machine learning models is
that such models acquire knowledge from real data which is much closer to human intelligence
but faster than humans in real-time. Therefore, in the case of aircraft conflict resolution, it
has been found that machine learning applications are able to make decisions very quickly,
but since no model can offer a hundred percent guarantee, this type of models are preferred
to assist rather than to replace humans to make quick decisions.

Over the past two decades, many machine learning methods were proposed to identify
and/or resolve aircraft conflicts [Alam 2007, Alam 2009, Nanduri 2016, Jiang 2018, Srini-
vasamurthy 2018, Pham 2019a, Brittain 2018, Wang 2019].

One of the earliest machine learning applications, more specifically the application of
data mining, was proposed by Alam et al. to detect aircraft conflicts for free flight, although
they separated the concept into two different pieces of work [Alam 2007, Alam 2009]. In
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their first study, [Alam 2007], they applied data mining technique through investigation and
tried to find the patterns that would explain conflict detection algorithm failures. Later, in
[Alam 2009], the same authors used this knowledge to construct a relationship between the
failure of various conflict detection algorithms and these algorithms. They completed their
research in three steps. In the first step, they applied various conflict detection algorithms to
the simulated conflict scenarios. The second step was to find out the pattern of data with each
algorithm and to create different rules. Finally, they applied an ensemble method based on
all these rules to determine when an algorithm will be chosen for the final conflict detection.
This means that the ensemble method allowed one conflict detection algorithm from different
algorithms at a time to make a final decision based on the conflict situation and the rules
already defined for each algorithm. Although this idea is limited to conflict detection only, it
can be extended for conflict resolution. But the most important limitation here is that the
authors have limited this algorithm to conflict detection for free-flight only. Therefore, the
expansion of this idea will be applicable when the free-flight facility will be implemented in
practice.

Detecting conflicts and resolving them are very close problems. This is because if a conflict
detection model can be used to predict future conflicts, then by avoiding those routes, the
conflict will be resolved. Jiang et al. [Jiang 2018] considered aircraft conflict detection as
a binary classification problem. The authors believed that since the various parameters of
each aircraft, such as tracking, navigation, weather, etc., are approximate parameters, it
is better to consider the conflict detection problem as a probabilistic problem rather than
a rule-based problem. In their paper, they considered the conflict detection problem as a
binary classification problem and proposed a conflict detection model based on a support
vector machine (SVM) classifier. As the input for this model, they extracted a new feature
vector from the current positioning coordinate and velocity of the aircraft associated with
the conflict, which they called the relative feature vector. They prepared a relative vector by
calculating the distance between aircraft along the different axis (x, y, z), speed difference, etc.
which was later used as input of the model. Finally, based on this input, their SVM model
predicted future conflicts. Although this work has a lot of potential to extend this concept to
resolve conflicts, the limitation of this idea is that the authors proposed the solution for free
routing that is not yet available in real life.

Since it is difficult to get data related to aircraft conflict detection and resolution, very
few supervised machine learning methods have been applied so far [Srinivasamurthy 2018,
Kim 2016]. Srinivasamurthy et al. in [Srinivasamurthy 2018] proposed a semi-supervised
model in their research that predicts the air traffic controller’s voice command. Their model
is a combination of the Deep Neural Network and the Hidden Markov model that updates itself
iteratively with the speech and radar data. Although this research does not directly address
the problem of aircraft conflict, if it is possible to fully predict ATCO’s voice command, then
it is possible to create a real-time solution by applying this same concept to resolve the aircraft
conflict. This model can also help to store the radar data with voice command annotation
and it will play a big role in preparing conflict resolution future models. Their research is
still far from the expected real-time results because ATCO’s voice commands have a lot of
extra sounds (noise), there is still some work to be done to make this research applicable in
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practice. That is why there is a lot of research which is carried on in the ATM field on speech
recognition, and maybe we can use this concept in future models.

Kim et al. [Kim 2016] presented a performance analysis of two separated models to solve
a conflict between two airplanes: a neural network-based and a SVM-based. Both models are
fully supervised models. The SVM model combines 9 SVM, one per class label. Similarly,
the neural network model is composed of 9 nodes in the output layers. This model gives an
output vector of 9 class labels that are all zero except the most probable one. In the end,
they have taken the highest probable one as the best action. Their dataset contains category-
based resolutions such as vertical, horizontal, and speed control. For example, there are two
resolutions for horizontal conflicts such as Direct-to and Path stretch. Here Direct-to means
the resolution maneuver is to skip some initial waypoints (see Section 3.2.1) and go direct to
the targeted waypoint whereas Path stretch is to add new waypoints to make the resolution
more flexible. The model only predicts these categories. The limitation here is that there is
no exact heading direction (horizontally) or climbing/descending level (vertically) to resolve
the conflict. Still, ATCO needs to think about the resolutions before taking a decision.

Some reinforcement learning models were designed to resolve aircraft conflicts where deep
neural network was used as an agent [Brittain 2018, Pham 2019a, Pham 2019b, Wang 2019]

Brittain and Wei in [Brittain 2018] applied a two-level agent-based (parent and child
agent) deep reinforcement learning following a hierarchical network manner. For the parent
agent, they applied a convolutional neural network to the images of the NASA Sector 33 game
screen and select the most suitable route by applying all possible route combinations. In this
case, the flight path is fixed. All aircraft are forced to use this limited flight paths which is
inconsistent with reality. The parent agent can decide to change the direction of the aircraft
only at any connecting waypoint (see waypoint in Section 3.2.1). The child agent adjusts the
speed based on the combination of routes obtained from the parent agent where they have a
list of six different speeds. In practice, resolving conflicts by changing the speed is avoided.
Also, in reality, ATCO can change the heading of a specific aircraft at any angle to resolve a
conflict while in [Brittain 2018] it is very limited.

Pham et al.[Pham 2019a, Pham 2019b] also applied the reinforcement learning method
with the neural network-based agent using the aircraft conflict’s trajectory data instead of
using image data. The authors applied a single deep reinforcement network for two aircraft
at the same altitude. The problem is then simplified to a two-dimension problem. The agent
changes the heading of the aircraft in different directions for conflict resolution, each of which
is called an action. Since the resolution action is not finite, the reinforcement agent resolves
the conflict by applying an infinite number of actions. For each action, it gets rewards (rank)
with either positive (successful) or negative (unsuccessful) feedback based on the quality of
their conflicting resolution. Quality comes from selecting a set of features that is a kind of
rule or condition. From this feedback, the model fits itself. The agent takes the current
position, time, and current heading angle of the aircraft associated with the conflict as input
and provides the new heading to resolve conflict. Wang et al. [Wang 2019] applied a similar
approach with slight changes in the simulation of conflict scenario. For example, they defined
an area (sector) with a radius of 60 nm. They considered a scene where there are some; then
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a conflict is detected when a new aircraft enters this sector within 10 nm of entry. Then,
the reinforcement model recommends heading change advisory action to resolve the conflict
associated with this new aircraft. But this model also selects each action based on a reward
function during model training.

Zhao and Liu [Zhao 2021] also applied reinforcement learning and CNN using image data
where each image contains the current position of aircraft associated with the conflict. One
of the major challenges in resolving aircraft conflicts is handling input dimensions. This is
because most reinforcement learning models have been designed with the assumption that the
number of aircraft is fixed. But in reality, it is not. These authors plotted an arbitrary number
of aircraft within an image so that conflicts can be resolved even while the number of aircraft is
variable. Therefore, it is possible to eliminate the dimensionality problem. However, a proper
reward function is required for the best resolution of reinforcement learning and finding that
function is the most challenging task because it depends on features like certain rules and
conditions.

In general, all the models based on reinforcement learning are based on almost the same
principle (rules and conditions to define reward function). The biggest challenge of applying
the reinforcement learning method is to define a perfect reward function under different rules
and conditions that validates each decision with different rewards. Because, it chooses the
best decision based on this reward value.

Olive et al. [Olive 2018] applied an anomaly detection algorithm named auto-encoder
that is based on a neural network to identify the anomalous from historical flight data. Here,
anomaly means an irregular situation. Irregular situations usually occur when the initial
flight plan is changed by a decision of the controller. When this model detects an anomaly,
it means that the controller has taken some action for that trajectory. Although this method
is not a direct solution for conflict resolution, it can be used to identify a situation for later
data annotation.

2.4 Conclusion

Many models have been proposed to resolve aircraft conflicts. This chapter discusses some of
the most important, recent, and popular studies within the last few decades.

The positions of aircraft are approximate. Therefore, it is risky to apply a condition-based
mathematical model. Also, when the number of aircraft is high, there is a lot of run-time
computation of the models and in many cases it is not possible to find a solution due to high
combination.

Recently, the popularity of machine learning models has increased because this type of
model takes a little more time for training but it responds very quickly. Since the machine
learning model trains itself from examples, the performance in the case of resolving an unseen
conflict scenario is very close to human.
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In this chapter we have mentioned some machine learning models, all of them were de-
signed based on the current positions of the aircraft. Model training is done through mathe-
matical calculations for feature selection or feature extraction. This is risky with the aircraft’s
approximate position. Also, the reward function of the model based on reinforcement learning
is designed with some rules and conditions.

As opposed to most of prior work, we trained our first neural network-based CRMLnet
model using the last 5 minutes trajectory without any feature extraction. So, the model can
learn the conflict scenario from the movement of the aircraft.

Secondly, to handle the arbitrary number of aircraft, we proposed another model based
on a convolutional neural network, ACRnet, where we converted the whole conflict scenario
into an image. Therefore, a conflict with an undefined number of aircraft can be resolved
without changing the architecture of the model.

In both of our models, we provide multiple heading resolutions for a single conflict. Thus,
ATCO can choose the best from multiple solutions so that future conflicts can be considered.



Chapter 3

Data related to aircraft conflicts

The first and foremost thing to consider in preparing a supervised model is a well-
organized annotated dataset. Different data can be used to solve aircraft con-
flicts such as flight plans, trajectory data, controllers’ immediate action orders and
weather. Different data sources collect such data. However, since aircraft conflict
data are sensitive and not publicly available, we had to create our own data sets. We
used an open-source simulator named Blue Sky [Hoekstra 2016] to build a sequence-
based trajectory data set. The data set consists of conflict trajectories and heading
resolutions. While this resource fit some machine learning models, when there is a
variable number of aircraft involved in the conflict, it can hardly be used in neural
network based models that need a set dimension input. For this reason we developed
a second data set which corresponds to the trajectory data transformed into images.
Both datasets are delivered to the research community. They are freely accessible
online at https://independent.academia.edu/MDSIDDIQURRAHMAN9. There is a
total of 1,516 sequence data and a total of 1,656 image samples, of which 1,516
contain two aircraft and 140 contain three aircraft.
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3.1 Introduction

The most crucial thing that is needed to build a strong prediction model is to have a good num-
ber of sample of annotated observations or data. Trajectory data is generally kept confidential
and not publicly available. Thus, the most complex task is to synchronize the trajectories
of the aircraft involved in a conflict and the immediate order issued by the ATCO to resolve
the conflict. Another problem with real data is that there are not many variations on the
conflicts. On the contrary, if we rely on simulated data, we can think of future conflicts and
create variations of the conflicts, which may not be possible to easily collect from real data.

This chapter discussed how trajectory data can be built by simulating aircraft conflicts.
We discuss in detail how to transform these trajectories into images. We also discuss why we
converted trajectories into images and how we can benefit from this transformation.

This chapter begins with data that is primarily related to aviation collisions. Then the
different sources of these data are discussed. Gradually discussing the different types of
limitations, we started explaining more specific data that is mainly used in this research.
Additionally, different types of data variations such as trajectory conversion into images and
the benefits of using image data are discussed.

The main purpose behind creating this data was to create standard data for solving aircraft
conflicts that could be used for machine learning applications. In addition, because this type
of aviation data is not publicly available, we have made this data publicly available for future
use by the research community.

Because the type of model to solve a conflict depends on the type of available data,
the preparation of the data is actually very important. Most of the research in aircraft
conflict resolution used trajectory data [Prandini 1999, Prandini 2000, Alonso-Ayuso 2013,
Wandelt 2014]. In few studies, the controller’s immediate orders were also combined with
trajectory data to apply supervised models [Srinivasamurthy 2018, Kim 2016, Rahman 2020,
Rahman 2022] including trajectory image data [Zhao 2021].

This chapter is organized as follows. Section 3.2 focuses on the types of data that are
used to resolve an aircraft conflict. Then the different sources for these data are discussed
in Section 3.3. Section 3.4 discusses more specifically data that we created for this research:
trajectory data and trajectory conversion into images.

3.2 Types of data

There are four main types of data that are commonly used for conflict detection and resolution:
(a) flight plans, (b) trajectory data, (c) ATCO’s immediate actions, and (d) weather data.
Although we did not use all these types of data in our thesis, it is important to be aware of
all the possible data types.
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3.2.1 Flight plan

A flight plan is one of the complete series of waypoints of a flight where latitude, longitude,
and altitude are the basic elements used to distribute it. Waypoints indicate the intermediate
and intersection points that pilots use to design the initial flight plans before departure. In
other words, the waypoint is a fixed coordinate for specifying a single point on the Earth.
Depending on where in the world, different technologies are used to create waypoints like radio
beacons, buoys, satellites or control points. Figure 3.1 and Table 3.1 provide a sample flight
plan from Toulouse city to Paris city in France where the identification number LFBO is for
Toulouse airport and LFPO is for Paris airport. The identification numbers between LFBO
and LFPO are the different waypoints of the planed route. A flight planner is responsible

10/25/2021 LFBO to LFPO - Flight Plan Database
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Figure 3.1: An example of a flight plan from Toulouse to Paris in France. The identification
number for Toulouse airport is LFBO and the one for Paris airport is LFPO. There are several
waypoints on the way from Toulouse to Paris such as MAKOX, LMG, BALAN, SOPIL FIR12 (see
detail in Table 3.1).

Table 3.1: The flight plan from Toulouse to Paris in France contains a lot of information.
1st column shows all the identification number of waypoints and 2nd column shows the type of the
point. LFBO and LFPO are the airports (APT). Also this table contains altitude (ft/m) and position
(latitude/longitude).

ID Type Via Altitude (ft/m) Position (lat/lon) Dist (leg/tot) Name
LFBO APT - 0 / 0 43.62900 / 1.36397 - / 0 nm Toulouse Blagnac
MAKOX FIX - 35,000 / 10,668 45.33280 / 1.23806 102 / 102 nm
LMG VOR G36(AWY-LO) 35,000 / 10,668 45.81590 / 1.02558 30 / 132 nm LIMOGES
BALAN FIX A34(AWY-LO) 31,300 / 9,540 46.51610 / 1.03333 42 / 174 nm
SOPIL FIX A34(AWY-LO) 24,800 / 7,559 47.02580 / 1.05500 30 / 205 nm
FIR12 FIX A34(AWY-LO) 23,000 / 7,010 47.16670 / 1.05833 8 / 213 nm
LFPO APT - 0 / 0 48.72630 / 2.36701 107 / 321 nm Paris Orly

for designing a flight plan using waypoints before departure. According to the International
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Civil Aviation Organization Doc 4444, a flight planner designs a flight plan by considering
many parameters such as midair conflicts, amount of fuel, en route winds, airspace restriction,
airport conditions and many more. This organization also defines an air route that is a fixed
altitude corridor from a source location to a destination one. A pilot has to select a plan
before the flight and follow the initial planned path unless asked to partially change it by the
air traffic controllers. Flight plan data is very important for the implementation of the free
flight concept. Another important aspect of the combination of flight plans and on-board
data is that the pilot can continue the flight even if the aircraft is disconnected from the
ground system for any reason.

3.2.2 Trajectory data

The location of any object on the Earth can be denoted by its coordinates. Similarly, each
aircraft in the airspace is identified by the three basic coordinates latitude, longitude, alti-
tude. These are the primary components of the aircraft coordinate system. Since an aircraft
is a moving object in the sky, its 3D trajectory consists of a set of these coordinates. It
is sometimes called the 4D trajectory where time is considered as the 4th dimension [Wan-
delt 2014]. Although the flight plan of an aircraft is designed before it takes off, in reality, it
is not possible to follow the flight plan completely in actual trajectory.

Figure 3.3 shows a view where the solid line represents a possible original flight plan and
the dotted line represents a possible actual aircraft trajectory. The speed, the angle or the
distance between two planes as well as many other parameters can be calculated from the
elementary 4D components of trajectory data. From trajectory plans, one can calculate the

Actual Trajectory

Original Flight Plan

Figure 3.2: In reality, the actual trajectory differs from the original flight plan.

distance of any two airplanes, their speed, the angle between them. It is also possible to
calculate the possible conflicts between them. Trajectory information is the first that air
traffic controllers take into account for making any decision to resolve aircraft conflicts.
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3.2.3 Air traffic controller’s immediate action order

An immediate order is a voice communication between a controller and a pilot to guide them
through conflict situations. Such an order aims at changing the aircraft trajectory to avoid a
conflict situation. Pilots follow the ATCO’s immediate order. The ATCO can choose different
actions to properly guide the pilots through radio communication. According to Pavlinović et
al. in [Pavlinović 2013], ATCOs’ communication is defined in seven sections based on different
aircraft phases (see Figure 3.3). Different ATCO operate at different phases. In our study, we

  

Pre flight

Take off

Departure

En Route

Decent

Approach

Landing

Figure 3.3: An aircraft has seven phases: landings, approaches, and descent, en route, pre-
flight, take-off, and departure. En route is the top altitude level where the conflict resolutions are
usually made by changing the heading direction of the aircraft.

consider the controllers’ en route phase only where the altitude (height) of the aircraft usually
remains unchanged. The common resolution maneuver is heading direction either turn left
or right with a certain angle.

We also assume that the altitudes for all airplanes are set. Thus, the trajectory is simplified
to a 2D instead of 3D trajectory. Therefore, the number of actions is limited and concern the
aircraft heading (change left or right with any of the angles reported in Table 3.2) and its
speed. ATCOs usually change the heading degree by a multiple of five (e.g. an immediate
order could be "TURN LEFT 50 or TURN LEFT 100 as shown in Figure 3.5).

Table 3.2: The possible heading decision between 30 degrees left and 30 degrees right.
The 2nd row shows all the heading names (y0 to y11). The 3rd shows each heading by changing 5
degrees up to 30 degrees on both the left and right sides. The 4th row shows all the binary decision
for each heading direction. Here ‘1’ means it resolves the conflict while ‘0’ means it does not.

Left Headings Right Headings
Class label → y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

Heading decision → 50 100 150 200 250 300 50 100 150 200 250 300

Binary decision → 0 0 1 1 1 1 0 0 0 0 0 0
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3.2.4 Weather

There are many things that ATCOs keep in mind during conflict resolution. Weather is one of
the them. The weather report consists mainly of wind speed, wind direction, thunderstorm,
cloud, etc. An aircraft conflict may not only occur with another aircraft but also with bad
weather. Since bad weather makes passengers uncomfortable and affects safe operation, the
aircraft avoids it. Weather data is collected through various types of weather monitoring
radars.

3.3 Data sources

In the previous section, different types of data have been described. This section discusses
different sources of data. Basically three sources are available to collect such data: (a) open-
source data, (b) radar data from ATC station, and (c) data simulation. Here, we describe
them and explain why we had to develop simulated data which is one of the contributions of
this thesis.

3.3.1 Open source data

Schäfer and Strohmeier et al. started OpenSky Network in 2012; it is one of the largest
open-source aviation data source [Schäfer 2014].

The OpenSky Network mainly stores air traffic information around the world. It uses
the ADS-B as a back-end technology to store the live data which is publicly available. The
main functionality of the OpenSky Network is to provide public open access to ATC data.
OpenSky Network collaborate with universities and government entities around the world.
OpenSky Network uses around twelve tables in their database to store different ATC data
including aircraft trajectories. The OpenSky Network also stores flight information such as
flight paths that the aircraft has already followed. Among all the tables in the OpenSky
Network database, one table named state_vectors_data4 (see Table. 3.3) contains the basic
trajectory information such as flight plan, aircraft heading change, callsign, and other infor-
mation that is related to the trajectory. Table 3.3 includes trajectories only. The challenge
to use such a data set is to synchronize the heading changes with the conflicts. Another
issue is that there is no distinction in the heading changes between the ones that correspond
to conflict situation solving and the ones that correspond to normal situations to follow the
initial flight path. If the ATCO’s orders were available, it would be possible to extract the
trajectory from this table using icao24, callsign and time. Since the ATCO orders is sensitive,
time-consuming and difficult to obtain, in our thesis we did not used this data.

The state_vectors_data4 table contains about eighteen attributes for different data types.
For example, each aircraft time is represented by time attributes. Some other common and
important attributes are: icao24 which is the unique aircraft identification number from
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Table 3.3: Description of a table from OpenSky Network named state_vectors_data4 that contains
trajectory information for all the aircraft.

Name Type
time int
icao24 string
lat dauble
lon dauble
velocity dauble
heading dauble
vertrate dauble
callsign string
onground boolean
alert boolean
spi boolean
squawk string
baroaltitude dauble
geoaltitude dauble
lastposupdate dauble
lascontact dauble
serials array<int>
hour int

the ICAO1, lat, lon, velocity which correspond to latitude, longitude, and ground speed per
second, the heading parameter that contains all the changes in heading degrees clockwise
from geographic north and callsign which is a broadcast identification number spread by the
aircraft itself.

Although no conflict scenario data is provided by the OpenSky Network directly, we can
download the synchronize historical dataset from OpenSky Network which is associated to a
given ATCO’s immediate order that includes the time and icao24.

3.3.2 Radar data from ATC station

ATC is a ground-based service advisory provider for aircraft collision avoidance. ATC’s main
job is to assist the pilot in flying with all kinds of information and advice from the ground.
Depending on the country’s system, the ATC also provides military defense assistance based
on the capabilities of some countries. Although most modern aircraft have radar systems for
aircraft collision avoidance, this is only possible when the aircraft comes very close (short-
range conflict). Therefore, for mid-range or long-range collisions, the pilot needs the help of an
ATC ground system. Typically all ATC stations store all information obtained from radar for
future investigation. The primary thing that is kept in all that information is the trajectory
of each aircraft. Here, trajectory refers to the positioning parameters of each aircraft such as
latitude, longitude, altitude, heading direction, speed, etc. Generally, ATC stations store all
aircraft location data in their database. Additionally, they store the immediate order from

1International Civil Aviation Organization
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ATCOs. Each control station decides the type of data it stores.

In France, control stations use the IMAGE system to calculate the aircraft position
[Hurter 2013]. The IMAGE system gathers data from all controller stations. The system
receives multiple positioning information for each aircraft from different radar sources and
calculates the estimated position. Although ATC stations store a variety of information,
including trajectory data, this data is highly sensitive and not publicly accessible.

Alternatively, researchers simulate trajectory data for their research. One of the huge
advantages of using simulated data is that one can create many variations of a conflict scenario
that may not be available in real data in order to test the built models. A model can also
then be trained with a variety of conflict data. For organizations were real data are available,
the model can be tested with these data.

3.3.3 Simulated data

Data simulation is used to build a hypothetical set of mathematical, logical, and symbolic
relationships between entities of interest in order to predict the system performance with a
real-world process or simulation of system activity over time [Banks 2005].

This is specifically useful when there is no adequate real data. Using simulated data, a
model can be trained by creating some hypothetical data to predict the real-world problem.
Many studies on aircraft conflict detection and resolution used simulated data [Hu 1999,
Eby 1999, Farley 2007, Pritchett 2017, Siqi 2018, Brittain 2018], including anomaly detection
studies [Das 2010, Olive 2018].

Hu in et al. used the Brownian Motion [Mörters 2010] method to simulate random conflict
scenarios in [Hu 1999]. This method was first applied to random movements in liquids or gas
particles. Hu et al. used that concept considering each aircraft as a single gas particle
and generate aircraft’ movement using this method. In the case of conflict resolution, they
resolved the conflict by changing the direction of the heading using mathematical formulas.
They considered the current location of each aircraft only. In almost all the studies, data
are simulated by generating position (latitude, longitude, altitude), time, speed, direction,
etc. for a specific position. Brittain and Wei generated each conflict scenario with a video
game simulator called NASA Sector 33, which shows the collision between different planes
[Brittain 2018]. They used the game screen images and applied CNN to resolve the conflict.

Although some of the data mentioned above could have been used in our work, the biggest
obstacle was that none of this data is publicly available. Moreover, as opposed to conventional
data used in the related works considering only the current location of the aircraft, the data
we generated consists in all the locations of an aircraft flying for 5 minutes; this has not been
used before. This has the extra advantage that a model can learn the conflict environment
from the aircraft movement without any other features.
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3.4 Simulated data sets

In this research, for each conflict we prepared 5 minutes of trajectory data of all the aircraft
involved in that conflict and the immediate order from the ATCO to resolve it. Such data is
difficult to collect from ATC stations since there is the need to synchronized the trajectory
data with the immediate order of ATCO. After having tried to get real data from ATC
stations without any success, we have decided to simulate them and to create a new data set.
We decided to open it to the research community.

We needed trajectory data that would contain not only a single position but multiple
continuous positions to fit the model without feature extraction. As a result, our data set
differs from the data used in the literature in that our data is not just a single position of the
aircraft involved in the conflict. Rather, the trajectory of the last five minutes of the aircraft
is considered. We call it a 5-minute window. The model can learn the collision environment
from the movement of aircraft and can avoid the risk of a feature that is difficult or impossible
to calculate.

We have created a dataset with multi-label annotations that means different possible so-
lutions are given for each conflict sample. This is different from existing data set in which
only the best solution is recorded. Our data set has thus a multi-class annotation. Indeed,
we have considered multiple resolutions because resolving a conflict may provoke a new con-
flict. In that case, the multi-label solution will give ATCOs the opportunity for alternative
resolutions.

As opposed to some previous studies [Prandini 1999, Prandini 2000, Kim 2016, Pham 2019a,
Pham 2019b], this research mainly focuses on the raw data rather than feature extraction to
avoid the risk of an unusable feature. Since the position of all the planes is approximate, it
is risky to use the feature extraction under different conditions.

We explain the preparation of the two data sets we created : (a) simulated trajectory along
with the ATCO’s immediate orders (b) images obtained by the conversion of trajectories.

There are some limitations when using trajectory data. For example, the input dimension
of a model depends on the number of aircraft changes. Since the input dimensions of a model
cannot be changed at run-time, most trajectory-based machine learning models use a fixed
number of aircraft. If we want to use recurrent neural network-based model such as long
short-term memory (LSTM2), the computational complexity of the model increases with the
number of aircraft. Since we use 5-minute trajectory data, it is more complicated than the
other trajectories considering a single position.

The solution to a conflict where a variable number of aircraft are considered is a big
challenge in this research. To overcome this challenge, inspired by [Zhao 2021, Brittain 2018],
we convert sequence-based data into images. The advantage of converting trajectory sequences
into images is that the size of an image does not depend on the number of planes plotted in

2Long Short-Term Memory
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that image. If we included weather, restricted zones, etc., the size of the image would not
change.

By converting simulated trajectories into images, we can also easily apply data augmen-
tation to make the data sufficient for model training. As a result, if two or more aircraft are
involved in a conflict, the model can be trained and tested without any changes in the input
dimensions.

For both datasets, the output annotations are the same, which are the immediate orders of
the ATCO for resolving the corresponding conflict. Sub-section 3.4.1 presents the simulated
trajectories and ATCO’s immediate orders while sub-section 3.4.2 presents the transformation
of the trajectory data into images.

3.4.1 Dataset-STIO: simulated trajectory and ATCOs immediate orders

We generated the trajectory and controller’s immediate order datasets using an open-source
simulator named Blue Sky developed at TU Delft by Hoekstra and Ellerbroek [Hoekstra 2016].
Using this simulator, we made examples of conflict scenarios with ATCO’s orders.

Table 3.4 reports a sample3 data with a conflict situation between two airplanes. In
this table, the first column reports time in seconds. Updating trajectory information varies
depending on the radar refresh time. We simulate trajectory data that updates every 5
seconds. The next three columns in this table are aircraft A coordinates (latitude, longitude,
and altitude). Similarly, the next three columns are aircraft B coordinates. The last column
is the controller action. To populate this table, we played different scenarios with the conflict
situations. Figure 3.4 shows an example of left-heading actions that are taken up to 30 degrees
by a multiple of five to resolve the conflict between two aircraft (aircraft A and aircraft B).

Table 3.4: A sample trajectory data where two airplanes are going to have a conflict.
The first column shows trajectory data updates every 5 seconds. The next eight columns are aircraft
A coordinates (latitude, longitude, altitude, and heading) and aircraft B coordinates. The last column
is the controller action.

Time in Sec Lat (A) Lon (A) Alt (A) H (A) Lat (B) Lon (B) Alt (B) H (B) Controller’s Action(s)
0 46.2499689 -2.8 7620 90 43.8 -6.19443506 7620 105
5 46.23975835 -2.8 7620 90 43.8 -6.18028833 7620 105
10 46.22954973 -2.8 7620 90 43.8 -6.16614426 7620 105
15 46.2193411 -2.8 7620 90 43.8 -6.1520002 7620 105
20 46.20913248 -2.8 7620 90 43.8 -6.13785613 7620 105 TURN
25 46.19892385 -2.8 7620 90 43.8 -6.12371206 7620 105 LEFT (A) 100

30 46.18871522 -2.8 7620 90 43.8 -6.10956799 7620 105
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
290 45.65786669 -2.8 7620 90 43.8 -5.37407647 7620 105
295 45.64765807 -2.8 7620 90 43.8 -5.3599324 7620 105

3A sample corresponds to a conflict situation.
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Figure 3.4: Possible heading resolution for each conflict sample data. Here the ATCO’s
order can be left/right heading actions up to 30 degrees by a multiple of five to resolve the conflict.

There are many advantages to create simulated data. First, we create sample scenarios.
Second, many variations can be created.

According to our objectives, we generated different conflict scenarios for a pair of aircraft
where a single instance contains every 5 seconds following a 5-minutes window of trajectory
for each aircraft and the resolutions. Therefore, to create a conflict scenario, we consider two

Aircraft A 
Ownship 

Conflict Point 

5 minutes 

Last 5 minutes trajectory window 

All previous 5 minutes trajectory windows 

15 minutes 

Figure 3.5: A conflict can be resolved within the heading range between left 300 and
right 300. Here, the decisions are for the Ownship only. The Ownship refers to the aircraft following
its initial flight plan.
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planes in such a way they can create a conflict situation. Both aircraft’s position is 20 minutes
away from the conflict point. For both aircraft, we store 5 minutes of trajectory data that is
just before the conflict detection. Therefore, after detecting the conflict we have 15 minutes
to reach the conflict point. The reason we took the data just before collision detection is our
model makes the resolution decision based on it. If we compare it to a real-life situation,
whenever a conflict is detected, our model will apply prediction based on the data of the
past 5-minutes of that time. The basic environmental parameters in our data are latitude,
longitude, altitude, speed of both planes and angle between them.

Figure 3.5 shows a simulated scenario with possible resolutions (range: from left 300 to
right 300).

It is not possible to record voice command in the simulator, we thus built and store
trajectories along with the conflict situations and the text commands to simulate the ATCOs
immediate orders.
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Figure 3.6: The rotation of the whole scene creates a new sample with the same
annotation.

As shown in Figure 3.5 there are several appropriate solutions to solve the conflict and they
are stored in our simulated data. So, for each conflict scenario, we saved multiple resolutions
in binary decisions as shown in Table 3.2.

We applied different techniques to augment the data. For example, rotating a whole
scenario does not change the decision; we also changed the speed by different values to create
more samples. Figure 3.6 shows an example of rotation of the whole scenario. We only applied
data rotation augmentation to increase the number of samples because shifting, zooming,
flipping, etc. may affect the labeling. The rotation was made from 50 from 1700. There are
geometric formulas for rotating lines and we used them.

We also augmented the data set in another way: we split the two parts of each scenario
in such a way that the time slot for one was at 0 second, 10 seconds, 20 seconds, up to 5
minutes. In the same way, the other one was for 5 seconds, 15 seconds, 25 seconds, up to 5
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minutes. Even if we split one scenario into two scenarios, it will be two separate scenarios
because it is a different time and coordinate position.

We have generated 1,516 sample scenarios and the corresponding valid commands to
resolve each scenario. A scenario can be solved with different heading angles. Table 3.5
shows the number of categorical actions (2 solutions, 3 solutions, ..., 6 solutions) occurrences
to resolve the conflict scenarios. The total conflict samples with two aircraft can be categorized
based on the number of their solutions: [288, 2], [288, 3], [300, 4], [372, 5], and [6, 268] where
the first value of each pair is the number of samples and the second value is the number
of solutions. The data set consists of almost a similar number of samples in the different
categories where the highest frequency is in the case of 5 solutions (see Table 3.5).

We also created 140 samples for the conflict between the three planes. Table 3.6 shows
the total data with three planes.

It takes 10-20 minutes to create one sample.

Table 3.5: Number of samples based on their solutions, depending on the number
of possible solutions. For instance, 288 samples of conflict situations have two solutions.

Number of conflict samples 288 288 300 372 268
Number of heading resolutions 2 3 4 5 6

Table 3.6: Number of samples with 3 aircraft (same notation as in Table 3.5).

Number of conflict samples 4 4 4 56 72
Number of heading resolutions 1 2 3 4 5

3.4.2 Dataset-CTI: convert sequence data into images

This section explains how a trajectory sequence can be transformed into an image.

To create image data, we used the trajectory data that we described in the section 3.4.1.
According to Figure 3.7 (a), each conflict sample of initial data contains the last 5-minute
of the trajectory (a series of positions) for each aircraft associated with the conflict. Also,
the resolution can be made for each conflict by changing the ownship’s (see Figure 3.7 (a)
aircraft A) heading from 30 degrees left to 30 degrees right by 5 degrees (total 12 heading
directions). Each conflict is associated with multiple heading resolutions (multi-labels) for a
single conflict.

In Figure 3.7, (b) shows the image converted from the trajectory data. It indicates the
distance from the conflict point to the aircraft (red lines). The thin black line indicates the
current distance between aircraft; it is the last point of the aircraft before the conflict is
detected. It is possible to plot trajectories of multiple planes without changing the size of the
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Figure 3.7: Aircraft conflict trajectory with heading resolutions and conversion
into an image. (a) the black solid line just behind the plane represents the last 5 minutes of
the trajectory before the conflict is detected. All dotted lines show possible heading changes
to resolve the conflict (b) plots the positioning coordinate of the last 5 minutes where the
black line is the current distance between aircraft and the red lines are the distance between
the aircraft and the conflict point.

image. Thus, there will be no change in the input size if the number of aircraft changes at
run time.

For example, Figure 3.7 shows the last 5-minute trajectories of the aircraft associated with
the conflict. The image size is 300px× 300px that is a fixed size.

Converting trajectory data into images not only solves the problem of input dimensionality
but we also can apply image augmentation to increase the volume of the training data.
Typically, image augmentation includes rotation, shifting, zooming, flipping, etc. In this
thesis, we applied Python Keras built-in data augmentation technique. We applied rotation
only. We could not apply some of the usual data augmentations because the resulting samples
may be labeled differently. For example, in a conflict scene flipping will not be labeled the
same class. In Figure 3.7 (a), this conflict can be resolve with left-heading 150, 200, 250,
and 300. If we flip the whole scenario horizontally, then the resolutions will no longer be the
left-heading, all will be the right-heading. In the case of data augmentation, Python Keras
randomly augments (rotation in our case) the training data in each epoch. The model then
trains and tests. There will be no data overlap between epochs. Python Keras uses different
rotation angles to do this. The augmentation techniques are applied to training data only.

To transform the initial trajectory data into images, we plot the trajectory sequences of
each conflict scene one by one. We uses python matplotlib [Ari 2014] library to transform all
the trajectory sequences into images. We created a total of 1,656 image samples, of which
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1,516 images contain two aircraft and 140 contain three aircraft.

Brittain and Wei used the image of NASA sector 33 game screen [Brittain 2018] for their
model training. We could train our model with the image of the screen of the simulator.
But in reality, if we take a snap of the ATC radar display screen, there is noise (pixels with
unknown information) besides the trajectory, which may lead the model to a wrong decision to
resolve the conflict. So, we just plotted the trajectory so that no other additional information
comes into the image.

The benefits we get from converting trajectory data into images are mentioned below:

(a) The size of each of the sample data (image) remains the same although there is a variable
number of trajectories plotted;

(b) The input dimension will remain unchanged even if weather restrictions areas were
added in the future;

(c) Converting into an image means that not only we can classify conflict among aircraft,
but also we can classify conflict between an aircraft and the restricted areas such as
military zone, weather storming area, and so on;

(d) All the advantages of image classification can be applied to the data, such as using the
CNN model and in that case, the model effectiveness can be increased by using data
augmentation.





Chapter 4

Supervised machine learning and
multi-label classification of aircraft
heading changes

An aircraft conflict occurs when two or more aircraft cross at a certain distance.
Aircraft heading changes are the common resolution at the en-route level (high
altitude). One or more alternative heading changes are possible to resolve a conflict.
We consider this problem as a multi-label classification problem. We developed a
multi-label classification model which provides multiple heading suggestions for a
given conflict. This model we named CRMLnet is based on the use of a multi-layer
neural network ans uses trajectory data. It classifies all possible heading resolution
in a multi-label classification manner. When compared to other machine learning
models that use multiple single-label classifiers such as SVM, KNC, and LR, our
CRMLnet achieves the best results with an accuracy of 98.72% and ROC of 0.999.
We used the simulated data set presented in Chapter 3.

Abstract.
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4.1 Introduction

In the domain of air traffic, two or more planes are considered as in a conflict situation
when their trajectories cross each other in certain circumstances of distance at the same
time [Kuchar 2000]. A controller considers various types of information to solve a conflict.
The most common and preliminary information is the coordinate position of the involved
aircraft.

The resolution of the aircraft conflict varies at different altitude levels. Figure 3.3 shows
the seven usual phases of an aircraft. The conflicts have different resolutions. Air traffic
controllers usually resolve conflict by changing the heading direction of the aircraft at this
level. For example, the heading direction of flight of an aircraft is changed to a certain degree
to the right or to the left. Multiple heading resolutions are possible to resolve a conflict. This
is why we considered the problem as a multi-label classification problem.

Decisions to solve conflicts are made manually in real-time and consist of changing aircraft
trajectories to maintain a safe distance between planes. When a conflict is identified, the
ATCO has to make a quick decision about the best possible solution using his/her knowledge
and experience. ATCOs have to take into account all the aircraft flight parameters such
as its speed, positioning coordinate, destination, flight plan, its environment, weather, wind
direction, military zone, etc. and the other flights.

Because a conflict resolution can be multi-labeled, in this chapter, we propose a multi-
level classification model of conflict resolution based on a multi-layer neural network we named
CRMLnet. It aims to help the controllers in their decision to provide the different possible
heading advisories.

In this chapter, we consider the mid-range conflict only. We consider the 5-minutes of
involved aircraft trajectory data just before the conflict is detected. In the real-life situa-
tions, an ATCO is automatically alerted whenever such a conflict situation arises; they then
decide to change flights and gives the pilot the order regarding the flight change via radio
communication.

Related work on air traffic conflicts using trajectories considers the aircraft current posi-
tion. Then different mathematical calculation like future position projection, speed, distance
between the involved aircraft, etc are used. Many parameters sometimes from different sources
such on-board data are needed. As opposed to that, we have created a dataset where each
sample contains trajectories of the last 5 minutes for each aircraft (See Section 3.4.1). There-
fore, our model can learn the conflict environment from the movement of aircraft. We do not
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need any features extraction such as calculating the distance between them, projecting the
future position, etc.

In this chapter, we propose a model based on a neural network that aims to assist the
ATCOs with multiple solutions to resolve a conflict. We designed the NN1-based multi-label
classification model, develop and evaluate it. Besides, we developed other models based on
multiple single-label classifiers (support vector machine SVM, logistic regression LR, and K-
nearest neighbor classifier KNC) where we used separate classifiers for each output class-label
solution and compared them with the neural network-based model.

4.2 From traditional machine learning to neural network for
conflict resolution

We designed and developed a ML2-based model that will predict the actions for any new
scenario using different kinds of information that an ATCO takes into account although we
focus on sequence-based trajectory data.

We can think of many ways to resolve a conflict situation. It can be cast into a ranking
problem where conflict resolution actions can be ranked; the top one being the most appro-
priate one. The advantage of this solution is that constraints can be easily added considering
variables such as delay, proximity to destination, and flight time as used by Archibald et al.
[Archibald 2008]. The problem of aircraft conflicts can also be considered as:

(a) A single-label or binary classification problem where the classifier simply classifies
whether it is solvable or not;

(b) A multi-class classification problem where the classifier selects only the best one from
multiple resolutions;

(c) A multi-label classification where the selection of resolution will be one or more for a
single conflict.

We proposed a multi-label classification model. The multi-label resolution is more appli-
cable in real life because a controller will have multiple alternative solutions in hand where it
will be much easier to avoid risk. ATCO can take one of the solutions thinking of the other
aircraft’s, which are not involved in the conflict, position to avoid additional future conflicts.

Subsequent sections discuss classification methods.

1Neural Network
2Machine Learning
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4.2.1 Single-label or binary classification

A single-label or binary classification is a two states classification. This type of classification is
the most commonly used classification, especially when it comes to data sample identification.
Figure 4.1, for example, shows the image identification of cats and dogs. The class of image
data is labeled with 0 or 1. Here, 0 means cat and 1 means dog. Binary classification is also
called single-label classification.

Model

Training data

Test data

0 = Cat
1 = Dog

Figure 4.1: A binary classification output can be either 0 or 1. Here 0 means cat and 1
means dog ; the output is either cat or dog.

4.2.2 Multi-class classification

When a dataset is annotated by more than two class labels, it is called multi-class.

For example, Figure 4.2 illustrates a model trained on images which are numbers between
‘0’ to ‘9’. The output of this type of model is the one selected according to the highest
probability. One thing to note here is an image belongs to a single-digit. A special kind of
encoding is used to select the output called one-hot encoding [Harris 2010]. One-hot encoding
output is presented by a group of bits, where only one bit is possible to be ‘1’, all other bits
are ‘0’. Also, the sum of the probabilities of all the outputs is ‘1’.

4.2.3 Multi-label classification

According to the early discussion, there are different types of data classification: single label,
multi-class, and multi-label. In all these classifications, multi-label classification is a bit
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Model 

0 0.01 

1 0.02 

2 0.01 

3 0.02 

4 0.08 

5 0.02 

6 0.7 

7 0.03 

8 0.09 

9 0.02 

Training data 

Test data 

Figure 4.2: A multi-class classification output can be one of more than two class labels.
This figure shows a multi-class classification model trained with the images of decimal numbers. The
model gives one of ‘0’ to ‘9’ as output which is the most probable one. The multi-class classification
model gives a unique output .

different. In multi-label classification, each sample corresponds to a set of labels Y ⊆ L.

When each sample corresponds to a single-label (|L| > 1), it corresponds to a single-label
classification problem. It is called a binary classification problem if |L| = 2. If |L| > 2, then
it is called a multi-class or a single-label multi-class classification problem.

A multi-label classification is slightly different from the multi-class classification in terms
of input and output. The main classification difference between multi-class and multi-label
is that multi-class is a single-label problem of classification into one of more than two classes
whereas there is no limit to how many labels a sample can have in a multi-label classification.
It not only gives the best probable one as an output, like multi-class, but it also gives all
the possible outputs using an individual sigmoid activation function for each class label.
Figure 4.3 shows that the model provides an individual probability between ‘0’ and ‘1’ in the
output for each class label. Here, there is no such one-hot encoding as a multi-class that the
sum of the probability scores will be ‘1’. The dataset is also different from the dataset used
for the multi-class classification models.

In the case of a multi-class classification, Figure 4.2 shows that each sample image contains
only one class label information whereas Figure 4.3 shows that each sample image may contain
more than one class of information for multi-label classification. This means that in the case
of multi-label classification, a model is trained in such a way that the datasets are annotated
with multiple labels. Thus, multi-label classification output does not simply depend on the
best probable one. As one-hot encoding is not used in the output, this means that the
probability score is provided separately for each class label.
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Model 

Training data 

Test data 

SUN 0.97 

CLOUD 0.13 

MOON 0.95 

Figure 4.3: The figure shows that a sample image can contain multiple objects. Multiple
outputs can be true. For example, this model is trained with images that contain three objects: the
sun, the moon, and clouds. The test image contains both the sun and the moon, so the output is for
the sun and the moon.

Figure 4.3 shows an example of multi-label classification. In this dataset, each sample
image contains objects: the sun, the moon, and the cloud. One single image can contain
multiple objects. Here, the test image contains both the sun and the moon. Thus, the output
of that test image should give a high probability for those two class labels. It is noted that if
the output probability is 0.5 or more for any object, then it is considered as true otherwise it
is considered as false.

4.2.4 Classification algorithm

Different algorithms can be used for multi-label classification problems. And a multi-label
classification problem can be defined in one or more single-label classification problems [Tsoumakas 2007].
In this chapter, we present four different machine learning classification algorithms to design
models for classifying multi-labeled datasets: Support Vector Machine (SVM), K-Nearest
Neighbor Classifier (KNC), Logistic Regression (LR), and Neural Network (NN) and how
they can be applied to aircraft conflicts.

4.2.4.1 Support Vector Machine

SVM is one of the most widely used and highly popular supervised algorithms [Cortes 1995].
The main reason for the popularity of SVM is that this algorithm gives a high performance
for binary classification based on training examples. On the other hand, it also works well for
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non-linear classification in addition to linear classification. It uses kernels that actually map
the input vector to a high dimensional feature space. SVM performance depends on a good
separation of the training data by an hyperplane (also called functional margin). The more
separation there is, the lower the generalization error. The basic formulation of a Linear SVM
is: suppose (~x0, y0),...., (~xn, yn) where n number of training examples, ~xi is the input vector,
and yi is the corresponding class-label. Here, each ~xi is a vector of p-dimension where SVM
tries to tune the hyperplane with a maximum margin so that the training data of the group
yi = 1 is well separated from the group of yi = 0.

Now if we think about each heading change separately those individually stand on a binary
state. For example, either a particular heading change can solve the conflict or not. In such
case, we can use one individual SVM for each heading change where all the individual SVMs
perform binary classification.

4.2.4.2 K-Nearest Neighbor Classifier

KNC is a classifying algorithm that classifies training samples based on closest examples.
KNC is one of the most basic and simple classification algorithms. In this algorithm, K
refers to the number of nearest neighbors that the KNC classifier uses to classify. After that,
it classifies the new sample based on the majority vote of its K neighbors. A neighbor is chosen
by using a distance function. The common distance functions are Euclidean, Manhattan, and
Minkowshki and the equations are as follows:

dEucliean =

√√√√ n∑
i=1

(pi − qi)2 (4.1)

dManhattan =
n∑
i=1
|pi − qi| (4.2)

dMinkowski =
(

n∑
i=1

(|pi − qi|)m
)1/m

(4.3)

Here all the distance function formulas calculate the distance between two points pi and
qi. For the Euclidean distance, it is always 2-norm distance while for the Minkowshki, it is
defined by a variable m. Depending on the dataset, any of them can be used. Since KNC is a
supervised learning classifier, the output category of each data for training is already known.
Now suppose a new sample comes and it needs to be classified. KNC uses its distance function
to calculate the distance of the new sample from the already known category and find the K
number nearest neighbor. The new sample is identified for the category that has the highest
number of among K neighbors. The value of K is selected by hyper-parameter tuning.

Since each of the heading decisions resolving a conflict is a binary classification, we can
apply KNC separately for each heading decision. So for each heading decision, the total data
is divided into two categories, for example, category ‘0’ and category ‘1’. Then we can apply
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KNC individually for each heading decision as a binary classification. So, a KNC will be
set up to determine if a heading decision can resolve a particular conflict situation. Here ’0’
means cannot resolve the conflict and ’1’ means it can. Similarly, we can apply KNC for rest
of the heading. Finally, we will get all the heading decision separately for a single conflict.

4.2.4.3 Logistic Regression

LR is another machine learning technique that actually comes from the field of statistics. Both
linear regression and logistic regression algorithms have the same goal but the difference is
that the output prediction result of the logistic regression goes through a non-linear function
called a logistic function. Sometimes it is also called a sigmoid function. This function can
express any real value into a value between ‘0’ and ‘1’, but they are never exactly equal to
that. The following equations are used for the hypothesis of logistic regression:

hθ(x) = g(θTx) where g(z) = 1
1 + e−z (4.4)

Here hθ(x) is the hypothesis of the logistic regression where θ is the hyper-parameter, x is
the input, and the function g(z) = 1

1+e−z is the sigmoid function. So if any real value goes
through this sigmoid function, it becomes a number between ‘0’ and ‘1’ that is 0 < hθ(x) < 1.
We can use complex parameters to create more complex decision boundaries. There are many
types of regression algorithms such as linear, polynomial, non-polynomial, multiple, logistic,
etc. Only logistic regression is discussed here as it is widely used for binary classification.

We can apply this binary LR classifier to classify each of the heading decision individually
while the model based on multiple LR resolving a single conflict. So for each heading direction,
dedicated LR provides binary decision as an output separately using the same input trajectory.

4.2.4.4 Neural Network

A NN is a network of simple and strongly interconnected elements called nodes or neurons
or perceptrons. Each node is a single computational unit. One or more weighted inputs
are connected to each node for the computing process and it goes to the output through a
non-linearity function called the activation function. The nodes are organized in different
layers in a meaningful way. Usually, a NN is organized in several layers: input layer, hidden
layer(s), and output layer.

• Input layer: This layer takes the input. The size of this layer is equal to the number of
input variables.

• Hidden layer(s): They are the intermediate layers between the input layer and the
output layer. There can be one or more layers. The number of nodes is often chosen
empirically.
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• Output layer: This is the last layer that contains the end results. The number of nodes
equals the number of class-labels.

The basic notation of a NN is as follows:

f(x) = W TX + b where W =


w1
w2
:
wn

 and X =


x1
x2
:
xn

 (4.5)

Here X is the input vector that contains all the input features andW is the corresponding
weight vector. The basic formula f(x) = W TX + b calculates a product of input feature (X)
with a transpose of weight (W ) matrix and then includes a bias (b). Equation 4.6 uses a
linear function in the case of n variables.

f(x) = b+ w1.x1 + w2.x2 + w3.x3 + .....+ wn.xn (4.6)

Here, we have presented different types of classifiers. In the following sub-sections we
discuss on how the problem of aircraft conflict resolution can be formulated to apply these
models.

4.2.5 Problem formulation

We discussed in Section 4.2 that we will apply multi-label classification. This section details
the mathematical formulation.

Let us consider, a single-label classification of n instances. A dataset D can be composed
as ( ~X0, y0), ( ~X1, y1), ( ~X2, y2), ....., ( ~Xn, yn) where ~X represents each input feature vector and
y represents the corresponding class-label. For multi-label classification, each input feature ~X
has a subset of labels ~Y ⊆ ~L where ~L is multiple labels and ~Y is a subset of ~L. Therefore, the
dataset D is composed of multi-label classification of n instances ( ~X0, ~Y0), ( ~X1, ~Y1), ( ~X2, ~Y2),
....., ( ~Xn, ~Yn). In our case, each ~Y = [y0, y1, y2, ....., y11]. This means, each conflict sample ~X

corresponds to a set of resolutions ~Y = [y0, y1, y2, ....., y11] class labels (12 heading resolutions).

Table 4.1 shows an example of the different conflict samples and the corresponding multiple
class labels. In this table, there are n conflict samples and each sample contains a pair of
coordinates (A,B) for m times. Our simulated data contains multiple heading decision for a
single conflict, therefore, Table 4.1 (b) shows the multiple class labels from y1 to y11 where
each label corresponds to a heading decision with a certain degree angle.

In the next section, we explain how NN can be used to solve aircraft conflicts.
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Table 4.1: An example of the binary decisions for multi-label classification. The left side of the
table shows all the conflicting samples where each sample contains the positioning coordinate of the
involved aircraft. For example, (t0,A,B) is a coordinate of aircraft A and aircraft B at time t0. The
right side of the table shows the multiple class labels from y0 to y11 where each label corresponds to
the same sample input. yi equals 1 if the corresponding heading solves the conflict, 0 otherwise.

~X ~Y
~X0 → (t0,A,B), (t1,A,B), ......., (tm,A,B) ~Y0 → y0 y1 ........... y11
~X1 → (t0,A,B), (t1,A,B), ......., (tm,A,B) ~Y1 → y0 y1 ........... y11
: : : ......., : : : ........... :
: : : ......., : : : ........... :

~Xn → (t0,A,B), (t1,A,B), ......., (tm,A,B) ~Yn → y0 y1 ........... y11
(a) Input samples (b) Output headings

4.2.6 Preliminary Neural Network Model

Since supervised algorithm training and testing require a pair of input-outputs for each sample
data, we discuss here how our data is suitable for supervised learning. We explained in
Chapter 3 that when a conflict occurs, the position, direction, speed, altitude, and many
more parameters of each aircraft are stored by the ATCC3. The ATCC also stores the
immediate order given by the ATCO to resolve the conflict. Since both the aircraft and the
ATCOs immediate order data are stored in an ATCC, supervised learning algorithms can be
used.

Figure 4.4 illustrates an example of how a neural network can be used to avoid collisions
between two planes. This figure shows the current values of the four parameters of the two
planes, latitude, longitude, speed, and direction, are shown as examples. Now, the discussion
continues with the explanation of this figure. How our data can be fitted with a neural
network will be discussed in detail.

Figure 4.4 shows when two planes are in conflict, their current positioning coordinates,
speed, and direction are given to a neural network as input. On the other hand, different
heading modification decisions are given as the output of the network.

We suggested the training will not be according to the current position but according to
all the positions of the aircraft for the last 5 minutes, that we call last 5-minute window. The
advantage of using a 5-minute window trajectory is the neural network model will be able to
understand the environment of that conflict by changing the position of the involved aircraft
without extracting any features.

There are some important factors in the output on which we determine the different
classification types. As shown in Figure 4.4 there are m outputs and the types of classification
depend on which or how many of them will be selected as real output. We can select the
best possible output using a softmax activation function at the output layer to select the best
probable heading action. It would be multi-class classification. There is a risk that, if for

3Air Traffic Control Center
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Figure 4.4: A supervised neural network to resolve conflicts between a pair of planes.
This figure shows the different parameters of the two aircraft given to a neural network as input and
the immediate order of ATCO as the output. There are eight nodes in the input layer; the input
nodes are given as two planes’ latitude, longitude, speed, and direction. There is a hidden layer with
n nodes. The output layer consists of m nodes that encode the possible combinations (both aircraft
can turn together to right/left) of heading between aircraft A and aircraft B.

some reasons the best solution fails, then the ATCO will not have alternative options. On the
other hand, if we use the sigmoid activation function, we get the probability output of each
heading action separately. In that case, we get one binary decision output for each heading
action. Since one or more outputs are available for a conflict scenario, it is a multi-label
classification. By adding various constraints to the output of multi-label classification, the
output heading resolutions can be ranked (see Section 4.2). Softmax activation function and
sigmoid activation function will be discussed later.

Our preliminary model was designed to find the best solution. We considered the conflict
resolution problem as a multi-class classification problem using a softmax activation function.
For instance, from Table 3.2, the resolutions for a single conflict illustrated in Figure 3.5 are
15 degrees, 20 degree, 25 degree, and 30 degree in Turn Left aircraft A. In this example, the
softmax activation function chose the best one.

Figure 4.4 shows the current positions of the two aircraft. Figure 4.5 shows how to train
with their last 5-minute positioning coordinates.

There are 9 features in an input trajectory, 4 (latitude, longitude, altitude, heading direc-
tion) for the two trajectories plus timestamp (see Table 3.4). Since we stored the two airplanes
location every 5 seconds, for 5 minutes we have 60 values; that makes 540 (9*60) input fea-
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tures. Therefore, the input layer of our model contains 540 nodes. The number of hidden
layers and their number of nodes are chosen using different parameter search algorithms.

Input Layer Hidden Layer 1 Output Layer

Turn Left 50

Turn Left 100

Turn Left 150

Turn Right 300

Hidden Layer 2
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Figure 4.5: Preliminary model based on a neural network to classify aircraft heading
decisions. There are 9 features in an input trajectory, 4 (latitude, longitude, altitude, heading
direction) for the two trajectories plus timestamp. We stored the two airplanes location every 5
seconds, for 5 minutes we thus have 60 values; that makes 540 (9*60) input features. The output layer
contains 48 nodes as the number of possible actions. Hidden layers are in between.

The output layer contains 48 nodes as the number of possible actions, the heading changes
of any aircraft associated with the conflict. Figure 4.6 shows all the heading decisions for two
aircraft. Each aircraft can make 12 heading decisions, which means 24 decisions in total.
Again, if both aircraft take the left or the right turn or opposite direction turn together, then
24 more decisions are made. This is a total of 48 decisions. For example, in Figure 4.6, if
aircraft A and aircraft B rotate -30 degrees together, it is possible to resolve the conflict. This
type of the decision, although rare, can be taken in case of emergency. For each action (node)
the neural network (Figure 4.5) will provide the best probable action as an output that is
selected by the softmax activation function.

We have discussed how to fit a conflict situation into a neural network. In this preliminary
model that we did not implemented, either the direction of one or of the two aircraft are
changed for conflict resolution. We will see that one aircraft heading will remain unchanged
in the implemented models. The output heading decision (class label) will be thus reduced
to twelve. This is closer to the real world where conflicts are resolved by simply changing the
heading of one aircraft.

Our initial model was not appropriate for more than two aircraft because both the number
of inputs and output would increase because the possible heading resolution of each aircraft
would then be considered. In real life, there are two types of aircraft involved in a conflict
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Figure 4.6: A conflict can be resolved by any combination of heading decisions. This is
an example of a conflict scenario with 5-minutes of trajectory for the involved aircraft with 12 heading
resolution decision of each individual. Individual aircraft can turn left or right. Also, they can turn
together right or left or even can turn in opposite directions.

[Carbone 2006] (see Figure 4.8) (a) ownship and (b) intruder. Conflicts are usually resolved
by taking the decision for the ownership. Because the intruder is the plane that has already
changed its direction and it is the cause of the conflict. We did not implemented this initial
idea.

Considering the real-life situation of how conflicts are actually resolved, we propose the
CRMLnet model in the next section where we consider heading resolution of only one ownship
as output. This model extends Kim et al.’ related work [Kim 2016] (a) to provide more specific
heading change(s) (b) possible binary solutions (c) to use 5 minute positioning coordinates
for each aircraft. The binary decision means that the specific action may or may not resolve
the conflict. Thus, one of the strong point of the CRMLnet model is it will suggest optional
multiple actions.

4.3 CRMLnet: Conflict resolution multi-label neural network
model

In this section, we propose a multi-label classification model, CRMLnet. The initial model
aimed to find the best solution between the possible headings of the two aircraft using a soft-
max activation function. For the CRMLnet model we propose multiple alternatives heading
resolution of one aircraft (ownship) using a sigmoid activation function. Trajectory parame-
ters were used as input for both models but in the case of CRMLnet, the input dimensions
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were halved which will be discussed later.

Our CRMLnet model is not a deep neural network since it has a single hidden layer.

Kim et al. applied the same idea but for the multi-class classification [Kim 2016]. The
authors chose the best probable one as output. They also applied a neural network for
multi-class (see Section 4.2.2) classification. In our case, we applied the same concept to
the multi-label classification case using a single architecture based on a neural network. As
we have discussed in Section 4.2.4, a multi-label classification can also be solved as multiple
single-label classifications, we also implemented three other models using multiple single-label
algorithms. Figure 4.7 shows the model based on a neural network and Figure 4.9 shows the
model based on multiple single-label classifiers. We also compared CRMLnet model and the
models based on multiple single-label classifiers.

He and Xia proposed a single neural network architecture with separate logistic functions
at the output layer for multi-label classification of text emotion [He 2018]. The authors
showed that a single network can perform better for multi-label classification than multiple
individual networks. In a single network, all neurons are interconnected to each other, thus,
all output decisions are based on sharing information with each other. On the other hand,
Baker and Korhonen mentioned two disadvantages of using separate binary classifiers for
multi-label classification : first, it is assumed that class-labels are independent, although this
is not true in all cases; second, it is relatively expensive to compute because the classifiers are
computing separately while using the same input [Baker 2017] .

We developed a model for conflict resolution using multi-label classification based on
neural network that we call CRMLnet. Figure 4.7 shows our CRMLnet model. Figure 4.8
shows that in the CRMLnet model the conflict is resolved by changing the heading decision
of one aircraft only, which is what happens in the real world. Compared to our preliminary
model presented in Figure 4.5, the number of nodes in the output layer is reduced to 12.

The input parameter of our preliminary model is 540. Since there are not many conflict
samples in the initial data, so, we split it into two parts each scenario in such a way that the
time slot for the first part is at 0 second, 10 seconds, 20 seconds, up to 5 minutes. The other
part is for 5 seconds, 15 seconds, 25 seconds, up to 5 minutes. Each part produces a new
scenario (See Section 3.4.1 and Table 3.4 ). In the Table 3.4, we consider all the gray rows
as one sample and the other as another sample. Since we store 5-minutes (5 × 60 seconds
= 300 seconds) of trajectory following a 10-second change for each aircraft, we have the
same parameters at each 10-seconds but the values change with respect to time. This means
we store the features repeatedly for 30 (300 seconds ÷ 10 seconds = 30) times with different
values. The angle (α) between two planes remains unchanged. Thus, we have 9 input features
that are repeated 30 times every 10-seconds: time, latitude (aircraft A), longitude (aircraft
A), altitude (aircraft A), heading (aircraft A), latitude (aircraft B), longitude (aircraft B),
altitude (aircraft B), heading (aircraft B). Overall, we have 271 (1 (angle) + 9× 30 (repeated
parameters) = 271) total input features. For that reason, the input layer of our neural network
model is composed of 271 nodes.
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Figure 4.7: CRMLnet: conflict resolution multi-label neural network model. The input
layer consists of 271 nodes for 5-minute trajectory parameters of a pair of aircraft. There is one hidden
layer with the same number of nodes as the input layer. The output layer has 12 output nodes for
immediate heading actions range from left 300 to right 300.
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Figure 4.8: A conflict can be resolved by changing heading direction of one
aircraft. Aircraft A can change its heading between left 300 and right 300 to solve the
conflict while the heading of aircraft B remains unchanged. The column vector on the right
shows the binary decision for this sample. Here “0" means the decision is not able to resolve
the conflict whereas “1” means it can.
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Figure 4.9: Amulti-label classification architecture using multiple single-label classifiers.
The input layer consists of 5-minute trajectory parameters that is the same number of inputs as in
Figure 4.7. The output layer contains multiple but the same classifier. For example, CF1, CF2, ...,
CF12 are replaced by any single-label binary classifier. All the classifications are independent of each
other.

Additional hidden layers are needed , specifically when the problem or data is not linearly
separable. For example, Yanling et al. showed that it is not possible to solve a logical XOR
problem using a regular single layer neural network [Yanling 2002]. Therefore, the authors
suggested to use the multiple layer perceptrons (nodes) to make the model non-linearity
separability. Each layer of the neural network causes an additional transformation of the
input and increases the non-linearity separability, therefore the model can fit itself better
with the data. Our initial model was based on multiple hidden layers. After applying hyper-
parameter search details (See Section 4.5.1) we limited the model to one hidden layer to
avoid increasing the loss and decreasing the accuracy. Indeed, more hidden layers are more
likely to increase overfitting than to increase learning ability because of the large number of
neurons [Panchal 2011], specifically when the number of training examples is not huge.

The number of nodes in the hidden layer is equal to the number of nodes in the input
layer.

We used 12 nodes for the output layer because we have 12 heading actions or class-label
for one aircraft as shown in Table 3.2.

All the layers are dense that we used in this model. The difference between a linear layer
and a dense layer is that an activation function (y = f(W TX + b)) is used for the end result
in the case of a dense layer. However, the general formula for both linear and dense layers is
the same (W TX + b).
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Different activation functions can be used depending on the task. We used two types
of activation functions in our model. We used a ReLU4 activation function at the hidden
layer. At the output layer, we used a sigmoid activation function. ReLU is used to avoid
negative values by taking the maximum one between the input value of the neuron and a
zero. ReLU uses the following formula: φ(x) = max(0, x) where x is the input value of the
neuron. However, according to the Figure 4.10, if for any reason an input becomes negative,
it becomes positive through this activation function.

0

1

2

3

-3 -2 -1 0 1 2 3

φ(x) = x 

φ(x) = 0 

Figure 4.10: The ReLU activation function avoids making the value negative. The green
line along the x-axis in this graph shows that when a value goes below zero it is set to zero using the
function φ(x) = max(0, x).

Since our goal is to use multi-label classification of all the headings in Table 3.2, our
model should provide the probability of each heading action individually. To meet this need,
we used a sigmoid activation function for each output neuron. The functionality of a sigmoid
activation function is to provide the probability score between ‘0’ and ‘1’ using the following
mathematical formula: f(x) = 1

1+e−x . Figure 4.11 shows how a sigmoid activation function
works. If any value of f(x) is below 0.5, then the output of the sigmoid function will be 0,
otherwise the output will be 1. Finally, the output of all nodes goes through the individual
sigmoid function. The output prediction of each heading decision is either ‘0’ or ‘1’.

We also implemented the three models we have discussed in Section 4.2.4 (SVM, KNC,
and LR).

Our dataset contains trajectory data and there are different types of values inside this
data and they come in different ranges. As a result, the impact of the larger values is greater
than the impact of the smaller values. Therefore, to get rid of this problem, before applying
any of the machine learning models, we also perform a standard scaling method on the data.
To scale a peculiar feature, for instance, i-th feature xi which ranges from lowi to upi, the
following equation is used:

xi := lowi + (upi − lowi)
xi −min(xi)

max(xi)−min(xi)
(4.7)

4Rectified Linear Unit
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1
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Figure 4.11: A sigmoid function makes the incoming value either ‘0’ or ‘1’.

Commonly used ranges are [-1, +1] and [0, 1]. In our case, we used the first one: [-1, +1]
because our data has both positive and negative values. Figure 4.12 shows an overview of
the training and testing procedure of the CRMLnet model. The following section discusses it
further.
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Resolution 
Prediction 

Trained 
Model 

Figure 4.12: An overview of the CRMLnet model and the training/testing procedure
we used. Here, the model is trained with conflict scenarios and output decisions. Once the training
is over, it is tested with the unseen conflict sample. We evaluate the same model in two different ways
(cross-validation and independent test).
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4.4 Evaluation

Our CRMLnet model and the models based on SVM, KNC, and LR were evaluated on the
simulated dataset presented in Section 3.4.1.

Comparing different algorithms requires performance measurement and sampling meth-
ods.

We use several metrics to evaluate performance namely Acc5, auROC6 curve , auPR7

curve, F1 score, Sn8, Sp9, and MCC10. These measures are also used to compare the different
models. These metrics are defined in the following equations:

Accuracy (Acc) = TN + TP

TP + FN + TN + FP
(4.8)

Here, TP is the total number of correctly classified positive examples, TN is the total number
of correctly classified negative examples, FP is the total number of incorrectly classified
positive examples, and FN is the total number of incorrectly classified negative examples.
The range of accuracy is in between 0% to 100%.

Area under the receiver operating characteristic curve auROC and area under the pre-
cision recall curve auPR are crucial measures. They express the strength of the underlying
classification regardless of the selected threshold.

F1 = 2
recall−1 + precision−1 = 2 · precision · recall

precision+ recall
= TP

TP + 1
2(FP + FN)

(4.9)

where precision = TP

TP + FP
and recall = TP

TP + FN
(4.10)

One of the most used performance measures for machine learning models is the F1 score.
F1-score is the harmonic mean of precision and recall because the right part of the Equation 4.9
shows that F1 considers FP and FN equally.

Also, Equation 4.10 shows that the only difference between precision and recall is a portion
of the denominator which is FP and FN. Here, precision is the number of true positive (TP )
over the number of true positive (TP ) plus the number of false positive (FP ). Recall is also
known as Sensitivity (Sn).

5Accuracy
6area under Receiver Operating Characteristic
7area under Precision Recall
8Sensitivity
9Specificity

10Mathew’s Correlation Coefficient
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Sensitivity (Sn) = TP

TP + FN
(4.11)

Specificity (Sp) = TN

TN + FP
(4.12)

Similarly, Sp is the true negative rate or number of correctly classified negative instances over
the total number of negative examples.

Matthews correlation coefficient (MCC), Equation 4.13, is one of the very important and
more complex performance measurements for binary classification. The scoring range of MCC
is between -1 and 1. MCC output is maximum if FP = FN = 0, TP 6= 0 and TN 6= 0. That
would occur when there is no incorrectly classified sample. MCC drops to -1 if TP = TN =
0, FP 6= 0, and FN 6= 0, which occurs when the model does not correctly classify a single
sample.

MCC = (TP × TN)− (FP × FN)√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(4.13)

There are several types of sampling methods to test and validate a classification algorithm:
k-fold cross-validation [Kohavi 1995], independent test sets, jackknife tests, etc.

We used k-fold cross-validation and independent test sets. With k-fold cross-validation
method the model can train itself even if the volume of the data is low, avoiding overfitting.
In training sessions, k-fold cross-validation separates the dataset in k small partitions (k-fold).
The classifier then continues training and testing for k times where k is defined after several
tests. Each time, it takes (k-1) subsets for training and the remaining subset for testing. It
proceeds likewise for each testing subset. All performance measures are taken for each fold
and the end result is their average.

Another sampling method, the independent test set, was also used where the dataset
is divided into three subsets. For example, 60% of the total data is for training, 20% for
validation, and 20% for testing purposes. This sampling method is called independent test
set because the test set is kept completely separate from the training set.

During the training, validation and test, each pair of dataset contains a trajectory vector
(Table 3.4) and the corresponding multi-label heading resolution decisions (Table 3.2) vector
( ~X0, ~Y0), ( ~X1, ~Y1), ( ~X2, ~Y2), ....., ( ~Xn, ~Yn) that already discussed in Section 4.2.5.

4.5 Result and discussion

This section discusses all the experimental results and analysis. We used python programming
language, python Keras library, and python sci-kit learn library to implement our model.
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4.5.1 Hyper-parameters search algorithm

The performance of a machine learning model highly depends on the selection of its hyper-
parameters. On the other hand, selecting hyper-parameters is also quite difficult because
of calculating the permutations of the parameters. There are algorithms to find the best
possible parameter values. Random Search [Bergstra 2012] is one of the popular and widely
used algorithms to find the most influential parameters. Grid Search [LaValle 2004] is an
another commonly used algorithm to find hyper-parameters but this algorithm searches all
combinations of hyper-parameter subsets. According to [Bergstra 2012], in the case of high
dimensional models such as neural networks, it is very time-consuming to apply grid search
to find hyper-parameters. Thus, we applied it on our CRMLnet model to find the learning
rate, number of hidden layers, number of nodes in each hidden layer, optimizer, etc. After
the parameters selection and different experiments, we tuned our model with Adam11 as
an optimizer. The Adam optimizer is a combined version of two widely used optimizers:
RMSprop12 and SGD13 with momentum [Ruder 2016, Bottou 2012].

4.5.2 Results

Before running any validation procedure, we shuffled all the data and split them into a train,
validation, and test sets. We applied k-fold cross-validation where we used k=5, k=10, and
k=20. We trained our model using these three values for k but we got the highest accuracy
and the lowest loss for k = 10. We thus set k=10 for the cross-validation.

Figure 4.13 plots the train and validation loss for 10-fold cross-validation. Figure 4.15 (a)
shows all these loss curves are overlapping, thus their results are close one to the other. This
means the results are quite robust and do not depend on the data split under consideration.

We also plot the accuracy of the train and validation on Figure 4.14 while Figure 4.15 (b)
shows all these accuracy curves overlapping together. In all figures, the red curves represent
the loss and accuracy during training while the green curves represent the loss and accuracy
during the validation. We applied our CRMLnet model on different numbers of epochs. Here,
1 epoch means the complete forward and backward pass of input features during training.
After many experiments, we set our model to 100 epochs. The curves on Figure 4.13, Fig-
ure 4.15 (a), Figure 4.14, and Figure 4.15 (b) are for 10-fold cross-validation with 100 epochs.
Based on the plotted results, we see that the loss and accuracy are almost the same during
training and validation.

So, according to Figure 4.13, Figure 4.15 (a), Figure 4.14, and Figure 4.15 (b), up to 100
epochs our model does not overfit; no variance problem occurs either. The average validation
(test loss in this case) loss in all cases is around 0.05, which is low. The lower loss a model
has, the better its performance.

11Adaptive Moment Estimation
12Root Mean Square Propagation
13Stochastic Gradient Descent
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Figure 4.13: Up to 100 epochs, CRMLnet performs well and does not overfit when
considering cross-validation. All the training and validation losses are almost similar and decreased
to 0.5 (very low). Here, the horizontal axis represents the number of epoch and the vertical axis is the
loss.
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Figure 4.14: Up to 100 epochs, CRMLnet performs well and does not overtfit when
considering cross-validation. The training and validation accuracy curves are mostly smoothly
overlapped in each plot with a score of around 98% which is a very high score although there are a
few curves with some fluctuations. Here, the horizontal axis represents the number of epochs and the
vertical axis is the accuracy.

We also used the independent test set. The total dataset is divided into three subsets:
training set is 60% of the total data, test set is 20% and validation set is 20%. Figure 4.16 (a)
shows the training and validation loss while the CRMLnet model is applied with independent
test set data sampling. Figure 4.16 (b) shows the accuracy of the using the independent test
set data sampling method.
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Figure 4.15: All the losses and accuracies of CRMLnet are plotted together up
to 100 epochs. (a) shows that all the losses are almost overlapping. Although there is some
fluctuation in accuracy (b), overall CRMLnet performs well.
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Figure 4.16: The accuracy and loss of CRMLnet are also well up to 100 epochs
applying independent test set. The other comments made for Figure 4.15 also hold here.

We run the CRMLnet model 100 times with independent test sets by shuffling the datasets
each time and reported all the accuracy values distribution. Figure 4.17 (a) shows the dis-
tribution of training accuracy values while (b) shows the distribution of validation accuracy.
There is not much difference between these two distributions, which means that our data
preparation and the model used have neither overfitting problems nor variance problems even
while using independent test set data sampling.
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Figure 4.17: After running the independent test set 100 times the distribution of ac-
curacy shows CRMLnet performs well. Here, the horizontal axis of both (a) & (b) shows the
number of samples while the vertical axis of both (a) & (b) shows the accuracy. Although, (a) the dis-
tribution of training accuracy looks a little bit better than (b) the distribution of validation accuracy,
still, there is not much difference between them.

Accuracy is a common performance measure. Accuracy on our CRMLnet model is around
98.72% for 10-fold cross-validation (designated as CRMLnetcv14). It is around 97.79% inde-
pendent test set (designated as CRMLnetind15). This means the performance in both cases
is generalized while 10-fold cross validation shows better accuracy than independent test set.
Subsequent paragraphs show some more measurements for our CRMLnet as well as for the
other architectures with multiple single-label classifiers.

Table 4.2: CRMLnet is much better than the other classifiers when using cross-validation
(CRMLnetcv). Here, the 1st column is the classifier. The next columns are : Accuracy (Acc), area
under receiver operating characteristic curve (auROC ), area under precision-recall curve (auPR),
Specificity(Sp), Sensitivity (Sn ), Mathew’s Correlation Coefficient (MCC ), and F1-score.

Classifiers Acc auROC auPR Sp Sn MCC F1
CRMLnetcv 98.72% 0.999 0.998 99.11% 97.94% 0.971 0.981
MSVMcv 91.66% 0.953 0.934 94.24% 86.54% 0.812 0.793
MKNCcv 95.45% 0.979 0.958 96.68% 93.01% 0.898 0.921
MLRcv 90.96% 0.863 0.818 93.29% 86.36% 0.797 0.785

In addition to accuracy, we have made some other measurements: auROC, auPR, Sp, Sn,
MCC, and F1 score (See Section 4.4). We perform all these measures on CRMLnet using
both 10-fold cross-validation and independent test set (See Table 4.2 and Table 4.3 first line).

We also applied other popular machine learning classifiers that we discussed in Sec-

14Conflict Resolution Multi-label Neural Network Cross Validation
15Conflict Resolution Multi-label Neural Network Independent Test
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Table 4.3: CRMLnet is also much better than the other classifiers when using indepen-
dent test set (CRMLnetind). The columns are the same as in Table 4.2

Classifiers Acc auROC auPR Sp Sn MCC F1
CRMLnetind 97.79% 0.997 0.995 97.93% 97.36% 0.952 0.968
MSVMind 91.47% 0.944 0.899 94.30% 85.89% 0.808 0.768
MKNCind 93.00% 0.931 0.895 95.14% 88.78% 0.843 0.884
MLRind 90.97% 0.842 0.789 93.63% 85.73% 0.797 0.785

tion 4.2.4 and Figure 4.9. We compared their performance with the CRMLnet model and
show our model is much better in performance than the other machine learning classifiers. As
we explained in Section 4.2.4, a multi-label classification problem can be defined as a multiple
single-label classification problem. Therefore, we have applied multiple separate single-label
classifiers using the same classifier for each single class-label. For example, in Table 3.2 or
Figure 4.8, we have twelve distinct class-labels (horizontal heading direction) and for each
class-label, we applied a single-label classifier to classify them individually. All individual clas-
sifiers perform a binary classification to predict the corresponding heading changes whether
it solves the conflict or not. So, all the individual classifiers use the same input features. For
example, Figure 4.9 shows a general architectural view of a multi-label classification model
using a single-label classifier where all the CF (CF1, CF2, ..., CF12) can be replaced by any of
one single-label classifier (SVM, KNC, or LR). Thus, we designed three different architectures
for SVM, KNC, and LR (designated as MSVM, MKNC, and MLR) and applied them on the
same dataset using both sampling methods: 10-fold cross-validation and independent test set.

Finally, all the results discussed in Section 4.4 of the different models are represented in
the Table 4.2 for cross-validation sequentially as follows: CRMLnetcv, MSVMcv, MKNCcv,
MLRcv. Table 4.3 also presents the results using independent test set validation. Table 4.2 and
Table 4.3 reveal that all the models did better for cross-validation than the independent test
set. A closer look at the results show that our CRMLnet model for both cross-validation and
independent test set are much better than the other models based on a single-label classifier.
CRMLnet model did well not only for accuracy but also for all other scoring discussed in
Section 4.4. Notable among these scores are F1 and MCC, which have recently been used to
compare almost all machine learning models. Although numerical results are often important,
many complex things are easier to understand if they are visually presented. Therefore, in
Figure 4.18, we represent the ROC curve of individual class-label (twelve heading directions
from Table 3.2) for all the methods with 10-fold cross-validation: (a) Neural Network-based
model CRMLnet, (b) Multiple Support Vector Machine based model MSVM, (c) Multiple K-
Nearest Neighbor Classifier based model MKNC, and (d) Multiple Logistic Regression based
model MLR. If we look at the ROC curve in Figure 4.18, we can see that the model based on
a neural network CRMLnetcv is performing better than the other models for all class labels.
We can see ROC highly fluctuate on the other models (MSVMcv, MKNCcv, and MLRcv)
while it does not for our CRMLnetcv model.
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Figure 4.18: Overall CRMLnet is much better considering ROC performance than the
other models. Here, each figure shows the ROC of individual heading decision in Table 3.2: (a)
Neural Network-based model CRMLnet performance; (b) Multiple Support Vector Machine based
model MSVM; (c) Multiple K-Nearest Neighbor Classifier based model MKNC, and (d) Multiple
Logistic Regression based model MLR.

4.6 Conclusion

Almost all the conflict resolution related work has been done based on a single position of
the aircraft involved in the conflict while in this chapter we defined and evaluated a model
based on a series of 5-minute continuous positions of each involved aircraft. Thanks to this
data representation, the model can be trained considering the conflict environment with the
5-minute of trajectory. This solution also preserves us to calculate additional features that
are prone to errors.

We cast the problem into a multi-label classification problem where several solutions may
be possible.
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In this chapter, we developed a neural network model (CRMLnet ) that we evaluate
against more traditional classifiers. We show that when two aircraft are in conflict, our model
performs better than the other classifiers.

Our preliminary model presented in Section 4.2.6 was published at ADBIS16, TPDL17 &
EDA18 joint conferences 2020 [Rahman 2020].

The CRMLnet model was published in 2022 at the 14th International Conference on
Agents and Artificial Intelligence [Rahman 2022].

The CRMLnet is implemented using the Python programming language and TensorFlow’s
Keras library. Complete code attached to Appendix A.

Although our CRMLnet model is valuable, this model cannot handle conflicts where a
variable number of aircraft can be involved, which is the real word case. Indeed, each aircraft
trajectory corresponds to a number of input and the input layer of our model is set for two
aircraft only.

This difficult problem is solved in the next chapter.

1624th European Conference on Advances in Databases and Information Systems
1724th International Conference on Theory and Practice of Digital Libraries
1816th EDA days on Business Intelligence & Big Data





Chapter 5

Aircraft Conflict Resolution using
Convolutional Neural Network on
Trajectory Images

Resolving aircraft conflicts using neural network models on trajectory data is not
possible for conflicts that imply a variable number of aircraft because the input size of
the model is fixed while the input data is not. To solve this challenge, we transformed
the trajectory data into images which size does not depend on the number of planes.
We developed a multi-label conflict resolution model that we named ACRnet. It is
based on a convolutional neural network to classify the obtained images. ACRnet
model achieves an accuracy of 99.16% on the training data and of 98.97% on the test
data set for two aircraft. For both two and three aircraft, the accuracy is 99.05%
(resp. 98.96%) on the training (resp. test) data set.

Abstract.
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5.1 Introduction

In Chapter 4, we developed a model based on a series of 5-minute continuous positions for two
aircraft. While this approach could be adapted for another number of aircraft, this number

63



64
Chapter 5. Aircraft Conflict Resolution using Convolutional Neural Network

on Trajectory Images

has to be fixed because the model -the number of neurons on the input layer- depends on
the number of aircraft. Indeed, because our first model is based on trajectory data related
to positions, there is a number of input for each aircraft. The total number of input depends
on the number of aircraft while the neural network model has a fix number of input. This
situation is not representative of real world situations. Rather, usually, each time a conflict
occurs, there may be a different number of aircraft involved.

As the input size of a NN model remains constant and cannot be changed in real-time, it
is an input dimensionality problem. For example, if we need k parameters for an aircraft to be
considered during a conflict resolution, then there will be n× k parameters for n aircraft.The
number of inputs of the model depends on the number of aircraft.

Brittain and Wei [Brittain 2021] applied recurrent neural network (RNN1)-based LSTM
model. The computation of their model depends on the number of aircraft when using LSTM.
Since the number of input aircraft can be arbitrary and the trajectory data of each aircraft is
5 minutes, in our case, it is very complicated to fit it in any recurrent-based model. Brittain
and Wei only considered the current position of the aircraft while Zhao and Liu [Zhao 2021]
converted trajectories into image data to handle a variable number of aircraft in real-time
using reinforcement learning. Finding the perfect reward function when using reinforcement
is challenging.

If this input dependency could be eliminated by any means, we could build a model so
that the model does not depend on the number of aircraft. One of the challenges here is that
if we solve this problem by changing the model, it will become model-dependent. On the
other hand, if we represent the data in such a way that the data is applicable to the input of
all models, then the acceptability of that solution will be much better than the changing of
the model architecture. So in the case of a new representation of our data, we must keep in
mind that the input dimension of the model should be independent of the number of aircraft.

Here, inheriting ideas from Zhao and Liu [Zhao 2021], we converted trajectory data into
image data. We detail this process in Section 3.4.1.

The benefits of converting trajectory data into images are given below:

(a) The trajectory of a variable number of planes can be plotted without resizing the image.
Thus, it is possible to apply the same machine learning model without any change in
the input size of the model. It solves the input dimensionality problem for the model;

(b) The complexity of the computation will not change even if the number of planes changes,
which is not the case with non-image data;

(c) We can easily apply the image data augmentation technique to increase the training
sample and convolutional neural network (CNN) can be applied with data augmentation;

(d) Not only can conflicts be resolved between aircraft but also between aircraft and other
airspaces such as weather, military zones, etc.

1Recurrent Neural Network
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Like in the previous chapter, to reflect the fact a conflict can be solved in different ways,
we annotated each image with multi-labels, each corresponds to a possible solution.

We developed and evaluate a CNN with multi-label classification that we call ACRnet:
aircraft conflict resolution convolutional neural network.

This chapter is organized as follows. Section 5.2 discusses the model architectures. Sec-
tion 5.3 presents the evaluation framework. Section 5.4 presents the results and comparisons
between different models. Finally, Section 5.5 concludes this chapter.

5.2 ACRnet: Aircraft conflict resolution CNN model

We converted trajectory into image data where the initial trajectory is the one we presented
in Section 3.4.1 in Chapter 3.

Like in the previous chapter and model, there are 12 class labels (Figure 4.6: −300,−250, ....−
50 and +50,+100, ....+ 300) as output for each input conflict situation. Each conflict sample
is annotated by one or more class labels and thus a multi-label classification-based model is
the most appropriate.

5.2.1 Model selection

Since our image data are labeled with multi-label classes, we decided to use a model based on
a convolutional neural network where the outputs are multi-labeled. There are many existing
models based on convolutional neural networks for image classification. We applied two widely
used models: VGG16 [Simonyan 2014] and ResNet [He 2016]. Although these models are very
popular for image classification, our data (1,656 images) may not be sufficient for these models
due to a large number of layers and the number of nodes in these architectures. Thus, since the
performance of a neural network-based model depends on its hyper-parameters, we created a
model by applying different combinations of the hyper-parameters.

The hyper-parameters of a neural network are: the number of hidden layers, the number
of nodes in each layer, the activation function, etc. Optimizing hyper-parameters is costly.
Grid search [LaValle 2004, Bergstra 2012] and random search [Bergstra 2012] algorithms
can help to find the best hyper-parameter values. The Keras team has recently developed
KerasTuner [O’Malley 2019] for deep learning or convolutional neural network for hyper-
parameter selection which is widely used. We used KerasTuner for our CNN-based model to
find the hyper-parameters. KerasTuner comes with the combination of Bayesian optimization
[Frazier 2018] and random search [Bergstra 2012]. After applying KerasTuner, we found our
ACRnet model architecture that consists of five layers: input, output, and three hidden layers.
In addition to these layers, some other layers are used such as dropout layer, dense layer, max
pooling, etc. which are discussed later.
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We only converted the input trajectory to the image data and made no changes to the
output class label (See Section 3.4.2). Thus, the output layer consists of 12 nodes. Finally,
we consider a small architecture to propose a model for our dataset, we call it aircraft conflict
resolution convolutional neural network (ACRnet) model (see Figure 5.1). It might not have
been appropriate to use VGG16 or ResNet model due to the large number of nodes and layers.
The model we chose, based on our hyper-parameters search, is much smaller compared to these
architectures.

5.2.2 ACRnet model based on images

We defined the ACRnet model after applying model selection. Because our data is not very
large, using more conventional CNN models with many layers and nodes (neurons) increases
the risk of overfitting. We thus designed our model with a lower number of layers and nodes.
Figure 5.1 shows the architecture of the model.

30
0 

px

Conv2D Activation MaxPooling2D Dense Dropout

300 × 300 × 28

150 × 150 × 28

75 × 75 × 28

37 × 37 × 28

Figure 5.1: ACRnet: Aircraft conflict resolution CNN model. The size of the
first convolutional layer (Conv2D) is 300 × 300 with 28 nodes (filters) as the image size is
300px× 300px. This model contains 3 hidden layers and each hidden layer (Conv2D) of this
model has 28 nodes (filters). The activation function is ReLU except for the output layer
which uses sigmoid. Finally, there are 12 nodes in the output layer.

Figure 5.1 shows our ACRnet model. This model has three hidden convolutional layers
(Conv2D: two dimensional convolutional layers) and 28 nodes (filters) in each layer. The size
of each image specified for this model is 300× 300 and the number of nodes or filters at the
input layer is 28. We found the best scores for 28 filters when searching for hyperparameters,
so we kept this constant for all the layers.

Just after each convolutional layer there is an activation layer. We chose the widely used
Rectified Linear Units (ReLU) [Agarap 2018] activation function, for all the hidden layers.
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In Figure 5.1, all activation layers are represented by red blocks. Usually, the input image
with high dimension is reduced through the use of MaxPooling layers. In this model, several
MaxPooling layers of size 2 × 2 are used to reduce the dimension of each Conv2D layer by
half. MaxPooling is a 2D grid that travels on Conv2D to create a new Conv2D grid. Since the
size of the MaxPooling grid is 2 × 2, the size of the new Conv2D is half that of the previous
Conv2D. Because MaxPooling takes only the maximum value from 2 × 2 grid to build the
new grid. But, there will be no change in the size of the filter. For instance, the Conv2D size
in the first layer is 300 × 300 and the number of filters is 28. So, the total parameters are
300 × 300 × 28. The Conv2D size is reduced from 300 × 300 to 150 × 150 in the second
layer because of the MaxPooling.

After the final convolutional layer, there is a Dense layer. It is also called a fully connected
layer because it is flat and densely connected to the previous and/or next layer. It converts
the final Conv2D into a 1D vector. Generally, the function of this layer is to decide on the next
final output using the important features reduced by the convolutional layers. We also use a
ReLU activation function in this layer. Right after this dense activation layer (ReLU), there
is a Dropout layer. Typically, Dropout layer is used to exclude less important information. In
this case, it is necessary to specify how much information will be reduced. We set it to 50%.
Thus, this layer reduces information from Dense layers by 50%. In this way, the Dropout
layer is used to forward the important information in making the final decision. Finally, there
are 12 nodes in the output layer that provide binary decisions for 12 heading directions (-300,
-250, ...., +250, +300) described in Figure 3.2 using the sigmoid activation function. Since
all the outputs are separate binary classes (0 or 1), we use an activation layer with sigmoid
activation function just after the output layer. All the outputs are either ’0’ or ’1’. Whenever
a new test conflict image is given after model training, the model gives the binary output of
12 headings. Training and testing are discussed in detail in the next section.

5.3 Evaluation framework

To evaluate the performance of the ACRnet model, we reused the performance measure-
ments discussed in Section 4.4: (Acc, auROC curve , auPR curve, F1 score, Sensitivity Sn ,
Specificity Sp , and MCC ). We add two new measures: False positive rate (FPR2) and False
negative rate (FNR3).

Since all the heading decision individual class levels are binary classes, the performances
are evaluated from the confusion matrix.

False positive rate (FPR) = FP

FP + TN
(5.1)

2False positive rate
3False negative rate
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False negative rate (FNR) = FN

FN + TP
(5.2)

False positive rate (FPR) is the percentage of false positive (FP) prediction among total
number of negative ground truth (FP + TN). Similarly, false negative rate (FNR) is the
proportion of false negative (FN) prediction among total number of positive ground truth
(FN + TP).

A convolutional neural network (CNN) model can be evaluated in many ways. There are
many facts that we can consider for the CNN-based model in parallel with model selection and
hyper-parameter selection to improve performance. Some of them are selecting the correct

5 folds 10 folds

Test: 10%, 
Train: 90%

Test: 20%, 
Train: 80%

150𝑝𝑥 × 150 𝑝𝑥 300𝑝𝑥 × 300 𝑝𝑥100𝑝𝑥 × 100 𝑝𝑥 200𝑝𝑥 × 200 𝑝𝑥50𝑝𝑥 × 50 𝑝𝑥
Image 

resolution:

Number of 
folds:

Percentage of 
test samples:

50 epochs 100 epochs

Test: 15%, 
Train: 85%

Number of 
epochs:

Figure 5.2: Presents the combination of different parameters related to our model
training. A set of image resolutions is present in the first row of this figure. Second row,
there are two options, either k=5 or k=10, to chose the number of folds while the third row
shows the three different percentages of train and test data. Finally, the fourth row presents
the two choices for the number of epochs during: 50 epochs or 100 epochs.

resolution of the input images, selecting the correct amount of train and test data, selecting
the number of epochs during training, and many more.

We considered these issues in this chapter. Since changing the image resolution has an
impact on the performance of the CNN-based model, we generated images with five different
resolutions: (a) 50px×50px; (b) 100px×100px; (c) 150px×150px; (d) 200px×200px; and (e)
300px × 300px. We used k-fold cross-validation [Kohavi 1995] as the data sampling method
where we applied both k=5 and k=10.

We applied cross-validation thrice, completely separating three different amounts of test
and train data. Before starting the procedure each time, we shuffled the total data and
separated them into test and train. Thus, we trained and tested the model three times in
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different amount of test data. The amount of test data was taken as 10%, 15%, and 20%.
Figure 5.2 shows the different combinations of selecting image resolution, number of folds,
percentage of test data, and the number of epochs for the model training. Here, 1 epoch means
a complete cycle of training data passes through the model network. For each combination,
we analysed the performance mentioned earlier in this section.

The ACRnet model performs best when the parameters are taken as the red path in
Figure 5.2: image resolution 300px× 300px, k-fold cross-validation where k=10, the amount
of test data is 15% while 85% is for training, and the number of epochs is 100.
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Figure 5.3: Shows the block diagram of overall training, validating, and testing
procedure for ACRnet model. The procedure starts from 1 where a simulator produces
trajectories of conflict scenario. 2 is the converted images from the trajectories. The image
data set is divided into two parts: 3 data for training (85%) with cross-validatoin & 5 test
data (15%). The training data in 3 uses for the k-fold cross-validation in 4 . The model in
6 is trained and validated k times using the k-1 parts of data for training and 1 part for the
validation. Based on validation results in 7 , all the hyper-parameters are updated with the
new weights. Finally, the trained model in 9 is tested with test data in 5 and shows the
results in 10 .

Figure 5.3 describes a complete block diagram of the workflow including the model train-
ing, validation, and test. We briefly describe each of them below. At the very beginning
of the process, 1 in Figure 5.3 shows a lightweight open-source simulator named Blue Sky
developed at TU Delft by Hoekstra and Ellerbroek [Hoekstra 2016] was used to simulate
conflict between aircraft. Then block 2 shows that all the trajectories are transformed into
images. The python library python matplotlib [Ari 2014] was used. Block 3 and 5 are two
separate parts of image data. Here, block 3 shows the training data (85% of total data)
that uses for cross-validation while block 5 shows the 15% of the total data that uses for
testing purposes. The block 4 illustrates the complete loop of the k-fold cross-validation
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taking data from block 3 . In this step, the training data is further divided into k parts.
Each time, the model in block 6 is trained on k-1 parts of data (indicated by “T" at 4 )
and 1 part to validate it (indicated by “V" at 4 ). Based on the validation results at 7 , the
hyper-parameters are tuned in block 8 with new weights (modify the initial or the previous
weight values). It continues the steps 6 , 7 , and 8 , taking different training and validation
data from 4 until the k folds (k=10) are complete. Block 9 shows the final trained model
that is ready to be tested on unseen data and will provide the results, output heading in our
case, in block 10 .

Since a CNN model requires a lot of data to be trained and because our data is not so
much, we used the most common image data augmentation technique. We discussed it in
Section 3.4.2. We only applied the rotation feature of the image data augmentation. We
used Python Keras for data augmentation which works as follows: first the training data is
randomly augmented and the model is trained with that data; then the mode is validated
with validation data. In this case, the validation data is not augmented. Random data
augmentation is applied for each epoch. Thus, the model is trained with the flavor of new
data at each epoch. This augmentation process has the advantage of using a small number
of images to get a large number of image data performance as it gets a new set of augmented
image data in each epoch. This is very difficult to do when using trajectory data because we
have only done manual trajectory augmentation once while Keras automatically augment the
image in each epoch.

5.4 Results and Discussion

This section discusses the results we found for the ACRnet and compares our models with
other models. There are different types of programming languages and each language has
different libraries for machine learning algorithms. Since python is simple in coding compare
to other programming language, we use python to implement all the models in this thesis.
For instance, python Keras library was used to build our CNN model and python scikit-learn
library was used to find different results discussed in Section 5.3.

The performance of a neural network model depends on many things such as accurate
annotation of data, choosing the right model, selecting the hyper-parameters using model se-
lection procedure (Section 5.2.1), model training with the appropriate data sampling method,
and many more things. We have presented the choices we made in Section 5.2. We first com-
pare our ACRnet model and the CRMLnet model presented in Chapter 4 where we used
image data for ACRnet and trajectory data forCRMLnet model. Data annotation is the
same for both models. All the results generated for both models use 10-fold cross-validation
with 100 epochs: 15% of the data is allocated for testing the model. We applied the same
number of folds, same percentage of data for training, validation and test.

Since we have used Keras library to implement both ACRnet and CRMLnet models; it
offers many features including training accuracy and validation accuracy curve plot. Also, we
can use similar features to plot training and validation loss. This is a widely used plots for
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visualizing or comparing the performances of models based on CNN. It is really necessary to
understand whether there is any overfitting or variance problem in the model.

Figure 5.4 shows the loss function and Figure 5.5 shows the accuracy function for the
CRMLnet model. As we have trained and validated both models (ACRnet and CRMLnet)
using 10-fold cross-validation, we should have 10 different results for them. Figure 5.4 and
Figure 5.5 plot the loss and accuracy for all the 10-fold independently. In both cases, training
results are represented in red color curves while validation results are plotted in green color
curves. Here, the x-axis represents the number of epochs used to train the model (up to 100).
The y-axis in Figure 5.4 shows the loss in between the range of 0.0 and 0.5 while in Figure 5.5
shows the accuracy between 75% and 100%.
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Figure 5.4: Up to 100 epochs, the loss of CRMLnet decreases appropriately. The
lower the loss of a model, the better the performance of that model. This figure, presents
the training and validation loss changes of the CRMLnet model with respect to the epochs
using 10-fold cross-validation. Here separate sub-plots are presented for 10 results. The x-axis
shows the number of epochs between 0 and 100 while the y-axis represents the loss between
0.0 and 0.5.

We applied the same procedure for the ACRnet model to visualize the accuracy function
and loss function. Figure 5.6 and Figure 5.7 represent all the subplot of the loss and the
accuracy functions for the ACRnet model using 10-fold cross-validation. We can find out
the difference between the two models. The performance of the CRMLnet model looks a
little better than the ACRnet model. However, to understand more clearly the difference
in performance between the two models, we need to look not only at the visual graph of
the loss and accuracy functions but also at some other performance measures. Thus, all the
performance measures discussed in Section 5.3 were applied.

To compare the models, we applied 10-fold cross-validation and recorded the average
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Figure 5.5: Up to 100 epochs, the accuracy of CRMLnet is increased upwards.
This figure reads like Figure 5.4 for accuracy which is represented between 75% and 100%.
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Figure 5.6: Up to 100 epochs, the loss of ACRnet decreases appropriately. The
lower the loss of a model, the better the performance of that model. Training and validation
loss changes of the ACRnet model (y-axis) with respect to the epochs (x-axis) using 10-fold
cross-validation. Separate sub-plots are presented for 10 results.

results for the 10 measurements. For example, all the results on validation data in Table 5.1
are an average of results on 10-fold. The 1st column is the name of the model. The 22nd column
shows the test accuracy of the models. All subsequent columns are: accuracy (Acc), area
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Figure 5.7: Up to 100 epochs, the accuracy of ACRnet increases appropriately.
Same as Figure 5.6 where y-axis is accuracy.

under receiver operating characteristic curve (auROC), area under precision-recall (auPR),
specificity(Sp), sensitivity (Sn), positive predictive value (PPV), false negative rate (FNR),
false positive rate (FPR), Mathew’s correlation coefficient (MCC), and F1 score. We can
observe in Figures 5.4, 5.5, 5.6, and 5.7 that CRMLnet is slightly better than ACRnet. But
in almost all the cases, Table 5.1 shows that ACRnet is better than CRMLnet including for
accuracy on the test with completely unseen data. We stated in the Section 5.1 that our target
is not only to handle the variable number of aircraft but also to increase the performance of
the model. For this reason, we used data augmentation. In the next discussion, we will see
some more results for both models.

Figure 5.8 (a) and Figure 5.8 (b) show the loss and the accuracy curves for the CRMLnet
model when using 10-fold cross-validation.

Figure 5.8 (c) and Figure 5.8 (d) show the loss and the accuracy curves for the ACRnet
model. In both cases, the x-axis represents the number of epochs used to train the model
up to 100. The y-axes in Figure 5.8 (a) and (c) show the losses in between the range of 0.0
and 0.6 and Figure 5.8 (b) and (d) show the accuracy. In parallel with the visual loss and
accuracy,

Table 5.1 reports the test and validation results of the models using 10-fold cross-validation.
In this table, Block 1 shows the ACRnet model scores for two different datasets. ACRnet2 are
the scores using image data containing two aircraft while ACRnet3 are the scores when using
image containing two or three aircraft. For both two and three aircraft, the ACRnet model ar-
chitecture remained unchanged. Block 2 represents the performance scores for the CRMLnet
model using trajectory data while Block 3 shows the scores for VGG16 [Simonyan 2014] and
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Figure 5.8: Up to 100 epochs both CRMLnet and ACRnet models performed well
without any overfitting. This figure shows the average loss and accuracy for CRMLnet
and ACRnet models. The comparison between loss (a) & (c) and accuracy (b) & (d) shows
that the performances of both models are very close to each other while CRMLnet is a little
better than ACRnet when comparing the training and validation curves.

ResNet [He 2016] using the same image data as ACRnet. According to loss and accuracy
functions in Figure 5.8, CRMLnet looks a little better than ACRnet but the scores, especially
the highlighted scores, in Table 5.1 show that ACRnet is much better than the others. So,
using image data not only we handle a variable number of aircraft but also we increase the
performance of the model.

Table 5.1 Block 3 shows the scores of VGG16 and ResNet; they do not perform well
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compare to ACRnet. This may be because of their many layers. If there were more samples,
the performance of those two models may be better. The main purpose of this chapter was
not to find the best image processing model but to easily overcome the challenge of existing
sequence-based models through image processing with higher performance.

Table 5.1: ACRnet performs much better than CRMLnet, VGG16, and ResNet.
Here, the 1st column corresponds to the model name. The 22nd column is the accuracy on
test data of the models. The subsequent columns are: accuracy (Acc), area under receiver
operating characteristic curve (auROC), area under precision-recall (auPR), specificity(Sp),
sensitivity (Sn), positive predictive value (PPV), false negative rate (FNR), false positive rate
(FPR), Mathew’s correlation coefficient (MCC), and F1 score. Block 1 shows the ACRnet
model score for two aircraft (ACRnet2) and mixed (two and three) aircraft (ACRnet3). The
highlighted scores (Block 1) are the most significant where ACRnet is much better than
CRMLnet (Block 2), VGG16 (Block 3), ResNet(Block 3).

Block 1 Test Validation
Model Acc Acc auROC auPR Sp Sn PPV FNR FPR MCC F1
ACRnet2 98.97% 99.16% 0.999 0.999 99.41% 98.66% 98.82% 1.34% 0.59% 0.981 0.987
ACRnet3 98.96% 99.05% 1.000 0.999 99.20% 98.78% 98.63% 1.22% 0.80% 0.980 0.987

Block 2
CRMLnet 96.38% 98.76% 0.999 0.999 99.20% 97.87% 98.40% 2.13% 0.80% 0.972 0.981

Block 3
VGG16 79.97% 80.93% 0.771 0.607 88.93% 65.05% 74.78% 34.95% 11.07% 0.561 0.694
ResNet 92.79% 91.34% 0.973 0.951 92.30% 89.44% 85.42% 10.56% 7.70% 0.809 0.874

One of the most challenging issues in multi-label classification is to properly evaluate its
performance. In this chapter, in addition to the overall performance, we present the model
performance of each individual class label (Table 3.2) on the test data. Since the output
of both models is multiple binary classification, we produce separate test results for each
individual class label. In this case, we can make a comparison between the results of each
individual classification from CRMLnet and ACRnet. For example, both models classify the
aircraft’s heading directions (Table 3.2) for conflict resolution, and there are twelve heading
directions for each model. Table 5.2 presents the results on the test data for the CRMLnet
model for the individual twelve heading directions. Similarly, Table 5.3 presents the results
for the ACRnet model. The comparison of the two tables show that in almost all the cases,
ACRnet performs much better than CRMLnet. Although both models have an individual
heading’s accuracy above 90%, the overall individual heading prediction score of ACRnet
model is much better than the one of CRMLnet model. The performance of a model cannot be
completely determined by only measuring accuracy and/or ROC curve. We show some other
performance measures. For example, Table 5.2 reports 100% accuracy using the CRMLnet
model for the Right 50 direction and F1 score is 0.800. On the other hand, Table 5.3 reports
90.79% accuracy using the ACRnet model for the Left 200 direction when the F1 score is 1.
Since recently, F1 score measurements were used in many machine learning fields to evaluate
a model because of its harmonic mean property (see Section 4.4 Equation 4.9), we also report
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F1 scores to show the difference in performance between CRMLnet and ACRnet models.

Table 5.2: Individual class label (heading) prediction results of the CMRLnet
model on test data. Here, the 1st column is the individual heading direction. All subsequent
columns are: accuracy (Acc), area under receiver operating characteristic curve (auROC),
area under precision-recall (auPR), specificity(Sp), sensitivity (Sn), positive predictive value
(PPV), false negative rate (FNR), false positive rate (FPR), Mathew’s correlation coefficient
(MCC), and F1 score.

Heading Acc auROC auPR Sp Sn PPV FNR FPR MCC F1
Left 50 98.25% 1.000 1.000 99.54% 70.00% 87.50% 30.00% 0.46% 0.774 1.000
Left 100 95.18% 0.938 0.800 97.52% 89.55% 93.75% 10.45% 2.48% 0.883 0.889
Left 150 90.35% 0.833 0.750 86.21% 94.64% 86.89% 5.36% 13.79% 0.810 0.800
Left 200 87.72% 1.000 1.000 83.78% 89.61% 92.00% 10.39% 16.22% 0.724 1.000
Left 250 97.37% 1.000 1.000 86.49% 99.48% 97.44% 0.52% 13.51% 0.901 1.000
Left 300 97.37% 1.000 1.000 86.49% 99.48% 97.44% 0.52% 13.51% 0.901 1.000
Right 50 100.00% 0.833 0.750 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 0.800
Right 100 98.68% 0.417 0.472 99.48% 94.44% 97.14% 5.56% 0.52% 0.950 0.222
Right 150 98.25% 1.000 1.000 99.48% 91.89% 97.14% 8.11% 0.52% 0.935 1.000
Right 200 97.81% 1.000 1.000 99.48% 89.19% 97.06% 10.81% 0.52% 0.918 1.000
Right 250 97.37% 1.000 1.000 99.48% 86.49% 96.97% 13.51% 0.52% 0.901 1.000
Right 300 98.25% 0.950 0.667 99.48% 91.89% 97.14% 8.11% 0.52% 0.935 0.800

Table 5.3: Individual class label (heading) prediction results of the ACRnet model
on test data. The columns are the same as in Table 5.2

Heading Acc auROC auPR Sp Sn PPV FNR FPR MCC F1
Left 50 99.12% 1.000 1.000 100.00% 80.00% 100.00% 20.00% 0.00% 0.890 1.000
Left 100 99.56% 1.000 1.000 100.00% 98.55% 100.00% 1.45% 0.00% 0.990 1.000
Left 150 98.68% 1.000 1.000 98.31% 99.09% 98.20% 0.91% 1.69% 0.974 1.000
Left 200 90.79% 1.000 1.000 89.86% 91.19% 95.39% 8.81% 10.14% 0.790 1.000
Left 250 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Left 300 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Right 50 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Right 100 99.56% 1.000 1.000 100.00% 97.14% 100.00% 2.86% 0.00% 0.983 1.000
Right 150 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Right 200 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Right 250 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000
Right 300 100.00% 1.000 1.000 100.00% 100.00% 100.00% 0.00% 0.00% 1.000 1.000

We further tested ACRnet and CRMLnet to see the probability score of each heading
decision and to understand how image data helps in increasing performance. Figure 5.9
(a) and (b) plot the predicted probability scores of all the individual heading resolutions
for ACRnet and CRMLnet. Here, it is an excellent comparison between the ACRnet and
CRMLnet models because Figure 5.9 (a) and (b) show the predicted probability scores of all
the class labels separately for all the conflict scenarios. For example, each conflict sample is
annotated with multiple heading directions, and therefore all individual heading degrees are
classified by both ACRnet and CRMLnet models based on their probability scores. In this
case, both ACRnet and CRMLnet models have followed the same strategy to classify each
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Figure 5.9: ACRnet is more confident in predicting using image data than
CRMLnet with trajectory data. Here x-axes in both (a) and (b) present the total
number of heading decisions (288 (test conflict sample) × 12 (heading degree) = 2736) and
the y-axis is the probability between 0% and 100%. All the dots above the green line in the
middle (threshold = 50%) are the positive class (‘1’) and below are the negative class (‘0’).
All red dots are incorrectly classified that are bounded by the blue lines while green dots
are correctly classified. The distance between blue lines (incorrectly classified boundaries) is
shorter for ACRnet than it is for CRMLnet. The blue lines are overlapping on the 0% and
100% scoreline for CRMLnet. It means there are some incorrectly classified samples that are
closed to 0% and 100%. Thus, ACRnet is more confident than CRMLnet because the shorter
the distance between the blue lines, the more confident the model is.

output heading degree. The green horizontal line in the middle of both figures (a) and (b)
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indicates 50% of probability score line exactly. All positive classes (‘1’) are above the green
horizontal line and all negative classes (‘0’) are below that line. The green dots represent
the samples that are correctly classified while the red is for misclassified. All misclassified
samples are fallen inside the blue line boundaries. For both (a) and (b) in Figure 5.9, x-axis
presents the total number of heading degrees (288 (test conflict sample) × 12 (heading degree)
= 2736) and the y-axis presents the probability score of each heading resolution between 0%
and 100%. The blue boundary (misclassified) for CRMLnet is overlapped on the 0% scoreline
line and 100% scoreline, so, it is invisible in Figure 5.9 (b) while it is clearly visible for ACRnet
in Figure 5.9 (a). This means that CRMLnet classifies many samples incorrectly but with
a high confidence. Thus, ACRnet is more confident than CRMLnet because the shorter the
distance between the blue lines, the more confident the model is.

5.5 Conclusion

This research aims to provide a generalized model to resolve a conflict where a variable
number of aircraft are involved. Different aspects were considered: (a) create image data from
trajectory sequences; (b) apply augmentation technique to increase the number of training
image data ; and (c) find a CNN-based model to classify these images. We defined a relatively
small CNN-based model, ACRnet, and found an accuracy of 98.97% and 98.96% for the
conflict resolution classification of two and mixed (both two and three) aircraft. The work in
this chapter has been published in [Rahman 2021].

We compared our ACRnet model with the CRMLnet model (Chapter 4) using 10-fold
cross-validation where the input data of ACRnet are images and of CRMLnet are trajectory
sequences. We also compared ACRnet with two other widely used CNN-base models: VGG16
[Simonyan 2014] and ResNet [He 2016]. Overall, ACRnet performs much better than the other
models.

The main purpose of this research was not to find the best image processing model, but
rather to show that the use of image data not only overcomes the input dimension problem
but also increases the performance of the model. An interesting aspect of using image data is
that it can be used not only for conflict between planes but can also with other information
without changing the image size such as weather, thunderstorms, military zones, etc. Our
future research will include that information for better resolution of aircraft conflicts as well
as more than 3 aircraft.
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Conclusion and future work

Aircraft conflict resolution is a routine task of the air traffic management system and is
going to be a challenge in the future as the number of aircraft is increasing . The goal of
our research is to propose a model that would incorporate machine learning techniques to
develop an intelligence system for helping humans resolving aircraft conflicts. In this thesis,
we considered two widely used and popular methods of machine learning, especially deep
learning. Our main challenge was to adapt the conflict environment to the machine learning
approach so that our model can make appropriate output decisions.

In the models we proposed and in related work, there are many important factors that
need to be considered such as multiple alternative solutions to the same conflict, model input
dimensionality problem, easier way to include weather information, etc. The application of
machine learning in conflict resolution is at an early stage. Almost all sectors however are
more likely to be assisted by machine learning in the future because its performance is close
to humans’ but also faster than humans.

In this thesis, our main contributions are:

(a) Our first contribution in Chapter 3 was to create a dataset. Indeed, data on aircraft
conflicts is not publicly available and difficult to collect from the ATC centers. Simulated
data are not available either. We created a total of 1,516 trajectory sequence data and a
total of 1,656 image samples, of which 1,516 contain two aircraft and 140 contain three
aircraft. The data sets are freely accessible online at https://independent.academia.
edu/MDSIDDIQURRAHMAN9.

(b) We designed, trained and tested our first CRMLnet model in Chapter 4 using 5 minutes
of trajectory sequence of each aircraft involved in the conflict and provided multiple
heading resolutions.

(c) Since the input dimension of the machine learning model cannot be changed in real-time,
we have converted every conflict scenario into an image to overcome this dimensionality
problem. We then applied our second model in Chapter 5 based on a convolutional
neural network, ACRnet, to classify these image data. The model could be applied to
conflicts implying a variable number of aircraft without changing its architecture.

With regard to (b), the purpose is to classify the heading resolutions following a multi-
label classification principle. Here, multi-label means multiple solutions for a single conflict.
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Most of the models that have been proposed so far for aircraft conflict resolution are based on
the current position of the aircraft involved in the conflict. As opposed to this, we designed
the model using the last 5 minutes of trajectory data, which provides more context for the
decision. For evaluation purpose, we also designed three models where a single-label classifier
was used for each heading decision. These models are based on SVM, KNC, and LR. We
found that our CRMLnet model performs better than these models based on single-label
classifier. After training and testing, CRMLnet obtained 98.72% of accuracy using 10-fold
cross-validation and 97.79% with independent test set. Although this model performed very
well, the limitation is that it resolves conflicts following a pairwise approach. This model
could be used to resolve conflicts for more than two aircraft, but it would be necessary to
change the input dimensions of the model. This is not possible at run time.

There is a limitation to using trajectory-based models to manage input dimensionality.
There are models such as recurrent neural network (RNN), long short term memory (LSTM),
etc. to handle a variable number of input. In that case, the computation of these models
depend on the number of inputs. In our case, it is also difficult to develop such a model
because we are using 5 minutes of the trajectory of each aircraft instead of using a single
point.

Thus, we proposed another model based on a convolutional neural network, ACRnet
(contribution (c)), where we converted the whole conflict scene into an image, so that the
model can take an image as its input. As a result, if we plot an arbitrary number of planes
in the image, there will be no change in the model architecture. Therefore, the model can
resolve conflicts with a variable number of aircraft without any change in input dimension.
We compared our ACRnet model with two widely used image processing models: VGG16 and
ResNet. We also compared ACRnet and CRMLnet using the same data. ACRnet performs
better than the other models on the various measures we used. ACRnet model achieves an
accuracy of 99.16% on the training data and of 98.97% on the test data set for two aircraft.
For both two and three aircraft, the accuracy is 99.05% (resp. 98.96%) on the training (resp.
test) data set. It is worth mentioning that the purpose of our research was not to find the best
image processing model but to show that the input dimensionality problem can be resolved
with the image-based model. We found that using images not only perform better but also
more robustly than using a trajectory sequence.

The further advantage of using image-based models is that we can incorporate uncertain-
ties such as bad weather or restricted military zones into the picture. The same model could
then be applied without changing the model architecture.

For other future work, there are many strategies to improve image-based models by im-
proving image quality. Also, we could include speed and heading information within the
image using different transformation techniques. Finally, we could try to improve the image
processing model by changing the NN architecture.
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CRMLnet model implementation

Step by step implementation of CRMLnet full code using python programming.

Show the TensorFlow and Python version

import t en so r f l ow as t f
print ( " TensorFlow␣ ve r s i on : ␣ " , t f . __version__)
from plat form import python_version
print ( " Python␣ ve r s i on : ␣ " , python_version ( ) )

Select the specific GPU. We select GPU No: 0

import os
os . env i ron [ "CUDA_DEVICE_ORDER" ]= "PCI_BUS_ID"
os . env i ron [ "CUDA_VISIBLE_DEVICES" ]= " 0 "

Import necessary libraries

import keras
import pandas as pd
import numpy as np
import seaborn as sns
import matp lo t l i b . pyplot as p l t
from t en so r f l ow . keras . models import Sequent ia l , Model
from t en so r f l ow . keras . l a y e r s import Input , Dense , Dropout , \
Act ivat ion
from t en so r f l ow . keras . op t im i z e r s import SGD, Adamax , RMSprop
from s k l e a rn . p r ep ro c e s s i ng import StandardScaler , MinMaxScaler
from s k l e a rn . mode l_se lect ion import St ra t i f i edKFo ld
from s k l e a rn . met r i c s import confus ion_matrix
from s k l e a rn . met r i c s import mult i labe l_confus ion_matr ix
from s k l e a rn . mode l_se lect ion import t r a i n_t e s t_sp l i t
from s k l e a rn . met r i c s import accuracy_score , log_loss , \
c l a s s i f i c a t i o n_ r e p o r t , confusion_matrix , roc_auc_score , \
roc_curve , auc , average_prec i s ion_score , f1_score

No random state, always start from 1

81
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np . random . seed ( seed=1)

Load dataset CSV file from the local hard-disk

Dataset = ' / l o c a l −d i r e c t o r y /Dataset . csv '
plot_path = " / l o c a l −d i r e c t o r y /output / "
D = pd . read_csv ( Dataset )
print ( "Number␣ o f ␣ t o t a l ␣ e n t r i e s : ␣ " , len (D) )
n_columns = len (D. columns )
print ( "Number␣ o f ␣ t o t a l ␣ f e a t u r e s : ␣ " , n_columns−12)
print ( "Number␣ o f ␣ t o t a l ␣ c l a s s ␣ l a b e l s : ␣ " , n_columns−271)
D. head ( )

Standard scaling

s c a l e = StandardSca ler ( )

For splitting data into 10-Fold and shuffling them where the random state is 100

cv = St ra t i f i edKFo ld ( n_sp l i t s =10, s h u f f l e=True , random_state=100)

Batch size

batch_size = 28

Number of epoch

e = 100

Neural network model building function

def build_model (X, y ) :
inputs = Input ( shape=(X. shape [ 1 ] , ) )
outputs = Dense (271 , a c t i v a t i o n= ' r e l u ' ) ( inputs )
p r e d i c t i o n s = Dense (y . shape [ 1 ] , a c t i v a t i o n= ' s igmoid ' ) ( outputs )
model = Model ( inputs=inputs , outputs=p r ed i c t i o n s )
return model

Adaptive Moment Estimation (Adam) optimizer

from t en so r f l ow . keras . op t im i z e r s import Adam
opt imize r = Adam( l r =0.001 , beta_1=0.9 , beta_2=0.999)

Split the dataset into feature X and class label y
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X = D. i l o c [ : , : − 1 2 ] . va lue s
y = D. i l o c [ : , − 1 2 : ] . va lue s

Shuffling X and y together

from s k l e a rn . u t i l s import s h u f f l e
X, y = s h u f f l e (X, y , random_state=200)

Split X and y into train and test dataset where the amount of test data is 15%

XX, x_test , yy , y_test = t r a i n_t e s t_sp l i t (X, y , random_state = 1 , \
t e s t_ s i z e =0.15 , s h u f f l e=True )
XX = s c a l e . f i t_t rans fo rm (XX)

Libraries and variables for output results

from s k l e a rn . met r i c s import confusion_matrix , \
roc_auc_score , average_prec i s ion_score
from s k l e a rn . met r i c s import roc_curve
from s k l e a rn . met r i c s import auc
from s c ipy import i n t e rp
CM = np . z e r o s ( ( 2 , 2 ) , dtype=int )
accuracy = [ ]
auroc = [ ]
aupr = [ ]
F1 = [ ]
tp r s = [ ]
aucs = [ ]
acc = 0 .0
f o l d = 1
mean_fpr = np . l i n s p a c e (0 , 1 , 100)
h i s t o ry_d i c t = [ ]

10-fold cross-validation training and validation

count = 1
p l t . f i g u r e ( f i g s i z e =(8 ,6))
for train_index , val_index in cv . s p l i t (XX, yy [ : , 0 ] ) :

print ( " ∗∗∗∗∗∗∗∗∗␣Fold␣{}␣∗∗∗∗∗∗∗∗∗∗ " . format ( count ) )
count += 1
x_train = XX[ tra in_index ]
x_val = XX[ val_index ]

y_train = yy [ tra in_index ]
y_val = yy [ val_index ]
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# Model b u i l d
model = build_model (XX, yy )
model . compile ( l o s s= ' binary_crossentropy ' , \
opt imize r=opt imizer , met r i c s=[ ' acc ' ] )
h i s t o r y = model . f i t ( x_train , y_train , epochs=e , \
batch_size=batch_size , va l idat ion_data=(x_val , y_val ) )
h i s t o ry_d i c t . append ( h i s t o r y . h i s t o r y )

# For pred i c t i on ,
y_proba = model . p r ed i c t ( x_val ) . r av e l ( )

y_pred = np . where ( y_proba >= 0 .5 , 1 , 0)

t e s t = y_val . f l a t t e n ( )
fpr_keras , tpr_keras , thre sho lds_keras = \
roc_curve ( t e s t , y_proba )
auc_keras = auc ( fpr_keras , tpr_keras )
#p l t . p l o t ( fpr_keras , tpr_keras , \
l a b e l= 'Keras␣ ( area ␣=␣ { : . 3 f }) ' . format ( auc_keras ) )
fpr , tpr , t h r e sho ld s = roc_curve ( t e s t , y_proba )
tp r s . append ( i n t e rp (mean_fpr , fpr , tpr ) )
tp r s [ −1 ] [ 0 ] = 0 .0
roc_auc = auc ( fpr , tpr )
aucs . append ( roc_auc )

auroc . append ( roc_auc_score ( y_true=tes t , y_score=y_proba ) )
aupr . append ( average_prec i s ion_score ( y_true=tes t , \
y_score=y_proba ) )
accuracy . append ( accuracy_score ( y_pred=y_pred , y_true=t e s t ) )
F1 . append ( f1_score ( y_pred=y_pred , y_true=t e s t ) )
CM += confusion_matrix ( y_pred=y_pred , y_true=t e s t )
f o l d += 1

To display different result obtained from the confusion matrix

TN, FP, FN, TP = CM. rav e l ( )

print ( ' | ␣Acc␣ |auROC|auPR␣ | ␣Sp␣␣ | ␣Sn␣␣ | ␣PPV␣ | ␣FNR␣ | ␣\
FPR␣ | ␣MCC␣ | ␣F1␣␣ | ' )
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print ( ' |%.2 f ' % (np .mean( accuracy )∗100)\
+ ' |%.3 f ' % (np .mean( auroc ) )\
+ ' |%.3 f ' % (np .mean( aupr ) ) \
+ ' |%.2 f '% ((TN / (TN + FP))∗100)\
+ ' |%.2 f ' % ((TP / (TP + FN))∗100) \
+ ' |%.2 f ' % ((TP / (TP + FP))∗100) \
+ ' |%.2 f ' % ((FN / (FN + TP))∗100) \
+ ' |%.2 f ' % ((FP / (FP + TN))∗100) \

+ ' |%.3 f ' % ((TP∗TN−FP∗FN)/( np . sq r t ( (TP+FP)∗ (TP+FN)∗ (TN+FP)∗ \
(TN+FN) ) ) ) + ' |%.3 f | ' % (np .mean(F1 ) ) )
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